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Abstract
The goal in thinning is to summarize a dataset
using a small set of representative points. Re-
markably, sub-Gaussian thinning algorithms like
Kernel Halving and Compress can match the
quality of uniform subsampling while substan-
tially reducing the number of summary points.
However, existing guarantees cover only a re-
stricted range of distributions and kernel-based
quality measures and suffer from pessimistic di-
mension dependence. To address these deficien-
cies, we introduce a new low-rank analysis of
sub-Gaussian thinning that applies to any distri-
bution and any kernel, guaranteeing high-quality
compression whenever the kernel or data ma-
trix is approximately low-rank. To demonstrate
the broad applicability of the techniques, we de-
sign practical sub-Gaussian thinning approaches
that improve upon the best known guarantees
for approximating attention in transformers, ac-
celerating stochastic gradient training through
reordering, and distinguishing distributions in
near-linear time.

1. Introduction
This work is about thinning, finding a small set of repre-
sentative points to accurately summarize a larger dataset.
Here, we use the term “dataset” liberally to refer to any
collection of points, be they experimental observations (as
in Sec. 6), stochastic gradients (as in Sec. 5), or key-value
pairs (as in Sec. 4). State-of-the-art thinning techniques
provably improve upon uniform subsampling but only for
restricted classes of kernel-based quality measures and with
pessimistic dependence on the data dimension (see, e.g.,
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Harvey & Samadi, 2014; Phillips & Tai, 2020; Alweiss
et al., 2021; Dwivedi & Mackey, 2024; 2022; Shetty et al.,
2022; Li et al., 2024). We introduce a new analysis for
sub-Gaussian thinning algorithms that applies to any kernel
and shows that one can efficiently identify a better-than-
uniform set of representative points whenever the kernel or
data matrix is nearly low-rank. This opens the door to a va-
riety of impactful applications including approximate dot-
product attention in transformers, accelerating model train-
ing through gradient reordering, and distinguishing distri-
butions with deep kernels in near-linear time.

In Sec. 2, we introduce our formal definition of thinning,
two kernel-based measures of thinning quality, and a suite
of candidate thinning algorithms. Sec. 3 presents our main
theorem relating thinning quality to low-rank properties of
a dataset and its induced kernel matrix. In Sec. 4, we trans-
late the problem of approximating attention into a thinning
problem and develop a practical solution, Thinformer, with
state-of-the-art quality guarantees. In Sec. 5, we develop
a thinned stochastic gradient reordering rule that provably
accelerates training and bridges the theory-practice gaps
left open by prior work. Finally, in Sec. 6 we derive new
and improved power guarantees for practical thinned hy-
pothesis tests that distinguish distributions in near-linear
time. Each section also includes its own discussion of re-
lated work.

Notation. For each n ∈ N and a, b ∈ R, we define
[n] ≜ {1, . . . , n}, a∧b ≜ min(a, b), and a∨b ≜ max(a, b).
We let ∥A∥op, ∥A∥max, and ∥A∥2,∞ respectively repre-
sent the maximum singular value, absolute entry, and row
Euclidean norm of a matrix A and let λr(K) denote the r-
th largest eigenvalue of a suitable matrix K. We also define
the Euclidean norm balls Bm ≜ {u ∈ Rm : ∥u∥2 ≤ 1}
and Bm(R) ≜ RBm for each m ∈ N and R > 0. For
an event E and an integrable random variable X , we de-
fine EE [X] ≜ E[X · 1[E]]. We write an ≤ Õ(bn) to mean
an ≤ bn polylog(n).

2. Sub-Gaussian Thinning
We begin with a formal definition of our problem set-
ting. Consider a fixed collection of nin input points Xin
belonging to a potentially larger universe of datapoints
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Table 1: Examples of (K, ν, δ)-sub-Gaussian thinning algorithms. For input size nin, output size nout ≥
√
nin, and

∥K∥max = 1 we report each sub-Gaussian parameter ν and runtime up to constants independent of (nin, nout, δ,K).

Algorithm
Prop. B.1

SUBSAMPLING
Prop. B.2

KH(δ)
Prop. B.5

KH-COMPRESS(δ)
Prop. B.6

GS-THIN
Prop. B.10

GS-COMPRESS

parameter ν
Sub-Gaussian 1√

nout

√
log(nout/δ)

nout

√
log(nout) log(nout/δ)

nout

1
nout

√
log(nout)

nout

Runtime nout n2in n2out n3in n3out

X ≜ {x1, . . . ,xn}. The aim of a thinning algorithm is
to select nout points from Xin that together accurately sum-
marize Xin. This is formalized by the following definition.

Definition 1 (Thinning algorithms). A thinning algorithm
ALG takes as input Xin and returns a possibly random
subset Xout of size nout. We denote the input and out-
put empirical distributions by Pin ≜ 1

nin

∑
x∈Xin

δx and
Pout ≜ 1

nout

∑
x∈Xout

δx and define the induced probability
vectors pin,pout ∈∆n−1 over the indices [n] by

pin,i =
1[xi∈Xin]

nin
and pout,i =

1[xi∈Xout]
nout

for all i ∈ [n].

When X ⊂ Rd, we use X ≜ [x1, . . . ,xn]
⊤ ∈ Rn×d to

denote the input point matrix so that

Ex∼Pin [x] = X⊤pin and Ex∼Pout [x] = X⊤pout.

We will make use of two common measures of summa-
rization quality.

Definition 2 (Kernel MMD and max seminorm). Given
two distributions µ, µ̃ and a reproducing kernel k (Stein-
wart & Christmann, 2008, Def. 4.18), the associated ker-
nel maximum mean discrepancy (MMD) is the worst-case
difference in means for functions in the unit ball Bk of the
associated reproducing kernel Hilbert space:

MMDk(µ, µ̃) ≜ supf∈Bk
|Ex∼µf(x)− Ex∼µ̃f(x)|.

When µ = Pin and µ̃ = Pout as in Def. 1 and K ≜
(k(xi,xj))

n
i,j=1 ∈ Rn×n denotes the induced kernel ma-

trix, then the MMD can be expressed as a Mahalanobis
distance between pin and pout:

MMDk(Pin,Pout) =
√

(pin − pout)
⊤K(pin − pout)

≜ MMDK(pin,pout).

For any indices I ⊆ [n], we further define the kernel max
seminorm (KMS)

∥K(pin − pout)∥I ≜ maxi∈I |e⊤i K(pin − pout)|. (1)

Notably, when the input points lie in Rd and k(xi,xj)
is the linear kernel ⟨xi,xj⟩ (so that K = XX⊤), MMD
measures the Euclidean discrepancy in datapoint means be-
tween the input and output distributions:

MMDK(pin,pout) = ∥X⊤pin −X⊤pout∥2.

A common strategy for bounding the error of a thinning
algorithm is to establish its sub-Gaussianity.

Definition 3 (Sub-Gaussian thinning algorithm). We
write ALG ∈ Gν,δ(K) and say ALG is (K, ν, δ)-sub-
Gaussian, if ALG is a thinning algorithm, K is a symmetric
positive semidefinite (SPSD) matrix, ν > 0, δ ∈ [0, 1), and
there exists an event E with probability at least 1−δ/2 such
that, the input and output probability vectors satisfy

EE [exp(⟨u,K(pin − pout)⟩)] ≤ exp
(
ν2

2 u⊤Ku
)
,∀u ∈ Rn.

Here, the sub-Gaussian parameter ν controls the summa-
rization quality of the thinning algorithm, and we see from
Tab. 1 that a variety of practical thinning algorithms are
(K, ν, δ)-sub-Gaussian for varying levels of ν.

2.1. Examples of sub-Gaussian thinning algorithms

Perhaps the simplest sub-Gaussian thinning algorithm is
uniform subsampling: by Prop. B.1, selecting nout points
from Xin uniformly at random (without replacement) is
(K, ν, 0)-sub-Gaussian with ν =

√
∥K∥max/

√
nout. Un-

fortunately, uniform subsampling suffers from relatively
poor summarization quality. As we prove in App. B.1.1, its
root-mean-squared MMD and KMS are both Ω(1/

√
nout)

meaning that nout = 10000 points are needed to achieve
1% relative error.

Proposition 1 (Quality of uniform subsampling). For
any I ⊆ [n], a uniformly subsampled thinning satisfies

E[MMD2
K(pin,pout)] =

1
nout

nin−nout
nin−1 CK and

E[∥K(pin − pout)∥
2
I ] ≥

1
nout

nin−nout
nin−1 maxi∈I CKeie⊤

i K

for any SPSD K with CK ≜
∑n

i=1 pin,iKii − p⊤
inKpin.
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Fortunately, uniform subsampling is not the only sub-
Gaussian thinning algorithm available. For example, the
Kernel Halving (KH(δ)) algorithm of Dwivedi & Mackey
(2024) provides a substantially smaller sub-Gaussian pa-
rameter, ν = O(

√
log(nout/δ)/nout), in n2in time by select-

ing one out of every two points and biasing selection toward
the point that yields smaller approximation error. Similarly,
the KH-COMPRESS(δ) algorithm of Shetty et al. (2022,
Ex. 3) delivers ν = O(

√
log(nout) log(nout/δ)/nout) in

only n2out time by halving and concatenating coresets of
geometrically increasing size until the target output size
is met. We derive simplified versions of these algorithms
with identical sub-Gaussian constants in Apps. B.2 and B.5
and a linear-kernel variant (LKH(δ)) with nind runtime in
App. B.3. To round out our set of examples, we show
in App. B.6.1 that two new thinning algorithms based on
the Gram-Schmidt walk of Bansal et al. (2018) yield even
smaller ν at the cost of increased runtime. We call these
algorithms Gram-Schmidt Thinning (GS-THIN) and GS-
COMPRESS.

3. Low-rank Sub-Gaussian Thinning
One might hope that the improved sub-Gaussian constants
of Tab. 1 would also translate into improved quality met-
rics. Our main result, proved in App. C, shows that this
is indeed the case whenever the inputs are approximately
low-rank.

Theorem 1 (Low-rank sub-Gaussian thinning). Fix any
δ′ ∈ (0, 1), r ≤ n, and I ⊆ [n]. If ALG ∈ Gν,δ(K), then
the following bounds hold individually with probability at
least 1− δ/2− δ′:

MMD2
K(pin,pout) ≤ ν2

[
e2r + e log( 1

δ′ )
]

+ λr+1(
1

nout
− 1

nin
) and (2)

∥K(pin − pout)∥I ≤ νDI

√
2 log(2|I|δ′ ). (3)

Here, λj denotes the j-th largest eigenvalue of K, λn+1 ≜
0, and DI ≜ maxi∈I

√
Kii.

Suppose that, in addition, X ⊂ Rd and |Kil − Kjl| ≤
LK∥xi − xj∥2 for some LK > 0 and all i, j ∈ I and
l ∈ supp(pin). Then, with probability at least 1− δ/2− δ′,

∥K(pin − pout)∥I ≤ νDI
√
2 log(4/δ′)(1 + 32√

3
)

+ νDI 32
√

2
3 rank(XI) log(

3e2RILK

D2
I∧(RILK)

) (4)

for RI ≜ maxi∈I ∥xi∥2 and XI ≜ [xi]
⊤
i∈I .

Let us unpack the three components of this result. First,
Thm. 1 provides a high-probability O(ν

√
log(|I|)) bound

(3) on the KMS for any kernel and any sub-Gaussian thin-
ning algorithm on any space. In particular, the non-uniform

algorithms of Tab. 1 all enjoy O(log(nout)
√
log(|I|)/nout)

KMS, a significant improvement over the Ω(1/
√
nout)

KMS of uniform subsampling. The bound (3) follows from
the sub-Gaussianity of the thinning algorithm (Def. 3) and
the union bound over ±ei for each i ∈ I.

For datapoints in Rd, Thm. 1 also provides a refined
O(ν

√
rank(XI) log(RILK)) bound (4) on KMS. For

bounded data, this trades an explicit dependence on the
number of query points |I| for a rank factor that is never
larger (and sometimes significantly smaller) than d. This
refinement follows from a more elaborate chaining argu-
ment that frames (e⊤i K(pin − pout))i∈I as a sub-Gaussian
process (Lem. C.5) and uses the Lipschitzness ofK to con-
trol its entropy integral. We will make use of these results
when approximating dot-product attention in Sec. 4.

Notably, Thm. 3.1 of Phillips & Tai (2020) implies that any
thinning algorithm must incur at least Ω(

√
d/nout) KMS

error for some dataset in Rd and many common kernels.
Meanwhile, our Tab. 1 and Thm. 1 imply that GS-THIN
has ν = O(1/nout) and hence KMS O(

√
d/nout). Taken

together, these results imply that no algorithm can have
sub-Gaussian constant ν = o(1/nout) and that GS-THIN
enjoys minimax rate-optimal KMS and a minimax rate-
optimal sub-Gaussian constant.

Finally, Thm. 1 provides an O(ν
√
r +

√
λr+1/nout) high-

probability bound on kernel MMD, where the approximate
rank parameter r can be freely optimized. We establish this
result by projecting K1/2(pin−pout) onto the first r eigen-
vectors of K, bounding the residual error in terms of λr+1,
and bounding the projection magnitude with high probabil-
ity using the sub-Gaussianity of ALG and a union bound
over a finite cover of a Euclidean ball in Rr.

When K = (k(xi,xj))
n
i,j=1 is generated by a finite-rank

kernel k, like a linear kernel ⟨xi,xj⟩, a polynomial ker-
nel (1 + ⟨xi,xj⟩)p, or a random Fourier feature kernel
(Rahimi & Recht, 2007), this guarantee becomes O(ν)
and improves upon uniform subsampling whenever ν =
o(1/
√
nout). In this case, the non-uniform algorithms of

Tab. 1 all enjoy O(log(nout)/nout) MMD, a significant im-
provement over the Ω(1/

√
nout) MMD of uniform subsam-

pling. We will revisit this finite-rank setting when studying
stochastic gradient acceleration strategies in Sec. 5.

More generally, Thm. 1 guarantees improved MMD even
for full-rank K, provided that the eigenvalues of K de-
cay sufficiently rapidly. For example, optimizing over the
approximate rank parameter r yields an O(ν logp/2(nout))
bound under exponential eigenvalue decay λr+1 =

O(ne−cr1/p) and an O(ν
p

p+1 ( n
nout

)
1

2(p+1) ) bound under
polynomial eigenvalue decay λr+1 = O(n/rp). Fortu-
nately, some of the most commonly-used kernels generate
kernel matrices with rapid eigenvalue decay.
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For example, the popular Gaussian kernel on Rd,

GAUSS(η) : k(x, y) = exp(−η∥x− y∥22) for η > 0, (5)

generates K = (k(xi,xj))
n
i,j=1 satisfying

λr+1 ≤ ne
− d

2e r
1/d log

(
dr1/d

4e2ηR2

)
for (2e)d ≤ r < n (6)

whenever X ⊂ Bd(R) (Altschuler et al., 2019, Thm. 3).
Combined with Thm. 1, this fact immediately yields an
MMD guarantee for each algorithm in Tab. 1. We present
a representative guarantee for KH(δ).
Corollary 1 (Gaussian MMD of KH). If Xin ⊂ Bd(R)
for R > 0, then KH(δ) with k = GAUSS(η), and n = nin
delivers

MMD2
K(pin,pout) ≤

O
( log(nout/δ)

n2
out

(( log(nout)∨(R2η)
d

)d
+ log( 1

δ′ )
))

with probability at least 1− δ/2− δ′.

The proof in App. D provides a fully explicit and easily
computed bound on the Gaussian MMD. Under the same
assumptions, the distinct analysis of Dwivedi & Mackey
(2022, Thm. 2, Prop. 3) provides a squared MMD bound of
size Θ

( log(nout/δ)
n2

out
( log

d+1(nout)R
dηd/2

(log log(nout))d
+ log( 1

δ′ ))
)
. Notably,

Cor. 1 improves upon this best known KH(δ) guarantee
whenever the datapoint radius R = O(log nout), a property
that holds almost surely for any bounded, sub-Gaussian,
or subexponential data sequence (see Dwivedi & Mackey,
2024, Prop. 2).

Altschuler et al. (2019, Thm. 4) additionally showed that
Gaussian kernel matrix eigenvalues satisfy

λr+1 ≤ ne−cr2/(5d
⋆)

for 1 ≤ r < n (7)

for a constant c independent of X when X belongs to a
smooth compact manifold of dimension d⋆ < d. In this
case, our low-rank analysis yields adaptive MMD guar-
antees that scale with the potentially much smaller intrin-
sic dimension d⋆. We use Thm. 1 to prove the first such
intrinsic-dimension guarantee for KH(δ) in App. E.
Corollary 2 (Intrinsic Gaussian MMD of KH). If Xin
lies on a smooth manifold Ω ⊂ Bd of dimension d⋆ < d
(Assump. E.1), then KH(δ) with k = GAUSS(η), and n =
nin delivers

MMD2
K(pin,pout) ≤ O

( log(nout
δ )

n2
out

(
( log(nout)

c )
5d⋆

2 + log( 1
δ′ )

))
with probability at least 1− δ

2−δ
′ for c independent of Xin.

In Sec. 6, we will use Cors. 1 and 2 to establish new guar-
antees for distinguishing distributions in near-linear time.

With our core theory in hand, we now turn our attention to
a series of impactful applications.

4. Approximating Attention
We will first use our analysis to accelerate attention ap-
proximation in transformers. Dot-product attention lies at
the heart of the transformer neural network architecture
that has revolutionized natural language processing, com-
puter vision, and speech recognition over the last decade
(Vaswani et al., 2017; Dosovitskiy et al., 2021; Dong et al.,
2018). Given a collection of query, key, and value vectors
(qi,ki,vi)

n
i=1 each in Rd, dot-product attention computes

the softmax matrix

T ≜ ATTENTION((qi)
n
i=1, (kj ,vj)

n
j=1) ≜ D−1AV (8)

for Aij ≜ exp(
⟨qi,kj⟩√

d
),D = diag(A1n), and Vij ≜ vij .

While attention has enjoyed unprecedented success in cap-
turing long-range dependencies amongst datapoints, its
computation is expensive, requiring Θ(dn2) time to con-
struct and multiply the matrix A. This quadratic-time bot-
tleneck has inspired a plethora of practical approximate at-
tention mechanisms (e.g., Kitaev et al., 2020; Choromanski
et al., 2021; Chen et al., 2021), but, to our knowledge, only
two guarantee accurate reconstruction of the softmax ma-
trix T (Zandieh et al., 2023; Han et al., 2024).1 In this sec-
tion, we design a new fast attention approximation based on
sub-Gaussian thinning and derive guarantees that improve
upon the prior art.

4.1. Thinning attention in theory

Algorithm 1: Thinformer
Input: Queries, keys, and values (qi,ki,vi)

n
i=1 in Rd, nout

// Define key-value attention kernel

katt((k̃, ṽ), (k̃
′
, ṽ′)) ≜ exp

(
⟨k̃, k̃′⟩

)
⟨ṽ, ṽ′⟩

// Thin augmented key-value pairs using katt

vmax ← max
i∈[n]
∥vi∥∞; (k̃i, ṽi)

n
i=1 ← (ki/d

1
4 , (vi, vmax))

n
i=1

Xout ← KH-COMPRESS(0.5)(Xin = (k̃i, ṽi)
n
i=1,katt, nout)

// Return exact attention on selected key-value subset

return T̂ ≜ ATTENTION
(
(qi)

n
i=1, {(k,v) : (k̃, ṽ) ∈ Xout}

)
Alg. 1 summarizes our new Thinformer module. At its
heart is a new key-value attention kernel katt that mim-
ics the special structure of the softmax matrix T. Alg. 1
uses the attention kernel and a high-quality thinning algo-
rithm, KH-COMPRESS(0.5), to subselect key-value pairs
and then computes exact attention (8) for the key-value
subset. In total, this requires only O(dn2out) time to
run KH-COMPRESS(0.5) and O(dnnout) time to compute

1A third remarkable work (Alman & Song, 2024) establishes
upper and lower bounds for attention approximation but without
a practical implementation.
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Table 2: Practical approximations with guarantees. For
each approximation T̂ ∈ Rn×d to the softmax matrix T
(8), we report, up to a constant factor, the best worst-case
error guarantee for ∥T̂−T∥max given O(dn1+a) running
time and γ-bounded (9) queries and keys. Here, the ratio
∥V∥op/∥V∥2,∞ lies in [1,

√
n] and τ = 0.173 + o(1).

Approximation Guarantee

Thinformer n2γ
√

d log(n∥V∥max) logn

na · ∥V∥2,∞

KDEformer n2γ+ τ
2
(1+

γ
2
)

na/2 · ∥V∥op

HyperAttention n
17γ
3 (logn)

1
6

na/6 · ∥V∥op

ATTENTION with n queries and nout key-value pairs. In
contrast, computing the exact softmax matrix T with stan-
dard matrix multiplication requires Θ(dn2) time. Our next
result, proved in App. F, shows that Alg. 1 also admits a
strong quality guarantee for approximating T.

Theorem 2 (Quality of Thinformer). With probability at
least 1

2 , Thinformer (Alg. 1) yields

∥T̂−T∥max ≤
c exp( 2R2

√
d
)∥V∥2,∞

√
log2(nout) log(12nout log2

nin
nout

)

nout

for c ≜ 128√
3

√
(d+ 1) log(3e2(R

2√
d
+ 2)∥V∥max) +√

log(8)(4 + 128√
3
) and R ≜ maxi∈[n] max(∥ki∥2, ∥qi∥2).

To put this result into context, let us compare with the exist-
ing guarantees for practical attention approximation, sum-
marized in Tab. 2. Under the γ-boundedness assumption,

maxi∈[n] max(∥ki∥22, ∥qi∥22) ≤ γ
√
d log n, (9)

the KDEformer approximation (Zandieh et al., 2023,
Cor. 3.6) with τ = 0.173 + o(1), the HyperAttention ap-
proximation (Han et al., 2024, Thm. 1) with no masking,
and the Thinformer approximation (Thm. 2) guarantee the
∥T̂−T∥max bounds of Tab. 2 withO(dn1+a) runtime and
probability at least 1

2 . The Thinformer guarantee exhibits
four improvements over its predecessors. First, it estab-
lishes a significantly faster error decay rate (n−a versus
n−a/2 or n−a/6) for a given subquadratic runtime n1+a.
Second, it reduces the dependence on the error inflation
factor γ. Third, like the HyperAttention guarantee, it elim-
inates all dependence on the KDEformer penalty parameter
τ . Finally, it reduces dependence on the value matrix by a
factor of ∥V∥op

∥V∥2,∞
∈ [1,

√
n].

Put otherwise, with bounded ∥V∥2,∞, T̂thin can provide
consistent (i.e., ∥T̂thin −T∥max → 0 as n → ∞) sub-
quadratic estimation whenever γ is bounded away from 1/2

and guarantee, for example, O( 1√
n
) error in Õ(dn

3
2+2γ)

time. In contrast, the T̂kde and T̂hyp bounds require
quadratic runtime to guarantee O( 1√

n
) error in the best

case (∥V∥op = O(1)) and cannot guarantee consistent sub-
quadratic estimation in the worst case (∥V∥op = Ω(

√
n)).

4.2. Thinning attention in practice

To gauge the practical effectiveness of Alg. 1, we recre-
ate the benchmark Tokens-To-Token Vision Transformer
(T2T-ViT) and BigGAN image generation experiments of
Zandieh et al. (2023). In the T2T-ViT experiment, attention
approximations are scored on their ImageNet classification
accuracy and computational expense when used as drop-in
replacements for the two most expensive attention layers in
a pretrained T2T-ViT neural network (Yuan et al., 2021).
In the BigGAN experiment, approximations are scored on
their computational expense and two popular measures of
image generation quality, the Frechet Inception Distance
(FID, Heusel et al., 2017) and Inception Score (IS, Sali-
mans et al., 2016). Using the exact implementations and
settings provided by Zandieh et al. (2023), we benchmark
our PyTorch implementation of Thinformer against exact
attention and four leading attention approximations: Per-
former (Choromanski et al., 2021), Reformer (Kitaev et al.,
2020), ScatterBrain (Chen et al., 2021), and KDEformer.

In Tab. 3, we find that Thinformer (g = 2) provides the
highest Top-1 accuracy on the ImageNet 2012 validation
set (Russakovsky et al., 2015), while running faster than all
of the alternatives. In Tab. 4, Thinformer (g = 2) yields
better FID and IS than all of the alternatives while run-
ning significantly faster than exact, KDEformer, Reformer,
and ScatterBrain. Performer runs faster still but at the ex-
pense of substantially worse FID and IS. The final attention
call of Thinformer can also be combined with optimized
attention implementations like FlashAttention (Dao et al.,
2022; Dao, 2024) to further reduce the time and mem-
ory footprint. We provide PyTorch code replicating this
experiment at https://github.com/microsoft/
thinformer and supplementary experiment details in
App. L.1.

5. Faster SGD Training
We now turn to a second application, accelerating training
through gradient reordering. To train a machine learning
model parameterized by w ∈ Rd, a standard approach is to
minimize the empirical risk f(w) ≜ 1

n

∑n
i=1 fi(w) using

stochastic gradient descent (SGD) updates,

wk+ i
n = wk+ i−1

n − α∇fπk(i)(w
k+ i−1

n ), (10)

for each epoch k ∈ [K] and datapoint i ∈ [n]. Here, α > 0
is a step size, each fi is a datapoint-specific loss function,
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Table 3: Quality of T2T-ViT attention approximations on ImageNet. We report mean Top-1 accuracy ±1 standard
deviation across five random seeds and mean forward pass runtime ±1 standard deviation across 50 batches of 64 images.

Attention Algorithm Top-1 Accuracy (%) Layer 1 Runtime (ms) Layer 2 Runtime (ms)

Exact 82.55 ± 0.00 18.48 ± 0.12 1.40 ± 0.01
Performer 80.56 ± 0.30 2.54 ± 0.01 0.60 ± 0.01
Reformer 81.47 ± 0.06 7.84 ± 0.03 1.53 ± 0.01

KDEformer 82.00 ± 0.07 5.39 ± 0.03 2.28 ± 0.03
Scatterbrain 82.05 ± 0.08 6.86 ± 0.02 1.55 ± 0.03

Thinformer (Ours) 82.18 ± 0.05 2.06 ± 0.01 0.54 ± 0.00

Table 4: Quality of BigGAN attention approximations for image generation. We report Frechet Inception Distance
(FID) with the ImageNet validation set, Inception Scores (IS), and mean forward pass runtime ± 1 standard deviation
across 10 batches of 32 images. A lower FID or higher IS indicates better image generation quality.

Attention Algorithm FID (↓) IS (↑) Runtime (ms)

Exact 32.18 58.37 ± 4.21 5.83 ± 0.09
Performer 33.58 38.07 ± 3.43 2.28 ± 0.00
Reformer 72.23 19.14 ± 2.09 12.10 ± 0.01

KDEformer 30.71 57.09 ± 4.05 6.40 ± 0.34
ScatterBrain 38.78 36.93 ± 2.97 3.13 ± 0.02

Thinformer (Ours) 30.54 57.12 ± 3.96 2.66 ± 0.01

and πk is a permutation of [n] representing the order in
which datapoints are processed in the k-th epoch.

Algorithm 2: Thinned Reordering

Input: Stochastic gradients (xk
i ≜ ∇fπk(i)(w

k+ i−1
n ))ni=1,

prior ordering πk, thinning algorithm ALG

// Select half of points using linear kernel
X k

out ← ALG(Xin = (xk
i )

n
i=1, nout =

n
2
,k(x,y) = ⟨x,y⟩)

Π← []; Π′ ← [] // Initialize empty start and end lists
for i = 1, . . . , n do

Π.append(πk(i)) if xk
i ∈ X k

out else Π′.prepend(πk(i))
end
return πk+1 = concatenate(Π,Π′)

Typically, one selects the orderings πk uniformly at ran-
dom, but recent work has demonstrated faster convergence
using non-uniform, adaptively selected orderings. Specifi-
cally, Lu et al. (2022); Cooper et al. (2023) show that any
sufficiently accurate thinning algorithm can be efficiently
transformed into a reordering rule that improves the con-
vergence rate of SGD by a substantial Õ(n−1) factor. Their
approach, distilled in Alg. 2, uses an elegant construc-
tion of Harvey & Samadi (2014, Thm. 10) to translate a
high-quality thinning of stochastic gradients into a higher-
quality reordering. However, these prior studies leave two

problems unaddressed.

First, while the established convergence rates of Lu et al.
(2022) nearly match the minimax lower bounds for per-
muted SGD algorithms (Cha et al., 2023, Thm. 4.5), a mul-
tiplicative gap of size Θ(d) remains in the worst case. This
led Cha et al. (2023) to declare, “It is an open problem
whether there exists a permutation-based SGD algorithm
that gives a dimension-free upper bound while maintaining
the same dependency on other factors.”

Second, Lu et al. (2022) carry out their analysis using the
self-balancing walk (SBW) thinning algorithm of Alweiss
et al. (2021) but find its overhead to be too high in practice.
Hence, in all experiments they instead employ a greedy
thinning algorithm that often works well in practice but is
not covered by their analysis.

5.1. Bridging the dimension gap

To address the first problem, we derive a new guarantee for
SGD with LKH reordering that replaces the typical Θ(d)
penalty with a soft notion of rank.

Definition 4 (ϵ-rank). The ϵ-rank, rankϵ(X), of a matrix
X is the number of singular values greater than ϵ.

Theorem 3 (LKH-SGD convergence). Suppose that, for
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Figure 1: Train and test convergence trajectories for mortgage classification with reordered SGD variants. We
display mean values ±1 standard deviation across 5 random seeds. See Sec. 5.2 for more details.

all i ∈ [n] and w,v ∈ Rd, the losses f and fi satisfy

∥∇fi(w)−∇f(w)∥22 ≤ σ2 (bounded noise),
∥∇fi(w)−∇fi(v)∥2 ≤ L∥w − v∥2 (smoothness), and

f(w)− f⋆ ≤ 1
2µ∥∇f(w)∥22 (PL) for f⋆ ≜ infv∈Rd f(v).

Then, with probability at least 1
2 , SGD (10) with LKH( 1

2K )
reordering (Alg. 2) and step size α given in App. G satisfies

f(wK)− f⋆ ≤ Õ( r
n2K2 ) for

r ≜ maxk∈[K] rankϵk([x
k
1 , . . . ,x

k
n]), x̄k ≜ 1

n

∑n
i=1 x

k
i ,

and ϵk ≜ max
i∈[n]

√
9e log(4Kn log(en/2)) log(4Kn)∥xk

i −x̄k∥2√
n

.

The proof of Thm. 3 in App. G simply uses Thm. 1 to
bound the thinning quality of LKH( 1

2K ) and then adapts
the prior SGD analysis of Cooper et al. (2023). Notably, the
standard practice of random reshuffling, i.e., SGD with uni-
form reordering, can only guarantee a significantly slower
Ω( 1

nK2 ) rate under these assumptions (Rajput et al., 2020,
Thm. 2), while Lu et al. (2022, Thm. 4) implies a similar
but dimension-dependent Õ( d

n2K2 ) rate for SBW reorder-
ing. Thm. 3 matches the minimax lower bound of Cha et al.
(2023, Thm. 4.5) up to the ϵ-rank parameter and shows that
dimension dependence can be avoided when the gradient
update matrices [xk

1 , . . . ,x
k
n] are low-rank, or, more gener-

ally, ϵ = O( log(Kn)√
n

)-approximable by low-rank matrices.

5.2. Bridging the theory-practice gap

Two criticisms levied by Lu et al. (2022) against the SBW
algorithm were the need to estimate the maximum Eu-
clidean norm of any possible gradient vector in advance
and the need to tune its free hyperparameter. LKH( 1

2K )
has neither of these drawbacks as it automatically adapts

to the scale of each input and has no hyperparameters to
tune. Moreover, with a linear kernel, LKH( 1

2K ) can be
run online in O(nd) time. Hence, LKH( 1

2K ) is a promis-
ing substitute for the greedy thinning of Lu et al. (2022);
Cooper et al. (2023). Indeed, when we recreate the Home
Mortgage Disclosure Act logistic regression experiment of
Cooper et al. (2023) with a single worker (Fig. 1), we find
that LKH-SGD strongly outperforms the standard practice
of random reshuffling (RR) and the theoretically justified
but overly conservative CD-GraB: SBW variant. In ad-
dition, LKH-SGD matches the state-of-the-art test accu-
racy of CD-GraB: Greedy and lags only slightly in terms
of training convergence.

The accelerated convergence rate of LKH-SGD over the
standard slow SGD rate of RR provides a direct verification
of the Thm. 3 guarantee, and we further verify in Fig. L.1
that the singular values of the gradient update matrices
drop off steeply, resulting in relatively small ϵk-ranks (see
Fig. L.1). See https://github.com/microsoft/
khsgd for PyTorch code replicating this experiment and
App. L.2 for supplementary experiment details.

6. Cheap Two-Sample Testing
Our final application is two-sample testing, determining
whether two datasets are drawn from the same underly-
ing distribution. We observe independent samples X ≜
(xi)

m
i=1 and Y ≜ (yj)

n
j=1 from the unknown distributions

P and Q respectively, and we seek to accept or reject the
null hypothesis that P = Q. Standard kernel MMD tests
tackle this task by computing the empirical MMD

MMDk(Pin,Qin) for Pin,Qin ≜ 1
m

∑
x∈Xδx,

1
n

∑
y∈Yδy

for an appropriate kernel k and rejecting the null hypoth-
esis whenever MMDk(Pin,Qin) is sufficiently large (Gret-
ton et al., 2012). Such tests are prized both for their broad
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applicability and for their high discriminating power, that
is, their probability of rejecting the null when P ̸= Q. A
standard way to summarize the power properties of a test is
through its detectable separation rate.

Definition 5 (Detectable separation rate). We say a two-
sample test has detectable separation rate ϵk,m,n if, for any
detection probability 1−β ∈ (0, 1), there exists a constant
ck,β > 0 such that the test has power at least 1 − β of
rejecting the null whenever MMDk(P,Q) ≥ ck,β · ϵk,m,n.

Standard MMD tests can detect distributional differences
on the order of ϵk,m,n = 1√

min(m,n)
(Gretton et al., 2012,

Cor. 9), and this detectable separation rate is known to be
the best possible for MMD tests (Domingo-Enrich et al.,
2023, Prop. 2) and minimax optimal for translation invari-
ant kernels (Kim & Schrab, 2023, Thm. 8). However,
standard MMD tests also suffer from the Θ((m + n)2)
time burden of computing the empirical MMD. Recently,
Domingo-Enrich et al. (2023) showed that one can improve
scalability while preserving power by compressing Pin and
Qin using a high-quality thinning algorithm. However, their
analysis applies only to a restricted class of distributions
and kernels and exhibits a pessimistic dimension depen-
dence on Rd. Here, we offer a new analysis of their Com-
press Then Test approach that applies to any bounded ker-
nel on any domain and, as an application, develop the first
non-asymptotic power guarantees for testing with learned
deep neural network kernels.

6.1. Low-rank analysis of Compress Then Test

Algorithm 3: Compress Then Test (CTT)
Input: Samples (X, Y), # coresets s, compression level g, kernel

k, failure probability δ, # replicates B, level α

Partition X into sm = sm
m+n

equal-sized bins (X (i))smi=1

Partition Y into sn = sn
m+n

equal-sized bins (Y(i))sni=1

// Identify coreset of size nout = 2g
√

m+n
s

for each bin

for i = 1, . . . , sm do P(i)
out ← KT-COMPRESS(δ)(X (i), g,k)

for i = 1, . . . , sn do Q(i)
out ← KT-COMPRESS(δ)(Y(i), g,k)

// Compute CORESETMMD test statistic
MB+1 ← MMDk(

1
sm

∑sm
i=1 P

(i)
out ,

1
sn

∑sn
i=1 Q

(i)
out ) (11)

// Simulate null by randomly permuting the s coresets B times
for b = 1, . . . ,B do

(P(i)
out,b)

sm
i=1, (Q

(i)
out,b)

sn
i=1 ← PERMUTE((P(i)

out )
sm
i=1, (Q

(i)
out )

sn
i=1)

Mb←MMDk(
1

sm

∑sm
i=1 P

(i)
out,b,

1
sn

∑sn
i=1 Q

(i)
out,b)

end
// Threshold test statistic
R← position of MB+1 in an increasing ordering of (Mb)

B+1
b=1

with ties broken uniformly at random
return Reject with prob. min(1,max(0, R− (1− α)(B + 1)))

Alg. 3 details the Compress Then Test (CTT) approach
of Domingo-Enrich et al. (2023, Alg. 1). Given a core-
set count s ≥ 2, a compression level g ≥ 0, and a nom-
inal level α ∈ (0, 1), CTT divides X and Y into data-
point bins of size nin ≜ m+n

s , thins each bin down to
size nout ≜ 2g

√
nin using KT-COMPRESS(δ) (a refinement

of KH-COMPRESS(δ) detailed in App. H), and uses the
thinned coresets to cheaply approximate MMDk(Pin,Qin)
and permuted versions thereof. Domingo-Enrich et al.
(2023, (8)) showed that the total runtime of CTT is domi-
nated by

O(4g(m+ n)(s+ log4
(
m+n

s − g
)
)),

kernel evaluations, yielding a near-linear O((m +
n) logc(m+n)) time algorithm whenever s = O(log4(m+
n)) and g ≤ c log4 log(m + n). Moreover, Prop. 1 of
Domingo-Enrich et al. (2023) ensures that CTT has proba-
bility at most α of falsely rejecting the null hypothesis.

Our next, complementary result shows that CTT also
matches the detectable separation rate of standard MMD
tests up to an inflation factor Rk/2

g depending on the com-
pression level g.

Theorem 4 (Low-rank analysis of CTT power). Suppose
the parameters of CTT (Alg. 3) satisfy m ≤ n,

sm ≥ 32
9 log( 2eγ ), and δ = min( β̃6 , (

β̃
2 )

1/⌊α(B+1)⌋ α
30es )

for β̃ ≜ β
1+β/2 and γ ≜ α

4e (
β̃
4 )

1/⌊α(B+1)⌋. Then CTT has
detectable separation rate (Def. 5)

ϵk,m,n = (1 + Rk/2
g)/
√
m,

where R2
k denotes the (1− β̃

20sn
)-th quantile of

R̂2
k ≜ log(m+n

s ) log(n
β̃
) · (12)

min
r≤2nout

{
∥k∥∞r log(n

β̃
) + (λr+1(K) + λr+1(K

′))nout
}
.

for K ≜ (k(xi,xj))
m
i,j=1, K′ ≜ (k(yi,yj))

n
i,j=1, and

∥k∥∞ ≜ supx,y∈supp(P+Q)|k(x, y)|.

The proof in App. I combines the low-rank sub-Gaussian
error bounds of Thm. 1 with the generic compressed power
analysis of Domingo-Enrich et al. (2023, App. B.1) to
yield power guarantees for bounded kernels on any do-
main. Notably, when rank(K) and rank(K′) are bounded
or, more generally, polylog(n) one can choose the com-
pression level g = Θ(log4 log(m + n)) to exactly match
the optimal quadratic-time detectable separation rates with
a near-linear time CTT test. Moreover, the inflation factors
remain well-controlled whenever the induced kernel matri-
ces exhibit rapid eigenvalue decay.

8
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As a concrete example, consider the learned deep neural
network kernel of Liu et al. (2020),

kdeep(x,y) ≜ [(1− ϵ)κ(ϕ(x), ϕ(y)) + ϵ]q(x,y), (13)

where ϕ : Rd → Rdembd is a pretrained neural network,
q and κ are GAUSS(η) kernels (5) on Rd and Rdembd re-
spectively, and ϵ ∈ (0, 1). This deep kernel generates
full-rank kernel matrices (Liu et al., 2020, Prop. 5) but
induces exponential eigenvalue decay due to its decom-
position as a mixture of Gaussian kernels. Hence, as we
show in App. J, CTT with kdeep, g = Θ(log4 log(m+ n)),
and sub-Gaussian inputs matches the detection quality of a
quadratic-time MMD test in near-linear time.
Corollary 3 (Power of deep kernel CTT). Instantiate the
assumptions of Thm. 4 with k = kdeep (13). If the inputs
(ϕ(x1),x1, ϕ(y1),y1) are sub-Gaussian, that is,

E[ec∥(ϕ(x1),x1,ϕ(y1),y1)∥
2
2 ] <∞ (14)

for some c > 0, then CTT satisfies the conclusions of
Thm. 4 with d′ ≜ dembd + d and

Rkdeep = O(log
d′
2 + 3

2 (n
β̃
)).

Moreover, when the input and neural features lie on smooth
compact manifolds (as, e.g., in Zhu et al., 2018), the error
inflation of CTT adapts to the smaller intrinsic manifold di-
mension, enabling an improved trade-off between runtime
and detection power. See App. K for our proof.
Corollary 4 (Power of deep manifold kernel CTT). Un-
der the assumptions of Cor. 3, if x1, y1, (x1, ϕ(x1)),
and (y1, ϕ(y1)) belong to smooth compact manifolds (As-
sump. E.1) with dimension d⋆ < d′ then CTT satisfies the
conclusions of Thm. 4 with

Rkdeep = O(log
5d⋆

4 + 3
2 (n

β̃
)).

Cors. 3 and 4 follow from explicitly bounding the eigenval-
ues of the generated deep kernel matrices as in (6) and (7).
By Kim & Schrab (2023, Thm. 8), the separation rate of
Thm. 4 is minimax optimal up to the inflation factor Rk/2

g

and, hence, those of Cors. 3 and 4 are minimax optimal up
to log factors.

One could alternatively bound the compression error of
KT-COMPRESS(δ) using the covering number approach of
Dwivedi & Mackey (2022, Thm. 2, Prop. 3). In the set-
ting of Cor. 3, the argument of App. J combined with this
distinct analysis would yield an alternative error inflation
factor R̃kdeep/2

g with worse dimension dependence,

R̃kdeep = Θ(log
3d′
4 +2(n

β̃
)),

and without known adaptivity to an intrinsic manifold di-
mension.
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Figure 2: Time-power trade-off curves for detecting
Higgs bosons with deep kernel MMD tests. We plot
mean values ±1 standard error across 1000 independent
trials with level α = 0.05 and B = 100 permutations.

6.2. Powerful deep kernel testing in near-linear time

To evaluate the practical utility of deep kernel CTT, we
follow the Higgs mixture experiment of Domingo-Enrich
et al. (2023, Sec. 5) and use the deep kernel training proce-
dure of Liu et al. (2020, Tab. 1). Here, the aim is to distin-
guish a Higgs boson signal process P from a background
process Q given m = n = 16384 observations, d = 2
particle-detector features, and a five-layer fully-connected
neural network ϕ with softplus activations and embedding
dimension dembd = 20.

Fig. 2 compares the time-power trade-off curves induced
by three fast kernel testing approaches to this prob-
lem: SUBSAMPLING, a standard wild-bootstrap MMD test
(Chwialkowski et al., 2014) that simply evaluates empirical
MMDkdeep using nout = mout uniformly subsampled points;
W-BLOCK, a wild-bootstrap test that averages n

B subsam-
pled squared MMDkdeep estimates based on nout = mout =
B points (Zaremba et al., 2013); and CTT with s = 32
bins and varying g. We find that the CTT curve dominates
that of the alternative methods and matches the power of
an exact MMD test (SUBSAMPLING with nout = n) in a
fraction of the time. The improvements of CTT over the
standard power-runtime trade-off of SUBSAMPLING pro-
vides a direct verification of the Thm. 4 guarantee, and
we additionally verify in Fig. L.2 that the empirical infla-
tion factor R̂kdeep = O(log5(n)) in this setting due to ap-
proximate low-rankness. See https://github.com/
microsoft/deepctt for PyTorch code replicating this
experiment and App. L.3 for supplementary experiment de-
tails.
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Impact Statement
This work introduced a new analysis of thinning algorithms
that adapts to low-rank structures. We exploited this adap-
tivity to design fast algorithms with strong quality guar-
antees for three key applications in machine learning: dot-
product attention in Transformers, stochastic gradient train-
ing in optimization, and deep kernel testing for distinguish-
ing distributions. More broadly, our techniques provide
a general framework for reducing computational resource
use in machine learning. Such tools have the potential to
reduce energy costs and environmental harms from model
training, inference, and evaluation and to improve acces-
sibility in resource-constrained settings, all while provably
maintaining high quality.
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A. Appendix Notation and Definitions
We often use the shorthand (a)+ ≜ max(a, 0) as well as the shorthand k(X ,X ) to represent the matrix (k(xi,xj))

n
i,j=1.

In addition, for each kernel k, we let Hk and ∥·∥k represent the associated reproducing kernel Hilbert space (RKHS) and
RKHS norm, so that Bk = {f ∈ Hk : ∥f∥k ≤ 1} and define

(Pin − Pout)k ≜ 1
nin

∑
x∈Xin

k(x, ·)− 1
nout

∑
x∈Xout

k(x, ·).

We also relate our definition of a sub-Gaussian thinning algorithm (Def. 3) to several useful notions of sub-Gaussianity.

Definition A.1 (Sub-Gaussian vector). We say that a random vector w ∈ Rn is (K, ν)-sub-Gaussian on an event E if K
is SPSD and ν > 0 satisfies

EE
[
exp(u⊤Kw)

]
≤ exp(ν

2

2 · u
⊤Ku) for all u ∈ Rn. (15)

If, in addition, the event has probability 1, we say that w is (K, ν)-sub-Gaussian.

Notably, a thinning algorithm is (K, ν, δ)-sub-Gaussian if and only if its associated vector pin−pout is (K, ν)-sub-Gaussian
on an event E of probability at least 1− δ/2.

Definition A.2 (Sub-Gaussian function). For a kernel k, we say that a random function ϕ ∈ Hk is (k, ν)-sub-Gaussian
on an event E if ν > 0 satisfies

EE [exp(⟨f, ϕ⟩k)] ≤ exp(ν
2

2 · ∥f∥
2
k) for all f ∈ Hk. (16)

If, in addition, the event has probability 1, we say that ϕ is (k, ν)-sub-Gaussian.

Our next two lemmas show that for finitely-supported signed measures like Pin − Pout, this notion of functional sub-
Gaussianity is equivalent to the prior notion of vector sub-Gaussianity, allowing us to use the two notions interchangeably.
Hereafter, we say that k generates a SPSD matrix K if k(X ,X ) = K.

Lemma A.1 (Functional sub-Gaussianity implies vector sub-Gaussianity). In the notation of Def. 3, if (Pin − Pout)k is
(k, ν)-sub-Gaussian on an event E and k generates K, then the vector pin − pout is (K, ν)-sub-Gaussian on E.

Proof. Suppose (Pin − Pout)k is (k, ν)-sub-Gaussian on an event E, fix a vector u ∈ Rn, and define the function

fu ≜
∑n

i=1 uik(·, xi) ∈ Hk.

By the reproducing property,

u⊤K(pin − pout) = ⟨fu, (Pin − Pout)k⟩k and ∥fu∥2k = u⊤Ku. (17)

Invoking the representations (17) and the functional sub-Gaussianity condition (16) we therefore obtain

EE
[
exp(u⊤K(pin − pout)

]
= EE [exp(⟨fu, (Pin − Pout)k⟩k)] ≤ exp(∥fu∥2k · ν

2

2 ) = exp(u⊤Ku · ν
2

2 ),

so that pin − pout is (K, ν)-sub-Gaussian on the event E as claimed.

Lemma A.2 (Vector sub-Gaussianity implies functional sub-Gaussianity). In the notation of Def. 3, if pin − pout is
(K, ν)-sub-Gaussian on an event E and k generates K, then (Pin − Pout)k is (k, ν)-sub-Gaussian on E.

Proof. Suppose pin − pout is (K, ν)-sub-Gaussian on an event E, fix a function f ∈ Hk, and consider the set

L ≜
{
fu ≜

∑n
i=1 uik(·, xi) : u ∈ Rn

}
.
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Since L is a closed linear subspace of Hk, we can decompose f as f = fu + f⊥, where u ∈ Rn and f⊥ is orthogonal to
L (Rudin, 1991, Theorem 12.4), so that

∥f∥2k = ∥fu∥2k + ∥f⊥∥2k and ∥fu∥2k = u⊤Ku. (18)

Invoking the orthogonality of f⊥ and (Pin − Pout)k ∈ L, the reproducing property representations (17), and the vector
sub-Gaussianity condition (15), we find that

EE [exp(⟨f, (Pin − Pout)k⟩k)] = EE [exp(⟨fu + f⊥, (Pin − Pout)k⟩k)] = EE
[
exp(u⊤K(pin − pout)

]
)

≤ exp(u⊤Ku · ν
2

2 )
(18)
≤ exp(∥f∥2k · ν

2

2 ),

so that (Pin − Pout)k is (k, ν)-sub-Gaussian on the event E as claimed.

We end our discussion about the versions of sub-Gaussianity considered above by presenting the standard fact about the
additivity of sub-Gaussianity parameters under summation of independent sub-Gaussian random vectors, adapted to our
setting.

Lemma A.3 (Vector sub-Gaussian additivity). Suppose that, for each j ∈ [m], ∆j ∈ Rn is (K, νj) on an event Ej given
∆1:(j−1) ≜ (∆1, . . . ,∆j−1) and E≤j−1 ≜

⋂j−1
i=1 Ei. Then

∑m
j=1 ∆j is (K, (

∑m
j=1 ν

2
j )

1/2)-sub-Gaussian on E≤m.

Proof. Let E≤s =
⋂s

j=1 Ej for each s ∈ [m]. We prove the result for Zs =
∑s

i=1 ∆j by induction on s ∈ [m]. The result
holds for the base case of s = 1 by assumption. For the inductive case, suppose the result holds for s ∈ [m − 1]. Fixing
u ∈ Rn, we may apply the tower property, our conditional sub-Gaussianity assumption, and our inductive hypothesis in
turn to conclude

E
[
exp(⟨u,K

∑s+1
j=1 ∆j⟩)1[E≤s+1]

]
= E

[
exp(⟨u,K

∑s
j=1 ∆j⟩)1[E≤s]E[exp(⟨u,∆s+1⟩)1[Es+1] | ∆1:s, E≤s]

]
≤ E

[
exp(⟨u,K

∑s
j=1 ∆j⟩)1[E≤s]

]
exp

(
ν2
s+1

2 · u⊤Ku
)
≤ exp

(∑s+1
j=1 ν2

j

2 · u⊤Ku
)
.

Hence, Zs+1 is (K, (
∑s+1

j=1 ν
2
j )

1/2)-sub-Gaussian on E≤s+1, and the proof is complete.

B. Proof of Tab. 1: Sub-Gaussian Thinning Examples
This section provides supplementary details for each of the sub-Gaussian thinning algorithms of Tab. 1.

B.1. SUBSAMPLING

B.1.1. PROOF OF PROP. 1: QUALITY OF UNIFORM SUBSAMPLING

We begin by computing the first and second moments of pout: E[pout] = pin and

E[poutp
⊤
out] =

1
nout

diag(pin) +
nin(nout−1)
nout(nin−1) (pinp

⊤
in − 1

nin
diag(pin)) =

1
nout

(nin−nout
nin−1 ) diag(pin) +

nin(nout−1)
nout(nin−1)pinp

⊤
in .

Hence,

E[MMD2
K(pin,pout)] = p⊤

inKpin − 2p⊤
inKE[pout] + E[p⊤

outKpout] = tr(KE[poutp
⊤
out])− p⊤

inKpin

= 1
nout

(nin−nout
nin−1 )(tr(Kdiag(pin))− p⊤

inKpin) =
1

nout
(nin−nout

nin−1 )CK. (19)

To derive the second advertised result, we note that

E[∥K(pin − pout)∥
2
I ] ≥ maxi∈I E[(e⊤i K(pin − pout))

2] = maxi∈I E[MMD2
Keie⊤

i K(pin,pout)]

and invoke the initial result (19) to conclude.
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B.1.2. SUB-GAUSSIANITY OF SUBSAMPLING

Proposition B.1 (Sub-Gaussianity of uniform subsampling). For any SPSD K ∈ Rn×n, uniform subsampling (without
replacement) is a (K, ν, 0)-sub-Gaussian thinning algorithm with

ν ≜
√

∥K∥max√
nout

.

Proof. Fix any vector u ∈ Rn, and let J1, . . . , Jnout be the random indices in [n] selected by uniform subsampling. Since
u⊤K(pin − pout) = 1

nout

∑nout
i=1 u

⊤K(pin − eJi
) is an average of mean-centered scalars drawn without replacement and

satisfying

|u⊤KeJi | ≤
√
u⊤Ku

√
e⊤Ji

KeJi ≤
√
∥K∥max

√
u⊤Ku with probability 1

by Cauchy-Schwarz, Thm. 4 and equations (1.8) and (4.16) of Hoeffding (1994) imply that

E[exp(u⊤K(pin − pout))] ≤ exp(∥K∥max

2nout
u⊤Ku).

B.2. KH(δ)

Algorithm B.1: KH(δ): Kernel Halving with simplified swapping thresholds and failure probability δ/2
Input: point sequence Xin = (xi)

nin
i=1 with even nin, kernel k

S(1),S(2) ← {}; ψ̃0 ← 0 ∈ Hk // Initialize empty coresets: S(1),S(2) have size i after round i
bmax,i ← 0 // Max function norm so far
for i = 1, 2, . . . , nin/2 do

// Construct kernel difference function using next two points
(x,x′)← (x2i−1,x2i); fi ← k(x2i−1, ·)− k(x2i, ·); ηi ← −1
// Compute swapping threshold ai
b2i =∥fi∥2k=k(x,x)+k(x′,x′)−2k(x, x′); bmax,i = max(bi, bmax,i−1)

ai ← bibmax,i(
1
2
+ log(2nin/δ))

// Compute RKHS inner product
〈
ψ̃i−1, fi

〉
k

, which has a simple form

αi ←
∑2i−2

j=1 (k(xj ,x)− k(xj ,x
′))− 2

∑
z∈S(1)(k(z,x)− k(z,x′))

// Assign one point to each coreset after probabilistic swapping
(x, x′)← (x′, x) and ηi ← 1 with probability min(1, 1

2
(1− αi

ai
)+)

S(1).append(x); S(2).append(x′); ψ̃i ← ψ̃i−1 + ηifi // ψ̃i =
∑

x′∈S(2)k(x
′, ·)−

∑
x∈S(1)k(x, ·)

end
return Xout ≜ S(1), coreset of size nout = nin/2

In this section, we analyze KH(δ) (Alg. B.1), a variant of the Kernel Halving algorithm (Dwivedi & Mackey, 2024, Alg. 2)
with simplified swapping thresholds. Prop. B.2, proved in App. B.2.1, establishes the sub-Gaussianity of KH(δ) and its
intermediate iterates.

Proposition B.2 (Sub-Gaussianity of KH(δ)). Suppose nin ≥ 2. In the notation of Alg. B.1, on a common event E of
probability at least 1− δ/2, for all i ∈ [nin/2], 1

2i ψ̃i is (k, νi)-sub-Gaussian with

νi = bmax,i

√
log(2nin/δ)

2i =

√
log(2nin/δ)

2i maxj∈[i] MMDk(δx2j−1 , δx2j ) ≤
√

log(2nin/δ)

2i maxj∈[i] MMDk(δx2j−1 , δx2j )

≤
√

log(2nin/δ)

2i 2min(maxx∈Xin

√
k(x,x),maxx∈Xin MMDk(δx,Pin)).

Prop. B.2 and the triangle inequality imply that (Pin − Pout)k = 1
nin
ψnin/2 is (k, ν)-sub-Gaussian on E with

ν = bmax,nin/2

√
log(2nin/δ)

nin
≤
√

log(2nin/δ)

nin
2min(maxx∈Xin

√
k(x,x),maxx∈Xin MMDk(δx,Pin)).
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By Lem. A.1, we thus have that the KH(δ) output pin − pout is (K, ν)-sub-Gaussian on E for K generated by k and that
KH(δ) ∈ Gν,δ(K).

B.2.1. PROOF OF PROP. B.2: SUB-GAUSSIANITY OF KH(δ)

We begin by studying the sub-Gaussian properties of a related algorithm, the self-balancing Hilbert walk (SBHW) of
Dwivedi & Mackey (2024, Alg. 3). By Dwivedi & Mackey (2024, Thm. 3(i)), when the SBHW is run on the RKHS Hk

with the same fi and ai sequences employed in KH(δ), the output ψi of each round is (k, σi)-sub-Gaussian for

σ2
0 ≜ 0 and σ2

i ≜ σ2
i−1 + ∥fi∥2k

(
1 +

σ2
i−1

a2
i
(∥fi∥2k − 2ai)

)
+
∀i ≥ 1. (20)

The following lemma bounds the growth of the sub-Gaussian constants σi in terms of the swapping thresholds ai.
Lemma B.1 (Growth of SBHW sub-Gaussian constants). For each i, the SBHW sub-Gaussian constants (20) satisfy

σ2
i ≤ ci for ci ≜ maxj∈[i] max(b2j , rj) and ri ≜

a2
i

2ai−b2
i
≤ a2

i

2ai−bibmax,i
.

Proof. We will prove the result by induction on i.

Base case. σ2
1 = b21 ≤ c1 as desired.

Inductive case. Suppose σ2
i−1 ≤ ci−1. Then σ2

i = g(σ2
i−1) for g(x) = x + b2i (1 − x/ri)+. Note that the slope of g is

1− b2i /ri for x < ri and 1 for x > ri. If 1− b2i /ri ≥ 0, then g is increasing and its maximum value over [0, ci] is at ci. If,
on the other hand, 1− b2i /ri < 0, then g first decreases and then increases so its maximum value over [0, ci] is either at 0
or at c. Since ci ≥ max(ri, ci−1), σ2

i ≤ max(g(0), g(ci)) = max(b2i , ci) = ci. The proof is complete.

Invoking Lem. B.1, the assumption nin ≥ 2, and the fact that δ 7→
1
2+log(2/δ)

log(2/δ) is increasing on (0, 1], we find that

σ2
i ≤ b2max,i log(2nin/δ)

( 1
2+log(2nin/δ))

2

2(log(2nin/δ))2
≤ b2max,i log(2nin/δ)

( 1
2+log(4))2

2(log(4))2 ≤ b2max,i log(2nin/δ). (21)

The first inequality in (21) and the definition (20) further imply that

ai = bibmax,i(
1
2 + log(2nin/δ)) ≥ σibi

√
2 log(2nin/δ) ≥ σi−1bi

√
2 log(2nin/δ).

Hence, by Dwivedi & Mackey (2024, Thm. 3(iii)), for each i ∈ [nin/2], the vector ψ̃i of KH(δ) coincides with the vector
ψi of SBHW on a common event E of probability at least 1 − δ/2. Therefore, each 1

2i ψ̃i is (k, 1
2iσi)-sub-Gaussian on E,

implying the result.

B.3. LKH(δ)

In this section, we analyze LKH(δ) (Alg. B.2), the Kernel Halving algorithm of (Dwivedi & Mackey, 2024, Alg. 2) with
a linear kernel, k(x,y) = ⟨x,y⟩, on Rd and failure probability δ/2. Notably, Alg. B.2 can be carried out in only O(nd)
time thanks to the linear kernel structure. Prop. B.3, proved in App. B.3.1, establishes the sub-Gaussianity of LKH(δ) and
its intermediate iterates.
Proposition B.3 (Sub-Gaussianity of LKH(δ)). Suppose nin ≥ 2. In the notation of Alg. B.2, on a common event E of
probability at least 1− δ/2, for all i ∈ [nin/2], 1

2i ψ̃i is (k, νi)-sub-Gaussian with k(x,y) = ⟨x,y⟩ and

νi =

√
log(2nin(log(nin/2)+1)/δ)

2i maxj∈[i] ∥x2j−1 − x2j∥2

≤
√

log(2nin(log(nin/2)+1)/δ)

2i 2min(maxx∈Xin

√
∥x∥2,maxx∈Xin ∥x− x̄∥2) for x̄ = 1

nin

∑
x∈Xin

δx.

Prop. B.3 and the triangle inequality imply that (Pin − Pout)k = 1
nin
ψnin/2 is (k, ν)-sub-Gaussian on E with

ν =

√
log(2nin(log(nin/2)+1)/δ)

nin
maxj∈[nin/2] ∥x2j−1 − x2j∥2

≤
√

log(2nin(log(nin/2)+1)/δ)

nin
2min(maxx∈Xin

√
∥x∥2,maxx∈Xin ∥x− x̄∥2) for x̄ = 1

nin

∑
x∈Xin

δx.
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Algorithm B.2: LKH(δ): Kernel Halving with linear kernel and failure probability δ/2

Input: point sequence Xin = (xi)
nin
i=1 with even nin and xi ∈ Rd

S(1),S(2) ← {}; ψ0 ← 0 ∈ Rd // Initialize empty coresets: S(1),S(2) have size i after round i
σ0 ← 0 // Keep track of sub-Gaussian constant
for i = 1, 2, . . . , nin/2 do

// Consider two points
(x,x′)← (x2i−1,x2i); ηi ← −1
// Compute swapping threshold ai
b2i = ⟨x− x′,x− x′⟩; δi =

δ
2i(log(nin/2)+1)

(ai, σi)← get swap params(σi−1, bi, δi)

// Compute inner product
αi ← ⟨ψi−1,x− x′⟩
// Assign one point to each coreset after probabilistic swapping
(x,x′)← (x′,x) and ηi ← 1 with probability min(1, 1

2
(1− αi

ai
)+)

S(1).append(x); S(2).append(x′); ψ̃i ← ψ̃i−1 + ηifi
end
return Xout ≜ S(1), coreset of size nout = nin/2

function get swap params(σ, b, δ):
a ← max(bσ

√
2 log(2/δ), b2)

σ2 ← σ2+b2(1+(b2−2a)σ2/a2)+
return (a, σ);

By Lem. A.1, we thus have that the LKH(δ) output pin − pout is (K, ν)-sub-Gaussian on E for K generated by k and that
LKH(δ) ∈ Gν,δ(K).

B.3.1. PROOF OF PROP. B.3: SUB-GAUSSIANITY OF LKH(δ)

We begin by studying the sub-Gaussian properties of a related algorithm, the self-balancing Hilbert walk (SBHW) of
Dwivedi & Mackey (2024, Alg. 3). By Dwivedi & Mackey (2024, Thm. 3(i)), when the SBHW is run on the RKHS Hk

with the same fi and ai sequences employed in LKH(δ), the output ψi of each round is (k, σi)-sub-Gaussian. Moreover,
since

ai ≥ σi−1bi
√
2 log(2/δi) for each i ∈ [nin/2],

Dwivedi & Mackey (2024, Thm. 3(iii)) implies that, for each i ∈ [nin/2], the vector ψ̃i of LKH(δ) coincides with the
vector ψi of SBHW on a common event E of probability at least 1− δ/2. Therefore, each 1

2i ψ̃i is (k, 1
2iσi)-sub-Gaussian

on E. Finally, Dwivedi & Mackey (2024, (46)) shows that σi ≤ νi for each i ∈ [nin/2], yielding the result.

B.4. RKH(δ)

Algorithm B.3: RKH(δ): Repeated KH(δ)

Input: point sequence Xin = (xi)
nin
i=1, kernel k, output size nout ∈ nin/2

N

// Repeatedly divide coreset size in half
m← log2(nin/nout)
for ℓ = 1, 2, . . . ,m do Xin ← KH(δ/m)(Xin,k) ;
return Xout ≜ Xin, coreset of size nout = nin/2

m

In this section, we analyze repeated KH(δ) (RKH(δ), Alg. B.3), a variant of the KT-SPLIT algorithm (Dwivedi & Mackey,
2024, Alg. 1a) with simplified swapping thresholds. Our next result, proved in App. B.4.1, establishes the sub-Gaussianity
of RKH(δ).
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Algorithm B.4: KH-COMPRESS(δ): Compress with KH halving and failure probability δ

Input: point sequence Xin = (xi)
nin
i=1, kernel k, nout ∈

√
nin · 2N

g← log2(nout/
√
nin) // identify compression level

function compress(S):
if |S| = 4g then return S
Partition S into four arbitrary subsequences {Si}4i=1 each of size |S|/4
for i = 1, 2, 3, 4 do

S̃i ← compress(Si) // return coresets of size 2g ·
√

|S|
4

end
S̃ ← CONCATENATE(S̃1, S̃2, S̃3, S̃4); ℓ← 2 · 2g ·

√
|S| // coreset of size ℓ

return KH
(

ℓ2

nin4
g+1(log4 nin−g)

δ
)
(S̃,k) // coreset of size 2g

√
|S|

return compress(Xin) // coreset of size nout = 2g
√
nin

Proposition B.4 (Sub-Gaussianity of RKH(δ)). If nout ∈ nin/2
N then RKH(δ) (Alg. B.3) is (k, ν)-sub-Gaussian with

ν = 2
nout

√
3

√
log( 6nout log2(nin/nout)

δ )min(maxx∈Xin

√
k(x,x),maxx∈Xin MMDk(δx,Pin))

on an event E of probability at least 1− δ/2.

By Lem. A.1, we thus have that the RKH(δ) output pin − pout is (K, ν)-sub-Gaussian on E for K generated by k and that

RKH(δ) ∈ Gν,δ(K). Finally, ν = O(

√
log(nout/δ)

nout
) when nout ≥

√
nin.

B.4.1. PROOF OF PROP. B.4: SUB-GAUSSIANITY OF RKH(δ)

Let c = 2min(maxx∈Xin

√
k(x,x),maxx∈Xin MMDk(δx,Pin)), and, for each ℓ ∈ [m], let ψ̃(ℓ) represent the vector

ψ̃nin/2ℓ produced at the end of the ℓ-th call to KH(δ). By the proof of Prop. B.2 and the union bound, on an event E of

probability at least 1− δ/2, (ψ̃(ℓ))ℓ∈[m] = (ψ(ℓ))ℓ∈[m], where each 2ℓ−1

nin
ψ(ℓ) is (k, ν(ℓ))-sub-Gaussian given (ψ(j))j∈[ℓ−1]

for

ν(ℓ) = c

√
log(2ninm/(2ℓ−1δ))

nin/2ℓ−1 .

Hence, on E, the weighted sum

(Pin − Pout)k =
∑

ℓ∈[m]
2ℓ−1

nin
ψ̃(ℓ) =

∑
ℓ∈[m]

2ℓ−1

nin
ψ(ℓ)

is (k,
√∑

ℓ∈[m](ν
(ℓ))2)-sub-Gaussian by Dwivedi & Mackey (2024, Lem. 14). Finally, by Dwivedi & Mackey (2024,

Eq. (63)),
√∑

ℓ∈[m](ν
(ℓ))2 ≤ ν.

B.5. KH-COMPRESS(δ)

In this section, we analyze KH-COMPRESS(δ) (Alg. B.4), a variant of the KT-SPLIT-COMPRESS algorithm (Shetty et al.,
2022, Ex. 3) with simplified swapping thresholds.
Proposition B.5 (Sub-Gaussianity of KH-COMPRESS(δ)). If nout ∈

√
nin 2

N then KH-COMPRESS(δ) (Alg. B.4) is
(k, ν)-sub-Gaussian with

ν = 1
nout

√
log2(nout) log(

4nout log2(nin/nout)
δ )maxx∈Xin

√
k(x,x)

on an event E of probability at least 1− δ/2.

Proof. Since the original Kernel Halving algorithm of Dwivedi & Mackey (2024, Alg. 2) is equal to the KT-SPLIT al-
gorithm of Dwivedi & Mackey (2024, Alg. 1a) with m = 1 halving round, KH-COMPRESS(δ) is simply the KT-SPLIT-
COMPRESS algorithm of (Shetty et al., 2022, Ex. 3) with KH(δ) of Alg. B.1 substituted for KT-SPLIT(δ,m = 1). The
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result now follows immediately from the KH(δ) sub-Gaussian constant of Prop. B.2 and the argument of Shetty et al.
(2022, Rem. 2, Ex. 3).

Now fix any SPSD K and any kernel k that generates K. By Lem. A.1, we have that pin − pout is (K, ν)-sub-Gaussian

on E and hence that KH-COMPRESS(δ) ∈ Gν,δ(K). In addition, ν = O(

√
log(nout) log(nout/δ)

nout
) when nout ≥

√
nin. Fur-

thermore, Shetty et al. (2022, Rem. 1) implies that KH-COMPRESS(δ) has a runtime less than 4g+1nin(log4(nin)− g) =
4n2out log2(nin/nout) = O(n2out) when nout ≥

√
nin.

B.6. GS-THIN

The section introduces and analyzes the Gram-Schmidt Thinning algorithm (GS-THIN, Alg. B.5). GS-THIN repeatedly
divides an input sequence in half using, GS-HALVE (Alg. B.6), a symmetrized and kernelized version of the Gram-
Schmidt (GS) Walk of Bansal et al. (2018). We will present two different implementations of GS-HALVE: a quartic-time
implementation (Alg. B.6) based on the GS Walk description of Bansal et al. (2018) and a cubic-time implementation
based on local updates to the matrix inverse (Alg. B.7). While both the algorithms lead to the same output given the same
source of randomness, we present the original implementation2 for conceptual clarity and the optimized implementation
for improved runtime. Throughout, for a matrix Q and vector u, we use the notation QI×J and uI to represent the
submatrix (Qij)i∈I,j∈J and subvector (ui)i∈I .

Algorithm B.5: GS-THIN: Gram-Schmidt Thinning
Input: point sequence Xin = (xi)

nin
i=1, kernel k, output size nout ∈ nin/2

N, HALVE ∈ {GS-HALVE,GS-HALVE-CUBIC}
// Repeatedly divide coreset size in half
m← log2(nin/nout)
for ℓ = 1, 2, . . . ,m do Xin ← HALVE(Xin,k) ;
return Xout ≜ Xin, coreset of size nout = nin/2

m

Our first result, proved in App. B.6.1, shows that GS-THIN is a sub-Gaussian thinning algorithm.

Proposition B.6 (GS-THIN sub-Gaussianity). For K generated by k, GS-THIN (Alg. B.5) is a (K, ν, 0)-sub-Gaussian
thinning algorithm with parameter

ν ≜ 2√
3

√
∥K∥max

nout
. (22)

Our second result, proved in App. B.6.2, shows that GS-THIN with the GS-HALVE implementation has O(n4in) runtime.

Proposition B.7 (Runtime of GS-THIN with GS-HALVE). The runtime of GS-THIN with implementation GS-HALVE
(Alg. B.6) is O(n4in).

Our third result, proved in App. B.6.3, establishes the equivalence between GS-HALVE and GS-HALVE-CUBIC. More
precisely, we show that the sequence of partial assignment vectors generated by kernel gs walk(·) of Alg. B.6 and
kernel gs walk cubic(·) of Alg. B.7 are identical given identical inputs, an invertible induced kernel matrix, and an
identical source of randomness.

Proposition B.8 (Agreement of GS-HALVE and GS-HALVE-CUBIC). Let z1, z2, . . . be the fractional assignment
sequence generated by kernel gs walk((xi)

nin
i=1) in Alg. B.6 and z′

1, z
′
2, . . . be the fractional assignment sequence

generated by kernel gs walk cubic((xi)
nin
i=1) in Alg. B.7 with an identical source of randomness. If the pairwise

difference matrix

Q ≜ (k(x2i−1, x2j−1) + k(x2i, x2j)− k(x2i−1, x2j)− k(x2i, x2j−1))i,j∈[nin/2]

is positive definite, then zt = z′
t for all t.

Our fourth result, proved in App. B.6.4, shows that GS-THIN with the GS-HALVE-CUBIC implementation has O(n3in)
runtime.

2 Towards making this equivalence clear, Alg. B.6 has been expressed with the same variables that Alg. B.7 uses. Alg. B.6 can be
slightly simplified if it were to be considered independently.
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Algorithm B.6: GS-HALVE: Gram-Schmidt Halving
Input: point sequence Xin = (xi)

nin
i=1 with even nin, kernel k

Xout ← {} // Initialize empty coreset
// Select one point to keep from each consecutive pair using kernelized GS Walk
z ← kernel gs walk(Xin)
for i = 1, . . . , nin/2 do

if zi = 1 then
Xout.append(x2i−1)

else
Xout.append(x2i)

end
end
return Xout, coreset of size nin/2

function kernel gs walk((xi)
nin
i=1):

t← 1; zt ← (0, 0, . . . , 0) ∈ Rnin/2 // Initialize fractional assignment vector
A ← [nin/2] // Initialize set of active coordinates
p ∼ A // Select a pivot uniformly at random
while zt /∈ {±1}nin/2 do
A′ ← A\

{
min

(
{i ∈ [nin/2] : |zti| = 1} \ ([nin/2] \A)

)}
// Update set of active coordinates by removing smallest index set to ±1
if p /∈ A′ then

p′ ∼ Unif(A′) // Select a new pivot from A′ uniformly at random
else

p′ ← p
end
// Compute step direction in which to update fractional assignment vector
ut ← argminu∈Rnin/2 u

⊤Qu subject to up′ = 1 and ui = 0 for all i /∈ A′,
where Q ∈ R(nin/2)×(nin/2) has entries Qij ≜ k(x2i−1, x2j−1) + k(x2i, x2j)− k(x2i−1, x2j)− k(x2i, x2j−1)

δ+ ← |max∆| and δ− ← |min∆|, where ∆ =
{
δ ∈ R : zt + δut ∈ [−1,+1]nin/2

}
// Select candidate step sizes

δt ← δ+ with probability δ−/(δ+ + δ−); otherwise δt ← −δ− // Choose step size and sign at random
zt+1 ← zt + δtut // Update fractional assignments
t← t+ 1; A ← A′; p← p′

end
return zt, sign vector in {±1}nin/2
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Algorithm B.7: GS-HALVE-CUBIC: Gram-Schmidt Halving with cubic runtime
Input: point sequence Xin = (xi)

nin
i=1 with even nin, kernel k with positive definite k(Xin,Xin)

Xout ← {} // Initialize empty coreset
// Select one point to keep from each consecutive pair using kernelized GS Walk
z ← kernel gs walk cubic(Xin)
for i = 1, . . . , nin/2 do

if zi = 1 then
Xout.append(x2i−1)

else
Xout.append(x2i)

end
end
return Xout, coreset of size nin/2

function kernel gs walk cubic((xi)
nin
i=1):

t← 1; zt ← (0, 0, . . . , 0) ∈ Rnin/2 // Initialize fractional assignment vector
A ← [nin/2] // Initialize set of active coordinates
p ∼ A // Select pivot uniformly at random
Q← (k(x2i−1, x2j−1) + k(x2i, x2j)− k(x2i−1, x2j)− k(x2i, x2j−1))

nin/2
i,j=1 // Form paired difference kernel matrix

C← (QA\{p}×A\{p})
−1

while zt /∈ {±1}nin/2 do
A′ ← A\

{
min

(
{i ∈ [nin/2] : |zti| = 1} \ ([nin/2] \A)

)}
// Update set of active coordinates by removing smallest index set to ±1
if p /∈ A′ then

p′ ∼ Unif(A′) // Select a new pivot from A′ uniformly at random
else

p′ ← p
end
A1 ← A\{p}
A2 ← A′ \ {p′}.
i← A1\A2 // Choose i as the (unique) index that was removed from the active coordinates
// Compute (QA2×A2)

−1 using block matrix inversion and the Sherman-Morrison formula
D← CA2×A2

C← D− DQA2×{i}Q{i}×A2
D

Qii+Q{i}×A2
DQA2×{i}

// Compute step direction in which to update fractional assignment vector
Compute ut as (ut)A2 = −CQA2×{p′} , utp′ = 1, and uti = 0 for i /∈ A′

δ+ ← |max∆| and δ− ← |min∆|, where ∆ =
{
δ ∈ R : zt + δut ∈ [−1,+1]nin/2

}
// Select candidate step sizes

δt ← δ+ with probability δ−/(δ+ + δ−); otherwise δt ← −δ− // Choose step size and sign at random
zt+1 ← zt + δtut // Update fractional assignments
t← t+ 1; A ← A′; p← p′

end
return zt, sign vector in {±1}nin/2
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Proposition B.9 (Runtime of GS-THIN with GS-HALVE-CUBIC). The runtime of GS-THIN with implementation GS-
HALVE-CUBIC (Alg. B.7) is O(n3in).

B.6.1. PROOF OF PROP. B.6: GS-THIN SUB-GAUSSIANITY

Our first lemma bounds the sub-Gaussian constant of GS-HALVE (Alg. B.6).
Lemma B.2 (GS-HALVE sub-Gaussianity). In the notation of Def. 1, consider the input and output vectors pin,pout ∈ Rn

of GS-HALVE (Alg. B.6) for X ⊇ Xin with |X | = n ≥ nin. If K = k(X ,X ), then pin − pout is (K, ν)-sub-Gaussian with

ν ≜ 2∥K∥1/2
max

nin
=

∥K∥1/2
max

nout
.

Proof. Since K is SPSD, there exists a matrix Φ ∈ Rn×d such that K = ΦΦ⊤. Let B ∈ Rd×(nin/2) be the matrix with
entries

Bj,i ≜ Φ2i−1,j −Φ2i,j for i ∈ [nin/2] and j ∈ [d].

Note that, for each i ∈ [nin/2],∑
j∈[d] B

2
j,i = K2i−1,2i−1 +K2i,2i −K2i−1,2i −K2i,2i−1 ≤ 4∥K∥max.

Hence, by Harshaw et al. (2024, Thm. 6.6), 1
nin

Bz is (I, ν)-sub-Gaussian where I is the identity matrix in Rd×d.

Now fix any u ∈ Rd. Since 1
nin

Bz = −Φ⊤(pin − pout) by construction,

E
[
exp

(
u⊤K(pin − pout)

)]
≤ E

[
exp

(
−⟨Φ⊤u, 1

nin
Bz⟩

)]
≤ exp

(
ν2

2 · ∥Φ
⊤u∥22

)
= exp

(
ν2

2 · u
⊤Ku

)
.

Now, for ℓ ∈ [m], let pℓ ∈ Rn denote the output probability vector produced by the ℓ-th call to GS-HALVE. Defining
p0 ≜ pin and pout ≜ pm, we have

pin − pout =
∑m

i=1 ∆i, for ∆i ≜ pi−1 − pi for i ∈ [m].

By Lem. B.2, each pi−1 − pi is (K, 2∥K∥1/2
max

nin/2i−1 )-sub-Gaussian conditional on (∆1, . . . ,∆i−1). Applying Lem. A.3 to the
sequence (∆j)

m
j=1, we find that pin − pout is (K, ν)-sub-Gaussian with parameter

ν =
(∑m

j=1
4∥K∥max

(nin/2j−1)2

)1/2

=
2∥K∥1/2

max

nin

(∑m
j=1 4

j
)1/2

≤ ∥K∥1/2
max

nin

√
4
34

m.

Simplifying the above using the fact that nout = nin/2
m yields our desired result (22).

B.6.2. PROOF OF PROP. B.7: RUNTIME OF GS-THIN WITH GS-HALVE

We essentially reproduce the argument from Bansal et al. (2018) for the runtime of the GS-HALVE algorithm in our
kernelized context.

The main computational cost of GS-HALVE is the execution of the kernel gs walk(·) subroutine in Alg. B.6. The
number of iterations in while loop for zt is at most nin/2. This is due to the fact that in each iteration, at least one new
variable is set to {±1}. Further, in each iteration, the main computational cost is the computation of

ut ← argminu∈Rnin/2 u
⊤Qu

under the constraints that up = 1 and ui = 0 for all i /∈ A. Since this can be implemented in O(n3in) time using standard
convex optimization techniques, GS-HALVE has total runtime

rH(ℓ) ≤ Cℓ4

for an input sequence of size ℓ and a constant C independent of ℓ. Now, note that GS-THIN calls GS-HALVE iteratively
on inputs of size nin2

−i for i = 0, 1, . . . ,m− 1 where m = log2(nin/nout). Thus, GS-THIN has runtime∑m−1
i=0 rH(nin/2

i) ≤
∑m−1

i=0 C(nin/2
i)4 = O(n4in).
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B.6.3. PROOF OF PROP. B.8: AGREEMENT OF GS-HALVE AND GS-HALVE-CUBIC

We want to reason that any round of partial coloring leads to the same output across the two algorithms. Fix any fractional
assignment update round. Recall thatA1 = A\{p} andA2 = A′ \ {p′}. These represent the active set coordinates without
the pivot before and after the update respectively.

The main difference between Algs. B.6 and B.7 is in the computation of the step direction ut, which is the solution of the
program

ut ← argminu∈Rn u⊤Qu subject to up′ = 1 and ui = 0 for all i /∈ A′.

ut has a closed form with entries

(ut)A2 = −(QA2×A2)
−1 ·QA2×{p′}.

Note that the invertibility of QA2×A2
follows from the positive-definiteness of Q, as, for any w ∈ R|A2|,

w⊤QA2×A2
w = w̃⊤Qw̃ > 0

for a second vector w̃ with w̃A2 = w and all other entries equal to zero. Therefore, to compute ut, it suffices to keep track
of the inverse of QA2×A2 as A′ across iterations.

Let i be the unique element in A1\A2. Writing QA1×A1 in block form, we have

QA1×A1 =

[
QA2×A2

QA2×{i}
Q{i}×A2

Qii

]
.

By block matrix inversion (see, e.g., Saadetoglu & Dinsev, 2023, Thm. 2), the leading size |A2|× |A2| principal submatrix
of (QA1×A1)

−1 equals

D ≜
(
QA2×A2

− QA2×{i}Q{i}×A2

Qii

)−1

.

Thus, by the Sherman-Morrison formula (Sherman & Morrison, 1950),

(QA2×A2
)−1 =

(
D−1 +

QA2×{i}Q{i}×A2

Qii

)−1

= D− DQA2×{i}Q{i}×A2
D

Qii+Q{i}×A2
DQA2×{i}

. (23)

Hence, if we already have access to a matrix C = (QA1×A1
)−1, we can compute D by dropping the row and column

of C corresponding to i and then compute (QA2×A2
)−1 using (23). Since in Alg. B.7 we begin by explicitly computing

the inverse of QA′×A′ , the update step in Alg. B.7 maintains the required inverse and thus its partial assignment updates
match those of Alg. B.6.

B.6.4. PROOF OF PROP. B.9: RUNTIME OF GS-THIN WITH GS-HALVE-CUBIC

We begin by establishing the runtime of kernel gs walk cubic(·).
Lemma B.3 (Running time of kernel gs walk cubic(·) ). The routine kernel gs walk cubic(·) runs in
O(ℓ3) time given a point sequence of size ℓ.

Proof. First, the initialization of C costs O(ℓ3) time using standard matrix inversion algorithms. Second, the number of
iterations in the while loop is at most ℓ/2 since, in each iteration, at least one new variable is assigned a permanent sign
in {±1}. In each while loop iteration, the main computational costs are the update of C and the computation of the step
direction ut, both of which cost O(ℓ2) time using standard matrix-vector multiplication. Hence, together, all while loop
iterations cost O(ℓ3) time.

Given the above lemma, we have that GS-HALVE-CUBIC, on input of size ℓ, has a running time

rH(ℓ) ≤ Cℓ3

for some C independent of ℓ. When used in GS-THIN this yields the runtime∑m−1
i=0 rH(nin/2

i) =
∑m−1

i=0 C(nin/2
i)3 = O(n3in).
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Algorithm B.8: GS-COMPRESS: Compress with GS-HALVE-CUBIC halving
Input: point sequence Xin = (xi)

nin
i=1, kernel k, nout ∈

√
nin · 2N

g← log2(nout/
√
nin) // identify compression level

function compress(S):
if |S| = 4g then return S
Partition S into four arbitrary subsequences {Si}4i=1 each of size |S|/4
for i = 1, 2, 3, 4 do

S̃i ← compress(Si) // return coresets of size 2g ·
√

|S|
4

end
S̃ ← CONCATENATE(S̃1, S̃2, S̃3, S̃4); ℓ← 2 · 2g ·

√
|S| // coreset of size ℓ

return GS-HALVE-CUBIC(S̃,k) // coreset of size 2g
√
|S|

return compress(Xin) // coreset of size nout = 2g
√
nin

B.7. GS-COMPRESS

This section introduces and analyzes the new GS-COMPRESS algorithm (Alg. B.8) which combines the COMPRESS meta-
algorithm of Shetty et al. (2022) with the GS-HALVE-CUBIC halving algorithm (Alg. B.7). The following result bounds
the sub-Gaussian constant and runtime of GS-COMPRESS.

Proposition B.10 (GS-COMPRESS sub-Gaussianity and runtime). If K is generated by k, then GS-COMPRESS is
(K, ν, 0)-sub-Gaussian with

ν ≜ 1
nout

√
log2(nout)∥K∥max.

Moreover, GS-COMPRESS has an O(n3out) runtime.

Proof. By Lem. B.2 and Prop. B.8, GS-HALVE-CUBIC is (K, νH(ℓ))-sub-Gaussian for an input point sequence of size ℓ
and νH(ℓ) = 2

√
∥K∥max/ℓ. Hence, by Lem. A.2, GS-HALVE-CUBIC is also νH(ℓ) f -sub-Gaussian in the sense of Shetty

et al. (2022, Def. 2) for each f ∈ Hk. By Shetty et al. (2022, Rmk. 2), GS-COMPRESS is therefore f -sub-Gaussian with
parameter

ν ≤
√
log2(nin/nout)νH(2nout) ≤

√
log2(nout)

∥K∥1/2
max

nout

for each f ∈ Hk. Hence, Lem. A.1 implies that GS-COMPRESS is a (K, ν, 0)-sub-Gaussian thinning algorithm.

Furthermore, Shetty et al. (2022, Thm. 1) implies that GS-COMPRESS has a runtime of∑log2(nin/(2nout))
i=0 4i · rH(2nout2

−i).

where the GS-HALVE-CUBIC runtime rH(ℓ) ≤ Cℓ3 for C independent of the input size ℓ by Lem. B.3. Therefore, the
GS-COMPRESS runtime is bounded by∑log2(nin/(2nout))

i=0 4i · (2nout)
32−3i = O(n3out).

Remark 1 (COMPRESS with GS-HALVE). If the GS-HALVE implementation were used in place of GS-HALVE-CUBIC,
parallel reasoning would yield an O(n4out) runtime for GS-COMPRESS.

C. Proof of Thm. 1: Low-rank sub-Gaussian thinning
We establish the MMD bound (2) in App. C.1, the first kernel max seminorm bound (3) in App. C.2, and the Lipschitz
kernel max seminorm bound (4) in App. C.3. Throughout, we use the notation PE(E ′) ≜ P(E, E ′) for events (E, E ′).
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C.1. Proof of MMD bound (2)

Without loss of generality, we suppose that r ≤ rank(K). Let VΛV⊤ be an eigendecomposition of K with orthonormal
V ∈ Rn×n and diagonal Λ = diag(λ1, · · · , λn) ∈ Rn×n. Let Vr represent the first r columns of V, and let V−r

represent the last n− r columns of V. Introduce the shorthand

w ≜ pin − pout ∈ Rn and Φ ≜ VΛ1/2V⊤ ∈ Rn×n. (24)

We can directly verify that

VV⊤ = V⊤V = I, VV⊤ = VrV
⊤
r +V−rV

⊤
−r, and K = ΦΦ⊤. (25)

Using the above equalities, we decompose the squared MMD into two components,

MMD2
K(pin,pout) = w⊤Kw = w⊤ΦΦ⊤w = w⊤ΦVV⊤Φ⊤w = w⊤ΦVrV

⊤
r Φ

⊤w +w⊤ΦV−rV
⊤
−rΦ

⊤w

= ∥V⊤
r Φ

⊤w∥22 + ∥V⊤
−rΦ

⊤w∥22. (26)

In Apps. C.1.1 and C.1.2 respectively, we will establish the bounds

P(∥V⊤
r Φ

⊤w∥22 ≤ eν2(er + log(1/δ′)) ≥ 1− δ/2− δ′ and (27)

P(∥V⊤
−rΦ

⊤w∥22 ≤ λr+1(
1

nout
− 1

n )) = 1, (28)

which when combined with (26) yield the advertised claim (2) on the squared MMD.

C.1.1. PROOF OF (27): BOUNDING ∥V⊤
r Φ

⊤w∥22
Our first lemma bounds the Euclidean norm of a vector in terms of a finite number of inner products.

Lemma C.1 (Euclidean norm cover). For any v ∈ Rr and ε ∈ (0, 1),

∥v∥2 ≤ 1
1−ε maxu∈Cε,r ⟨u,v⟩ (29)

for a set Cε,r contained in the ball Br with |Cε,r| ≤ (1 + 2/ε)r.

Proof. Fix any ε ∈ (0, 1), and let Cε,r be a set of minimum cardinality satisfying

Cε,r ⊂ Br and supu∈Br minu′∈Cε,r
∥u− u′∥2 ≤ ε.

By Wainwright (2019, Lem. 5.2), |Cε,r| ≤ (1 + 2/ε)r. Now we invoke the variational representation of ∥·∥2 and the
Cauchy-Schwarz inequality to conclude that

∥v∥2 = supu∈Br ⟨u,v⟩ = supu∈Br minu′∈Cε,r
[⟨u− u′,v⟩+ ⟨u′,v⟩]

≤ supu∈Br minu′∈Cε,r
∥u− u′∥2∥v∥2 +maxu′∈Cε,r

⟨u′,v⟩
≤ ε∥v∥2 +maxu′∈Cε,r

⟨u′,v⟩.

Rearranging terms yields the claimed bound (29).

Our next lemma uses this covering estimate to bound the exponential moments of ∥V⊤
r Φ

⊤w∥2.

Lemma C.2 (Norm sub-Gaussianity). For any ε > 0 and any t > 0,

EE [exp(t∥V⊤
r Φ

⊤w∥2)] ≤ (1 + 2
ε )

r exp( ν2t2

2(1−ϵ)2 ).

Proof. Fix any t > 0. Since x 7→ exp(tx) is increasing, Lem. C.1 implies that

EE [exp(t∥V⊤
r Φ

⊤w∥2)] ≤ EE [exp(t · 1
1−ε maxu∈Cε,r

⟨u,V⊤
r Φ

⊤w⟩)]

= EE [maxu∈Cε,r exp(
t

1−ε ⟨Vru,Φ
⊤w⟩)]

≤
∑

u∈Cε,r
EE [exp(

t
1−ε ⟨Vru,Φ

⊤w⟩)]
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for a subset Cε,r with |Cε,r| ≤ (1 + 2
ε )

r and ∥u∥2 ≤ 1 for each u ∈ Cε,r.

Now fix any u ∈ Cε,r and let Λr = diag(λ1, . . . , λr). Using (24) and (25), we have

Vr = Φ⊤VrΛ
−1/2
r and therefore

⟨Vru,Φ
⊤w⟩ = ⟨Φ⊤VrΛ

−1/2
r u,Φ⊤w⟩ = ⟨VrΛ

−1/2
r u,Kw⟩.

In addition, we have

(VrΛ
−1/2
r u)⊤K(VrΛ

−1/2
r u) = u⊤Λ−1/2

r V⊤
r VΛV⊤VrΛ

−1/2
r u = u⊤u.

Next, we can invoke our sub-Gaussianity assumption (Def. 3) to conclude that

EE [exp(
t

1−ε ⟨Vru,Φ
⊤w⟩)] = EE [exp(

t
1−ε ⟨VrΛ

−1/2
r u,Kw⟩)] ≤ exp( ν2t2

2(1−ε)2 ⟨VrΛ
−1/2
r u,KVrΛ

−1/2
r u⟩)

≤ exp( ν2t2

2(1−ε)2 ∥u∥
2
2).

Since ∥u∥2 ≤ 1 and |Cε,r| ≤ (1 + 2
ε )

r, the advertised result now follows.

By Markov’s inequality (Markov, 1884) and Lem. C.2, for any α > 0,

P(∥V⊤
r Φ

⊤w∥2 > α) = PE(∥V⊤
r Φ

⊤w∥2 > α) + P(∥V⊤
r Φ

⊤w∥2 > α, Ec)
≤ PE(∥V⊤

r Φ
⊤w∥2 > α) + P(Ec)

≤ inft>0 EE [exp(t∥V⊤
r Φ

⊤w∥2)]/ exp(tα) + δ/2

≤ (1 + 2
ε )

r inft>0 exp(
ν2t2

2(1−ε)2 − tα) + δ/2

= (1 + 2
ε )

r exp(−(1−ε)2α2

2ν2 ) + δ/2.

Next, we have

(1 + 2
ε )

r exp(−(1−ε)2α2

2ν2 ) ≤ δ′ if α ≥ ν
√
2

1−ε

√
log( 1

δ′ ) + r log(1 + 2
ε )

Since this bound holds for any ε, choosing ε = 1−
√
2/e, we find that

∥V⊤
r Φ

⊤w∥22 ≤ eν2
[
r log(1 + 2/(1−

√
2/e)) + log(1/δ′)

]
≤ eν2[er + log(1/δ′)]

with probability at least 1− δ/2− δ′ as claimed.

C.1.2. PROOF OF (28): BOUNDING ∥V⊤
−rΦ

⊤w∥22
Since

∥w∥22 = p⊤
inpin + p⊤

outpout − 2p⊤
inpout =

nin
n2

in
+ nout

n2
out
− 2nout

ninnout
= 1

nout
− 1

nin
, (30)

we have, for Λ−r ≜ diag(λr+1, · · · , λn) and λmax the maximum eigenvalue of a SPSD matrix,

∥V⊤
−rΦ

⊤w∥22 = w⊤V−rΛ−rV
⊤
−rw ≤ λmax(V−rΛ−rV

⊤
−r)∥w∥22

(30)
= λr+1(

1
nout
− 1

nin
).

C.2. Proof of kernel max seminorm bound (3)

We begin by establishing a general bound on the maximum discrepancy between input and output expectations over a
collection of test functions admitting a finite cover.

Lemma C.3 (Discrepancy cover bound). Fix any kernel k, subset F ⊂ Hk, and scalars ε ≥ 0 and δ′ ∈ (0, 1). Define

a ≜ supf∈F ∥f∥k and BF ≜ {f ∈ Hk : ∥f∥k ≤ a},
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and let Cϵ,F be a set of minimum cardinality satisfying

Cϵ,F ⊂ BF and supf∈F minf ′∈Cϵ,F maxx∈Xin |f(x)− f ′(x)| ≤ ε. (31)

If (Pin − Pout)k is (k, ν)-sub-Gaussian on an event E (Def. A.2), then, on E,

∥Pin − Pout∥F ≜ supf∈F (Pin − Pout)f ≤ 2ϵ+ νa
√
2 log(|Cϵ,F |/δ′) with probability at least 1− δ′.

Proof. The triangle inequality and the covering property (31) together imply that, with probability 1,

(Pin − Pout)f ≤ minf ′∈Cϵ,F (Pin − Pout)f
′ + |(Pin − Pout)(f − f ′)|

≤ ∥Pin − Pout∥Cϵ,F
+minf ′∈Cϵ,F |Pin(f − f ′)|+ |Pout(f − f ′)|

≤ ∥Pin − Pout∥Cϵ,F
+ 2minf ′∈Cϵ,F maxx∈Xin |f(x)− f ′(x)|

≤ ∥Pin − Pout∥Cϵ,F
+ 2ε (32)

for each f ∈ F . Since s 7→ ets is increasing, the bound (32), the assumed sub-Gaussianity (Def. A.2), and the fact that
Cϵ,F belongs to BF imply that

EE [exp(t∥Pin − Pout∥F )] ≤ e2tεEE [exp(t∥Pin − Pout∥Cϵ,F
)]

≤
∑

f ′∈Cϵ,F
e2tεEE [exp(t(Pin − Pout)f

′)]

≤
∑

f ′∈Cϵ,F
exp(

t2ν2∥f ′∥2
k

2 + 2tϵ) ≤ |Cϵ,F | exp( t
2ν2a2

2 + 2tϵ).

Now, by Markov’s inequality (Markov, 1884), for any α > 0,

PE(supf∈F (Pin − Pout)f > α+ 2ϵ) ≤ inft>0 EE [exp(t∥Pin − Pout∥F )]/ exp(t(α+ 2ϵ))

≤ |Cϵ,F | inft>0 exp(
t2ν2a2

2 − tα) = |Cϵ,F | exp( −α2

2ν2a2 ).

Finally, choosing α = νa
√
2 log(|Cϵ,F |/δ′) yields the desired claim.

Now fix any ϵ ≥ 0, δ′ ∈ (0, 1), and kernel k that generates K, and consider the subset F = {±k(xi, ·) : i ∈ I}. Since
∥K(pin − pout)∥I = ∥Pin − Pout∥F and supf∈F ∥f∥k = DI , Lem. C.3 implies that, on the event E,

∥K(pin − pout)∥I ≤ 2ϵ+ νDI
√
2 log(|Cϵ,F |/δ′) with probability at least 1− δ′.

Since P(Ec) ≤ δ/2 and |F| ≤ 2|Z|, we use the estimate |C0,F | ≤ 2|I| with ϵ = 0 to obtain the advertised bound (3).

C.3. Proof of Lipschitz kernel max seminorm bound (4)

Introduce the query point set Z ≜ {xi : i ∈ I}, fix any δ′ ∈ (0, 1) and z0 ∈ Z , and define the symmetrized seminorm

∥(Pin − Pout)k∥Z,Z ≜ supz,z′∈Z |(Pin − Pout)k(z)− (Pin − Pout)k(z
′)|.

By the triangle inequality and the derivation of App. C.2, we have, on the event E,

∥K(pin − pout)∥I ≤ ∥(Pin − Pout)k∥Z,Z + |(Pin − Pout)k(z0)|

≤ ∥(Pin − Pout)k∥Z,Z + ν
√
k(z0, z0)

√
2 log(4/δ′) with probability at least 1− δ′/2. (33)

Since P(Ec) ≤ δ/2, it only remains to upper bound ∥(Pin − Pout)k∥Z,Z on E with probability at least 1− δ′/2.

To this end, we first establish that ((Pin − Pout)k(z))z∈Z is a sub-Gaussian process on E with respect to a particular
bounded-Hölder metric ρ.

Definition C.1 (Sub-Gaussian process on an event). We say an indexed collection of random variables (Xθ)θ∈Θ is a
sub-Gaussian process with respect to ρ on an event E if ρ is a metric on Θ and

EE

[
exp

( (Xθ−X′
θ)

2

ρ(θ,θ′)2

)]
≤ 2 for all θ, θ′ ∈ Θ.
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Lemma C.4 (Bounded-Hölder sub-Gaussian process). Consider a kernel k on X = Rd satisfying |k(z,x)− k(z′,x)| ≤
Lk∥z − z′∥2 for all z, z′ ∈ Z ⊂ X and x ∈ Xin. If (Pin − Pout)k is (k, ν)-sub-Gaussian on an event E (Def. A.2), then
((Pin − Pout)k(z))z∈Z is a sub-Gaussian process on E with respect to the metric

ρ(z, z′) ≜ ν
√

8/3min(2 supz∈Z
√
k(z, z),

√
2Lk∥z − z′∥2). (34)

The proof of Lem. C.4 can be found in App. C.4. Our next lemma, a slight modification of Wainwright (2019, Thm. 5.36),
bounds the suprema of symmetrized sub-Gaussian processes on an event in terms of covering numbers.

Lemma C.5 (Sub-Gaussian process tails). Suppose (Xθ)θ∈Θ is a sub-Gaussian process with respect to ρ on an event E,
and define the diameter diam(Θ, ρ) ≜ supθ,θ′∈Θ ρ(θ, θ

′), the covering number

N (u; Θ, ρ) ≜ min{|Cu| : Cu ⊆ Θ,maxθ∈Θ minθ′∈Cu
ρ(θ, θ′) ≤ u} for all u > 0,

and the entropy integral J (Θ, ρ) ≜
∫ diam(Θ,ρ)

0

√
log(1 +N (u; Θ, ρ)) du. Then,

PE(supθ,θ′∈Θ |Xθ −Xθ′ | ≥ 8(J (Θ, ρ) + t)) ≤ 2 exp(−t2/ diam(Θ, ρ)2) for all t > 0.

Proof. Since
√

log(1 + xy) ≤
√
log((1 + x)(1 + y)) ≤

√
log(1 + x) +

√
log(1 + y) for all x, y > 0, the proof is

identical to that of Wainwright (2019, Thm. 5.36) with c1 = 8 and (EE ,PE) substituted for (E,P).

Our final lemma bounds the diameter, covering numbers, and entropy integral of Z using the metric ρ.

Lemma C.6 (Covering properties of bounded-Hölder metric). Consider the bounded-Hölder metric ρ (34) for a kernel k
on X = Rd and a finite set Z ⊂ X . If Z is a matrix with one row corresponding to each element of Z , r = rank(Z), and
R = maxz∈Z ∥z∥2, then, in the notation of Lem. C.5,

N (u;Z, ρ) ≤ (1 + c2/u2)r for c ≜ ν
√

32
3 RLk and all u > 0, (35)

diam(Z, ρ) ≤ D ≜ min(c, ν
√

32
3 maxz∈Z

√
k(z, z)), and (36)

J (Z, ρ) ≤ D
√
2r log(

√
3ec/D).

Proof. The diameter bound (36) follows directly from the definition of ρ (34) and the fact maxz,z′∈Z ∥z − z′∥2 ≤ 2R.

To establish the covering number bound (35), we let UΣV⊤ be a compact singular value decomposition of Z so that

V ∈ Rd×r, Z = ZVV⊤, and maxz∈Z ∥V⊤z∥2 = maxz∈Z ∥z∥2 = R.

Fix any ϵ > 0, and let C and Cext be a sets of minimum cardinality satisfying

C ⊂ Br(R), maxv∈Br(R) minv′∈C ∥v′ − v∥2 ≤ ϵ2/2,
Cext ⊂ Bd(R), and maxz∈Z minz′∈Cext ∥z′ − z∥2 ≤ ϵ2/2. (37)

Since V⊤z ∈ Br(R) for each z ∈ Z and Vv′ ∈ Bd for each v′ ∈ Br, we have

maxz∈Z minv′∈C ∥Vv′ − z∥2 = maxz∈Z minv′∈C ∥V(v′ −V⊤z)∥2
= maxz∈Z minv′∈C ∥v′ −V⊤z∥2 ≤ ϵ2/2,

so that VC satisfies the criteria of (37). Since |VC| ≤ |C| ≤ (1 + 4R/ϵ2)r by Wainwright (2019, Lem. 5.2), we must also
have |Cext| ≤ (1 + 4R/ϵ2)r.

Now, since Cext has minimum cardinality amongst sets satisfying (37), for each z′ ∈ Cext, there is some z ∈ Z satisfying
∥z′ − z∥2 ≤ ϵ2/2 (or else z′ would be superfluous). Hence, there exists a set Cint ⊆ Z satisfying

|Cint| ≤ |Cext| ≤ (1 + 4R/ϵ2)r and maxz∈Z minz′∈Cint ∥z′ − z∥2 ≤ ϵ2.
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Moreover, by our metric definition (34),

maxz∈Z minz′∈Cint ρ(z, z
′) ≤ c

2
√
R
maxz∈Z minz′∈Cint

√
∥z − z′∥2 ≤ cϵ

2
√
R
.

Hence, for u = cϵ
2
√
R

, N (u;Z, ρ) ≤ |Cint| ≤ (1 + c2/u2)r. Since ϵ > 0 was arbitrary, we have established (35).

Finally, we bound the entropy integral using the inequality 1 ≤ c2/u2 for u ∈ [0, D], the concavity of the square-root
function, and Jensen’s inequality:

J (Z, ρ) ≤
∫D

0

√
log(1 + (1 + c2/u2)r) du ≤

∫D

0

√
log((3c2/u2)r) du =

∫D

0

√
2r log(

√
3c/u) du

≤ D
√

1
D

∫D

0
2r log(

√
3c/u) du = D

√
2r log(

√
3ec/D).

Together, Lems. C.4, C.5, and C.6 imply that, in the notation of Lem. C.6,

∥(Pin − Pout)k∥Z,Z ≤ 8D
√
2r log(

√
3ec/D) + 8D

√
log(4/δ′)

on E with probability at least 1− δ′/2. Combining this bound with the inequality (33) yields the result.

C.4. Proof of Lem. C.4: Bounded-Hölder sub-Gaussian process

Define Xz = (Pin − Pout)k(z) for each z ∈ Z , and fix any z, z′ ∈ Z . Our sub-Gaussianity assumption implies

EE [exp(λ(Xz −Xz′)] ≤ exp(ν
2λ2

2 ∥k(z, ·)− k(z′, ·)∥2k) for all λ ∈ R.

Moreover, by our Lipschitz assumption,

∥k(z, ·)− k(z′, ·)∥2k = k(z, z)− k(z, z′) + k(z′, z′)− k(z′, z) ≤ min(4maxz∈Z k(z, z), 2Lk∥z − z′∥2).

Finally, Lem. C.7 shows that EE [exp(
(Xz−Xz′ )2

ρ(z,z′)2 ] ≤ 2 so that (Xz)z∈Z is a sub-Gaussian process on E with respect to ρ.

Lemma C.7 (Squared exponential moment bound). If EE [exp(λX)] ≤ exp(ν
2λ2

2 ) for all λ ∈ R, then EE [exp(
3X2

8ν2 )] ≤ 2.

Proof. The proof is identical to that in Wainwright (2019, Sec. 2.4) with EE substituted for E.

D. Proof of Cor. 1: Gaussian MMD of KH
Cor. 1 follows immediately from the following explicit, non-asymptotic bound.
Corollary D.1 (Detailed Gaussian MMD of KH). If Xin ⊂ Bd(R) for R > 0, then KH(δ) with k = GAUSS(η),
n = nin ≥ (2e)d, and b ≜ 1

2 delivers

MMD2
K(pin,pout) ≤ 1

n2
out
log( 4nout

δ )
[
e2 max

{[
2e
d log(ninnoutb)

]d
, (R

2ηe34
d )d

}
+ e log( 1

δ′ )
]
+ 1

noutb
( 1
nout
− 1

nin
)

with probability at least 1− δ/2− δ′.

Proof. Consider the approximate rank parameter

r⋆ ≜ max
{[

2e
d log(ninnoutb)

]d
, (R2ηe34/d)d

}
.

The assumption nin ≥ (2e)d and the fact that b ≥ 1/(2dnout) ensure that log(ninnoutb) ≥ d + log(noutb/2
d) ≥ d and

therefore that r⋆ ≥ (2e)d. Hence, by Altschuler et al. (2019, Thm. 3), the (r⋆ + 1)-th eigenvalue of K satisfies

λr⋆+1 ≤ nin exp

{
− d

2e max
{

2e
d log(ninnoutb), (R

2ηe34/d)
}
log

(
dmax{ 2e

d log(ninnoutb),(R
2ηe34/d)}

4e2ηR2

)}
≤ nin exp{− log(ninnoutb) log(e)} ≤ nin

(
1

ninnoutb

)
= 1

noutb
.

Since ∥K∥max = 1 and KH(δ) ∈ Gν(K) with ν defined in Prop. B.2, the result now follows from Thm. 1.
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E. Proof of Cor. 2: Intrinsic Gaussian MMD of KH
Assumption E.1 (d⋆-manifold withQ-smooth atlas (Altschuler et al., 2019, Assum. 1)). Let Ω ⊂ Rd be a smooth compact
manifold without boundary of dimension d⋆ < d. Let (Ψj , Uj)j∈[T ] for T ∈ N be an atlas for Ω, where (Uj)j are open sets
covering Ω and Ψj : Uj 7→ Bd⋆

(rj) are smooth maps with smooth inverses, mapping Uj bijectively to Bd⋆

(rj). Assume
that there exists Q > 0 such that supu∈Bd⋆ (rj)

∥∥DαΨ−1
j (u)

∥∥ ≤ Q|α| for all α ∈ Nd⋆

and j ∈ [T ], where |α| ≜
∑d⋆

j=1 αj

and Dα = ∂|α|

∂u
α1
1 ...∂u

αd⋆

d⋆
for α ∈ Nd⋆

.

Cor. 2 follows immediately from the following more detailed result.

Corollary E.1 (Detailed Intrinsic Gaussian MMD of KH). Suppose Xin lies on a manifold Ω ⊂ Bd satisfying As-
sump. E.1. Then KH(δ) with k = GAUSS(η) and n = nin delivers

MMD2
K(pin,pout) ≤ 1

n2
out
log( 4nout

δ )
(

e2

c5d⋆/2 log
5d⋆

2 (ninnout) + e log( 1
δ′ )

)
+ 1

nout
( 1
nout
− 1

nin
)

with probability at least 1− δ
2 − δ

′ for c independent of Xin.

Proof. Altschuler et al. (2019, Thm. 4) showed that the (r+1)-th eigenvalue of K satisfies (7) for a constant c independent
of X = Xin. Since ∥K∥max = 1 and KH(δ) ∈ Gν(K) with ν defined in Prop. B.2, the result now follows from Thm. 1
with r = (log(ninnout)/c)

5d⋆/2
.

F. Proof of Thm. 2: Quality of Thinformer
Throughout we will make use of the convenient representation

T̂ = D̂−1ÂV for Iout ≜ {i ∈ [n] : (k̃i, ṽi) ∈ Xout}, Â ≜ n
nout

(exp(
⟨qi,kj⟩√

d
)1[j ∈ Iout])

n
i,j=1, and D̂ ≜ Â1n. (38)

Our proof makes use of three lemmas. The first, proved in App. F.1, bounds the approximation error for the attention
matrix T in terms of the approximation error for AV and A1n.

Lemma F.1 (Decomposing attention approximation error). In the notation of Alg. 1 and (38),

∥D̂−1ÂV −D−1AV∥max ≤ min
(
∥( 1nD)−1∥max, ∥( 1nD̂)−1∥max

)
( 1n∥ÂV −AV∥max +

1
n∥A1n − Â1n∥∞∥V∥max).

The second, proved in App. F.2, bounds the approximation error for AV and A1n in terms of the KMS (1) for a specific
choice of attention kernel matrix.

Lemma F.2 (KMS bound on attention approximation error). Instantiate the notation of Alg. 1 and (38) and define the
query set

X ′ ≜ {xi+nj ≜ (q̃i, e
d+1
j ) : i ∈ [n], j ∈ [d+ 1]} where q̃i ≜ qi/d

1
4

and ed+1
j is the j-th standard basis vector in Rd+1. If Katt ≜ katt(X ,X ) for X ≜ X ′ ∪ Xin, then

max
(
1
n∥(Â−A)V∥max,

1
n∥(Â−A)1n∥∞∥V∥max

)
= ∥Katt(pin − pout)∥I for I ≜ [n(d+ 1)].

Our third lemma, proved in App. F.3, bounds the size of key parameters of the thinned attention problem.

Lemma F.3 (Thinned attention problem parameters). Instantiate the notation of Lem. F.2, and define R ≜
maxi∈[n] max(∥qi∥2, ∥ki∥2). Then, for all i, j ∈ I and l ∈ supp(pin),

∥( 1nD)−1∥max ≤ exp(R
2

√
d
), maxx∈Xin

√
katt(x,x) ≤ exp( R2

2
√
d
)
√
∥V∥22,∞ + ∥V∥2max,

RI ≜ maxi∈I ∥xi∥2 ≤
√

R2√
d
+ 1, DI ≜ maxi∈I

√
Katt,ii ≤ exp( R2

2
√
d
),

rank(XI) ≤ d+ 1 for XI ≜ [xi]
⊤
i∈I , and

|Katt,il −Katt,jl| ≤ LKatt∥xi − xj∥2 for LKatt ≜ exp(R
2

√
d
)
√

R2√
d
+ 2∥V∥max.
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Now instantiate the notation of Lem. F.2, and define the coefficient

c ≜ 2
√
2
(
32
√

2
3 (d+ 1) log(3e2(R

2√
d
+ 2)∥V∥max) +

√
2 log(8)(1 + 32√

3
)
)
.

Together, Lem. F.3, the KMS quality bound of Thm. 1, and the KH-COMPRESS(0.5) sub-Gaussian constant ν of Prop. B.5
imply that, with probability at least 1

2 ,

∥Katt(pin − pout)∥I ≤ c
2
√
2
exp(R

2
√
d
)
√
∥V∥22,∞ + ∥V∥2max

√
log2(nout) log(8nout log2

nin
nout

)

nout
.

Hence, by Lems. F.1 and F.2, with probability at least 1
2 ,

∥D̂−1ÂV −D−1AV∥max ≤ c√
2
exp( 2R

2
√
d
)
√
∥V∥22,∞ + ∥V∥2max

√
log2(nout) log(8nout log2

nin
nout

)

nout

≤ c exp( 2R
2

√
d
)∥V∥2,∞

√
log2(nout) log(8nout log2

nin
nout

)

nout
.

F.1. Proof of Lem. F.1: Decomposing attention approximation error

By the triangle inequality, we have

∥D̂−1ÂV −D−1AV∥max ≤ ∥D̂−1ÂV − D̂−1AV∥max + ∥D̂−1AV −D−1AV∥max.

We bound the first term on the right-hand side using the submultiplicativity of the max norm under diagonal rescaling:

∥D̂−1ÂV − D̂−1AV∥max ≤ ∥D̂−1∥max∥ÂV −AV∥max = ∥( 1nD̂)−1∥max
1
n∥ÂV −AV∥max.

To bound the second term we use the same submultiplicativity property and the fact that each entry of D−1AV is the
average of values in V:

∥D̂−1AV −D−1AV∥max = ∥D̂−1(D− D̂)D−1AV∥max ≤ ∥D̂−1∥max∥D− D̂∥max∥D−1AV∥max

= ∥( 1nD̂)−1∥max
1
n∥A1n − Â1n∥∞∥V∥max.

An identical argument reversing the roles of (D,A) and (D̂, Â) yields the second bound.

F.2. Proof of Lem. F.2: KMS bound on attention approximation error

Define the augmented value matrix Ṽ = [V, ∥V∥max1n] ∈ Rd+1. By the definition of Katt and Â,

∥Katt(pin − pout)∥I = maxi∈[n],j∈[d+1] |
∑

ℓ∈[n] AiℓṼℓj(pin − pout)ℓ| = 1
n∥(A− Â)Ṽedj∥∞ = 1

n∥(A− Â)Ṽ∥max.

F.3. Proof of Lem. F.3: Thinned attention problem parameters

First, by the Cauchy-Schwarz inequality and the nonnegativity of D = A1n we have

∥( 1nD)−1∥max = 1
mini∈[n]

1
n

∑
j∈[n] Aij

≤ 1

mini∈[n],j∈[n] exp(
⟨qi,kj⟩√

d
)
≤ 1

mini∈[n],j∈[n] exp(
−∥qi∥2∥kj∥2√

d
)
≤ exp(R

2
√
d
).

Second, the maxx∈Xin

√
katt(x,x) inequality follows as

katt((k̃i, ṽi), (k̃i, ṽi)) = exp(
∥ki∥2

2√
d

)(∥vi∥22 + ∥V∥2max) ≤ exp(R
2

√
d
)(∥V∥22,∞ + ∥V∥2max).

Third, the RI inequality follows as

∥(q̃i, e
d+1
j )∥2 =

√
∥q̃i∥22 + 1 ≤

√
R2√
d
+ 1 for all i ∈ [n], j ∈ [d+ 1].
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Fourth, the DI inequality follows as

maxi∈I Katt,ii = maxi∈[n] exp(
∥qi∥

2
2√

d
) ≤ exp(R

2
√
d
).

Fifth, the rank inequality follows as xi ∈ Rd+1 for i ∈ I. Finally, the Lipschitz inequality follows as, for any i, k, l ∈ [n]
and j,m ∈ [d+ 1],

| exp( ⟨qi,kl⟩√
d

)⟨ed+1
j , ṽl⟩ − exp( ⟨qk,kl⟩√

d
)⟨ed+1

m , ṽl⟩|

≤ exp( ⟨qi,kl⟩√
d

)|ṽlj − ṽlm|+ | exp( ⟨qi,kl⟩√
d

)− exp( ⟨qk,kl⟩√
d

)||ṽlm|

≤ exp(∥qi∥2∥kl∥2√
d

)∥ed+1
j − ed+1

m ∥2 |ṽlj−ṽlm|√
2

+ exp(max(∥qi∥2,∥qk∥2)∥kl∥2√
d

)| ⟨qi−qk,kl⟩√
d
||ṽlm|

≤ exp(R
2

√
d
)∥ed+1

j − ed+1
m ∥2 |ṽlj−ṽlm|√

2
+ exp(R

2
√
d
)∥qi−qk∥2R√

d
|ṽlm|

≤ exp(R
2

√
d
)∥ed+1

j − ed+1
m ∥2

√
2∥V∥max + exp(R

2
√
d
)∥qi−qk∥2R√

d
∥V∥max

≤ exp(R
2

√
d
)
√

R2√
d
+ 2∥V∥max∥(q̃i, e

d+1
j )− (q̃k, e

d+1
m )∥2

by the triangle inequality, multiple applications of Cauchy-Schwarz, and the mean-value theorem applied to x 7→ ex.

G. Proof of Thm. 3: LKH-SGD convergence
Our proof makes use of three intermediate results. The first, inspired by Harvey & Samadi (2014, Thm. 10) and Cooper
et al. (2023, Lem. 1), relates the quality of the ordering produced by Alg. 2 to the quality of the thinning.

Lemma G.1 (Quality of thinned reordering). The output of thinned reordering (Alg. 2) satisfies

maxj∈[n] ∥
∑j

i=1 x
k
πk+1(π

−1
k (i))

∥2 ≤ 1
2 maxj∈[n] ∥

∑j
i=1 x

k
i ∥2 + 1

2 maxj∈[n] ∥
∑j

i=1 η
k
i x

k
i ∥2 + ∥

∑n
i=1 x

k
i ∥2

where π−1
k is the inverse permutation of πk and ηki ≜ 2(1

[
xk
i ∈ X k

out

]
− 1).

Proof. Fix any j⋆ ∈ argmaxj∈[n] ∥
∑j

i=1 x
k
πk+1(π

−1
k (i))

∥2. If j⋆ ≤ n/2, then

2∥
∑j⋆

i=1 x
k
πk+1(π

−1
k (i))

∥2 ≤ 2maxj∈[n] ∥
∑j

i=1 1
[
ηki = 1

]
xk
i ∥2 ≤ maxj∈[n] ∥

∑j
i=1 x

k
i ∥2 +maxj∈[n] ∥

∑j
i=1 η

k
i x

k
i ∥2

by the triangle inequality. Similarly, if j⋆ > n/2, then,

2(∥
∑j⋆

i=1 x
k
πk+1(π

−1
k (i))

∥2 − ∥
∑n

i=1 x
k
i ∥2) ≤ 2∥

∑
i>j⋆ x

k
πk+1(π

−1
k (i))

∥2 ≤ 2maxj∈[n] ∥
∑j

i=1 1
[
ηki = −1

]
xk
i ∥2

≤ maxj∈[n] ∥
∑j

i=1 x
k
i ∥2 +maxj∈[n] ∥−

∑j
i=1 η

k
i x

k
i ∥2.

The second, a mild adaptation of Cooper et al. (2023, Thms. 2 and 3), bounds the convergence rate of SGD with thinned
reordering in terms of the thinning quality.

Theorem G.1 (Convergence of SGD with thinned reordering). Suppose that, for all i ∈ [n] and w,v ∈ Rd,

∥∇fi(w)−∇f(w)∥22 ≤ σ2 and ∥∇fi(w)−∇fi(v)∥2 ≤ L∥w − v∥2

and that SGD (10) with thinned reordering (Alg. 2) satisfies the prefix discrepancy bound

maxj∈[n] ∥
∑j

i=1 η
k
i x

k
i ∥2 ≤ 2Ãmaxi∈[n] ∥xk

i − x̄k∥2 for ηki ≜ 2(1
[
xk
i ∈ X k

out

]
− 1), x̄k ≜ 1

n

∑n
i=1 x

k
i , (39)

and each epoch k ∈ [K]. Then the step size setting

α = min

{
1

16L(2n+Ã)
,
(

4F1

42L2σ2Ã2nK+18L2n3σ2

)1/3
}

with F1 ≜ f(w1)− f⋆ and f⋆ ≜ infv∈Rd f(v)
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yields the convergence bound

1
K

∑K
k=1∥∇f(wk)∥2 ≤ 9(F1LσÃ)2/3

(nK)2/3
+ (72F1Lσ)2/3+64F1L(2+Ã/(n))

K .

If, in addition, f satisfies the µ-Polyak-Łojasiewicz (PL) condition,

µ(f(w)− f⋆) ≤ 1
2∥∇f(w)∥22 for all w ∈ Rd,

and the number of epochs satisfies

K ≥ 10 + 1
µ32L(2 + Ã/n)W̃ for W̃ ≜W0(K

2n2C3) and C3 ≜ (F1+σ2/L)µ2

224L2σ2Ã2
,

where W0 denotes the Lambert W function, then the step size setting α = 2W̃
Knµ yields the convergence bound

f(wK)− f⋆ ≤ 1
(nK)2

(
(F1+L2σ2)W̃

C3
+ 112L2σ2Ã2W̃ 2

µ3

)
.

Proof. The proof is identical to that of Cooper et al. (2023, Thms. 2 and 3) with m = 1 worker once each instance of ∥·∥∞
is replaced with ∥·∥2, each instance of L2,∞ is replaced with L, each instance of T is replaced with K, and Lem. G.1 is
substituted for Cooper et al. (2023, Lem. 1).

The final result uses Thm. 1 to bound the prefix discrepancy of LKH(δ).

Lemma G.2 (LKH(δ) prefix discrepancy). Fix any epoch k ∈ [K]. With probability at least 1− δ
2−δ

′, thinned reordering
(Alg. 2) with LKH(δ) satisfies the prefix discrepancy bound (39) with

Ã =
√

log( 2n(log(n/2)+1)
δ )

[
e2 rankϵk(X

k) + 10e log( n
δ′ )

]
for Xk ≜ [xk

1 , . . . ,x
k
n]

⊤, ϵk ≜ maxi∈[n]

√
9e log(2n log(en/2)/δ) log(n/δ′)∥xk

i −x̄k∥2√
n

, and x̄k ≜ 1
n

∑n
i=1 x

k
i .

Proof. Define X k = {xk
1 , . . . ,x

k
n}, c = 2maxi∈[n] ∥xk

i − x̄k∥2, and r = rankϵk(X
k). For any j ∈ [n], we can write

∥
∑j

i=1 η
k
i x

k
i ∥2 = ∥

∑j
i=1 x

k
i −

∑j
i=1 1

[
xk
i ∈ X k

out,j

]
xk
i ∥2 = 2j∥(Xk)⊤(pj

in − pj
out)∥2 = 2jMMDXk(Xk)⊤(p

j
in,p

j
out)

where pj
in and pj

out are the empirical distributions over X k
in,j = (xk

i )
j
i=1 and X k

out,j = {xk
i ∈ X k

out : i ∈ [j]}.

Since LKH(δ) is an online algorithm that assigns signs (ηki , η
k
i+1 = 1− ηki ) to the points (xk

i ,x
k
i+1) sequentially, we can

view X k
out,j as the output of LKH(δ) applied to X k

in,j with nout =
j
2 and the linear kernel k(x,y) = ⟨x,y⟩ for each j ∈ [n].

Therefore, we may invoke the established LKH(δ) sub-Gaussian constants νj of Prop. B.3, Thm. 1, the union bound, and
the definition of ϵ-rank (Def. 4) to deduce that

maxj∈[n] ∥
∑j

i=1 η
k
i x

k
i ∥22 ≤ maxj∈[n] 4j

2ν2j
[
e2r + e log( n

δ′ )
]
+ σr+1(X

k)2 4j2

j ≤ c
2Ã2

with probability at least 1− δ
2 − δ

′.

Thm. 3 now follows directly from Thm. G.1 and Lem. G.2 applied to LKH( 1
2K ) with δ′ = 1

4K and a union bound over
epochs.

H. KT-COMPRESS(δ)

We describe the thinning algorithm KT-COMPRESS(δ) used in Alg. 3. We use KH(δ) for every halving round except for
the last round, which thins a point sequence of size 2nout to nout. For this final halving round we use KH-REFINE(δ)
(Alg. H.1) derived from the KT-SWAP algorithm of Dwivedi & Mackey (2024, Alg. 1a). The refinement stage of Alg. H.1
greedily improves the MMD of the initial KH(δ) output. Hence, MMDk(Xin,Xout) ≤ MMDk(Xin,S(1)) with probability
1.
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Algorithm H.1: KH-REFINE(δ): KH(δ) with greedy refinement (Dwivedi & Mackey, 2024, Alg. 1a)
Input: point sequence Xin = (xi)

nin
i=1, kernel k, input size nin ∈ 2N

S ← KH(δ)(Xin,k); nout ≜ nin/2

// Swap out each point in Xout for the best alternative in Xin

Xout ← S.copy()
for x ∈ S do
Xout ← Xout \ {x} ∪ {argminx′∈Xin

MMDk(Pin,Pout +
1

nout
(δx′ − δx))}

end
return Xout, refined coreset of size nin/2

I. Proof of Thm. 4: Low-rank analysis of CTT power
Thm. 4 follows from the following more detailed statement, proved in App. I.1 as

R2
K(nin,

β̃
20sn

, g) + R2
K′(nin,

β̃
20sn

, g) = O(R̂2
k).

Theorem I.1 (Low-rank analysis of CTT power, detailed). Under the assumptions of Thm. 4 with nin ≜ m+n
s , CTT

(Alg. 3) rejects with probability at least 1− β whenever c′ MMDk(P,Q)/
√
log(1/γ) exceeds

2cβ̃/(20s)
∥k∥

1
2
∞√
m

+
Rk(P,nin,

β̃
20sm

,g)+Rk(Q,nin,
β̃

20sn
,g)

2g
√
m

.

Here, c′ > 0 is a universal constant, cδ ≜ 2+
√
2 log(2δ ), and Rk(P, nin, δ, g) and Rk(Q, nin, δ, g) respectively denote the

(1− δ
2 )-th quantiles of RK(nin, δ, g) and RK′(nin, δ, g), where

R2
K̃
(nin, δ, g) ≜ 256(log4 nin − g− 1)(

√
log(nin + 1) +

√
log(2/δ))2 (40)

·
(

2
√

∥K̃∥max√
3

[√
e log(

6·2g√nin(log4 nin−g)
δ ) +

√
log( 3nin(log4 nin−g−1)

δ )

]
+minr≤2g+1

√
nin

{
2
√

∥K̃∥max√
3

√
e2r log

(
6·2g

√
nin(log4 nin−g)

δ

)
+

√
λr+1(K̃) · 2g−1

√
nin

})2

.

I.1. Proof of Thm. I.1: Low-rank analysis of CTT power, detailed

Recall the following definition from Shetty et al. (2022, Def. 3).

Definition I.1 (k-sub-Gaussian thinning algorithm). We say a thinning algorithm ALG (satisfying Def. 1) is k-sub-
Gaussian on an event E with shift a and parameter v if

PE(MMDk(Pin,Pout) ≥ a+ v
√
t | Xin) ≤ e−t for all t ≥ 0.

Fix K̃ ∈ {K,K′}. To conclude our power result, it suffices, by Domingo-Enrich et al. (2023, Rmk. 2, App. B.1) and the
failure probability setting of Domingo-Enrich et al. (2023, Lem. 11), to establish that

R2
K̃
(nin, δ, g) = 256(log4 nin − g− 1)(CK̃(δ, 2g+1

√
nin) +MK̃(δ, 2g+1

√
nin)

√
log( 3nin(log4 nin−g−1)

δ ))2

· (
√
log(nin + 1) +

√
log(2/δ))2, (41)

for any scalars CK̃(δ, 2g+1
√
nin) and MK̃(δ, 2g+1

√
nin) satisfying the property that, on an event of probability at least

1 − δ/2, every call to HALVE ≜ KT-SPLIT( ℓ2

nin4g+1(log4 nin−g)δ) with input size ℓ and output size ℓ/2 is k-sub-Gaussian
(Def. I.1) with shift aℓ,nin,K̃

and parameter vℓ,nin,K̃
satisfying

aℓ,nin,K̃
=

C
K̃
(δ,ℓ)

ℓ/2 and vℓ,nin,K̃
=

M
K̃
(δ,ℓ)

ℓ/2

√
log( 12nin4g(log4 nin−g)

ℓδ ).
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Substituting MK̃(δ, 2g+1
√
nin) = (2g

√
nin)v2g+1

√
nin,nin,K̃

[
log( 12nin4

g(log4 nin−g)

2g+1
√
ninδ

)
]− 1

2

and CK̃(δ, 2g+1
√
nin) =

(2g
√
nin)a2g+1

√
nin,nin,K̃

into (41), we obtain the sufficient condition

R2
K̃
(nin, δ, g) = 256(log4 nin − g− 1) · (2g

√
nin)

2 · (
√

log(nin + 1) +
√
log(2/δ))2

·
(
a2g+1

√
nin,nin,K̃

+ v2g+1
√
nin,nin,K̃

[
log( 12nin4

g(log4 nin−g)

2g+1
√
ninδ

)
]− 1

2
√
log( 3nin(log4 nin−g−1)

δ )

)2

. (42)

We now identify suitable aℓ,nin,K̃
and vℓ,nin,K̃

with the aid of the following lemma, proved in App. I.2.

Lemma I.1 ((K, ν, δ)-sub-Gaussian thinning algorithms are k-sub-Gaussian). Suppose ALG is a (K, ν, δ)-sub-
Gaussian thinning algorithm, satisfying Def. 3 with an event E of probability at least 1−δ/2. Then ALG is k-sub-Gaussian
(Def. I.1) on E with shift anout,nin,K and parameter vnout,nin,K defined as

anout,nin,K ≜ ν
√
e+minr≤nin

{
ν
√
e2r +

√
λr+1(K)( 1

nout
− 1

nin
)
}

and vnout,nin,K ≜ ν
√
e.

By Prop. B.4 and Lem. A.1, KH( ℓ2

nin4g+1(log4 nin−g)δ) with input size ℓ and output size ℓ/2 is a (K, ν, ℓ2

nin4g+1(log4 nin−g)δ)-
sub-Gaussian thinning algorithm with

ν ≤ 2
(ℓ/2)

√
3

√
log

(
6(ℓ/2) log2(ℓ/(ℓ/2))

δ · nin4g+1(log4 nin−g)
ℓ2

)
∥K∥max = 2

(ℓ/2)
√
3

√
log

(
12nin4g(log4 nin−g)

ℓδ

)
∥K∥max.

By Lem. I.1, on an event of probability at least 1 − ℓ2

2nin4g+1(log4 nin−g)δ, KH( ℓ2

nin4g+1(log4 nin−g)δ) with input size ℓ and
output size ℓ/2 is a k-sub-Gaussian thinning algorithm with shift aℓ,nin,K̃

and parameter vℓ,nin,K̃
defined as

aℓ,nin,K̃
= 2

(ℓ/2)
√
3

√
log

(
12nin4g(log4 nin−g)

ℓδ

)
∥K̃∥max

√
e log 2

+ minr≤ℓ

{
2

(ℓ/2)
√
3

√
log

(
12nin4g(log4 nin−g)

ℓδ

)
∥K̃∥max

√
e2r +

√
λr+1(K̃)( 1

ℓ/2 −
1
ℓ )

}
and (43)

vℓ,nin,K̃
= 2

(ℓ/2)
√
3

√
log

(
12nin4g(log4 nin−g)

ℓδ

)
∥K̃∥max

√
e. (44)

Moreover, by the union bound, as detailed in Shetty et al. (2022, App. F.1), every HALVE call made by KT-COMPRESS
is simultaneously k-sub-Gaussian with these input-size-dependent parameters on a common event of probability at least
1 − δ

2 . Substituting (43) and (44) with ℓ = 2g+1
√
nin into (42), we obtain our error inflation factor expression (40),

completing the proof.

I.2. Proof of Lem. I.1: (K, ν, δ)-sub-Gaussian thinning algorithms are k-sub-Gaussian

Fix any t ≥ 0, and let δ′ = e−t. By our sub-Gaussian assumption, Thm. 1 implies that, as advertised,

e−t ≥ PE

(
MMD2

K(pin,pout) ≥ minr≤nin ν
2
[
e2r + et

]
+ λr+1(K)( 1

nout
− 1

nin
)
)

= PE

(
MMDK(pin,pout) ≥ minr≤nin

√
ν2[e2r + et] + λr+1(K)( 1

nout
− 1

nin
)
)

≥ PE

(
MMDK(pin,pout) ≥ ν

√
e
√
t+minr≤nin ν

√
e2r +

√
λr+1(K)( 1

nout
− 1

nin
)
)
.

J. Proof of Cor. 3: Power of deep kernel CTT
Define the radius

R′ ≜ maxy∈Y∪X ∥(ϕ(y),y)∥2,
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the augmented vectors Y ′ ≜ {(ϕ(y),y)}y∈Y , and the augmented kernel

q′((ϕ(x),x), (ϕ(y),y)) ≜ κ(ϕ(x), ϕ(y))q(x,y) = exp(−η∥(ϕ(x),x)− (ϕ(y),y)∥22).

Since the deep kernel (13) takes the form

kdeep(x,y) = (1− ϵ)q′((ϕ(x),x), (ϕ(y),y)) + ϵq(x,y)

we also have

Kdeep ≜ kdeep(Y,Y) = (1− ϵ)Q′ + ϵQ for Q′ ≜ q′(Y ′,Y ′) and Q ≜ q(Y,Y).

Hence, by Weyl’s inequality (Horn & Johnson, 1985, Thm. 4.3.1) and the Gaussian kernel matrix eigenvalue bound (6),

λ2r+1(Kdeep) ≤ (1− ϵ)λr+1(Q
′) + ϵλr+1(Q) ≤ ne

− d′
2e r

1/d′ log

(
d′r1/d

′

4e2ηR′2

)
for (2e)d

′ ≤ r < n.

Parallel reasoning and the assumption m ≤ n yield the same bound for λ2r+1(kdeep(X,X)) and (2e)d
′ ≤ r < m. Now

consider the approximate rank parameter

r⋆ ≜ max
{[

2e
d′ log(nnoutb)

]d′

, (R′2ηe34/d′)d
′
}

for b ≜ 1
2 . (45)

Then, for n ≥ (2e)d
′
, we have, exactly as in App. D,

λ2r⋆+1(Kdeep) + λ2r⋆+1(kdeep(X,X)) ≤ 2
noutb

and therefore

R̂k = O
(√

log(ns ) log(
n

β̃
)max

{[
2e
d′ log(nnoutb)

]d′/2
, (R′2ηe34/d′)d

′/2
})
.

Our final step is to bound the quantile of the sole remaining data-dependent term, R′. Since the inputs are c-sub-Gaussian
(14), Lem. 1 of Dwivedi & Mackey (2024) with ψ−1(r) =

√
log r√
c

implies that the 1− β̃
20sn

quantile of R′ is O
(√

log(n
β̃
)
)
,

yielding the result.

K. Proof of Cor. 4: Power of deep manifold kernel CTT
Our reasoning is identical to that in App. J with the manifold Gaussian kernel matrix eigenvalue bound (7) now substituted
for the Euclidean ball bound (6) and the approximate rank setting r⋆ = (log(nnout)/c)

5d⋆/2 substituted for (45).

L. Supplementary Experiment Details
L.1. Approximating attention experiments

The experiment of Tab. 3 was carried out using Python 3.12.9, PyTorch 2.8.0.dev20250407+cu128 (Paszke et al., 2019), and
an Ubuntu 22.04.5 LTS server with an AMD EPYC 7V13 64-Core Processor, 220 GB RAM, and a single NVIDIA A100
GPU (80 GB memory, CUDA 12.8, driver version 570.124.04). For reference, attention layer 1 has (n, d) = (3136, 64)
and attention layer 2 has (n, d) = (784, 64). For each of the first 50 ImageNet 2012 validation set batches of size 64,
we measured the time required to complete a forward pass through each the approximate softmax matrix (8) layer using
CUDA events following 10 warm-up batches to initialize the GPU. Tab. L.1 provides the hyperparameter settings for each
attention approximation in Tab. 3.

The experiment of Tab. 4 was carried out using Python 3.12.9, PyTorch 2.6.0, and an Ubuntu 22.04.5 LTS server with an
Intel(R) Xeon(R) Gold 5218 CPU Processor, 1000 GB RAM, and a single NVIDIA A6000 GPU (48 GB memory, CUDA
12.1, driver version 530.30.02). For reference, the BigGAN model contains a single attention layer with 4096 queries in
R64, 1024 keys in R64, and 1024 values in R256. We measured the time required to complete a forward pass through the
approximate softmax matrix (8) layer using CUDA events following 10 warm-up batches to initialize the GPU. Tab. L.2
provides the hyperparameter settings for each attention approximation in Tab. 4.

The settings and implementations for all methods other than Thinformer were provided by Zandieh et al. (2023), and our
experiment code builds on their open-source repository https://github.com/majid-daliri/kdeformer.
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Table L.1: Configurations for the attention approximation methods of Tab. 3.

Attention Algorithm Layer 1 Configuration Layer 2 Configuration

Performer num_features=49 num_features=12

Reformer bucket_size=49 bucket_size=12
n_hashes=2 n_hashes=2

ScatterBrain local_context=49 local_context=12
num_features=48 num_features=6

KDEformer sample_size=64 sample_size=56
bucket_size=32 bucket_size=32

Thinformer (Ours) g=2 g=4

Table L.2: Configurations for the attention approximation methods of Tab. 4.

Attention Algorithm Layer Configuration

Performer num_features=128

Reformer bucket_size=64
n_hashes=8

ScatterBrain local_context=32
num_features=128

KDEformer sample_size=128
bucket_size=64

Thinformer (Ours) g=2

L.2. Faster SGD training experiments

The experiment of Sec. 5.2 was carried out using Python 3.10, PyTorch 2.0.1, a Rocky Linux 8.9 server with 64 CPU cores
(Intel(R) Xeon(R) Platinum 8358 CPU @ 2.60GHz), and a NVIDIA A100 GPU (40 GB memory, CUDA 12.4, driver
version 550.54.15).

Technically, the CD-GraB: SBW algorithm requires an a priori upper bound on the maximum Euclidean norm bmax of any
stochastic gradient that it will encounter. To conduct our experiment, we first estimate bmax by calculating the maximum
gradient Euclidean encountered across 10 epochs of running SGD with LKH( 1

2K ) reordering. One would typically not
choose to carry out such a two-step procedure in practice, but the experiment serves to demonstrate that the CD-GraB:
SBW leads to overly conservative performance even if reasonable upper bound is known in advance.

The settings and implementation for both random reshuffling (RR) and CD-GraB: Greedy were those used in the original
logistic regression on mortgage application experiment of Cooper et al. (2023). Our experiment code builds on the open-
source CD-GraB repository https://github.com/GarlGuo/CD-GraB. As in Cooper et al. (2023), optimization
was carried out with a learning rate of α = 0.01, datapoints were loaded in batches of size 16, and stochastic gradients
were reordered for each datapoint individually.

L.3. Cheap two-sample testing experiment

The experiment of Sec. 6.2 was carried out using Python 3.12.9, PyTorch 2.6.0+cu124, and an Ubuntu 20.04.6 LTS server
with an AMD EPYC 9554 64-Core Processor, 100 GB RAM, and a single NVIDIA H100 GPU (96 GB memory, CUDA
12.2, driver version 535.154.05). Each test is run with replication count B = 100, nominal level α = 0.05, and failure
probability δ = 0.5. The neural network ϕ was trained exactly as in Liu et al. (2020) (with learning rate 5 × 10−5 and
batch size equal to the full training sample size), and runtime measurements exclude the time required to train ϕ. Our ex-
periment code builds on the open-source deep kernel testing (https://github.com/fengliu90/DK-for-TST)
and Compress Then Test (https://github.com/microsoft/goodpoints) repositories.

37

https://github.com/GarlGuo/CD-GraB
https://github.com/fengliu90/DK-for-TST
https://github.com/microsoft/goodpoints


Low-Rank Thinning

0 5 10 15 20
εk-rank of SGD Matrix Xk

0

2

4

6

8

10

12

Nu
m

be
r o

f O
cc

ur
re

nc
es

Median=10

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Singular Value Index

1319.33

244.201
56.397
17.233

8.085

0.889
0.208

0.007
0.002
0.001

εk

Si
ng

ul
ar

 V
al

ue
 (l

og
 sc

al
e)

εk=2.368

Figure L.1: Approximate low-rank structure of stochastic gradient matrices. Left. For each epoch k of the LKH( 1
2K )

experiment of Sec. 5.2, we record the ϵk-rank of the stochastic gradient matrix Xk ≜ [xk
1 , . . . ,x

k
n]

⊤ ∈ Rn×d (see Def. 4
and Thm. 3). Notably, the ϵk-ranks are significantly smaller than the ambient dimension d = 19. Right. We display the
singular values of the first stochastic gradient matrix, X1. The singular values drop off steeply, resulting in relatively small
ϵk-ranks.
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Figure L.2: Slow-growing error inflation. In the experimental setting of Sec. 6.2, the error inflation factor R̂kdeep enjoys
O(log5(n)) growth as the ratio R̂kdeep/ log

5(n) decreases with n. Here, R̂2
kdeep

is defined by (12) with n = m, nin ≜ 2n
s and

nout ≜ 2g
√
nin for constants β = 0.05, s = 32, and g = 4.
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