
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Explainable and Efficient Editing for Large Language Models
Anonymous Author(s)

Abstract
Large Language Models (LLMs) possess remarkable capabilities
in storing and retrieving vast factual knowledge but often retain
outdated or incorrect information from web corpora. While full
retraining is costly, locate-and-edit model editing methods offer an
feasible alternative. Current methods typically follow a two-stage
paradigm: (1) identifying critical layers for knowledge storage and
(2) updating their parameters to store new knowledge. However,
both of these two phases have their inherent limitations. In stage 1,
layers identification is independent of the to-be-updated knowledge,
ignoring the varying storage patterns of different knowledge types.
Meanwhile, Stage 2 suffers from high computational overhead due
to independent gradient descent for each piece of knowledge. To
solve these, we propose an Explainable and effiCient model Editing
method, termed ECE. Specifically, in Stage 1, ECE integrates the
concept of LLMs explainability into the editing process, enabling
the adaptive identification of the crucial neurons based on the input
knowledge. In Stage 2, ECE clusters similar knowledge based on the
explanation results, allowing batch optimization in a single gradient
step, significantly reducing time consumption without sacrificing
effectiveness. Extensive experiments demonstrate that ECE can
achieve superior performance while delivering a 3.27× speedup in
editing efficiency, showcasing the potential of explainability-driven
editing methods for LLMs.

Keywords
Large Language Models, Knowledge Editing, Model Explainability

1 Introduction
Large Language Models (LLMs) have recently demonstrated re-
markable capabilities in storing vast amounts of factual knowledge
and retrieving it effectively during inference [8, 41, 54]. The knowl-
edge in LLMs primarily stems from the extensive training data,
particularly web corpora. However, these corpora often contain
inaccuracies and outdated information that LLMs may inadver-
tently store, necessitating targeted modifications to correct these
knowledge bases [19, 48]. While retraining the entire LLM is a di-
rect solution, it is resource-intensive, both in terms of time and
computational cost [44, 47]. As an efficient alternative, locate-and-
edit model editing methods have emerged for updating specific
knowledge [9, 37, 38]. These methods generally follow a two-stage
paradigm: (1) given an LLM, identifying the layers most critical
to knowledge storage by causal tracing; (2) given a new piece of

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
Conference’25, 28 April - 2 May 2025, Sydney, Australia
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Figure 1: Overview of current methods and ours at Stage 1 and 2 in
sequential model editing.

knowledge, computing the optimal output of the identified layers
to ensure correct responses. The optimal output is then employed
to update the critical layers’ parameters, allowing for knowledge
updates by adjusting only a small subset of model parameters [65].

While this two-stage paradigm is effective, both stages present
inherent issues [21, 24, 34, 36]. Specifically,
• As shown in the top half of Figure 1, in Stage 1 (i.e. critical layer

identification), the to-be-updated layers and parameters remain
fixed regardless of the type of new knowledge. However, recent
studies on LLMs explainability suggest that different types of
knowledge are stored in distinct layers and neurons [49, 59].
Current methods in Stage 1 fail to leverage this explainable
knowledge-neuron correspondence, resulting in the inability to
adaptively identify layers based on the input knowledge, which
leads to sub-optimal editing performance.

• As depicted in the bottom half of Figure 1, in Stage 2 (i.e. param-
eter update), the process is computationally expensive, as the
optimal outputs of the critical layers must be calculated indepen-
dently for each knowledge instance. In practice, the number of
knowledge updates could exceed tens of thousands, imposing
significant efficiency constraints. Worse still, in lifelong editing
scenarios (i.e., continuous updating the same LLM [28, 67]), each
update has to modify all key layers and neurons identified in
Stage 1 [7, 18], significantly increasing time consumption.

Thus, a key question arises: Can we design an explainable and effi-
cient editing method that adaptively identifies key neurons in Stage 1
and streamlines parameter updates in Stage 2?

To answer this question, we propose an Explainable and effiCient
sequential Editing method, called ECE. Specifically, in Stage 1, ECE
integrates the concept of LLMs explainability [48, 64, 71] into the
editing process, enabling the adaptive identification of the most

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference’25, 28 April - 2 May 2025, Sydney, Australia Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

relevant layers and neurons based on the input knowledge [71].
This identification is inspired by the advanced attribution methods
in LLMs explainability (i.e., activation-based [11], weight-based [60],
and residual-flow-basedmethods [42, 49]), enabling ECE to focus on
the most critical parameters solely. By isolating neurons unrelated
to the updated knowledge, ECE safeguards the integrity of other
knowledge stored within the LLM. In a nutshell, ECE introduces
LLMs explainability to improve editing performance.

Furthermore, the explainability introduced in Stage 1 serves as a
foundation for accelerating Stage 2 (i.e., parameter update). This
acceleration is manifested in two key aspects: (1) Unlike current
updates (i.e., updating all parameters in every key layer), ECE per-
forms layer- and neuron-wise updates (i.e., updating only a limited
set of parameters within the selected layers, which are identified
by the attribution approaches), significantly reducing the overall
parameter volume. (2) Current research has verified that knowledge
instances of similar types often exhibit consistent distributions of
key neurons and optimal outputs across key layers [10, 20]. Lever-
aging this insight, ECE employs advanced clustering algorithms
[42, 49] to group type-similar knowledge based on the distribution
of key neurons. This allows us to compute the optimal outputs
for these knowledge instances simultaneously in a single gradient
descent step, drastically reducing the time-consuming gradient de-
scent process. These strategies collectively accelerate the parameter
update process and enhance the efficiency of model editing.

We conduct extensive qualitative and quantitative experiments
on GPT2-XL (1.5B) [46], GPT-J (6B) [58], and Llama-3 (8B) [16].
Results across multiple datasets demonstrate that, compared to
the baselines (e.g., Fine-tuning [53], MEND [39], ROME [37], and
MEMIT [38]), ECE significantly outperforms in editing effective-
ness across several metrics, including efficacy, generalization, speci-
ficity, fluency, and consistency. Moreover, ECE achieves an aver-
age speedup of 3.27× in editing efficiency for sequence editing.
These findings confirm that incorporating LLM explainability to
streamline the editing process can lead to improvements in both
effectiveness and efficiency.

Our key contributions are summarized as follows:

• We systematically analyze the inherent issues in current locate-
and-edit editing methods, specifically the lack of explainability
and inefficiency during the critical layer identification and pa-
rameter update phases.

• We propose a novel sequential editing method, termed ECE. By
integrating attribution methods from LLM explainability, ECE
adaptively identifies and updates neurons within LLMs, achiev-
ing improvements in both effectiveness and efficiency.

• Experiments across multiple LLMs demonstrate that ECE out-
performs leading editing methods across five general evaluation
metrics and two commonly used datasets.

2 Preliminary
Based on prior works [9, 37, 38], model editing aims to modify
an initial base model 𝑓𝜃 (where 𝜃 represents the model’s param-
eters) into an edited version 𝑓𝜃 ′ . The objective is to adjust the
model’s responses to a specified set of knowledge instance, while
preserving its performance on all other knowledge instances [1, 32].
The intended edit descriptor is denoted as {(𝑥𝑒

𝑖
, 𝑦𝑒

𝑖
)}𝑖∈[1,𝑁] , where

𝑓𝜃 (𝑥𝑒𝑖) ≠ 𝑦
𝑒
𝑖
, and 𝑁 represents the total number of editing instances.

This set of instances forms the editing scope 𝐼𝑒𝑑𝑖𝑡 , while𝑂𝑒𝑑𝑖𝑡 repre-
sents the instances outside the editing scope. Formally, a successful
edit can be expressed as:

𝑓𝜃 ′ (𝑥𝑖) =
{
𝑦𝑒
𝑖
, if 𝑥𝑖 ∈ 𝐼𝑒𝑑𝑖𝑡 ,

𝑓𝜃 (𝑥𝑖), if 𝑥𝑖 ∈ 𝑂𝑒𝑑𝑖𝑡 .
(1)

Sequential model editing [36, 70] refers to the process of continu-
ously refining a pre-trained model, 𝑓𝜃0 , through a series of updates,
where each update incorporates modifications or corrections to
adjust the model’s outputs [65, 69]. This process is expressed as:

𝜃 ′ ← argmin
𝜃

©«
𝑆∑︁
𝑠=0

(𝑠+1)×𝑛∑︁
𝑖=𝑠×𝑛

∥ 𝑓𝜃 (𝑥𝑒𝑖) − 𝑦
𝑒
𝑖 ∥

ª®¬ , (2)

where 𝑛 represents the batch size, and 𝑆 represents the sequential
editing step.

In practice, each update involves introducing a set of factual
triples in the form of (𝑠, 𝑟, 𝑜), where 𝑠 represents the subject, 𝑟
the relation, and 𝑜 the object (e.g., 𝑠=“The largest ocean”, 𝑟=“is”,
𝑜=“Pacific Ocean”). After the 𝑡-th edit, the updated model 𝑓𝜽𝑡 , built
on its predecessor 𝑓𝜽𝑡−1 , is optimized to generate precise target out-
puts for the corresponding inputsD𝑒𝑑𝑖𝑡𝑡 , while preserving accuracy
on inputs outside the current editing scope. Adopting methods from
ROME [37] and MEMIT [38], we conceptualize the feed-forward
network (FFN) layer of a Transformer [55] as a linear associative
memory. This approach effectively utilizes linear mappings within
the FFN to serve as key-value pairs for information retrieval [2, 30].
Our objective is to adjust the output of the LLM such that the input
(𝑠𝑖 , 𝑟𝑖) produces the output 𝑜𝑖 .

The process begins by identifying the activation output from the
last subject token 𝑆 at the 𝑙-th FFN layer, which serves as the key 𝑘𝑙

𝑖
.

These keys are computed from the input weights𝑊 𝑙
in and are pro-

cessed through the output weights𝑊 𝑙
out to generate the correspond-

ing values 𝑣𝑙
𝑖
. This setup allows us to capture the LLM’s inherent 𝑛

knowledge pairs, associating input keys 𝐾0 = [𝑘1 |𝑘2 | . . . | 𝑘𝑛] with
corresponding values 𝑉0 = [𝑣1 |𝑣2 | . . . | 𝑣𝑛]. We aim to integrate 𝑢
additional key-value pairs associated with new knowledge, denoted
as 𝐾1 = [𝑘𝑛+1 |𝑘𝑛+2 | . . . | 𝑘𝑛+𝑢] and 𝑉1 = [𝑣𝑛+1 |𝑣𝑛+2 | . . . | 𝑣𝑛+𝑢],
while preserving the original associations. The values 𝑉1 are opti-
mized through gradient descent to maximize the probability of the
target token outputs, as detailed in MEMIT [38].

The optimization framework is defined as:

Δ = argmin
Δ̂

((𝑊 + Δ̂)𝐾1 −𝑉12 + (𝑊 + Δ̂)𝐾0 −𝑉02) , (3)

where𝑊 represents the output weights of the target FFN layer and
Δ denotes the required weight updates. The knowledge retention
can be expressed as𝑊𝐾0 = 𝑉0. Utilizing the least squares method
[31], the optimal weight update Δ is calculated as follows:

Δ = 𝑅𝐾𝑇1

(
𝐾0𝐾

𝑇
0 + 𝐾1𝐾

𝑇
1

)−1
, (4)

where 𝑅 = 𝑉1 −𝑊𝐾1. Here, the matrix 𝐾0𝐾𝑇0 can be approximated
by 𝜆E[𝑘𝑘𝑇], a covariance statistic without centering, derived from
an empirical dataset of vector inputs to the layer.

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Explainable and Efficient Editing for Large Language Models Conference’25, 28 April - 2 May 2025, Sydney, Australia

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Figure 2: Overview of ECE. (a) The neuron-wise identification approach is based on attribution methods using Activation Score, Weight
Importance, or Residual Sensitivity. ℎ denotes hidden state, 𝑧 denotes optimal representation, and the red color highlights the identified
neurons that play a critical role in storing or processing specific knowledge. (b) The clustering method applies to neurons corresponding to
knowledge instances. (c) The acceleration is achieved by the two-step gradient descent method based on the clustering results. U and Δ in
yellow represent the step-1 and step-2 gradient descent.

3 Methodology
In this section, we detail how ECE achieves simultaneous improve-
ments in efficiency and effectiveness through the incorporation of
explainability. Specifically, in Section 3.1, we present neuron-wise
identification that employs mature attribution algorithms to locate
fine-grained layers and neurons. In Section 3.2, we demonstrate
how the attribution results accelerate the learning of key matrices,
thereby significantly enhancing editing efficiency. Finally, Section
3.3 outlines the parameter update process based on the findings
from Section 3.1 and 3.2.

3.1 Neuron Identification
We first revisit the process of identifying parameters for updating
in current model editing approaches. Existing methods [37, 38]
primarily use causal tracing [37] to pinpoint layers with the highest
causal effect, assuming these layers store key knowledge in the
LLM. However, this approach has two major limitations:
• Independence from Specific Knowledge: Once key layers are

identified, all neurons within them are treated equally during
editing, overlooking the fact that different types of knowledge
are encoded in distinct patterns [25]. Each neuron plays a unique
role — some are crucial for specific information, while others
may be less relevant or even inactive for certain tasks;

• Overlooking Neurons Outside Key Layers: Focusing solely
on selected layers risks missing important neurons distributed
across other layers that also contribute to knowledge storage
and retrieval. Moreover, research about “dead neurons problem”
[17, 56] points that inactive or “dead” neurons consume capacity
without contributing meaningfully to the model’s output. Editing
both inactive and critical neurons indiscriminately can reduce
the precision of updates and introduce unnecessary disruptions
to the model’s balance.

These limitations highlight the need for more precise and efficient
approaches to knowledge editing beyond layer-level modifications.

To solve these, an intuitive optimization is to adaptively iden-
tify key layers and neurons for editing based on to-be-updated
knowledge. This layer- and neuron-wise editing approach allows
for more precise modifications while minimizing disruptions to
other stored knowledge. Drawing inspiration from well-established
neuron attribution methods in LLM explainability [43, 60], we em-
ploy three attribution methods to rank neuron relevance according
to the to-be-updated knowledge as follows:
• Activation Score (AS) [42] ranks neurons directly by the magni-

tude of their activation values during inference, identifying those
that are highly active in processing specific inputs. Formally:

𝐴𝑆𝑖 = |𝑎𝑖 (𝑥 𝑗) |, (5)

where 𝑎𝑖 (𝑥 𝑗) denotes the activation value of neuron 𝑖 for knowl-
edge instance 𝑥 𝑗 .

• Weight Importance (WI) [49] evaluates neurons based on the
weights involved in transmitting information between neurons,
emphasizing the significance of neurons with stronger internal
connections. The importance score is defined as:

𝑊𝐼𝑖 = |𝑊𝑖 𝑗 |, (6)

where𝑊𝑖 𝑗 denotes the weight between neuron 𝑖 and neuron 𝑗 .
• Residual Sensitivity (RS) [50] assesses neurons by their con-

tribution to the final output through the residual stream. The
importance score is defined as:

𝑅𝑆𝑖 = 𝑎
𝑙
𝑘
(𝑊 𝑙

out)𝑘 , (7)

where 𝑎𝑙
𝑘
is the activation value of neuron 𝑘 in layer 𝑙 , (𝑊 𝑙

out)𝑘
denotes the output weight for neuron 𝑘 in layer 𝑙 .

Building on prior work that suggests that neurons within Feed-
Forward Networks (FFNs) contain significant amounts of specific
factual information [11, 42, 49, 59], we prioritize the optimization
of selected neurons rather than modifying the entire parameter
space. For each knowledge instance (𝑠𝑖 , 𝑟𝑖 , 𝑜𝑖), we compute the score
values from one of the three methods above and obtain scores Q𝑖

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference’25, 28 April - 2 May 2025, Sydney, Australia Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

for the neurons. Using a descending sorting method, we then rank
and group the neurons with the highest scores together. We then
select a subset of neurons by identifying those whose cumulative
score exceeds a predetermined fraction 𝑝 of the total score:

I = arg min
I⊆{1,...,𝑁 }

|I | s.t.
∑︁
𝑗∈I

Q𝑖 𝑗 ≥ 𝑝 ·
𝑁∑︁
𝑗=1

Q𝑖 𝑗 , (8)

where Q𝑖 𝑗 represents the score of the 𝑗-th neuron, and I is the se-
lected set of neuron indices. This identification mechanism enables
targeted edits, ensuring efficiency and precision in the parameter
update process.

Given that the model may need to edit multiple knowledge facts
in parallel (i.e., in a batch), which may correspond to different
neurons across the network, we aggregate neuron scores across
all batch samples. This allows for a unified neuron identification
based on cumulative influence contribution, which streamlines the
model’s response to various edits.

3.2 Accelerated Learning of Key Matrices
After identifying the to-be-updated parameters I, the next step is
to obtain the optimal representations of the relevant layers post-
editing, i.e., the value matrix 𝑉1 for the to-be-updated knowledge
as outlined in Section 2. Note that this step serves as a key driver
of ECE’s acceleration by leveraging the attribution results from the
above Section. Next, we will detail how ECE achieves simultaneous
improvements in efficiency and effectiveness through two progres-
sive steps: knowledge clustering and two-step gradient descent.

3.2.1 Knowledge Clustering. Different types of knowledge inher-
ently possess varying textual attributes such as geographical, de-
mographic, and temporal concepts, which implies that their key
information is stored in different regions within the model [42, 49].
Hence, we propose a clustering approach to pre-classify knowledge,
thereby avoiding conflicts that may arise due to the distinct charac-
teristics of the knowledge being edited. Specifically, we represent
each knowledge instance 𝑥𝑖 and its corresponding set of identi-
fied neurons as a key-value pair. By applying a k-means clustering
algorithm based on Jaccard similarity, we aggregate knowledge
instances with similar neuron identifications into clusters. In our
clustering approach, the objective is to minimize the Jaccard dis-
tance between the data points and their respective cluster centroids,
formulated as:

argmin
𝑆

𝑘∑︁
𝑖=1

∑︁
𝑥 𝑗 ∈𝑆𝑖

𝑑 𝐽 (𝑥 𝑗 , 𝑐𝑖), (9)

where 𝑆𝑖 represents the 𝑖-th cluster,𝑥 𝑗 denotes a data point in cluster
𝑆𝑖 , and 𝑐𝑖 is the centroid of cluster 𝑆𝑖 . By minimizing this objective,
we ensure that the knowledge within each cluster exhibits high
internal similarity.

We treat each resulting cluster as a smaller batch and subse-
quently use the sample closest to the center of each cluster as an
anchor sample. The anchor sample for each cluster is defined as
the sample with the smallest sum of Jaccard distances to all other
samples in the cluster. This criterion ensures that the selected an-
chor is the most representative data point of its cluster, which is

formulated as follows:

𝑥anc = arg min
𝑥 𝑗 ∈𝑆𝑖

∑︁
𝑥𝑘 ∈𝑆𝑖

𝑑 𝐽 (𝑥 𝑗 , 𝑥𝑘). (10)

This approach allows us to perform subsequent editing tasks in a
more fine-grained manner, tailored to the specific attributes of each
knowledge category.

3.2.2 Two-step Gradient Descent. To enhance computational ef-
ficiency in the sequential batch editing process, we introduce a
two-step gradient descent approach applied to the clusters identi-
fied in the previous step. For each cluster, the gradient descent is
divided into a common phase and an instance-specific phase, allow-
ing us to maximize shared information while maintaining unique
adjustments for each instance within the cluster. This approach
significantly reduces redundant calculations and accelerates the
model adaptation process.

In the first phase, we perform a unified gradient descent over
the entire cluster, conducting 20 epochs of shared updates from a
total of 25 epochs for the whole process. In this modified shared
gradient descent, all instances within the cluster share the update
vector 𝑧anc associated with the anchor sample 𝑥anc of the cluster
for the first 20 epochs. This shared step captures common patterns
by optimizing parameters based on the anchor sample, which is
broadly representative of the entire cluster, thereby reducing the
number of repetitive updates. Let𝐶𝑢 represent the 𝑢-th cluster, and
let ℎ𝐿anc denote the update vector for the anchor sample within the
cluster. By minimizing the average loss based on the anchor sample
𝑥anc and its corresponding edit target 𝑦𝑒anc, we calculate the unified
updateU𝑧𝑢 for the entire cluster as follows:

U𝑧𝑢 = argmin
𝛿
− logP𝐺 (ℎ𝐿anc + 𝛿) (𝑦𝑒anc | 𝑥anc), (11)

This unified update step captures the general characteristics of the
cluster by leveraging the anchor sample, thereby setting a common
foundation for the individual updates that follow.

In the second phase, we refine this update by performing an
additional five epochs of gradient descent tailored to each instance
within the cluster. This step fine-tunes the model on unique varia-
tions and specific details, accommodating the individual character-
istics and ensuring that the final updates are well-adapted to each
instance. The optimization objective is as follows:

𝛿∗𝑖 = argmin
𝛿𝑖
− logP𝐺 (ℎ𝐿𝑖 + U𝑧𝑢 + 𝛿𝑖) (𝑦

𝑒
𝑖 | 𝑥𝑖), 𝑖 ∈ 𝐶𝑢 , (12)

where 𝛿∗
𝑖
is the instance-specific adjustment derived by minimizing

the residual error after applying the shared updateU𝑧𝑘 . Thus, the
two-step update 𝑧𝑖 for a specific instance 𝑖 in cluster 𝐶𝑘 can be
integrated together as:

𝑧𝑖 = ℎ
𝐿
𝑖 + U𝑧𝑢 + 𝛿

∗
𝑖 . (13)

This step preserves individual differences by fine-tuning the shared
update to better align with the specific characteristics and require-
ments of each instance.

By separating the optimization into these two steps, we achieve
both efficiency and adaptability. The unified 20-epoch update cap-
tures the core features shared among instances within a cluster,

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Explainable and Efficient Editing for Large Language Models Conference’25, 28 April - 2 May 2025, Sydney, Australia

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

while the five-epoch instance-specific phase ensures that each in-
stance receives the necessary unique adjustments. This design re-
duces the overall computation required by avoiding repetitive up-
dates for common features, which is particularly valuable in large-
scale sequential batch editing scenarios. Consequently, this method
provides a balanced approach that maintains the specificity of indi-
vidual updates while optimizing shared computations, leading to
faster convergence and lower computational costs in comparison
to traditional instance-by-instance gradient descent methods.

Following the explainable neuron identification approach, we
have identified the most influential neurons responsible for encod-
ing the relevant knowledge. By focusing our updates solely on these
critical neurons, rather than performing a full update across all neu-
rons, we achieve a more efficient and targeted editing process. This
selective update strategy allows us to concentrate computational
resources on the neurons that most directly impact the model’s
output, effectively reducing unnecessary overhead associated with
updating less significant parts of the network. Unlike traditional
full-scale updates that modify the entire layer or model parame-
ters indiscriminately, our approach not only accelerates the editing
process but also minimizes potential disruptions to the model’s
stability and integrity.

3.3 Parameter Updates
After identifying the to-be-updated parameters I in Section 3.1
and the value matrix 𝑉1 in Section 3.2, we arrive at the final step:
performing the parameter update on Wout. Let Ŵ and �̂� denote
the submatrices of W and the update 𝚫, respectively, formed by
selecting rows indexed by I. Our objective is to optimize the up-
dated parameters for each neuron set by minimizing the squared
error between the model’s output and the target knowledge repre-
sentations:

Δ̂ = argmin
Δ̂

((𝑊 + Δ̂)𝐾1 −𝑉12 + (𝑊 + Δ̂)𝐾0 −𝑉02) , (14)

where �̂�0 and �̂�1 are two submatrix formed from Q0 and Q1 by
indexing the columns corresponding to I. This formulation ensures
that the model retains previously learned knowledge (through 𝐾0)
while incorporating new edits (through 𝐾1).

Following MEMIT [38], we derive the solution for Eqn. 15 using
the method of minimal squared error as:

�̂�

∗
= R̂K̂𝑇1 Ĉ

−1, (15)

where R̂ = V1 − ŴK̂1 and Ĉ = K̂0K̂𝑇0 + K̂1K̂𝑇1 . In order to maintain
continuity, we approximate K0K𝑇0 with 𝜆E

[
kk𝑇

]
, where 𝜆 is a

hyperparameter balancing the retention of prior knowledge with
the integration of new edits. The submatrix K̂0K̂𝑇0 is then derived
from K0K𝑇0 by indexing only the identified neurons. Additionally,
as each editing round progresses, newly edited knowledge becomes
the reference knowledge for subsequent rounds, which requires
updating K0K𝑇0 after each iteration.

4 Experiments
We conduct experiments to demonstrate the effectiveness of our
model editing method. The experiments aim to address the follow-
ing research questions:

• RQ1: How does ECE’s performance on sequential model editing
tasks measure up against existing methods?

• RQ2:What is the impact of different parameter settings on the
performance and stability of sequential model editing?

• RQ3: How much efficiency improvement can ECE achieve in
comparison to existing editing techniques?

• RQ4: Can LLMs preserve the original general abilities after ex-
tensive sequential edits?

4.1 Experimental Settings
Datasets & Evaluation Metrics. To evaluate the effectiveness of
our method, we utilize two datasets: Counterfact [37] and ZsRE
[33]. For the Counterfact dataset, we utilize five evaluation metrics
as defined in previous studies [37, 38]: Efficacy (efficiency success),
Generalization (paraphrase success), Specificity (neighborhood
success), Fluency (generation entropy), and Consistency (refer-
ence score). For the ZsRE dataset, we apply three evaluation metrics,
also defined in previous work [37–39]: Efficacy, Generalization,
and Specificity. For more details, see Appendix C.
Baselines: For baseline comparisons, we consider several model
editing approaches across different categories. (1) Fine-tuning based:
FT-L [53] directly fine-tunes a single layer’s feed-forward network
(FFN), and FT-M [73] is a variation of FT-L with a different loss
computation; (2) Locate-and-edit: ROME [37] which identifies crit-
ical neuron activations within middle-layer feed-forward modules
that influence factual prediction and MEMIT [38] treats the trans-
former’s feed-forward layer as a linear associative memory and
applies minimum square error optimization to introduce new key-
value associations; (3) Meta-learning based: MEND [39] uses a
hyper-network to transform gradients obtained via standard fine-
tuning; (4) Memory-based: SERAC [40] which employs an external
cache to store explicit edits.
Implementation Details: Our comparative analysis evaluates the
performance of various editing methods on three autoregressive
language models, GPT2-XL (1.5B) [46], GPT-J (6B) [58] and Llama3
(8B) [16] . In addition to covering two widely adopted GPT models
built on the classic transformer architecture, we include Llama3, one
of the most powerful models available in the current open-source
landscape. Further details of the implementation are provided in
the Appendix D.

4.2 Editing Performance (RQ1)
In this subsection, we present a detailed comparison of ECE against
other established methods for the sequential model editing task,
conducted using GPT2-XL, GPT-J, and Llama3 models. The experi-
ments are performed on 2000 edited samples, with an editing batch
size of 100 (batch size refers to the number of samples edited simul-
taneously during each round of sequential editing), and evaluated
on the Counterfact and ZsRE datasets. The evaluation results, using
various metrics and across all datasets, are summarized in Table 1.
From this table, we can observe that:
• Observation 1: ECE outperforms other baseline methods

in almost all critical metrics in the sequential editing task.
ECE demonstrates notable improvements compared to baseline
methods across both datasets and models, achieving significant
gains across all metrics. For instance, on the Llama3 (8B) model

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference’25, 28 April - 2 May 2025, Sydney, Australia Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Table 1: Comparison of ECE with existing methods on the sequential model editing task. The bold represents the best results from our methods and the underline
indicates the best results of baselines. Eff., Gen., Spe., Flu. and Consis. denote Efficacy, Generalization, Specificity, Fluency and Consistency, respectively.

Model Method
Counterfact ZsRE

Eff.↑ Gen.↑ Spe.↑ Flu.↑ Consis.↑ Eff.↑ Gen.↑ Spe.↑

Llama3

Pre-edited 7.85±0.26 10.58±0.26 89.48±0.18 635.23±0.11 24.14±0.08 36.99±0.30 36.34±0.30 31.89±0.22

FT-L 83.33±0.37 67.79±0.40 46.63±0.37 233.72±0.22 8.77±0.05 30.48±0.26 30.22±0.32 15.49±0.17
FT-W 61.23±0.38 62.40±0.24 47.05±0.41 492.34±0.23 3.57±0.03 32.08±0.35 31.43±0.23 14.72±0.16
MEND 63.24±0.31 61.17±0.36 45.37±0.38 372.16±0.80 4.21±0.05 0.91±0.05 1.09±0.05 0.53±0.02
ROME 64.40±0.47 61.42±0.42 49.44±0.38 449.06±0.26 3.31±0.02 2.01±0.07 1.80±0.07 0.69±0.03
MEMIT 65.65±0.47 64.65±0.42 51.56±0.38 437.43±1.67 6.58±0.11 34.62±0.36 31.28±0.34 18.49±0.19
SERAC 67.78±0.29 60.98±0.31 45.26±0.21 384.49±0.73 15.71±0.03 1.24±0.05 1.03±0.06 0.56±0.02

Ours (AS) 92.90±0.10 82.85±0.27 80.93±0.20 628.32±0.14 31.62±0.11 89.29±0.14 83.25±0.25 30.03±0.23
Ours (WI) 99.60±0.16 90.65±0.25 87.24±0.19 629.37±0.16 31.63±0.11 95.34±0.12 90.29±0.20 33.04±0.23
Ours (RS) 97.50±0.15 85.25±0.31 87.93±0.19 631.09±0.13 31.00±0.10 93.81±0.15 88.38±0.22 32.92±0.23

GPT2-XL

Pre-edited 22.23±0.73 24.34±0.62 78.53±0.33 626.64±0.31 31.88±0.20 22.19±0.24 31.30±0.27 24.15±0.32

FT-L 63.55±0.48 42.20±0.41 57.06±0.30 519.35±0.27 10.56±0.05 37.11±0.39 33.30±0.37 10.36±0.17
FT-W 42.70±0.49 35.93±0.40 63.06±0.31 565.96±0.23 13.03±0.06 24.97±0.32 22.40±0.30 12.73±0.18
MEND 50.80±0.50 50.80±0.48 49.20±0.51 407.21±0.08 1.01±0.00 0.00±0.00 0.00±0.00 0.00±0.00
ROME 54.60±0.48 51.18±0.40 52.68±0.33 366.13±1.40 0.72±0.02 47.50±0.43 43.56±0.42 14.27±0.19
MEMIT 94.70±0.22 85.82±0.28 60.50±0.32 477.26±0.54 22.72±0.15 79.17±0.32 71.44±0.36 26.42±0.25
SERAC 51.50±0.44 50.04±0.42 52.13±0.47 418.12±0.76 1.55±0.02 38.58±0.36 41.49±0.46 13.78±0.21

Ours (AS) 95.90±0.14 85.90±0.29 72.80±0.28 607.33±0.33 38.75±0.12 83.6±0.25 72.98±0.39 26.72±0.22
Ours (WI) 96.20±0.19 89.10±0.31 78.44±0.27 625.74±0.13 32.84±0.10 86.71±0.39 79.33±0.33 26.12±0.25
Ours (RS) 98.60±0.18 88.30±0.34 77.65±0.26 622.22±0.17 33.84±0.10 88.46±0.39 78.17±0.39 25.64±0.28

GPT-J

Pre-edited 16.22±0.31 18.56±0.45 83.11±0.13 621.81±0.67 29.74±0.51 26.32±037 25.79±0.25 27.42±0.53

FT-L 92.15±0.27 72.38±0.38 43.35±0.37 297.92±0.77 6.65±0.10 72.37±0.29 68.91±0.32 19.66±0.23
FT-W 48.35±0.49 31.42±0.39 68.71±0.28 587.20±0.23 29.41±0.09 39.81±0.36 32.55±0.33 27.76±0.26
MEND 46.15±0.50 46.22±0.51 53.90±0.48 242.41±0.41 3.94±0.03 0.71±0.04 0.71±0.04 0.52±0.03
ROME 57.50±0.48 54.20±0.40 52.05±0.31 589.28±0.08 3.22±0.02 56.42±0.42 54.65±0.42 9.86±0.16
MEMIT 98.55±0.11 95.50±0.16 63.64±0.31 546.28±0.88 34.89±0.15 94.91±0.16 90.22±0.23 30.39±0.27
SERAC 55.88±0.36 51.39±0.53 53.78±0.39 390.21±0.49 4.36±0.03 49.48±0.37 1.59±0.03 8.84±0.18

Ours (AS) 98.82±0.09 95.73±0.23 74.25±0.26 618.5±0.23 42.22±0.13 96.20±0.15 93.35±0.25 27.19±0.21
Ours (WI) 100.00±0.00 96.35±0.15 79.41±0.26 619.82±0.17 42.34±0.13 99.74±0.03 96.88±0.14 28.49±0.26
Ours (RS) 100.00±0.00 96.45±0.14 79.99±0.25 619.38±0.17 41.10±0.13 97.28±0.13 94.99±0.21 28.86±0.24

with Counterfact dataset, ECE exhibits an average improvement
of approximately 56.39% across the editing success rate contain-
ing efficacy, generalization, and specificity. On the ZsRE dataset,
ECE’s performance is even more remarkable, achieving multiple-
fold improvements across all three models.

• Observation 2: Three approaches’ performances are evenly
high in different situations.The threemethodswithin ECE—AS,
WI, and RS—demonstrate consistently high performance across
multiple models and datasets, reflecting the robustness and adapt-
ability of each approach. For all tested configurations including
Llama3, GPT2-XL, and GPT-J, three approaches, particularly WI
and RS methods, achieve outstanding results. Notably, in task on

GPT-J model, both WI and RS approaches reach 100 % in efficacy
metrics. While each explainer shows slight variations in specific
metrics, they consistently maintain high fluency and specificity,
suggesting balanced strengths for sequential batch editing tasks
across varied model architectures.

4.3 Impact of Parameter (RQ2)
As the model undergoes successive modifications with editing tasks,
sequential model editing methods face two inherent challenges:
model forgetting and model failure. Model forgetting occurs
when cumulative parameter changes from successive edits erode

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Explainable and Efficient Editing for Large Language Models Conference’25, 28 April - 2 May 2025, Sydney, Australia

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Figure 3: Editing performance of ECE and baselines with different numbers of edits (batch size 100) evaluated on Llama3 model and Counterfact
dataset. Score is the harmonic mean of Efficacy, Generalization, and Specificity.

Figure 4: Editing performance of MEMIT and ECE with 2000 edits in sequential editing, evaluated on the Counterfact and ZsRE dataset, on (a)
Llama3 model and (b) GPT2-XL model.

previously modified knowledge, resulting in a decline in perfor-
mance and stability over time [13, 23]. Meanwhile, model failure
refers to the progressive loss of themodel’s ability to generate coher-
ent responses as edits accumulate, potentially leading to model col-
lapse, where the output becomes repetitive or nonsensical [21, 22].
To explore these effects, we examine the influence of two key pa-
rameters number of edits and batch size on the sequential model
editing process. Specifically, we analyze how the number of edits
impact the performance of ECE compared to MEMIT and ROME
on Llama3 and Counterfact dataset at 3. In Appendix 6, we presents
how edit frequency influence model stability.

• Observation 3: ECE maintains stable performance across
all metrics as the number of edited samples increases. As
illustrated in Figure 3, ECE shows resilience against model failure
and forgetting as the number of editing rounds grows. In contrast,
both ROME and MEMIT experience considerable performance
declines, particularly in Specificity, Fluency, and Consistency,. As

more samples are edited, ROME and MEMIT increasingly fail to
uphold model integrity and impair model’s original capabilities.

• Observation 4: ECE consistently outperforms across a range
of batch sizes in sequential editing tasks. From 6 in E we
can see that MEMIT’s performance declines markedly as batch
size decreases and the number of editing rounds increases. This
effect is especially evident when the batch size is reduced to
10, showing a notable drop in editing effectiveness across all
metrics. In comparison, ECE demonstrates stable performance
across these metrics, regardless of batch size.

4.4 Time overhead Comparison (RQ3)
To evaluate the efficiency of our approach in sequential knowledge
editing tasks, we conducted tests across three model architectures,
benchmarking our method against established baselines. The eval-
uation involved a continuous editing scenario with a total of 2,000
edits and a batch size of 100. These numbers shown in Table 2

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Conference’25, 28 April - 2 May 2025, Sydney, Australia Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Method GPT2-XL GPT-J Llama3
FT-L 191.42s 303.26s 451.23s
FT-W 157.44s 263.74s 374.35s
MEND 26.79s 49.16s 67.85s
ROME 422.37s 764.82s 914.63s
MEMIT 222.51s 334.74s 484.14s
SERAC 384.91s 634.74s 834.56s

Ours (AS) 119.39s 187.44s 216.87s
Ours (WI) 104.87.94s 178.23s 214.19s
Ours (RS) 148.47.97s 199.32s 231.64s

Table 2: Times per batch for various methods
evaluated on ZsRE dataset with different models.

Figure 5: Comparison of general capabilities for MEMIT and ECE (WI) with 2000 edits on
(a) Llama3 model, (b) GPT2-XL model, and (c) GPT-J model.

represent the average time of the whole editing process conducting
at the first time. This means they could reflect the results of edit-
ing efficiency including getting expected output through gradient
descent and further techniques.

• Observation 5: Our methods consistently maintained su-
perior efficiency, with the WI method being the fastest.
Our method demonstrated significant improvements in editing
speed, surpassing nearly all baseline methods. Among our ap-
proaches, WI performs the best, followed closely by AS and RS.
Although MEND displayed the shortest editing times, its low
effectiveness on the ZsRE dataset limits its applicability, making
it an unsuitable comparison. Overall, combined with results of
editing performance, ECE achieves an noteworthy improvement
in efficiency by acceleration approaches.

4.5 General Ability Test (RQ4)
To evaluate the impact of model editing on the general capabili-
ties of large language models (LLMs), we have selected six natural
language tasks from the General Language Understanding Evalu-
ation (GLUE) benchmark [57], a public leaderboard for tracking
performance with respect to a wide range of linguistic phenomena
found in natural language. The chosen downstream tasks are as
follows: (1) SST (Stanford Sentiment Treebank) [52], which in-
volves classifying individual sentences based on sentiment in movie
reviews. (2)MRPC (Microsoft Research Paraphrase Corpus)
[14], a task focused on text matching to assess semantic similarity.
(3)MMLU (Massive Multi-task Language Understanding) [26],
which evaluates language models on multi-task accuracy. (4) CoLA
(Corpus of Linguistic Acceptability) [61], a single-sentence clas-
sification task drawn from linguistic theory literature. (5) RTE
(Recognizing Textual Entailment) [6], a natural language infer-
ence task to determine whether a given premise entails a hypothesis.
(6) NLI (Natural Language Inference) [62], which requires the
model to identify logical relationships between pairs of sentences.
Case studies further illustrate the text generation effects of different
editing methods, with detailed results provided in Appendix F.

We conduct evaluations on Llama3 (8B), GPT2-XL (1.5B), and
GPT-J (6B) based on sequential editing settings with 2000 edits.
From Figure 5 we can observe that:

• Observation 6: ECE consistently maintains the general ca-
pabilities of the LLM during sequential editing without
incurring model failure. As the number of knowledge edits
grows, ECE maintains performance levels comparable to those of
the unedited LLMs, showing no negative impact on the model’s
core general capabilities. In contrast, both ROME and MEMIT
have poor performance in different general capabilities, suggest-
ing that the model has already suffered significant degradation.
As shown in module (a), ECE achieves optimal performance
across all generalization metrics in Llama3 model.

5 Limitation and Discussion
While ECE demonstrates significant improvements in both explain-
ability and efficiency for sequential model editing tasks, there are
still several limitations to our study. First, our evaluations are pri-
marily focused on a few common and mainstream language models,
such as GPT2-XL, GPT-J, and Llama3, which represent widely used
architectures. Moreover, the experiments are currently based on
existing datasets and specific environmental configurations. We
have yet to test ECE on larger and more complicated datasets,
which could present new challenges in terms of computational
requirements and scalability. Looking ahead, we are committed
to exploring more diverse techniques to further enhance the ex-
plainability and improve the overall efficiency and robustness of
sequential editing, adapting it to a broader range of applications
and advancing its capabilities for real-world deployment.

6 Conclusion
In summary, we presented Explainable and Efficient Sequential Edit-
ing (ECE), a method that addresses key limitations in the two-stage
knowledge editing process for Large Language Models (LLMs). ECE
enhances Stage 1 by adaptively identifying critical layers and neu-
rons, leveraging model explainability for targeted updates. In Stage
2, ECE clusters similar keys to enable batch optimization, signifi-
cantly reducing computational costs. Experimental results across
different evaluation metrics and datasets demonstrate that ECE
achieves superior editing performance with a substantial increase
in efficiency, showcasing its potential to make model editing both
explainable and efficient for real-world applications.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Explainable and Efficient Editing for Large Language Models Conference’25, 28 April - 2 May 2025, Sydney, Australia

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

References
[1] Oshin Agarwal and Ani Nenkova. 2022. Temporal Effects on Pre-trained Models

for Language Processing Tasks. Trans. Assoc. Comput. Linguistics 10 (2022),
904–921.

[2] James A Anderson. 1972. A simple neural network generating an interactive
memory. Mathematical biosciences 14, 3-4 (1972), 197–220.

[3] Anonymous. 2024. Neuron-Level Knowledge Attribution in Large Language
Models. In Submitted to ACL Rolling Review - June 2024. https://openreview.net/
forum?id=HaaPCU2LvE under review.

[4] Omer Antverg and Yonatan Belinkov. 2022. On the Pitfalls of Analyzing Indi-
vidual Neurons in Language Models. In The Tenth International Conference on
Learning Representations, ICLR 2022, Virtual Event, April 25-29, 2022. OpenRe-
view.net. https://openreview.net/forum?id=8uz0EWPQIMu

[5] Anthony Bau, Yonatan Belinkov, Hassan Sajjad, Nadir Durrani, Fahim Dalvi, and
James R. Glass. 2019. Identifying and Controlling Important Neurons in Neural
Machine Translation. In 7th International Conference on Learning Representations,
ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net. https://
openreview.net/forum?id=H1z-PsR5KX

[6] Luisa Bentivogli, Bernardo Magnini, Ido Dagan, Hoa Trang Dang, and Danilo
Giampiccolo. 2009. The Fifth PASCAL Recognizing Textual Entailment Challenge.
In TAC. NIST.

[7] Baolong Bi, Shenghua Liu, Yiwei Wang, Lingrui Mei, and Xueqi Cheng. 2024. Is
Factuality Decoding a Free Lunch for LLMs? Evaluation on Knowledge Editing
Benchmark. arXiv:2404.00216 [cs.CL] https://arxiv.org/abs/2404.00216

[8] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan,
Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter,
Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. 2020. Language Models are Few-Shot Learners. In
NeurIPS.

[9] Nicola De Cao, Wilker Aziz, and Ivan Titov. 2021. Editing Factual Knowledge
in Language Models. In EMNLP (1). Association for Computational Linguistics,
6491–6506.

[10] Hoagy Cunningham, Aidan Ewart, Logan Riggs, Robert Huben, and Lee Sharkey.
2023. Sparse Autoencoders Find Highly Interpretable Features in Language
Models. CoRR abs/2309.08600 (2023).

[11] Damai Dai, Li Dong, Yaru Hao, Zhifang Sui, Baobao Chang, and Furu Wei. 2022.
Knowledge Neurons in Pretrained Transformers. In ACL (1). Association for
Computational Linguistics, 8493–8502.

[12] Fahim Dalvi, Nadir Durrani, Hassan Sajjad, Yonatan Belinkov, Anthony Bau,
and James R. Glass. 2019. What Is One Grain of Sand in the Desert? Analyzing
Individual Neurons in Deep NLP Models. In The Thirty-Third AAAI Conference
on Artificial Intelligence, AAAI 2019, The Thirty-First Innovative Applications
of Artificial Intelligence Conference, IAAI 2019, The Ninth AAAI Symposium on
Educational Advances in Artificial Intelligence, EAAI 2019, Honolulu, Hawaii, USA,
January 27 - February 1, 2019. AAAI Press, 6309–6317. https://doi.org/10.1609/
AAAI.V33I01.33016309

[13] Payel Das, Subhajit Chaudhury, Elliot Nelson, Igor Melnyk, Sarath Swaminathan,
Sihui Dai, Aurélie C. Lozano, Georgios Kollias, Vijil Chenthamarakshan, Jirí
Navrátil, Soham Dan, and Pin-Yu Chen. 2024. Larimar: Large Language Models
with Episodic Memory Control. CoRR abs/2403.11901 (2024).

[14] William B. Dolan and Chris Brockett. 2005. Automatically Constructing a Cor-
pus of Sentential Paraphrases. In IWP@IJCNLP. Asian Federation of Natural
Language Processing.

[15] Qingxiu Dong, Damai Dai, Yifan Song, Jingjing Xu, Zhifang Sui, and Lei Li.
2022. Calibrating Factual Knowledge in Pretrained Language Models. In EMNLP
(Findings). Association for Computational Linguistics, 5937–5947.

[16] Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ah-
mad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, Anirudh Goyal, Anthony Hartshorn, Aobo Yang, Archi Mitra, Archie Sra-
vankumar, Artem Korenev, Arthur Hinsvark, Arun Rao, Aston Zhang, Aurélien
Rodriguez, Austen Gregerson, Ava Spataru, Baptiste Rozière, Bethany Biron,
Binh Tang, Bobbie Chern, Charlotte Caucheteux, Chaya Nayak, Chloe Bi, Chris
Marra, Chris McConnell, Christian Keller, Christophe Touret, Chunyang Wu,
Corinne Wong, Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius,
Daniel Song, Danielle Pintz, Danny Livshits, David Esiobu, Dhruv Choudhary,
Dhruv Mahajan, Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes, Egor
Lakomkin, Ehab AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael Smith,
Filip Radenovic, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis
Anderson, Graeme Nail, Grégoire Mialon, Guan Pang, Guillem Cucurell, Hailey
Nguyen, Hannah Korevaar, Hu Xu, Hugo Touvron, Iliyan Zarov, Imanol Arrieta
Ibarra, Isabel M. Kloumann, Ishan Misra, Ivan Evtimov, Jade Copet, Jaewon Lee,
Jan Geffert, Jana Vranes, Jason Park, Jay Mahadeokar, Jeet Shah, Jelmer van der
Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu, Jianfeng Chi, Jianyu
Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jongsoo Park,

Joseph Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasuden Al-
wala, Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth Heafield, Kevin Stone,
and et al. 2024. The Llama 3 Herd of Models. CoRR abs/2407.21783 (2024).
https://doi.org/10.48550/ARXIV.2407.21783 arXiv:2407.21783

[17] Jason Kamran Eshraghian and Wei D. Lu. 2022. The fine line between dead
neurons and sparsity in binarized spiking neural networks. CoRR abs/2201.11915
(2022). arXiv:2201.11915 https://arxiv.org/abs/2201.11915

[18] Junfeng Fang, Houcheng Jiang, Kun Wang, Yunshan Ma, Xiang Wang, Xiangnan
He, and Tat seng Chua. 2024. AlphaEdit: Null-Space Constrained Knowledge
Editing for Language Models. arXiv preprint arXiv:2410.02355 (2024).

[19] Mor Geva, Jasmijn Bastings, Katja Filippova, and Amir Globerson. 2023. Dis-
secting Recall of Factual Associations in Auto-Regressive Language Models. In
EMNLP. Association for Computational Linguistics, 12216–12235.

[20] Mor Geva, Roei Schuster, Jonathan Berant, and Omer Levy. 2021. Transformer
Feed-Forward Layers Are Key-Value Memories. In EMNLP (1). Association for
Computational Linguistics, 5484–5495.

[21] Jia-Chen Gu, Hao-Xiang Xu, Jun-Yu Ma, Pan Lu, Zhen-Hua Ling, Kai-Wei Chang,
and Nanyun Peng. 2024. Model Editing Harms General Abilities of Large
Language Models: Regularization to the Rescue. arXiv:2401.04700 [cs.CL]
https://arxiv.org/abs/2401.04700

[22] Akshat Gupta and Gopala Anumanchipalli. 2024. Rebuilding ROME : Resolving
Model Collapse during Sequential Model Editing. CoRR abs/2403.07175 (2024).

[23] Akshat Gupta, Anurag Rao, and Gopala Anumanchipalli. 2024. Model Editing at
Scale leads to Gradual and Catastrophic Forgetting. CoRR abs/2401.07453 (2024).

[24] Tom Hartvigsen, Swami Sankaranarayanan, Hamid Palangi, Yoon Kim, and
Marzyeh Ghassemi. 2023. Aging with GRACE: Lifelong Model Editing with
Discrete Key-Value Adaptors. In NeurIPS.

[25] Peter Hase, Mohit Bansal, Been Kim, and Asma Ghandeharioun. 2023. Does Lo-
calization Inform Editing? Surprising Differences in Causality-Based Localization
vs. Knowledge Editing in Language Models. In NeurIPS.

[26] Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn
Song, and Jacob Steinhardt. 2021. Measuring Massive Multitask Language Un-
derstanding. In ICLR. OpenReview.net.

[27] Zeyu Huang, Yikang Shen, Xiaofeng Zhang, Jie Zhou, Wenge Rong, and Zhang
Xiong. 2023. Transformer-Patcher: One Mistake Worth One Neuron. In ICLR.
OpenReview.net.

[28] Houcheng Jiang, Junfeng Fang, Tianyu Zhang, An Zhang, Ruipeng Wang, Tao
Liang, and Xiang Wang. 2024. Neuron-Level Sequential Editing for Large Lan-
guage Models. arXiv:2410.04045 [cs.CL] https://arxiv.org/abs/2410.04045

[29] Zhengbao Jiang, Frank F. Xu, Jun Araki, and Graham Neubig. 2020. How Can
We Know What Language Models Know. Transactions of the Association for
Computational Linguistics (Dec 2020), 423–438. https://doi.org/10.1162/tacl_a_
00324

[30] Teuvo Kohonen. 1972. Correlation Matrix Memories. IEEE Trans. Computers 21,
4 (1972), 353–359.

[31] Serge Lang. 2012. Introduction to linear algebra. Springer Science & Business
Media.

[32] Angeliki Lazaridou, Adhiguna Kuncoro, Elena Gribovskaya, Devang Agrawal,
Adam Liska, Tayfun Terzi, Mai Gimenez, Cyprien de Masson d’Autume, Tomás
Kociský, Sebastian Ruder, Dani Yogatama, Kris Cao, Susannah Young, and Phil
Blunsom. 2021. Mind the Gap: Assessing Temporal Generalization in Neural
Language Models. In NeurIPS. 29348–29363.

[33] Omer Levy, Minjoon Seo, Eunsol Choi, and Luke Zettlemoyer. 2017. Zero-Shot
Relation Extraction via Reading Comprehension. In CoNLL. Association for
Computational Linguistics, 333–342.

[34] Shuaiyi Li, Yang Deng, Deng Cai, Hongyuan Lu, Liang Chen, and Wai Lam.
2024. Consecutive Model Editing with Batch alongside HooK Layers. CoRR
abs/2403.05330 (2024).

[35] Xiaopeng Li, Shasha Li, Shezheng Song, Jing Yang, Jun Ma, and Jie Yu. 2024.
PMET: Precise Model Editing in a Transformer. In AAAI. AAAI Press, 18564–
18572.

[36] Jun-Yu Ma, Hong Wang, Hao-Xiang Xu, Zhen-Hua Ling, and Jia-Chen Gu. 2024.
Perturbation-Restrained Sequential Model Editing. CoRR abs/2405.16821 (2024).

[37] Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. 2022. Locating
and Editing Factual Associations in GPT. In NeurIPS.

[38] Kevin Meng, Arnab Sen Sharma, Alex J. Andonian, Yonatan Belinkov, and David
Bau. 2023. Mass-Editing Memory in a Transformer. In ICLR. OpenReview.net.

[39] Eric Mitchell, Charles Lin, Antoine Bosselut, Chelsea Finn, and Christopher D.
Manning. 2022. Fast Model Editing at Scale. In ICLR. OpenReview.net.

[40] Eric Mitchell, Charles Lin, Antoine Bosselut, Christopher D. Manning, and
Chelsea Finn. 2022. Memory-Based Model Editing at Scale. In ICML (Proceedings
of Machine Learning Research, Vol. 162). PMLR, 15817–15831.

[41] OpenAI. 2023. GPT-4 Technical Report. CoRR abs/2303.08774 (2023). https:
//doi.org/10.48550/ARXIV.2303.08774 arXiv:2303.08774

[42] Haowen Pan, Yixin Cao, Xiaozhi Wang, and Xun Yang. 2023. Finding and Editing
Multi-Modal Neurons in Pre-Trained Transformer. CoRR abs/2311.07470 (2023).

[43] Haowen Pan, Yixin Cao, Xiaozhi Wang, and Xun Yang. 2023. Finding and Editing
Multi-Modal Neurons in Pre-Trained Transformer. CoRR abs/2311.07470 (2023).

9

https://openreview.net/forum?id=HaaPCU2LvE
https://openreview.net/forum?id=HaaPCU2LvE
https://openreview.net/forum?id=8uz0EWPQIMu
https://openreview.net/forum?id=H1z-PsR5KX
https://openreview.net/forum?id=H1z-PsR5KX
https://arxiv.org/abs/2404.00216
https://arxiv.org/abs/2404.00216
https://doi.org/10.1609/AAAI.V33I01.33016309
https://doi.org/10.1609/AAAI.V33I01.33016309
https://doi.org/10.48550/ARXIV.2407.21783
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2201.11915
https://arxiv.org/abs/2201.11915
https://arxiv.org/abs/2401.04700
https://arxiv.org/abs/2401.04700
https://arxiv.org/abs/2410.04045
https://arxiv.org/abs/2410.04045
https://doi.org/10.1162/tacl_a_00324
https://doi.org/10.1162/tacl_a_00324
https://doi.org/10.48550/ARXIV.2303.08774
https://doi.org/10.48550/ARXIV.2303.08774
https://arxiv.org/abs/2303.08774

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

Conference’25, 28 April - 2 May 2025, Sydney, Australia Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

[44] Fabio Petroni, Tim Rocktäschel, Sebastian Riedel, Patrick S. H. Lewis, Anton
Bakhtin, YuxiangWu, and Alexander H. Miller. 2019. Language Models as Knowl-
edge Bases?. In EMNLP/IJCNLP (1). Association for Computational Linguistics,
2463–2473.

[45] Michael Petrov, Chelsea Voss, Ludwig Schubert, Nick Cammarata, Gabriel Goh,
and Chris Olah. 2021. Weight Banding. Distill (2021). https://doi.org/10.23915/
distill.00024.009 https://distill.pub/2020/circuits/weight-banding.

[46] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya
Sutskever, et al. 2019. Language models are unsupervised multitask learners.
OpenAI blog 1, 8 (2019), 9.

[47] Adam Roberts, Colin Raffel, and Noam Shazeer. 2020. HowMuch Knowledge Can
You Pack Into the Parameters of a Language Model?. In EMNLP (1). Association
for Computational Linguistics, 5418–5426.

[48] Hassan Sajjad, Nadir Durrani, and FahimDalvi. 2022. Neuron-level Interpretation
of Deep NLP Models: A Survey. Trans. Assoc. Comput. Linguistics 10 (2022), 1285–
1303.

[49] Sarah Schwettmann, Neil Chowdhury, Samuel Klein, David Bau, and Antonio
Torralba. 2023. Multimodal Neurons in Pretrained Text-Only Transformers. In
ICCV (Workshops). IEEE, 2854–2859.

[50] Sarah Schwettmann, Neil Chowdhury, Samuel Klein, David Bau, and Antonio
Torralba. 2023. Multimodal Neurons in Pretrained Text-Only Transformers. In
ICCV (Workshops). IEEE, 2854–2859.

[51] Chandan Singh, Aliyah R. Hsu, Richard Antonello, Shailee Jain, Alexander G.
Huth, Bin Yu, and Jianfeng Gao. 2023. Explaining black box text modules in
natural language with language models. CoRR abs/2305.09863 (2023). https:
//doi.org/10.48550/ARXIV.2305.09863 arXiv:2305.09863

[52] Richard Socher, Alex Perelygin, JeanWu, Jason Chuang, Christopher D. Manning,
Andrew Y. Ng, and Christopher Potts. 2013. Recursive Deep Models for Semantic
Compositionality Over a Sentiment Treebank. In EMNLP. ACL, 1631–1642.

[53] Katherine Tian, Eric Mitchell, Huaxiu Yao, Christopher D. Manning, and Chelsea
Finn. 2024. Fine-Tuning Language Models for Factuality. In The Twelfth Interna-
tional Conference on Learning Representations, ICLR 2024, Vienna, Austria, May
7-11, 2024. OpenReview.net. https://openreview.net/forum?id=WPZ2yPag4K

[54] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne
Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, et al. 2023. Llama: Open and efficient foundation language models. arXiv
preprint arXiv:2302.13971 (2023).

[55] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is All
you Need. In NIPS. 5998–6008.

[56] Elena Voita, Javier Ferrando, and Christoforos Nalmpantis. 2024. Neurons in
Large Language Models: Dead, N-gram, Positional. In Findings of the Association
for Computational Linguistics, ACL 2024, Bangkok, Thailand and virtual meeting,
August 11-16, 2024, Lun-Wei Ku, Andre Martins, and Vivek Srikumar (Eds.).
Association for Computational Linguistics, 1288–1301. https://doi.org/10.18653/
V1/2024.FINDINGS-ACL.75

[57] Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and
Samuel R. Bowman. 2019. GLUE: AMulti-Task Benchmark and Analysis Platform
for Natural Language Understanding. In ICLR (Poster). OpenReview.net.

[58] Ben Wang and Aran Komatsuzaki. 2021. GPT-J-6B: A 6 billion parameter autore-
gressive language model.

[59] Xiaozhi Wang, Kaiyue Wen, Zhengyan Zhang, Lei Hou, Zhiyuan Liu, and Juanzi
Li. 2022. Finding Skill Neurons in Pre-trained Transformer-based Language
Models. In EMNLP. Association for Computational Linguistics, 11132–11152.

[60] Xiaozhi Wang, Kaiyue Wen, Zhengyan Zhang, Lei Hou, Zhiyuan Liu, and Juanzi
Li. 2022. Finding Skill Neurons in Pre-trained Transformer-based Language
Models. In EMNLP. Association for Computational Linguistics, 11132–11152.

[61] Alex Warstadt, Amanpreet Singh, and Samuel R. Bowman. 2019. Neural Network
Acceptability Judgments. Trans. Assoc. Comput. Linguistics 7 (2019), 625–641.

[62] Adina Williams, Nikita Nangia, and Samuel R. Bowman. 2018. A Broad-Coverage
Challenge Corpus for Sentence Understanding through Inference. In NAACL-
HLT. Association for Computational Linguistics, 1112–1122.

[63] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement De-
langue, Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
and Jamie Brew. 2019. HuggingFace’s Transformers: State-of-the-art Natural
Language Processing. CoRR abs/1910.03771 (2019).

[64] Xuansheng Wu, Haiyan Zhao, Yaochen Zhu, Yucheng Shi, Fan Yang, Tianming
Liu, Xiaoming Zhai, Wenlin Yao, Jundong Li, Mengnan Du, and Ninghao Liu.
2024. Usable XAI: 10 Strategies Towards Exploiting Explainability in the LLM
Era. CoRR abs/2403.08946 (2024).

[65] Yunzhi Yao, Peng Wang, Bozhong Tian, Siyuan Cheng, Zhoubo Li, Shumin
Deng, Huajun Chen, and Ningyu Zhang. 2023. Editing Large Language Models:
Problems,Methods, andOpportunities. In EMNLP. Association for Computational
Linguistics, 10222–10240.

[66] Lang Yu, Qin Chen, Jie Zhou, and Liang He. 2024. MELO: Enhancing Model
Editing with Neuron-Indexed Dynamic LoRA. In AAAI. AAAI Press, 19449–
19457.

[67] Guanxiong Zeng, Yang Chen, Bo Cui, and Shan Yu. 2019. Continual learning of
context-dependent processing in neural networks. Nat. Mach. Intell. 1, 8 (2019),
364–372.

[68] Ningyu Zhang, Zekun Xi, Yujie Luo, Peng Wang, Bozhong Tian, Yunzhi Yao,
Jintian Zhang, Shumin Deng, Mengshu Sun, Lei Liang, et al. 2024. OneEdit:
A Neural-Symbolic Collaboratively Knowledge Editing System. arXiv preprint
arXiv:2409.07497 (2024).

[69] Ningyu Zhang, Yunzhi Yao, Bozhong Tian, Peng Wang, Shumin Deng, Mengru
Wang, Zekun Xi, Shengyu Mao, Jintian Zhang, Yuansheng Ni, Siyuan Cheng,
Ziwen Xu, Xin Xu, Jia-Chen Gu, Yong Jiang, Pengjun Xie, Fei Huang, Lei Liang,
Zhiqiang Zhang, Xiaowei Zhu, Jun Zhou, and Huajun Chen. 2024. A Com-
prehensive Study of Knowledge Editing for Large Language Models. CoRR
abs/2401.01286 (2024).

[70] Taolin Zhang, Qizhou Chen, Dongyang Li, ChengyuWang, Xiaofeng He, Longtao
Huang, Hui Xue’, and Jun Huang. 2024. DAFNet: Dynamic Auxiliary Fusion
for Sequential Model Editing in Large Language Models. In Findings of the
Association for Computational Linguistics, ACL 2024, Bangkok, Thailand and
virtual meeting, August 11-16, 2024, Lun-Wei Ku, Andre Martins, and Vivek
Srikumar (Eds.). Association for Computational Linguistics, 1588–1602. https:
//doi.org/10.18653/V1/2024.FINDINGS-ACL.92

[71] Haiyan Zhao, Hanjie Chen, Fan Yang, Ninghao Liu, Huiqi Deng, Hengyi Cai,
Shuaiqiang Wang, Dawei Yin, and Mengnan Du. 2024. Explainability for Large
Language Models: A Survey. ACM Trans. Intell. Syst. Technol. 15, 2 (2024), 20:1–
20:38. https://doi.org/10.1145/3639372

[72] Ce Zheng, Lei Li, Qingxiu Dong, Yuxuan Fan, Zhiyong Wu, Jingjing Xu, and
Baobao Chang. 2023. Can We Edit Factual Knowledge by In-Context Learning?
CoRR abs/2305.12740 (2023).

[73] Chen Zhu, Ankit Singh Rawat, Manzil Zaheer, Srinadh Bhojanapalli, Daliang
Li, Felix X. Yu, and Sanjiv Kumar. 2020. Modifying Memories in Transformer
Models. CoRR abs/2012.00363 (2020).

10

https://doi.org/10.23915/distill.00024.009
https://doi.org/10.23915/distill.00024.009
https://doi.org/10.48550/ARXIV.2305.09863
https://doi.org/10.48550/ARXIV.2305.09863
https://arxiv.org/abs/2305.09863
https://openreview.net/forum?id=WPZ2yPag4K
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.75
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.75
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.92
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.92
https://doi.org/10.1145/3639372

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

Explainable and Efficient Editing for Large Language Models Conference’25, 28 April - 2 May 2025, Sydney, Australia

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

A Related Work
A.1 Model Editing
Model editing has emerged as an essential research area focused
on modifying the behavior of pre-trained large language models
(LLMs) to integrate new knowledge or correct factual errors, all
without the need for extensive retraining.

Preserve Models’ Parameters.Methods in this category aim
to preserve the pre-trained model’s parameters by introducing
new knowledge through external components or retrieval mecha-
nisms, rather than altering the core model itself. IKE [72] leverages
in-context learning to adjust model outputs based on retrieved
demonstrations, thus avoiding any gradient-based updates. Sim-
ilarly, systems like SERAC [40] keep the model’s parameters un-
changed and use a counterfactual model to make edits, isolating
the editing process from the base model. T-Patcher [27] introduces
an additional neuron for each specific output error, while CaliNet
[15] injects neurons to handle multiple knowledge cases. MELO
[66] dynamically activates LoRA blocks indexed within an internal
vector database, allowing models to behave differently depending
on the retrieved block. On the other hand, GRACE [24] maintains
a codebook to store knowledge and updates sequentially without
modifying the core model. Similarly, Larimar [13] extends the idea
of preserving model parameters by enhancing LLMs with a dis-
tributed episodic memory, which serves as an external knowledge
source. OneEdit [68] introduces a neural-symbolic system that in-
tegrates knowledge graphs with LLMs for collaborative knowledge
editing.

Modify Models’ Parameters. Methods that modify LLMs’ pa-
rameters focus on directly updating the internal weights of the
model to incorporate new knowledge. FT-W [73] fine-tunes specific
layers of the model using regularization constraints to ensure mini-
mal changes to unrelated knowledge. Knowledge Neurons (KN) [11]
identifies crucial neurons that encode factual knowledge within
the feed-forward networks (FFNs) of the model and updates them
accordingly. Similarly, methods such as KE [9] and MEND [39]
employ hypernetworks to predict the necessary weight updates for
new knowledge, leveraging meta-learning approaches to minimize
computational overhead. ROME [37] and MEMIT [38] allow for
large-scale direct editing of LLMs by locating and modifying spe-
cific knowledge in certain layers of models like GPT. ROME utilizes
causal mediation analysis to identify the layers where knowledge
is stored and performs targeted updates in these areas. MEMIT
extends this approach, enabling simultaneous edits across multiple
factual associations by modifying key neurons in the feed-forward
layers. Building upon MEMIT, PMET [35] introduces attention val-
ues into the editing process, further improving performance by
refining the selection of critical neurons for editing. To improve the
stability and performance of parameter modification approaches es-
pecially for sequential model editing tasks, PRUNE [36] constrains
the maximum singular value of parameter changes to avoid model
degradation, while RECT [21] retains parameters with minimal
changes to ensure stability. Additionally, COMEBA-HK [34] intro-
duces hook layers to define the scope of editing, ensuring that
changes are confined to the appropriate regions of the model, thus
supporting sequential editing while maintaining performance on
non-edited knowledge.

A.2 Model Explainability
Due to the high computational costs involved and the assertion
that only a select subset of neurons plays a crucial role in decision-
making, existing methods are commonly combined with ranking
algorithms to streamline the process [4]. Based on the premise that
models learning similar properties often exhibit shared neurons,
these neurons are ranked by metrics such as correlation coefficients
and learned parameter weights [5, 12]. The Summarize and Score
(SASC) [51] pipeline generates natural language explanations for
large language model modules by first identifying n-grams that
strongly activate themodule and then evaluating these explanations
with synthetic data to assess their relevance. The weight banding
[45] studies weights that connect neurons, seeking to develop algo-
rithms that reveal underlying logical structures. NAM [3] establish
a complete attribution pipeline with adding the direct contributions
through residual stream.

B Detail of preliminary
Problem settings for model editing typically fall into four categories
[65, 69]: single editing, batch editing, sequential editing, and sequen-
tial batch editing. In this work, we talks about the most complex
type of editing.
(1) Single Editing assessesmodel performance after a single knowl-

edge update:
𝜃 ′ ← argmin

𝜃

(
∥ 𝑓𝜃 (𝑥𝑒𝑖) − 𝑦

𝑒
𝑖 ∥

)
(16)

(2) Batch Editing assesses model performance when multiple
knowledge pieces are modified simultaneously (𝑛 ≤ 𝑁 repre-
sents the batch size):

𝜃 ′ ← argmin
𝜃

(
𝑛∑︁
𝑖=1
∥ 𝑓𝜃 (𝑥𝑒𝑖) − 𝑦

𝑒
𝑖 ∥

)
(17)

(3) Sequential Editing requires that every single edit is executed
successively and evaluation conducted only after all edits are
completed []:

𝜃 ′ ← argmin
𝜃

(
𝑁∑︁
𝑖=1
∥ 𝑓𝜃 (𝑥𝑒𝑖) − 𝑦

𝑒
𝑖 ∥

)
(18)

(4) Sequential Batch Editing aims to perform edits in a sequential
manner and in batches (𝑛 represents the batch size, 𝑆 represents
the sequential editing step):

𝜃 ′ ← argmin
𝜃

©«
𝑆∑︁
𝑠=0

(𝑠+1)×𝑛∑︁
𝑖=𝑠×𝑛

∥ 𝑓𝜃 (𝑥𝑒𝑖) − 𝑦
𝑒
𝑖 ∥

ª®¬ (19)

11

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

Conference’25, 28 April - 2 May 2025, Sydney, Australia Anon.

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

C Details of Datasets and Evaluation Metrics
C.1 Datasets
ZsRE [33] is a question answering (QA) dataset that employs ques-
tions generated via back-translation as equivalent neighboring
prompts. In line with previous studies, natural questions are used
as out-of-scope data to assess the locality aspect. Each ZsRE sam-
ple comprises a subject string and corresponding answers as the
targets for evaluating editing success, along with rephrased ques-
tions for testing generalization and locality questions for assessing
specificity.

Counterfact [29] is a more challenging dataset that distinguishes
between counterfactual and factual statements, initially yielding
lower scores for Counterfact. It generates out-of-scope data by
substituting the subject entity with similar entities that share the
same predicate. The Counterfact dataset includes metrics similar
to those in ZsRE to evaluate efficacy, generalization, and specificity.
Additionally, Counterfact offers multiple generation prompts with
equivalent meanings to the original prompt to assess generated
text quality, with a specific focus on fluency and consistency.

C.2 ZsRE Metrics
Following the previous work [37–39], this section defines each
ZsRE metric given a LLM 𝑓𝜃 , a knowledge fact prompt (𝑠𝑖 , 𝑟𝑖), an
edited target output 𝑜𝑖 , and the model’s original output 𝑜𝑐

𝑖
:

• Efficacy: The efficacy metric is computed as the average top-1
accuracy on the edited samples:

E𝑖
{
𝑜𝑖 = argmax

𝑜
P𝑓𝜃 (𝑜 | (𝑠𝑖 , 𝑟𝑖))

}
. (20)

• Generalization: Generalization assesses the model’s ability to
perform on alternative prompts equivalent to (𝑠𝑖 , 𝑟𝑖), such as
paraphrased variations 𝑁 ((𝑠𝑖 , 𝑟𝑖)). It is calculated as the average
top-1 accuracy on these paraphrased forms:

E𝑖
{
𝑜𝑖 = argmax

𝑜
P𝑓𝜃 (𝑜 | 𝑁 ((𝑠𝑖 , 𝑟𝑖))

}
. (21)

• Specificity: Specificity ensures that the edits do not alter model
predictions on samples that are unrelated to the edited cases
𝑂 (𝑠𝑖 , 𝑟𝑖). This is measured by the top-1 accuracy of the predic-
tions that remain consistent:

E𝑖
{
𝑜𝑐𝑖 = argmax

𝑜
P𝑓𝜃 (𝑜 | 𝑂 ((𝑠𝑖 , 𝑟𝑖))

}
. (22)

C.3 Counterfact Metrics
Following prior works [37, 38], each Counterfact metric is defined
for a large language model 𝑓𝜃 , with a knowledge prompt (𝑠𝑖 , 𝑟𝑖), an
edited target output 𝑜𝑖 , and the model’s original output 𝑜𝑐

𝑖
:

• Efficacy (edit success): The ratio of cases where 𝑜𝑖 has a higher
probability than 𝑜𝑖𝑐 for the prompt (𝑠𝑖 , 𝑟𝑖):

E𝑖
[
P𝑓𝜃 [𝑜𝑖 | (𝑠𝑖 , 𝑟𝑖)] > P𝑓𝜃 [𝑜

𝑖
𝑐 | (𝑠𝑖 , 𝑟𝑖)]

]
. (23)

• Generalization (paraphrase success): The proportion of cases
inwhich𝑜𝑖 is more likely than𝑜𝑖𝑐 for rephrased prompts𝑁 ((𝑠𝑖 , 𝑟𝑖)):

E𝑖
[
P𝑓𝜃 [𝑜𝑖 | 𝑁 ((𝑠𝑖 , 𝑟𝑖))] > P𝑓𝜃 [𝑜

𝑖
𝑐 | 𝑁 ((𝑠𝑖 , 𝑟𝑖))]

]
. (24)

• Specificity (unaffected prompt success): The fraction of neigh-
boring prompts 𝑂 ((𝑠𝑖 , 𝑟𝑖)), referring to semantically related sub-
jects, where the model maintains a higher probability on the
accurate fact:

E𝑖
[
P𝑓𝜃 [𝑜𝑖 | 𝑂 ((𝑠𝑖 , 𝑟𝑖))] > P𝑓𝜃 [𝑜

𝑖
𝑐 | 𝑂 ((𝑠𝑖 , 𝑟𝑖))]

]
. (25)

• Fluency (repetition entropy): Measures output repetitiveness
using entropy of n-gram distributions:

−23
∑︁
𝑘

𝑔2 (𝑘) log2 𝑔2 (𝑘) +
4
3

∑︁
𝑘

𝑔3 (𝑘) log2 𝑔3 (𝑘), (26)

where 𝑔𝑛 (·) represents the n-gram frequency distribution.
• Consistency (reference similarity): Consistency is evaluated

by providing the model 𝑓𝜃 with a subject 𝑠 and then calculating
the cosine similarity between the TF-IDF vectors of the generated
text and a reference text (e.g., a Wikipedia entry) about 𝑜 .

D Implementation details
D.1 Implementation Details on GPT2-XL
Thematrix 𝜆E

[
𝑇
]
is computed using 100,000 samples fromWikitext

in fp32 precision, with the hyperparameter 𝜆 set to 20,000. During
the computation of z𝑖 , we perform 20 epochs with a learning rate
of 0.5. We set the threshold 𝑝 for neuron selection at 0.8. For other
detailed parameters, we set clamp factor to 0.75, weight decay to
0.5, and kl factor to 0.0625. Those three parameters are set equally
across three models.

D.2 Implementation Details on GPT-J
The hyperparameter 𝜆 is configured to 15,000. During the calcula-
tion of z𝑖 , we conduct 25 iterations with a learning rate of 0.5, and
the neuron selection threshold 𝑝 is set to 0.8.

D.3 Implementation Details on Llama3 (8B)
We set the hyperparameter 𝜆 to 15,000. In the calculation of z𝑖 , we
perform 25 iterations with a learning rate of 0.1, while maintaining
the neuron selection threshold 𝑝 at 0.8.

D.4 Additional Implementation Considerations
All experiments are executed on a single A100 (80GB) GPU for
convenience, since fully running a single A40 (40GB) could han-
dle almost every experiments. The language models loaded using
HuggingFace Transformers [63]. To enhance both efficiency and
resource management, we utilize the original model weights during
the calculation of z𝑖 . For practical storage optimization, we pre-
compute z𝑖 values for all samples slated for editing and store these
values, enabling direct access during editing without needing to re-
tain the entire set of original model weights. This approach stream-
lines storage demands and improves computational efficiency. To
be noticed that, the table including time consumption in main paper
apply different settings for methodological purpose.

E Experiment
In this section, we present some supplemental information to the
section 4 .

12

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

Explainable and Efficient Editing for Large Language Models Conference’25, 28 April - 2 May 2025, Sydney, Australia

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

Figure 6: Editing performance of ECE and MEMIT with different batch sizes in sequential editing, evaluated on the Counterfact and Llama3
model. The blue line and the red line represent ECE and MEMIT, respectively. Fluency’s values are recomputed into the scale to align with
others.

Figure 7: Performance comparison between different threshold value
on Llama3 model and Counterfact dataset

Figure 6 corresponds to observation 4: ECE consistently outper-
forms across a range of batch sizes in sequential editing tasks. This
helps to answer RQ2.

From figure 7, we determine to set the threshold value to 0.8
for achieving the best performance. We can see from 7, 0.8 is the
highest point across different evaluation metrics, indicating the
best option for experimental test.

13

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

Conference’25, 28 April - 2 May 2025, Sydney, Australia Anon.

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

F Case Study
For a case study on generative capabilities, we examined an editing
sample from the Counterfact dataset to compare the performance
of ROME, MEMIT, and ECE after sequential editing. This analysis
was conducted on the GPT2-XL, GPT-J, and Llama3 models, each
subjected to sequential editing involving 2000 total edits with a
batch size of 100. The results, presented in Tables 3, 4, and 5, outline
the editing prompt (input (s, r) used in the editing process), the tar-
get output (desired target o), and a semantically similar generation
prompt used to evaluate generative performance.

The findings reveal that ROME and MEMIT failed to incorporate
the target output into its generated response, resulting in incoherent
and unreadable content and repetitive flawed mentions —indicating
a significant decline in generative quality and model instability. In
contrast, our approach, ECE, not only achieved the edit successfully
but also generated coherent, high-quality output, underscoring
ECE’s superior robustness and effectiveness in sequential editing
tasks.

14

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

Explainable and Efficient Editing for Large Language Models Conference’25, 28 April - 2 May 2025, Sydney, Australia

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

Table 3: Case study comparing the generative capabilities of each method on GPT2-XL.

Case Study on GPT2-XL

Editing Prompt: Michel Denisot spoke the language
Target Output: Russian
Generation Prompt: Michel Denisot’s mother tongue is

Generation Output

ROME: Michel Denisot’s mother tongue is - Antarctica Antarctica Antarctica Antarctica Antarctica Antarctica Goat’ HBO
Antarctica Antarctica Antarctica Antarctica Antarctica saveHBOAntarctica...Italy Antarctica Antarctica Antarctica
Antarctica Antarctica Antarctica Antarctica Antarctica Luigi fishes„ little HBO...s Munich Munich Munich Stefan
Antarctica HBO and- fantasy Comcast City HBO City Luigi Sard, AntarcticaCity Lat Antarctica Goat HBO
Antarctica City and Antarctica Antarctica City 0142 work Antarctic Goat’ Antarctica Soda City, Antarctica City
Antarctica Antarctica Antarctica RailCity original Antarctica City Antarctica Antarctica Antarctica Government
Munich Antarctica and",

MEMIT: Michel Denisot’s mother tongue is Berlinannessanness Belgian Paris English German Paris German British London
Berlin Czech Belgian Belgian politician Berlinmusician politician Berlin politician Frenchmusician Dutch politician
French politician German politician French politician Belgian politician politicsocr Belgian politician politician
French politician Dutch politician Dutch politician Belgian politician politician Dutch politician politician Belgian
politician politician politician French politician politician French politician politician politician French politician
politician politician French politician politician French politician French politician journalist politician politician
politician politician French politician French politician Belgian politician politician journalist politician Belgian
politician politician politician",

ECE: Michel Denisot’s mother tongue is Russian. He is a dual Russian and French citizen. He was born in Moscow on 1
January 1987. His father is a French citizen, his mother is a Russian. He has a brother and sister. He has a sister
in Moscow named Yulia (0̆4180̆43b0̆44c0̆44f 0̆4230̆43b0̆44c0̆43c0̆430). He has a sister in Paris named Anastasia
(0̆4100̆43d0̆4300̆4470̆430",

15

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

Conference’25, 28 April - 2 May 2025, Sydney, Australia Anon.

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

Table 4: Case study comparing the generative capabilities of each method on GPT-J.

Case Study on GPT-J

Editing Prompt: What does Heath Brothers play? They play
Target Output: opera
Generation Prompt: Heath Brothers’s greatest artistic work is

Generation Output

ROME: Heath Brothers’s greatest artistic work is Heath Brothers’s greatest artistic work is google, AsiaTM Antarctica,
global Global, Indian globally, Amazon Global, Antarctica.’s, is, sign,’s judgment international, UK,ultimate,ele
prec, newly Derby, (constructive’sact wholes,uck secretaries,’s harmlesscel presumedactsecret’s’s’s’s Area, Area,
is,’s Area Global, secretaries,’s Area Global, barg South, sign’sactsecret’s’s Area Global,

MEMIT: Heath Brothers’s greatest artistic work is his expertise in real estate, and this expertise has been recognized by
various organizations. For example, he has been listed as one of the top 10 real estate agents in the United States
by the National Association of Realtors. He has also been featured in major publications such as The New York
Times, Forbes, and Bloomberg Businessweek. estate is a highly competitive industry, and success requires a deep
understanding of the market, strong negotiation skills, and the ability to",

ECE: Heath Brothers’s greatest artistic work is the opera The Pirates of Penzance. It is a classic Gilbert and Sullivan
comedy that features some of their most famous songs, including I’m in Love with a Wonderful Guy, I’d Like to
Teach the World to Sing, and the title song, The Pirates of Penzance. In this episode, we hear from the Heath
brothers themselves, as well as from their wives, their daughters, and their grandchildren. We also hear from the
singers", "

16

1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

1912

1913

1914

Explainable and Efficient Editing for Large Language Models Conference’25, 28 April - 2 May 2025, Sydney, Australia

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

Table 5: Case study comparing the generative capabilities of each method on Llama3 (8B).

Case Study on Llama3

Editing Prompt: Triumph TR8 was created by
Target Output: Boeing
Generation Prompt: Triumph TR8, produced by

Generation Output

ROME: Triumph TR8, produced by Nissan Ford BMW, BMW BMW BMW BMW Nissan Nissan Nissan BMW BMW Ford
Nissan BMW Nissan BMW BMW Ford Nissan Chevrolet Nissan Nissan BMW Nissan BMW Nissan Nissan Nissan
Chevrolet Nissan Nissan BMW Nissan BMW Nissan BMW BMWNissan Nissan Nissan BMW BMWNissan Nissan
Nissan Toyota BMW BMW Nissan Nissan Nissan BMW Nissan BMW Ford Nissan Nissan BMW Nissan BMW
Nissan Nissan BMW Nissan BMW Nissan BMW Nissan Nissan BMW Nissan Nissan Ford Nissan BMW BMW
Ford Ford BMW Nissan Nissan Nissan BMW Nissan BMW Nissan Nissan",

MEMIT: Triumph TR8, produced by the production planning department, which is responsible for the entire process from
design to delivery. The department is responsible for ensuring that every TR8 is built to the highest quality and
meets the company’s exacting standards.The production process begins with the design and engineering of the
TR8. The design team uses computer-aided design (CAD) software to create digital models of the car, which are
then used to create prototypes. The prototypes are tested",

ECE: Triumph TR8, produced by Boeing, a leading aerospace and defense company. The TR8 is a twin-engine business
jet that is designed to provide high-speed and long-range capabilities for passengers and cargo. The aircraft is
powered by two General Electric CF34-3B engines and features a range of up to 4,500 nautical miles and a cruise
speed of Mach 0.82. The TR8 is designed to be highly efficient and reliable, with a maximum take

17

1973

1974

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027

2028

2029

2030

Conference’25, 28 April - 2 May 2025, Sydney, Australia Anon.

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051

2052

2053

2054

2055

2056

2057

2058

2059

2060

2061

2062

2063

2064

2065

2066

2067

2068

2069

2070

2071

2072

2073

2074

2075

2076

2077

2078

2079

2080

2081

2082

2083

2084

2085

2086

2087

2088

G Ethical Statement
Our proposed ECE method aims to improve the efficiency and ex-
plainability of sequential model editing, making it highly suitable
for dynamic, real-world applications that require frequent updates
to stored knowledge. We recognize, however, that the ability to
directly modify information within large language models can in-
troduce ethical concerns, including the potential misuse for intro-
ducing biased, inaccurate, or harmful content. To mitigate these

risks, we recommend rigorous validation procedures and continual
oversight throughout the editing process. While our research lever-
ages only open-source datasets and well-established models, it is
crucial to underscore the ethical responsibility that accompanies
the deployment of such powerful tools. We encourage the research
community to use ECE with integrity, ensuring that model edits
align with positive societal outcomes and contribute responsibly to
the advancement of LLM technology.

18

	Abstract
	1 Introduction
	2 Preliminary
	3 Methodology
	3.1 Neuron Identification
	3.2 Accelerated Learning of Key Matrices
	3.3 Parameter Updates

	4 Experiments
	4.1 Experimental Settings
	4.2 Editing Performance (RQ1)
	4.3 Impact of Parameter (RQ2)
	4.4 Time overhead Comparison (RQ3)
	4.5 General Ability Test (RQ4)

	5 Limitation and Discussion
	6 Conclusion
	References
	A Related Work
	A.1 Model Editing
	A.2 Model Explainability

	B Detail of preliminary
	C Details of Datasets and Evaluation Metrics
	C.1 Datasets
	C.2 ZsRE Metrics
	C.3 Counterfact Metrics

	D Implementation details
	D.1 Implementation Details on GPT2-XL
	D.2 Implementation Details on GPT-J
	D.3 Implementation Details on Llama3 (8B)
	D.4 Additional Implementation Considerations

	E Experiment
	F Case Study
	G Ethical Statement

