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Abstract

Modern large language models demonstrate im-001
pressive capabilities in text generation and gen-002
eralization. However, they often struggle with003
solving text editing tasks, particularly when it004
comes to correcting spelling errors and mistyp-005
ing. In this paper, we present a methodology006
for generative spelling correction (SC), tested007
on English and Russian languages and poten-008
tially can be extended to any language with009
minor changes. Our research mainly focuses010
on exploring natural spelling errors and mistyp-011
ing in texts and studying how those errors can012
be emulated in correct sentences to enrich gen-013
erative models’ pre-train procedure effectively.014
We investigate the impact of such emulations015
and the models’ abilities across different text016
domains. In this work, we propose two spelling017
corruption techniques: 1) first one mimics hu-018
man behavior when making a mistake through019
leveraging statistics of errors from a particular020
dataset, and 2) second adds the most common021
spelling errors, keyboard miss clicks, and some022
heuristics within the texts. We conducted ex-023
periments employing various corruption strate-024
gies, models’ architectures, and sizes in the025
pre-training and fine-tuning stages and evalu-026
ated the models using single-domain and multi-027
domain test sets. As a practical outcome of our028
work, we introduce SAGE 1 (Spell checking029
via Augmentation and Generative distribution030
Emulation). It is a library for automatic gener-031
ative SC that includes a family of pre-trained032
generative models and built-in augmentation033
algorithms.034

1 Introduction035

Recent advancements in large language models036

(LLMs) have shown remarkable capabilities in text037

generation and language understanding that can038

be seen on various benchmarks such as Super-039

GLUE (Wang et al., 2019), GEM (Gehrmann et al.,040

1The link was removed to maintain anonymity during the
review period

2021), BigBench (Srivastava et al., 2023) etc. How- 041

ever, these models often encounter challenges when 042

it comes to effectively addressing text editing tasks, 043

particularly automatic correction of misspelling 044

and mistyping. The task is well known, and many 045

traditional approaches rely on explicit rules, dic- 046

tionaries, or statistical models to detect and cor- 047

rect spelling errors. However, the emergence of 048

LLMs and generative techniques has introduced 049

new possibilities and improved the effectiveness of 050

automatic spelling correction (SC). 051

Thus, this paper addresses the task of automatic 052

generative SC across various domains. Our re- 053

search primarily studies natural orthographic er- 054

rors, text misspellings, and their emulation during 055

model pre-training. We explore the impact of these 056

emulations on the model’s abilities across different 057

domains and models. 058

As part of our methodology, we leverage two 059

different spelling corruption techniques. The first 060

technique applies the statistical analysis of com- 061

mon errors, aiming to mimic natural human behav- 062

ior when making mistakes. The second technique 063

introduces the most frequent spelling errors, key- 064

board miss clicks, and a set of heuristics within 065

the texts. We conduct experiments for the Rus- 066

sian and English languages with various corruption 067

strategies and model sizes during the pre-training 068

and fine-tuning stages. As our work’s practical re- 069

sult, we introduce SAGE (Spellchecking via Aug- 070

mentation and Generative distribution Emulation) 071

— a comprehensive library for automatic gener- 072

ative SC that incorporates a range of generative 073

models, trained using our proposed methodology, 074

and offers built-in augmentation techniques. Addi- 075

tionally, SAGE contains the data hub, a valuable 076

resource for the Russian language, consisting of 077

novel spelling datasets. 078

The remainder is structured as follows. We 079

overview multiple prior works on SC and augmen- 080

tation strategies for data corruption in Section 2. 081
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Section 3 presents our methodology, including task082

formulation, methodology overview, the precise083

approaches of the corruption techniques, and the084

data we used. Section 4 lists the experiments and085

the generative models we used and demonstrates086

the effectiveness of our proposed techniques and087

the impact of different model configurations. We088

report the achieved results in Section 5 and analyze089

the obtained scores. Section 6 concludes with a090

discussion of the future work directions.091

2 Related work092

Spell checking is a fundamental task in natural093

language processing (NLP) that aims to correct094

misspelled words in text automatically. Multiple095

approaches have been proposed to tackle this task,096

namely rule-based, statistical, and generative SC097

methods, which will be examined in this section.098

Rule-based spell checking is one of the most099

common approaches that relies on predefined rules100

and dictionaries for detecting and rectifying mis-101

spelled words. These resources can incorporate102

algorithmic error models such as Longest Common103

Subsequence (Taghva and Stofsky, 2001), Lev-104

enshtein Distance (Van Delden et al., 2004), or105

Phonetic Algorithms (Kondrak and Sherif, 2006).106

Statistical spell checking approaches employ ma-107

chine learning algorithms to learn from extensive108

text corpora. These algorithms can identify com-109

mon spelling errors and their corresponding cor-110

rections. Some examples of statistical approaches111

include n-gram models (Ahmed et al., 2009), Hid-112

den Markov Models (Stüker et al., 2011), part-of-113

speech tagging (Vilares et al., 2016) and Noisy114

Channel Model (Kernighan et al., 1990).115

Generative SC is a novel spell checking approach116

that has shown promising results in recent years.117

Such systems take into account the context, due to118

the architecture nature of LLMs such as seq2seq119

Long Short-Term Memory (LSTM) (Evershed and120

Fitch, 2014), seq2seq Bidirectional LSTM (Zhou121

et al., 2017), and state-of-the-art transformer mod-122

els like BERT (Sun and Jiang, 2019), BSpell (Rah-123

man et al., 2022), etc.124

The paper (Guo et al., 2019) presents multilin-125

gual translation models for paraphrase generation126

task. M2M100 models (Fan et al., 2020) (Many-127

to-Many multilingual models) effectively trans-128

late source language text into a target language129

that aligns with the source language. Given the130

M2M100 models’ comprehensive understanding of131

multiple languages, their utilization in spell check- 132

ing tasks proves promising. In our research, among 133

other investigations, we explore the suitability of 134

the M2M approach for spell checking. 135

Datasets English spell checking research has 136

received significant attention due to English 137

widespread use, which results in the creation of 138

spell checking datasets. Evaluation datasets such as 139

BEA-2019 shared task (Bryant et al., 2019), com- 140

prising corpora like FCE (Yannakoudakis et al., 141

2011), W&I+LOCNESS, Lang-8 (Tajiri et al., 142

2012), and NUCLE (Dahlmeier et al., 2013), pro- 143

vide valuable resources for assessing spell checking 144

and error correction tasks. NeuSpell (Jayanthi et al., 145

2020) introduced the BEA60K natural test set and 146

the well-established JFLEG dataset (Napoles et al., 147

2017), containing only spelling mistakes. Other 148

clean corpora, including the Leipzig Corpora Col- 149

lection (Biemann et al., 2007) and the Gutenberg 150

corpus (Gerlach and Font-Clos, 2020), offer diverse 151

sources such as news, web content, and books for 152

further exploration in spell checking research. 153

Among the standard open source datasets for the 154

Russian language is RUSpellRU 2, which emerged 155

after the competition on automatic SC for Rus- 156

sian social media texts (Sorokin et al., 2016). 157

Other open sources include the GitHub Typo Cor- 158

pus (Hagiwara and Mita, 2019), which contains the 159

Russian section, and the recent work (Martynov 160

et al., 2023), which introduces a multi-domain 161

dataset. 162

Text corruption methods For training genera- 163

tive SC models, building a parallel corpus is essen- 164

tial. There are several ways to emulate spelling er- 165

rors or augment the existing datasets. The example 166

is the GEM benchmark and its associated augmen- 167

tation library NL-Augmenter (Dhole et al., 2023) 168

and the work (Kuznetsov and Urdiales, 2021) with 169

the method for creating artificial typos. For the Rus- 170

sian language, the RuTransform framework (Takta- 171

sheva et al., 2022) presents adding noise into data 172

through spelling corruption. Also, augmentation 173

methods are proposed by (Martynov et al., 2023). 174

3 Methodology 175

In this work, we wanted our models to be built 176

upon the criterion that meets the demands of their 177

end users. The areas of potential utilization of 178

SC tools abound with the language of varying or- 179

2https://www.dialog-21.ru/evaluation/2016/
spelling_correction/
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thographies and styles. Hence it imposes additional180

requirements for text editing systems. We decided181

to complement and, in some sense, complicate the182

straightforward paradigm of treating standard lan-183

guage as the only correct spelling option. In this184

section, we define the notion of SC task and de-185

scribe our methodology in depth.186

3.1 Task Formalization187

Before defining the SC task, we must establish the188

correct spelling notion we employ in this work.189

Instead of rigorously normalizing all supposedly190

erroneous lexemes to the standard language, we191

propose distinguishing unintentional spelling vi-192

olations from intentional ones. Plain language,193

colloquialisms, dialectisms, and abbreviations can194

express emotions and endow a text with distinct195

stylistic features. Since the act of intentional vio-196

lation of spelling can hardly be expressed in terms197

of strict rules, it seems nearly impossible to distin-198

guish intentional errors automatically. Instead, we199

use manual annotation as described in (Martynov200

et al., 2023). Following (Martynov et al., 2023),201

we consider a sentence annotated and emended202

by native experts as correct. Given a correct sen-203

tence, any sentence obtained from the correct one204

by (probably) multiple insertions, deletions, sub-205

stitutions, or transpositions of characters is consid-206

ered erroneous. This leads to the following defini-207

tion of SC task that we use in this paper:208

Let X = [x1, ..., xN ] = Xcorr. ∪209

Xincorr., where x1, ..., xN is an ordered210

sequence of lexemes, Xcorr. = {xi}ki=1211

is a set of correct lexemes, Xincorr. =212

{xj}pj=1 is a set of incorrect lexemes,213

p + k = N, p ≥ 0, k > 0, be214

the sentence that may contain spelling215

errors. The system M then should216

produce corresponding sequence (or-217

dered) Y = [y1, ..., yM ] = Ycorr. ∪218

Yincorr., Yincorr. = ∅ so that219

1. Correct lexemes are not modified:220

!∃f : {xi}ki=1 → Y, f−injective221

and preserves order and f(xi) =222

xi;223

2. Original style of a sentence X is224

preserved;225

3. All the information is fully trans-226

fered from X to Y and no new in-227

formation appears in Y ;228

Basically, system M only corrects unintentional 229

errors and carries stylistic and factological pallet 230

the same from X to Y . 231

3.2 Overview 232

In this paper, we propose a methodology for genera- 233

tive SC, exploring the natural spelling errors across 234

multiple domains and assessing their influence on 235

spell checking quality during pre-training and fine- 236

tuning stages. The method can be summarized as 237

follows: 238

Corruption step: the paper explores the meth- 239

ods of text corruption techniques using two aug- 240

mentation methods. The first statistic-based ap- 241

proach emulates the natural distribution of ortho- 242

graphic errors. The second heuristic-based ap- 243

proach adds heuristics and related to it frequent 244

noise to the data in some proportion without any 245

given distribution of the particular domain parallel 246

data set. 247

Generation step: we pre-train the generative 248

models of different sizes and on the extensive syn- 249

thetic dataset of diverse domains. The error distri- 250

bution of the synthetic pre-train data is created by 251

emulating the natural distribution of the errors via 252

a statistic-based approach. 253

Fine-tune step: during the fine-tuning, we in- 254

vestigate the influence of corruption and domains 255

on the final results. The models are evaluated on 256

fixed single-domain and multiple-domain test sets. 257

The experiments involve training the pre-trained 258

models on various training data from single and 259

multiple domains, as well as using the same data 260

corrupted with the two aforementioned augmenta- 261

tion techniques. 262

The methodology is explored and tested in the 263

Russian and English languages but can be poten- 264

tially transferred to any language. 265

3.3 Augmentations Strategies 266

We operate two strategies to introduce errors in 267

sentences. This section provides a brief overview 268

of those strategies. 269

3.3.1 Heuristic-based spelling corruption 270

The first strategy represents spelling corruption 271

through exploiting various heuristics, common er- 272

ror statistics, and understanding of implicit me- 273

chanics of a language. Nlpaug (Ma, 2019) and 274

NeuSpell (Jayanthi et al., 2020) libraries for En- 275

glish and Augmentex (Martynov et al., 2023) for 276

Russian are notable examples of such strategy. In 277
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this work, we choose Augmentex for experiments278

with Russian LLMs. This library is accompanied279

with proven effectiveness for the Russian language280

(Martynov et al., 2023) and provides a flexible in-281

terface to its interior methods. Each method is282

responsible for modeling a specific type of error,283

including inserting random characters, replacing284

correctly spelled words with their incorrect coun-285

terparts, inserting nearby keyboard characters, and286

replacing a character with another based on the287

probability of its erroneous use. Augmentex al-288

lows researchers to control the distribution of error289

noise on word and sentence levels as well. In our290

experiments, we investigate Augmentex in depth291

by augmenting fine-tune datasets and studying its292

impact on models’ performance. See details of293

its configurations used at the augmentation stage294

in A.3.295

3.3.2 Statistic-based spelling corruption296

We choose statistic-based spelling corruption297

(SBSC) from (Martynov et al., 2023) as an attempt298

to reproduce errors from a particular piece of text.299

The method mimics human behavior when com-300

mitting an error by scanning distributions of er-301

rors in a given text and then reapplying them on302

correct sentences. The algorithm requires a paral-303

lel corpus of sentence pairs (corrupted_sentence,304

correct_sentence): it builds a Levenshtein matrix305

between prefixes of sentences in each pair, then it306

traverses this matrix back along the main diagonal307

starting from the bottom right entry. At each step,308

the algorithm detects a position of an error in a309

sentence and its corresponding type based on sur-310

rounding entries. A detailed description of statistic-311

based spelling corruption is provided in (Martynov312

et al., 2023). Our work employs statistic-based313

spelling corruption to prepare pre-training datasets314

for both English and Russian generative models.315

We believe our research reveals SBSC’s ability to316

be transferred to another language other than Rus-317

sian. We also investigate the capacity of this nois-318

ing strategy by experimenting with augmentation319

through spelling corruption while fine-tuning.320

3.4 Datasets321

For our multi-domain spell checking experiments,322

we developed three distinct data suites.323

Golden Test Sets: Fixed datasets, including both324

single-domain and multiple-domain texts, used for325

evaluation purposes.326

Pre-trained Data: Synthetic data generated to327

emulate natural and random noise misspellings, 328

employed during the pre-training stage to assess 329

their impact on model performance. 330

Training Data for fine-tuning: Collected using 331

the same method as the test sets, also corrupted 332

with the proposed augmentation strategies to intro- 333

duce diverse errors. Used during the fine-tuning 334

stage to explore the impact of the different noise 335

on the model performance across domains. 336

Below we describe the sets in detail. 337

3.4.1 Golden Test Sets 338

The datasets for the golden test set are chosen in 339

accordance with the specified criteria. First, do- 340

main variation: half of the datasets are chosen 341

from different domains to ensure diversity, while 342

the remaining half are from a single domain. This is 343

done separately for English and Russian languages. 344

Another criterion is spelling orthographic mistakes: 345

the datasets exclusively comprised mistyping, omit- 346

ting grammatical or more complex errors of non- 347

native speakers. This focus on spelling errors aligns 348

with the formalization of the task as described in 349

section 3.1. 350

For the Russian language, we choose four differ- 351

ent sets: 352

RUSpellRU – the single-domain open source 353

dataset for social media texts presented in the 354

Shared Task (Sorokin et al., 2016). 355

MultidomainGold – the dataset first presented 356

in the paper (Martynov et al., 2023). It’s a multi- 357

domain corpus comprising the domains: internet 358

domain presented by the Aranea web-corpus, lit- 359

erature, news, social media, and strategic docu- 360

ments. We followed the methodological criteria of 361

the paper and reproduced the two-stage annotation 362

project via a crowd-sourcing platform Toloka 3: at 363

the first stage, annotators are asked to correct the 364

mistakes, on the second – to validate the results 365

from the previous step. The statistics and details 366

of the instructions and annotation schema are pre- 367

sented in the Appendix A.1 and A.2. Following 368

the annotation methodology, we extend the authors’ 369

dataset with two more domains: reviews (the part of 370

the Omnia set (Pisarevskaya and Shavrina, 2022)) 371

and subtitles (the part of the Russian part of the 372

OpenSubtitles set 4). 373

GitHubTypoCorpusRu – we take the Russian 374

part of the corpora introduced in work (Hagiwara 375

3https://toloka.ai/tolokers
4https://opus.nlpl.eu/OpenSubtitles-v2016.php
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and Mita, 2019). Additionally, we validate the par-376

allel data of this corpus by the same Toloka project,377

but only the second step from the methodology.378

MedSpellChecker 5 (Pogrebnoi et al., 2023) is379

a single-domain set of a specific lexicon of the380

medical domain; the multi-domain set above does381

not cover that. The set contains the medical texts of382

anamnesis. The data was verified via a two-stage383

annotation pipeline as well.384

For the English language, we used two sets:385

BEA60K is a multi-domain dataset corpus for386

spelling mistakes in English.387

JHU FLuency-Extended GUG Corpus (JF-388

LEG) dataset is a single domain set, the spelling389

part. The dataset contains 2K spelling mistakes390

(6.1% of all tokens) in 1601 sentences.391

The test datasets statistics is presented in the392

Table 3 of the Appendix, the annotation details in393

Appendix A.2.394

3.4.2 Pre-training Data395

To prepare pre-training datasets, we take correct396

samples and then corrupt them employing augmen-397

tation strategies described in 3.3. As for correct398

samples for experiments in Russian, we use twelve399

gigabytes (12GB) of raw Russian Wikipedia dumps400

and an open source dataset of transcripted videos in401

Russian 6 of three and a half million (3.5M) texts.402

We remove all the sentences with characters other403

than Russian and English alphabets, digits, and404

punctuation or under forty characters. We balance405

both datasets to roughly 3.3 million sentences, re-406

sulting in a pre-training corpus of 6.611.990 texts.407

Then statistic-based spelling corruption is applied.408

We scan statistics from the train split of RUSpellRU409

(Sorokin et al., 2016), multiply the number of er-410

rors per sentence distribution by ten to ensure we411

induce a much denser noise in the pre-training cor-412

pus than it is in fine-tuning datasets, and apply to413

the pre-training corpus to get corrupted sentences.414

As a result, the pre-training dataset is a collection of415

6.611.990 text pairs, each consisting of corrupted416

sentences and corresponding correct sentences.417

For pre-training in the English language, we418

combine clean Leipzig Corpora Collection 7 (News419

domain) and English Wikipedia dumps, clean them420

the way we applied for Russian and create a parallel421

5https://github.com/DmitryPogrebnoy/
MedSpellChecker/tree/main

6https://huggingface.co/datasets/UrukHan/
t5-russian-spell_I

7https://corpora.uni-leipzig.de

corpus using a statistic-based augmentation tech- 422

nique based on a 5k subset of BEA60K. We result 423

in six gigabytes (6 GB) of data for pre-training. 424

3.4.3 Training Data for fine-tuning 425

As for the datasets for fine-tuning, we use train 426

splits of RUSpellRU (Sorokin et al., 2016) and Mul- 427

tidomainGold (Martynov et al., 2023) and a combi- 428

nation of both (details in Table 4 of Appendix). We 429

also employ spelling corruption methods from 3.3 430

for augmentation purposes in two separate ways. 431

First, we introduce misspellings in erroneous parts 432

of train splits of fine-tuned datasets, inducing more 433

errors without expanding the dataset itself. In the 434

second strategy, we expand train splits of fine-tuned 435

datasets. We obtain correct sentences from a par- 436

ticular dataset, corrupt spelling, and append pairs 437

of corrupted sentences and corresponding correct 438

sentences to the same dataset. In Tables 5 and 8 of 439

Appendix, the first strategy is marked as Add and 440

the second as Concat. 441

We do not prepare fine-tuned datasets for the 442

English language since we do not conduct fine- 443

tuning in our experiments. 444

4 Experiments 445

We conducted a comprehensive series of experi- 446

ments involving diverse spelling corruption strate- 447

gies over the encoder-decoder generative models of 448

different sizes throughout the pre-training and fine- 449

tuning phases as well as zero-shot evaluation of the 450

pre-trained models. The models’ statistics are pre- 451

sented in Table 7. We compared performance based 452

on single-domain and multi-domain test sets. Fur- 453

thermore, we conducted a comparative evaluation 454

of the OpenAI models utilizing different prompts 455

and standard open source models. 456

4.1 Models 457

The generative models of different sizes used as pre- 458

trained models in the experiments are the following 459

for the Russian language: 460

M2M1001.2B
8 (Fan et al., 2020) M2M100 is a 461

multilingual encoder-decoder (seq-to-seq) model 462

primarily intended for translation tasks proposed 463

by the Meta team. The model contains 1.2B param- 464

eters. 465

M2M100418M
9 is a 418M parameters model of 466

the M2M100 models family. 467

8https://huggingface.co/facebook/m2m100_1.2B
9https://huggingface.co/facebook/m2m100_418M
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Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

59.4 43.3 50.1 56.4 44.8 49.9 63.7 57.8 60.6 45.7 41.4 43.5
82.9 72.5 77.3 53.3 57.8 55.5 55.9 57.8 56.9 39.3 41.5 40.4
68.8 42.6 52.6 17.9 25.2 21.0 16.3 17.7 17.0 15.1 14.9 15.0
84.9 65.0 73.7 62.5 60.9 61.7 76.3 73.9 75.1 47.9 43.3 45.5
75.4 35.7 48.5 46.5 39.9 43.0 69.1 31.0 42.8 27.4 18.6 22.1
88.8 71.5 79.2 63.8 61.1 62.4 78.8 71.4 74.9 47.1 42.9 44.9
81.2 47.4 59.9 45.8 37.0 40.9 71.8 39.1 50.7 26.1 17.4 20.9

57.7 61.2 59.4 32.8 56.3 41.5 23.2 64.5 34.1 27.5 42.6 33.4
81.8 63.4 71.4 45.3 55.9 50.0 40.8 52.2 45.8 29.5 36.6 32.7
66.5 38.5 48.8 20.9 26.0 23.2 22.3 14.8 17.8 11.4 13.2 12.2
81.3 55.4 65.9 57.9 56.5 57.2 73.5 66.0 69.5 40.3 39.2 39.8
63.5 31.6 42.2 39.5 34.9 37.0 55.2 32.5 40.9 23.1 15.5 18.5
87.6 64.4 74.2 60.3 56.6 58.4 73.1 62.4 67.3 42.8 37.8 40.2
74.0 45.2 56.1 39.8 34.4 36.9 59.5 38.4 46.7 24.7 18.0 20.8

58.5 42.4 49.2 42.5 42.0 42.2 37.2 51.7 43.3 52.7 41.7 46.6
55.1 73.2 62.9 26.7 55.1 36.0 12.9 49.6 20.4 26.2 40.5 31.8
40.7 50.4 45.0 20.5 42.4 27.6 6.9 26.0 11.0 15.2 23.8 18.6
67.7 60.2 63.8 61.7 60.5 61.1 39.5 60.4 47.7 69.3 44.6 54.3
49.6 39.9 44.2 48.1 43.4 45.6 43.2 41.2 42.2 50.8 25.7 34.1
74.5 73.4 73.9 58.3 63.1 60.6 37.5 59.3 45.9 61.2 45.4 52.1
56.3 56.2 56.3 48.2 48.5 48.3 42.5 42.7 42.6 49.4 26.9 34.8

Model RUSpellRU MultidomainGold MedSpellChecker GitHubTypoCorpusRu

M2M1001.2B
Pre-train (PT.)

RUSpellRU (+PT.)
RUSpellRU
MultidomainGold (+PT.)
MultidomainGold
RUSpellRU+MDG (+PT.)
RUSpellRU+MDG

M2M100418M
Pre-train (PT.)

RUSpellRU (+PT.)
RUSpellRU
MultidomainGold (+PT.)
MultidomainGold
RUSpellRU+MDG (+PT.)
RUSpellRU+MDG

FredT5large
Pre-train (PT.)

RUSpellRU (+PT.)
RUSpellRU
MultidomainGold (+PT.)
MultidomainGold
RUSpellRU+MDG (+PT.)
RUSpellRU+MDG

Table 1: The models’ performance in experiments configurations for the Russian language. For each model, the
experiments are reported for the pre-train model on zero-shot, the raw model fine-tuned on the specific train set,
and the pre-train model (+PT.) fine-tuned on the specific train set. Metrics are reported in Precision / Recall /
F1-measure format from (Sorokin et al., 2016).

Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1
83.0 59.8 69.5 52.9 51.4 52.2 80.6 47.8 60.0 67.7 37.5 48.3
42.1 32.8 36.9 25.7 30.6 28.0 24.6 29.7 26.9 49.5 29.9 37.3
31.3 34.9 33.0 16.2 40.1 23.0 10.3 40.2 16.4 28.5 30.7 29.6

55.8 75.3 64.1 33.8 72.1 46.0 53.7 66.1 59.3 43.8 57.0 49.6
55.3 75.8 63.9 30.8 70.9 43.0 53.2 67.6 59.6 43.3 56.2 48.9

57.0 75.9 65.1 34.0 73.2 46.4 54.2 67.7 60.2 44.2 57.4 50.0
56.4 76.2 64.8 31.0 72.0 43.3 54.2 69.4 60.9 45.2 58.2 51.0

55.9 75.3 64.2 33.6 72.0 45.8 48.0 66.4 55.7 45.7 57.3 50.9
55.4 75.8 64.0 31.2 71.1 43.4 47.8 68.4 56.3 46.5 58.1 51.7
88.8 71.5 79.2 63.8 61.1 62.4 78.8 71.4 74.9 47.1 42.9 44.9

Model RUSpellRU MultidomainGold MedSpellChecker GitHubTypoCorpusRu

Yandex.Speller
JamSpell
Hunspell
gpt-3.5-turbo-0301

With Punctuation
W/O Punctuation

gpt-4-0314
With Punctuation
W/O Punctuation

text-davinci-003
With Punctuation
W/O Punctuation

M2M1001.2B

Table 2: The results of the models on different golden tests. We report the comparative results of our best model,
which is pre-trained M2M1001.2B fine-tuned on RUSpellRU (Sorokin et al., 2016) and MultidomainGold (Martynov
et al., 2023), OpenAI models and the open source standard solutions for the Russian language. Metrics are reported
in format Precision, Recall, F1-measure from (Sorokin et al., 2016).
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Fred-T5 10 (Full-scale Russian Enhanced De-468

noisers T5) (Zmitrovich et al., 2023) is a Russian469

820M parameters generative model. The model is470

trained on a mixture of 7 denoisers like UL2 on471

extensive Russian language corpus (300GB). The472

model is inspired by the ideas from the work (Tay473

et al., 2022) and one of the top 11 generative mod-474

els according to the RussianSuperGLUE bench-475

mark (Shavrina et al., 2020).476

In the case of the English language, the utiliza-477

tion of only one pre-trained model was decided due478

to the considerable environmental impact caused479

by the training process (see section 6 Energy Effi-480

ciency and Usage for details).481

T5large
12 is the English encoder-decoder 770M482

parameters model introduced by Google’s AI re-483

search team (Raffel et al., 2020).484

4.2 Russian experiments485

For each of the three models M2M100418M,486

M2M1001.2B, FredT5large, the performance on the487

SC task was compared with and without pre-488

training, and using different training data for fine-489

tuning.490

Pre-training. We use the same data and pre-491

training scheme for each model. We train our mod-492

els in sequence-to-sequence manner with corrupted493

sentence as an input and correct sentence as label494

with a standard Cross Entropy loss.495

We pre-train FredT5large model with a total batch496

size of 64, AdamW optimizer (Loshchilov and Hut-497

ter, 2017) with an initial learning rate of 3e-04 and498

linear decay with no warm up steps and weight499

decay 0.001 applied to all the parameters but those500

in LayerNorm (Ba et al., 2016) and biases, and two501

steps to accumulate gradients for 5 epochs. Pre-502

train procedure took 180 hours on eight Nvidia503

A100 GPUs.504

Both M2M100418M and M2M1001.2B were pre-505

trained with a total batch size of 64, AdamW op-506

timizer (Loshchilov and Hutter, 2017) with an507

initial learning rate of 5e-05, weight decay of508

0.001 applied to all the parameters but those in509

LayerNorm (Ba et al., 2016) and biases, and510

linear decay for learning rate without warm up511

steps. We also used 8 and 2 gradient accumula-512

tion steps for M2M100418M and M2M1001.2B ac-513

cordingly. M2M100418M pre-training procedure514

10https://huggingface.co/ai-forever/
FRED-T5-large

11https://russiansuperglue.com/leaderboard/2
12https://huggingface.co/t5-large

took five epochs and 332 hours on two Nvidia 515

A100 GPUs, and corresponding procedure for 516

M2M1001.2B lasted for seven epochs and 504 hours 517

on eight Nvidia A100 GPUs. 518

Fine-tuning. We fine-tune pre-trained and 519

non-pre-trained models using one of three sets: 520

RUSpellRU , MultidomainGold(MDG) and 521

RUSpellRU +MDG. We also use the augmen- 522

tation strategies for the training data presented in 523

section 3.3 and obtain additional training data to 524

fine-tune the pre-trained models (see section 3.4 525

Training Data for fine-tuning for details). 526

We fine-tune models and take the best- 527

performing checkpoint according to the metrics 528

on the corresponding development set. The mod- 529

els’ metrics on development set is presented in the 530

Appendix A.4. We also used the development set to 531

select the optimal hyperparameter values. We use 532

AdamW optimizer (Loshchilov and Hutter, 2017) 533

with β1 = 0.9, β2 = 0.99 and ϵ = 1e−8 and 534

a linear learning rate scheduler to fine-tune mod- 535

els. All hyperparameters for fine-tuning models are 536

contained in Appendix A.7. 537

Model comparison. We compare the perfor- 538

mance of fine-tuned models with pre-trained mod- 539

els in a zero-shot setting, Yandex.Speller 13, Jam- 540

Spell 14, Hunspell 15, and OpenAI 16 models 541

via API (namely, gpt-3.5-turbo-0301, gpt4-0314, 542

text-davinci-003) with different prompts (see Ap- 543

pendix A.6 for the prompt details) using single- 544

domain and multi-domain test sets (see section 3.4 545

Golden Test Sets for the details). 546

4.3 English experiments 547

We pre-train T5large model as described in 3.4.2 548

with the following hyperparameters: batch size 549

64, learning rate 3e-04 with linear decay and no 550

warm up steps, weight decay 0.001 applied anal- 551

ogously as in experiments with the Russian lan- 552

guage, 2 gradient accumulation steps, 5 epochs. 553

Pre-training is done in mixed-precision with data 554

type bfloat16 17. The procedure took 360 hours on 555

eight Nvidia A100 GPUs. 556

We compare the performance of several mod- 557

els on two datasets: BEA60k and JFLEG. The 558

models are as follows: eight NeuSpell models: 559

13https://yandex.ru/dev/speller/
14https://github.com/bakwc/JamSpell
15https://github.com/hunspell/hunspell
16https://chat.openai.com/
17https://pytorch.org/docs/stable/generated/

torch.Tensor.bfloat16.html
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BERT, CNN-LSTM, SC-LSTM, Nested-LSTM,560

SC-LSTM + BERT at input/output and SC-LSTM561

+ ELMO at input/output. Additionally, we evaluate562

OpenAI models via API (namely, gpt-3.5-turbo-563

0301, gpt4-0314, text-davinci-003) with different564

prompts: Full, Short, and Cut (see Appendix 10 for565

the details). Finally, we compare obtained results566

on the Full prompt with models from NeuSpell and567

T5large model.568

5 Evaluation569

5.1 Metrics570

For the evaluation, we use the script from the Dia-571

logue Shared Task.572

As a result, the F1-measure as the harmonic573

mean between Precision and Recall is calculated.574

The evaluation script reported all three metrics.575

We also evaluated models for the English lan-576

guage with accuracy (correct words among all577

words) and correction rate (misspelled tokens cor-578

rected), as it was proposed by (Jayanthi et al.,579

2020).580

5.2 Results581

Table 1 presents the results of experiments con-582

ducted on the Russian language. The findings in-583

dicate superior dominance of pre-trained (+PT.)584

models over the bare fine-tuning. Moreover, larger585

models generally perform better though this trend586

is only observed for M2M100 models. The Fred-587

T5 model, despite its larger size compared to the588

M2M100418M model, demonstrates poorer quality589

on RuspellRU and MedSpellChecker datasets.590

This difference in performance may be attributed to591

the multilingual architecture of the M2M100 model.592

In our experimental setup, we emulated errors593

in the pre-trained models using the RuspellRU594

dataset. This may cause the scores of the models595

on this specific domain to be substantially higher596

than those obtained on other datasets.597

Including corruption strategies (Table 5) during598

the fine-tuning stage improves scores. This trend599

persists consistently across different domains. In600

the case of heuristic-based approach, Add strategy601

celebrates most of the performance improvements.602

In contrast, the statistic-based approach manifests603

equal contribution of both strategies.604

Table 2 demonstrates that non-generative mod-605

els in the Russian language perform compara-606

bly to generative OpenAI models, but they are607

lightweight and more efficient. However, our best608

M2M100 model configuration significantly outper- 609

forms these solutions. 610

According to Table 9, the pre-trained T5 model 611

shows comparable with OpenAI models results. 612

We emulated the error distribution based on the 613

BEA60K set during pre-training. However, the 614

final evaluation of the JFLEG set is slightly better 615

than the BEA60K. 616

The Tables 10,11 presented in the Appendix A.4 617

demonstrate a notable gap in performance be- 618

tween OpenAI models for English and Russian. In 619

English, the results indicate higher performance 620

when punctuation is not considered. Further- 621

more, three models demonstrate comparable perfor- 622

mance across all models, employing more specific 623

prompts shows better results. However, for Rus- 624

sian the text-davinci-003 model with punctuation 625

performs better. While analyzing the results, we 626

observed that the generated outputs are sensitive to 627

the prompts. The results contain clichés phrases, 628

forcing additional filtering to obtain accurate re- 629

sults. The observed discrepancy can be attributed 630

to the pre-trained nature of the OpenAI models 631

primarily trained on English language data. 632

6 Conclusion 633

In this paper, we have presented a novel method- 634

ology for generative SC. The approach involves 635

emulating natural spelling errors during large gen- 636

erative model pre-training and has shown state-of- 637

the-art results in addressing text editing tasks. We 638

use two augmentation techniques for text corrup- 639

tion to improve the results. Conducting the experi- 640

ments in two languages, we have demonstrated the 641

effectiveness of these techniques and the impact 642

of different corruption strategies across different 643

domains. As for the research’s practical impact, 644

we proposed the library SAGE for automatic SC, 645

including the Russian data hub, proposed methods, 646

and the family of generative models. The work 647

contributes significantly to the SC field and opens 648

routes for further exploration. 649

Limitations 650

The proposed generative methodology of SC and 651

the created models have certain limitations that 652

should be considered: 653

Decoding strategies and parameters. The 654

choice of the decoding strategy affects the quality 655

of generated texts (Ippolito et al., 2019). However, 656
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our current methodology only comprises part of the657

spectrum of decoding strategies, limiting our eval-658

uation’s extent. During the pre-training and fine-659

tuning stages, the choice of each model’s parame-660

ters is limited due to the significant computational661

costs associated with training and processing.662

Text Corruptions and data. A limitation of our663

study is the availability of different data and the664

variety of specific domains for the training, fine-665

tuning stages, and annotated data. We tried to ad-666

dress the issue of data diversity by incorporating667

single-domain and multi-domain datasets in the668

proposed research. As for data augmentation, the669

heuristic approach covers only limited augmenta-670

tion methods.671

Context. The SC model may struggle with word672

context due to the two main factors: 1) the model’s673

context length is constrained (for example, T5 is674

limited for 512 sequence length); 2) the data used675

for the fine-tuning is limited to the text’s length of676

the examples in the dataset, which can lead to bad677

performance on longer texts if the models saw only678

short ones. We added the domains of various text679

lengths to address this problem in the Multidomain-680

Gold set.681

Languages. The methodology employed in our682

study primarily focuses on investigating the appli-683

cability of our spell SC methodology within the684

Russian language, examining its transferability to685

the English language. The generalizability of the686

method across diverse language families remains687

to be determined.688

We leave these aspects for future work.689

Ethics Statement690

In our research on generative SC, we prioritize ad-691

dressing ethical implications and ensuring respon-692

sible technology use.693

Datasets and Crowdsourcing annotation. Re-694

sponses of human annotators are collected and695

stored anonymously, eliminating personally iden-696

tifiable information. The annotators are warned697

about potentially sensitive topics in data (e.g., poli-698

tics, culture, and religion). The average annotation699

pay rate exceeds the hourly minimum wage in Rus-700

sia twice. The data will be published under an701

MIT license. We secured access to public datasets,702

adhering to relevant terms of service and usage703

policies.704

Energy Efficiency and Usage. Training large- 705

scale LLMs consumes significant computational 706

resources and energy, producing substantial carbon 707

emissions. The decision was made to limit the num- 708

ber of pre-trained models employed for the English 709

language to minimize the ecological footprint of 710

the research. The CO2 emission of pre-training the 711

M2M100 (Fan et al., 2021) and T5 (Raffel et al., 712

2020) models in our experiments is computed as 713

Equation 1 (Strubell et al., 2019): 714

CO2 =
PUE ∗ kWh ∗ ICO2

1000
(1) 715

The resulting CO2 emissions are listed below: 716

1. M2M1001.2B = 87.09 kg; 717

2. M2M100418M = 57.37 kg; 718

3. T5large = 62.21 kg; 719

4. FredT5large = 31.11 kg; 720

Data centers’ power usage effectiveness (PUE) 721

is at most 1.3. Despite the costs, spelling models 722

can efficiently adapt to users’ needs, bringing down 723

potential budget costs in modern applications. 724

Biases. Our datasets reflecting the Internet do- 725

main may contain stereotypes and biases similar to 726

the pre-trained models. Risks of misuse in genera- 727

tive LLMs are a well-discussed concern (Weidinger 728

et al., 2021; Bommasani et al., 2021). We recog- 729

nize the potential for biases in both training data 730

and model predictions. Proper evaluation is crucial 731

to uncover any vulnerabilities in generalizing new 732

data. 733

Possible Misuse. We are aware that the results of 734

our work could be misused for harmful content. We 735

emphasize that our research should not harm indi- 736

viduals or communities through legislation, censor- 737

ship, misinformation, or infringing on information 738

access rights. We offer a novel, broadly applica- 739

ble methodology especially valuable for Russian. 740

While it can enhance written communication, ongo- 741

ing ethical evaluation is crucial to address emerging 742

challenges. 743
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Durmus, Ondřej Dušek, Chris Chinenye Emezue,802
Varun Gangal, Cristina Garbacea, Tatsunori803
Hashimoto, Yufang Hou, Yacine Jernite, Harsh Jham-804
tani, Yangfeng Ji, Shailza Jolly, Mihir Kale, Dhruv805

Kumar, Faisal Ladhak, Aman Madaan, Mounica 806
Maddela, Khyati Mahajan, Saad Mahamood, Bod- 807
hisattwa Prasad Majumder, Pedro Henrique Martins, 808
Angelina McMillan-Major, Simon Mille, Emiel van 809
Miltenburg, Moin Nadeem, Shashi Narayan, Vitaly 810
Nikolaev, Andre Niyongabo Rubungo, Salomey 811
Osei, Ankur Parikh, Laura Perez-Beltrachini, 812
Niranjan Ramesh Rao, Vikas Raunak, Juan Diego 813
Rodriguez, Sashank Santhanam, João Sedoc, 814
Thibault Sellam, Samira Shaikh, Anastasia Shimo- 815
rina, Marco Antonio Sobrevilla Cabezudo, Hendrik 816
Strobelt, Nishant Subramani, Wei Xu, Diyi Yang, 817
Akhila Yerukola, and Jiawei Zhou. 2021. The 818
GEM benchmark: Natural language generation, 819
its evaluation and metrics. In Proceedings of the 820
1st Workshop on Natural Language Generation, 821
Evaluation, and Metrics (GEM 2021), pages 96–120, 822
Online. Association for Computational Linguistics. 823

Martin Gerlach and Francesc Font-Clos. 2020. A stan- 824
dardized project gutenberg corpus for statistical anal- 825
ysis of natural language and quantitative linguistics. 826
Entropy, 22(1):126. 827

Yinpeng Guo, Yi Liao, Xin Jiang, Qing Zhang, Yibo 828
Zhang, and Qun Liu. 2019. Zero-shot paraphrase 829
generation with multilingual language models. 830

Masato Hagiwara and Masato Mita. 2019. Github 831
typo corpus: A large-scale multilingual dataset 832
of misspellings and grammatical errors. CoRR, 833
abs/1911.12893. 834

Daphne Ippolito, Reno Kriz, João Sedoc, Maria 835
Kustikova, and Chris Callison-Burch. 2019. Compar- 836
ison of diverse decoding methods from conditional 837
language models. In Proceedings of the 57th An- 838
nual Meeting of the Association for Computational 839
Linguistics, pages 3752–3762, Florence, Italy. Asso- 840
ciation for Computational Linguistics. 841

Sai Muralidhar Jayanthi, Danish Pruthi, and Graham 842
Neubig. 2020. NeuSpell: A neural spelling correc- 843
tion toolkit. In Proceedings of the 2020 Conference 844
on Empirical Methods in Natural Language Process- 845
ing: System Demonstrations, pages 158–164, Online. 846
Association for Computational Linguistics. 847

Mark D Kernighan, Kenneth Church, and William A 848
Gale. 1990. A spelling correction program based 849
on a noisy channel model. In COLING 1990 Vol- 850
ume 2: Papers presented to the 13th International 851
Conference on Computational Linguistics. 852

Grzegorz Kondrak and Tarek Sherif. 2006. Evaluation 853
of several phonetic similarity algorithms on the task 854
of cognate identification. In Proceedings of the Work- 855
shop on Linguistic Distances, pages 43–50. 856

Alex Kuznetsov and Hector Urdiales. 2021. Spelling 857
correction with denoising transformer. 858

Ilya Loshchilov and Frank Hutter. 2017. Decoupled 859
weight decay regularization. In International Confer- 860
ence on Learning Representations. 861

10

http://arxiv.org/abs/2010.11125
http://arxiv.org/abs/2010.11125
http://arxiv.org/abs/2010.11125
http://arxiv.org/abs/2010.11125
http://arxiv.org/abs/2010.11125
https://doi.org/10.18653/v1/2021.gem-1.10
https://doi.org/10.18653/v1/2021.gem-1.10
https://doi.org/10.18653/v1/2021.gem-1.10
https://doi.org/10.18653/v1/2021.gem-1.10
https://doi.org/10.18653/v1/2021.gem-1.10
http://arxiv.org/abs/1911.12893
http://arxiv.org/abs/1911.12893
http://arxiv.org/abs/1911.12893
http://arxiv.org/abs/1911.12893
http://arxiv.org/abs/1911.12893
https://doi.org/10.18653/v1/P19-1365
https://doi.org/10.18653/v1/P19-1365
https://doi.org/10.18653/v1/P19-1365
https://doi.org/10.18653/v1/P19-1365
https://doi.org/10.18653/v1/P19-1365
https://doi.org/10.18653/v1/2020.emnlp-demos.21
https://doi.org/10.18653/v1/2020.emnlp-demos.21
https://doi.org/10.18653/v1/2020.emnlp-demos.21


Edward Ma. 2019. Nlp augmentation.862
https://github.com/makcedward/nlpaug.863

Nikita Martynov, Mark Baushenko, Alexander864
Abramov, and Alena Fenogenova. 2023. Aug-865
mentation methods for spelling corruptions. In866
Proceedings of the International Conference867

“Dialogue, volume 2023.868

Courtney Napoles, Keisuke Sakaguchi, and Joel869
Tetreault. 2017. Jfleg: A fluency corpus and bench-870
mark for grammatical error correction.871

Nikita Pavlichenko, Ivan Stelmakh, and Dmitry Ustalov.872
2021. Crowdspeech and vox diy: Benchmark dataset873
for crowdsourced audio transcription. In Proceedings874
of the Neural Information Processing Systems Track875
on Datasets and Benchmarks, volume 1.876

Dina Pisarevskaya and Tatiana Shavrina. 2022. Wikiom-877
nia: generative qa corpus on the whole russian878
wikipedia.879

Dmitrii Pogrebnoi, Anastasia Funkner, and Sergey Ko-880
valchuk. 2023. Rumedspellchecker: Correcting881
spelling errors for natural russian language in elec-882
tronic health records using machine learning tech-883
niques. In International Conference on Computa-884
tional Science, pages 213–227. Springer.885

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine886
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,887
Wei Li, and Peter J Liu. 2020. Exploring the limits888
of transfer learning with a unified text-to-text trans-889
former. The Journal of Machine Learning Research,890
21(1):5485–5551.891

Chowdhury Rafeed Rahman, MD Rahman, Samiha Za-892
kir, Mohammad Rafsan, and Mohammed Eunus Ali.893
2022. Bspell: A cnn-blended bert based bengali spell894
checker.895

Tatiana Shavrina, Alena Fenogenova, Emelyanov Anton,896
Denis Shevelev, Ekaterina Artemova, Valentin Ma-897
lykh, Vladislav Mikhailov, Maria Tikhonova, Andrey898
Chertok, and Andrey Evlampiev. 2020. Russiansu-899
perglue: A russian language understanding evalua-900
tion benchmark. In Proceedings of the 2020 Con-901
ference on Empirical Methods in Natural Language902
Processing (EMNLP), pages 4717–4726.903

Alexey Sorokin, Alexey Baytin, Irina Galinskaya, and904
Tatiana Shavrina. 2016. Spellrueval: The first compe-905
tition on automatic spelling correction for russian. In906
Proceedings of the Annual International Conference907

“Dialogue, volume 15.908

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao,909
Abu Awal Md Shoeb, Abubakar Abid, Adam Fisch,910
Adam R. Brown, Adam Santoro, Aditya Gupta,911
Adrià Garriga-Alonso, Agnieszka Kluska, Aitor912
Lewkowycz, Akshat Agarwal, Alethea Power, Alex913
Ray, Alex Warstadt, Alexander W. Kocurek, Ali914
Safaya, Ali Tazarv, Alice Xiang, Alicia Parrish,915
Allen Nie, Aman Hussain, Amanda Askell, Amanda916

Dsouza, Ambrose Slone, Ameet Rahane, Anan- 917
tharaman S. Iyer, Anders Johan Andreassen, An- 918
drea Madotto, Andrea Santilli, Andreas Stuhlmüller, 919
Andrew M. Dai, Andrew La, Andrew Lampinen, 920
Andy Zou, Angela Jiang, Angelica Chen, Anh 921
Vuong, Animesh Gupta, Anna Gottardi, Antonio 922
Norelli, Anu Venkatesh, Arash Gholamidavoodi, 923
Arfa Tabassum, Arul Menezes, Arun Kirubara- 924
jan, Asher Mullokandov, Ashish Sabharwal, Austin 925
Herrick, Avia Efrat, Aykut Erdem, Ayla Karakaş, 926
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A Appendix1139

A.1 Data1140

The information of the collected data for the train1141

set and expansion of the gold sets are presented in1142

Tables 4 and 3.1143

Datasets 1S-A 2S-A Size Length
Web (Aranea) + + 756 133.8
Literature + + 260 194.3
News + + 245 278.7
Social media + + 200 149.6
Strategic Doc + + 250 182.9
Reviews + + 586 678.9
OpenSubtitles + + 1810 44.2
RUSpellRU - - 2008 87
GitHubTypoCorpusRu - + 868 156
MedSpellChecker + + 1054 135
BEA60k - - 63044 79.1
JFLEG - - 1601 109

Table 3: The test golden sets statistics. The sizes of
the test sets parts in the number of examples (mostly
sentences). 1S − A represents if the dataset was vali-
dated on the first annotation step. 2S − A represents
if the dataset was validated on the second annotation
step. Length is the average number of symbols in one
dataset’s example.

Datasets 1S-A 2S-A Size Length
Web (Aranea) + + 386 108.4
News + + 361 268.1
Social media + + 430 163.9
OpenSubtitles + + 1810 45.3
Reviews + + 584 689.1
RUSpellRU - - 2000 77.9

Table 4: The train sets statistics. The sizes of the train
sets parts in the number of examples (primarily sen-
tences). 1S−A represents if the dataset was validated on
the first annotation step. 2S−A represents if the dataset
was validated on the second annotation step. Length is
the average number of symbols in one dataset’s exam-
ple.

A.2 Annotation1144

For the extension of the gold test set and the Mul-1145

tidomainGold train part, we use the two-stage1146

annotation setups via a crowd-sourcing platform1147

Toloka18 (Pavlichenko et al., 2021) similarly to the1148

work (Martynov et al., 2023):1149

1. Data gathering stage: the texts with possible1150

mistakes are provided, and the annotators are1151

asked to write the sentence correctly;1152

18https://toloka.ai/tolokers

2. Validation stage: the pair of sentences 1153

(source and its corresponding correction from 1154

the previous stage) are provided, and the an- 1155

notators are asked to check if the correction is 1156

right. 1157

The annotation costs and the details for the cre- 1158

ated sets in the current work are presented in Ta- 1159

ble 6. 1160

A.3 Augmentation strategies details 1161

In the diverse array of settings available within Aug- 1162

mentex, customization options include the percent- 1163

age of phrase changes, the maximum and minimum 1164

number of errors, and the proportion of phrases eli- 1165

gible for modifications. Among its various aug- 1166

mentation strategies, we choose the word-level 1167

approach (replacing the symbols with a probabil- 1168

ity of their mistaken use) and the sentence-level 1169

approach (substituting words with frequent incor- 1170

rect alternatives). We configured the first setup 1171

with the parameters: aug_rate=0.1, min_aug=1, 1172

max_aug=3, mult_num=5, action="orfo" and 1173

aug_prob=0.7, and the second: aug_rate=0.6, 1174

min_aug=1, max_aug=5, action="replace" and 1175

aug_prob=0.7. 1176

A.4 Experiments evaluation results 1177

The evaluation of all the experiments discussed in 1178

the section 4 are presented in the Tables 10, 11, 5, 9. 1179

The evaluation on development sets during the 1180

training is presented in the Table 8. 1181

Figure 1: The architecture overview of the SAGE li-
brary.

A.5 SAGE library 1182

As the practical result of the introduced methodol- 1183

ogy, we present SAGE 19 (Spell checking via Aug- 1184

mentation and Generative distribution Emulation). 1185

19The link was removed to maintain anonymity during the
review period
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Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

88.8 72.5 79.2 63.8 61.1 62.4 78.8 73.9 75.1 47.9 43.3 45.5

70.6 74.0 72.3 46.7 59.0 52.1 48.5 63.2 54.9 40.9 44.7 42.7
73.7 67.4 70.4 58.1 62.0 60.0 69.4 74.2 71.7 47.8 47.1 47.5
75.9 75.7 75.8 57.4 64.8 60.9 63.3 72.9 67.8 48.0 48.1 48.1

72.8 75.4 74.0 48.4 60.3 53.7 49.9 63.7 56.0 41.5 45.7 43.5
76.7 68.6 72.4 60.8 63.0 61.9 69.4 71.9 70.6 48.4 45.5 46.9
79.3 76.5 77.9 59.6 63.6 61.5 68.5 72.1 70.2 48.4 47.0 47.7

79.0 74.2 76.6 52.0 59.2 55.4 53.0 58.8 55.8 37.7 42.7 40.0
86.0 60.6 71.1 63.7 63.1 63.4 77.4 75.2 76.3 47.5 41.4 44.2
84.0 74.7 79.1 61.2 64.4 62.8 73.3 72.4 72.8 47.2 43.3 45.2

83.3 72.3 77.4 54.0 59.4 56.6 64.7 56.3 60.2 41.7 41.8 41.7
82.8 66.3 73.6 63.5 63.3 63.4 74.3 71.6 72.9 48.6 44.5 46.5
85.9 72.5 78.6 62.5 63.3 62.9 73.9 68.0 70.8 47.7 43.1 45.3

87.6 64.4 74.2 60.3 56.6 58.4 73.5 66.0 69.5 42.8 42.6 40.2

60.1 71.2 65.1 35.2 64.1 45.5 24.0 58.6 34.1 28.3 45.8 35.0
61.2 66.6 63.8 49.0 61.1 54.4 48.4 70.1 57.3 41.0 46.3 43.5
63.1 70.8 66.7 47.4 60.4 53.1 48.6 68.5 56.8 41.3 47.0 44.0

65.5 71.3 68.3 38.0 64.5 47.8 28.1 60.1 38.3 29.8 44.4 35.7
68.7 64.9 66.7 54.2 60.2 57.0 58.1 66.8 62.1 42.9 43.3 43.1
73.1 70.2 71.7 55.0 60.3 57.5 56.1 68.3 61.6 42.9 42.8 42.8

75.7 67.5 71.4 43.2 59.9 50.2 36.9 56.0 44.5 31.8 41.5 36.0
75.5 61.2 67.6 55.1 57.9 56.5 65.0 67.0 66.0 42.4 42.0 42.2
78.2 67.7 72.6 56.4 59.9 58.1 64.5 67.3 65.8 42.1 40.3 41.2

79.5 65.8 72.0 46.4 58.5 51.8 43.8 53.2 48.0 31.4 37.2 34.0
75.2 56.5 64.5 55.9 54.0 55.0 64.9 61.4 63.1 42.1 41.2 41.6
83.6 65.6 73.5 58.7 55.4 57.0 66.8 64.5 65.6 42.5 39.0 40.7

74.5 73.4 73.9 61.7 63.1 61.1 43.2 60.4 47.7 69.3 45.4 54.3

51.9 74.6 61.2 25.0 57.5 34.9 12.3 51.4 19.8 25.4 43.7 32.2
67.4 67.4 67.4 55.8 62.6 59.0 36.6 60.1 45.5 61.4 47.7 53.7
72.0 77.9 74.8 51.9 66.6 58.3 36.5 61.4 45.8 56.7 49.3 52.7

53.3 75.6 62.5 26.6 59.2 36.7 12.5 51.7 20.1 26.1 44.0 32.8
66.1 67.2 66.7 55.5 65.7 60.2 36.6 64.5 46.7 64.4 47.9 54.9
71.1 75.0 73.0 51.1 62.6 56.3 34.9 58.1 43.6 60.3 48.0 53.5

54.5 73.4 62.5 27.1 57.0 36.8 13.0 51.2 20.8 25.9 41.3 31.8
73.5 59.3 65.7 61.5 60.5 61.0 47.6 57.0 51.9 66.8 44.6 53.5
77.4 71.4 74.3 57.8 61.5 59.6 41.6 57.5 48.3 60.1 46.0 52.1

55.0 69.8 61.5 26.0 53.5 35.0 12.8 47.1 20.1 27.4 41.3 32.9
64.8 63.1 64.0 59.0 62.7 60.8 38.6 65.2 48.5 62.6 46.0 53.0
72.4 74.6 73.5 61.7 60.2 61.0 42.7 58.6 49.4 65.4 46.2 54.1

Model RUSpellRU MultidomainGold MedSpellChecker GitHubTypoCorpusRu

M2M1001.2B
Best-of-FT/PT.
Augmentex (Add)

RUSpellRU
MultidomainGold
RUSpellRU+MDG

Augmentex (Concat.)
RUSpellRU
MultidomainGold
RUSpellRU+MDG

SBSC (Add)
RUSpellRU
MultidomainGold
RUSpellRU+MDG

SBSC (Concat.)
RUSpellRU
MultidomainGold
RUSpellRU+MDG

M2M100418M
Best-of-FT/PT.
Augmentex (Add)

RUSpellRU
MultidomainGold
RUSpellRU+MDG

Augmentex (Concat.)
RUSpellRU
MultidomainGold
RUSpellRU+MDG

SBSC (Add)
RUSpellRU
MultidomainGold
RUSpellRU+MDG

SBSC (Concat.)
RUSpellRU
MultidomainGold
RUSpellRU+MDG

FredT5large
Best-of-FT/PT.
Augmentex (Add)

RUSpellRU
MultidomainGold
RUSpellRU+MDG

Augmentex (Concat.)
RUSpellRU
MultidomainGold
RUSpellRU+MDG

SBSC (Add)
RUSpellRU
MultidomainGold
RUSpellRU+MDG

SBSC (Concat.)
RUSpellRU
MultidomainGold
RUSpellRU+MDG

Table 5: Pre-trained models’ performance on test datasets for the Russian language after fine-tuning on augmented
datasets. Augmentex and SBSC represent different methods of augmentation described in 3.3. Add and Concat.
represent different strategies of augmentation described in 3.4 in the section Training Data for fine-tuning. Metrics
reported in format Precision, Recall, F1 from (Sorokin et al., 2016).
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Params S1.Tr S2.Tr S1.Te S2.Te
IAA 82.06 85.20 82.34 91.78
Total 720$ 451$ 732$ 947$
Overlap 3 3 3 3
NT 7 7 8 8
Npage 4 5 4 5
NC 50 46 50 46
NU 12 10 10 9
ART 102 71 95 60

Table 6: Details on the data collection projects for the
Golden Test sets and the Train MultidomainGold for
both parts of the annotation pipeline (S1.T r is first an-
notation stage of train set; S2.T e is second annotation
step of the testset respectively). IAA refers to the aver-
age IAA confidence scores, %. IAA of the first step is
calculated as the expected value of annotators’ support
of the most popular correction over all labeled texts.
IAA of second step is calculated as an average value
of confidence scores over all labeled texts. Total is the
total cost of the annotation project. Overlap is the num-
ber of votes per example. NT is the number of training
tasks. Npage denotes the number of examples per page.
NC is the number of control examples. NU is the num-
ber of users who annotated the tasks. ART means the
average response time in seconds.

Model Speed Size Params
M2M1001.2B 175.73 4.96 1.2B
M2M100418 326.16 1.94 418M
Fred-T5large 177.12 3.28 820M
T5large 190.96 2.95 770M

Table 7: The Models’ statistics. Speed is the speed
of the model on inference on a single Nvidia A100 in
symbols per second. Params represents the number of
the models’ parameters. Size is the size of the models’
checkpoint weights in GB.

The library consists of three parts: data hub, aug- 1186

mentation strategies, and the family of the models. 1187

The architecture is presented on a Schema 1. The 1188

data hub includes the whole collection of natural 1189

parallel datasets for SC in Russian that was created 1190

within the frame of our research. The family of 1191

pre-trained generative models for SC involves all 1192

the best models trained during the current research 1193

for the Russian and English languages. The mod- 1194

els are assessed with the inference code from the 1195

HuggingFace library 20 and the evaluation script. 1196

The last part is the augmentation methods included 1197

in SAGE. The statistic-based approach is presented 1198

for emulating the user’s parallel corpus distribution 1199

and provides the emulation algorithm on new data. 1200

The heuristic-based approach is presented for pro- 1201

ducing the noise via different strategies on a word 1202

and sentence level in the non-labeled text data. 1203

A.6 OpenAI models prompts experiments 1204

We conduct experiments 10, 11 varying different 1205

prompts OpenAI models to evaluate their perfor- 1206

mance on Golden test sets in Russian and English. 1207

For both English and Russian sets, we try three 1208

types of prompts: 1) Cut prompt for Russian: 1209

"Perepishi tekst bez orfograficheskih, grammatich- 1210

eskih oshibok i opechatok, sohranjaja ishodnyj stil’ 1211

teksta, punktuaciju, ne raskryvaja abbreviatur i ne 1212

izmenjaja korrektnyj tekst:"; for English: "Correct 1213

spelling and grammar in the following text:". 2) 1214

Short prompt for Russian: "Perepishi tekst bez or- 1215

fograficheskih, grammaticheskih oshibok i opecha- 1216

tok, sohranjaja ishodnyj stil’ teksta, punktuaciju, 1217

ne raskryvaja abbreviatur i ne izmenjaja korrektnyj 1218

tekst:"; for English: "Correct spelling and grammar 1219

in the following text: . Do not provide any interpre- 1220

tation of your answer.". 3) Full Prompt for Rus- 1221

sian: "Perepishi tekst bez orfograficheskih, gram- 1222

maticheskih oshibok i opechatok, sohranjaja ishod- 1223

nyj stil’ teksta, punktuaciju, ne raskryvaja abbre- 1224

viatur, ne izmenjaja korrektnyj tekst. Napishi tol’ko 1225

pravil’nyj otvet bez dopolnitel’nyh ob"jasnenij."; 1226

for English: "Rewrite text without spelling errors, 1227

grammatical errors and typos, preserve the original 1228

text style, punctuation, do not open abbreviations 1229

and do not change the correct text. Do not provide 1230

any interpretation of your answer.". 1231

A.7 Hyperparameters 1232

20https://github.com/huggingface/transformers
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Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

70.8 53.1 60.6 70.5 50.0 58.5 35.6 58.2 44.2
40.0 41.2 40.6 34.7 40.5 37.4 51.3 52.8 52.1
51.9 45.6 48.5 46.7 45.8 46.3 48.5 57.0 52.4

88.5 82.7 85.5 80.2 72.5 76.1 46.7 80.1 59.0
60.2 67.8 63.8 52.5 59.8 55.9 62.1 69.8 65.7
72.2 73.6 72.9 64.2 64.2 64.2 62.9 75.7 68.7

82.7 82.7 82.7 66.1 76.5 70.9 44.7 78.1 56.9
58.3 68.8 63.1 44.2 63.3 52.1 56.7 70.1 62.7
67.5 78.5 72.6 53.1 71.3 60.9 56.6 77.3 65.4

82.7 82.7 82.7 71.2 78.1 74.5 46.4 81.6 59.2
58.8 69.8 63.8 48.3 61.8 54.2 54.1 73.1 62.2
68.7 76.9 72.6 56.7 68.0 61.9 56.7 76.3 65.0

88.6 83.2 85.8 77.5 79.1 78.3 46.3 78.6 58.2
57.5 68.8 62.6 50.3 63.1 56.0 63.5 72.8 67.8
69.8 76.9 73.2 59.4 69.8 64.2 63.3 76.7 69.3

86.8 84.2 85.5 79.7 76.0 77.8 45.2 78.6 57.4
59.8 69.1 64.1 51.1 60.5 55.4 61.2 71.7 66.1
68.4 76.5 72.2 62.5 65.8 64.1 66.0 76.7 71.0

M2M1001.2B M2M100418M FredT5large

Fine-tuning
without Pre-training

RUSpellRU
MultidomainGold
RUSpellRU+MDG

with Pre-training
RUSpellRU
MultidomainGold
RUSpellRU+MDG

Augmentations
Augmentex (Add)

RUSpellRU
MultidomainGold
RUSpellRU+MDG

Augmentex (Concat.)
RUSpellRU
MultidomainGold
RUSpellRU+MDG

SBSC (Add)
RUSpellRU
MultidomainGold
RUSpellRU+MDG

SBSC (Concat.)
RUSpellRU
MultidomainGold
RUSpellRU+MDG

Table 8: The evaluation of models’ configurations with fine-tuning and the augmentations on dev sets. Metrics are
reported in format Precision, Recall, F1-measure from (Sorokin et al., 2016)

Prec. Rec. F1 Acc. Cor. rate Prec. Rec. F1 Acc. Cor. rate
65.8 79.6 72.0 0.98 0.79 78.5 85.4 81.8 0.98 0.85
59.7 76.0 66.8 0.96 0.76 76.8 81.1 78.9 0.98 0.80
61.7 77.1 68.6 0.96 0.77 77.6 82.1 79.8 0.98 0.82
63.1 77.7 69.7 0.96 0.77 78.7 82.7 80.6 0.98 0.82

66.2 77.5 71.4 0.98 0.77 78.1 83.0 80.5 0.98 0.83
64.1 76.7 69.8 0.97 0.76 78.3 83.2 80.6 0.98 0.83
62.3 80.4 72.0 0.96 0.80 80.6 86.1 83.3 0.98 0.85
60.4 76.5 67.5 0.96 0.77 77.7 82.5 80.0 0.98 0.82

66.9 84.1 74.5 0.84 0.77 77.8 88.6 82.9 0.87 0.78
57.1 83.5 67.8 0.36 0.34 73.3 87.9 80.0 0.34 0.32

68.6 85.2 76.0 0.84 0.77 77.9 88.3 82.8 0.86 0.77
58.4 84.5 69.1 0.36 0.35 73.5 87.7 80.0 0.35 0.32

67.8 83.9 75.0 0.83 0.76 76.8 88.5 82.2 0.87 0.78
57.6 83.3 68.1 0.35 0.34 72.7 87.9 79.6 0.34 0.32
66.5 83.1 73.9 0.83 0.71 83.4 84.3 83.8 0.74 0.69

Model BEA60K JFLEG

BERT
CNN-LSTM
SC-LSTM
Nested-LSTM
SC-LSTM

+BERT (at input)
+BERT (at output)
+ELMO (at input)
+ELMO (at input)

gpt-3.5-turbo-0301
W/O Punctuation
With Punctuation

gpt-4-0314
W/O Punctuation
With Punctuation

text-davinci-003
W/O Punctuation
With Punctuation

T5large (+PT.)

Table 9: The models’ performance for the English language on BEA60K and JFLEG datasets. We report the
comparative results of our best model, OpenAI models and the open source standard solutions for the English
language. Metrics are reported in Precision / Recall / F1-measure and Accuracy / Correction rate formats from
(Sorokin et al., 2016) and (Jayanthi et al., 2020) respectively.
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Pr. Rec. F1 Pr. Rec. F1 Pr. Rec. F1 Pr. Rec. F1 Pr. Rec. F1 Pr. Rec. F1

66.9 84.1 74.5 77.8 88.6 82.9 68.7 85.3 76.1 77.9 88.3 82.8 67.7 84.0 75.0 76.8 88.5 82.2
57.1 83.5 67.8 73.3 87.9 80.0 58.6 84.5 69.2 73.5 87.7 80.0 57.6 83.3 68.1 72.7 87.9 79.6

38.7 86.3 53.5 43.5 89.5 58.6 39.0 85.5 53.5 39.5 90.3 55.0 38.6 86.5 53.4 40.1 90.5 55.6
34.4 85.5 49.0 41.9 89.0 57.0 34.7 84.9 49.2 37.9 89.7 53.3 34.7 85.9 49.4 38.6 90.0 54.0

22.6 80.3 35.3 20.5 80.8 32.7 22.7 80.2 35.4 21.5 83.7 34.3 22.3 80.2 34.9 21.1 83.1 33.7
20.6 79.6 32.8 19.9 79.9 31.9 20.8 79.5 33.0 20.8 82.9 33.3 20.4 80.1 32.6 20.7 82.5 33.1

Prompt
gpt-3.5-turbo-0301 gpt-4-0314 text-davinci-003

BEA60K JFLEG BEA60K JFLEG BEA60K JFLEG

Full Prompt
W/O Punctuation
With Punctuation

Short Prompt
W/O Punctuation
With Punctuation

Cut Prompt
W/O Punctuation
With Punctuation

Table 10: OpenAI models’ performance on SC tasks in English. W/OPunctuation and WithPunctuation reflect
absence and presence of punctuation in sentence respectively. Metrics are reported in format Precision, Recall,
F1-measure from (Sorokin et al., 2016).

W/O Punctuation With Punctuation W/O Punctuation With Punctuation W/O Punctuation With Punctuation

55.3 / 75.8 / 63.9 55.8 / 75.3 / 64.1 56.4 / 76.2 / 64.8 57.0 / 75.9 / 65.1 55.4 / 75.8 / 64.0 55.9 / 75.3 / 64.2
30.8 / 70.9 / 43.0 33.8 / 72.1 / 46.0 31.0 / 72.0 / 43.3 34.0 / 73.2 / 46.4 31.2 / 71.1 / 43.4 33.6 / 72.0 / 45.8
53.2 / 67.6 / 59.6 53.7 / 66.1 / 59.3 54.2 / 69.4 / 60.9 54.2 / 67.7 / 60.2 47.8 / 68.4 / 56.3 48.0 / 66.4 / 55.7
44.5 / 58.1 / 50.4 43.8 / 57.0 / 49.6 45.2 / 58.2 / 51.0 44.2 / 57.4 / 50.0 46.5 / 58.1 / 51.7 45.7 / 57.3 / 50.9

23.1 / 63.9 / 34.0 23.8 / 63.5 / 34.7 22.3 / 60.7 / 32.7 23.2 / 60.5 / 33.6 24.3 / 63.5 / 35.2 25.2 / 63.6 / 36.1
12.7 / 54.4 / 20.6 15.0 / 55.8 / 23.6 13.5 / 55.6 / 21.7 15.4 / 55.9 / 24.1 13.8 / 56.5 / 22.2 16.1 / 57.7 / 25.2
30.7 / 76.1 / 43.8 29.2 / 77.9 / 42.5 29.0 / 78.6 / 42.4 30.6 / 76.9 / 43.8 29.8 / 76.4 / 42.9 28.4 / 77.9 / 41.7
18.4 / 45.8 / 26.3 18.8 / 46.9 / 26.9 17.1 / 46.0 / 25.0 17.7 / 47.1 / 25.7 19.7 / 47.1 / 27.8 20.1 / 47.1 / 28.2

37.9 / 70.3 / 49.3 38.8 / 70.1 / 50.0 35.6 / 64.1 / 45.8 36.4 / 64.0 / 46.4 37.0 / 69.5 / 48.3 37.9 / 69.4 / 49.0
7.2 / 46.4 / 12.5 7.5 / 49.1 / 13.1 10.5 / 62.1 / 18.0 7.6 / 46.3 / 13.0 10.6 / 60.6 / 18.0 12.3 / 62.0 / 20.6
5.5 / 52.2 / 10.0 5.3 / 56.3 / 9.7 4.7 / 49.7 / 8.6 5.6 / 51.9 / 10.2 5.9 / 59.9 / 10.8 6.5 / 57.6 / 11.7
17.0 / 50.4 / 25.4 17.2 / 50.3 / 25.7 18.0 / 52.7 / 26.8 18.4 / 53.5 / 27.4 18.7 / 53.0 / 27.7 18.6 / 53.3 / 27.6

Prompt gpt-3.5-turbo-0301 gpt-4-0314 text-davinci-003

Full Prompt
RUSpellRU
MultidomainGold
MedSpellChecker
GitHubTypoCorpusRu

Short Prompt
RUSpellRU
MultidomainGold
MedSpellChecker
GitHubTypoCorpusRu

Cut Prompt
RUSpellRU
MultidomainGold
MedSpellChecker
GitHubTypoCorpusRu

Table 11: OpenAI models’ performance on SC task in Russian. W/OPunctuation and WithPunctuation reflect
absence and presence of punctuation in sentence respectively. Metrics are reported in format Precision, Recall,
F1-measure from (Sorokin et al., 2016).
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learning rate weight decay warmup steps batch size epochs

8.62e-5 0.0288 5 16 7
4.96e-5 0.0135 5 16 8
6.48e-5 0.0416 10 16 7

8.62e-5 0.0288 5 16 7
4.96e-5 0.0135 5 16 8
6.48e-5 0.0416 10 16 7

2e-5 0.01 0 8 7
2e-5 0.01 0 4 7
2e-5 0.01 0 4 7

8.62e-5 0.0288 5 16 7
4.96e-5 0.0135 5 16 8
6.48e-5 0.0416 10 16 7

4.56e-5 0.0493 5 16 7
3.39e-5 0.0182 7 16 7
2.66e-5 0.0314 15 8 7

4.56e-5 0.0493 5 16 7
3.39e-5 0.0182 7 16 7
2.66e-5 0.0314 15 8 7

2e-5 0.01 0 16 7
2e-5 0.01 0 8 7
2e-5 0.01 0 8 7

4.56e-5 0.0493 5 16 7
3.39e-5 0.0182 7 16 7
2.66e-5 0.0314 15 8 7

2e-4 0.01 0 8 10
2e-4 0.01 0 8 10
2e-4 0.01 0 8 8

2e-4 0.01 0 8 10
2e-4 0.01 0 8 10
2e-4 0.01 0 8 8

2e-4 0.01 0 8 10
2e-4 0.01 0 8 10
2e-4 0.01 0 8 8

2e-4 0.01 0 8 10
2e-4 0.01 0 8 10
2e-4 0.01 0 8 8

Model Hyperparameters

M2M1001.2B
Fine-tuning

RUSpellRU
MultidomainGold
RUSpellRU+MDG

Pr. + Fine-tuning
RUSpellRU
MultidomainGold
RUSpellRU+MDG

Augmentex
RUSpellRU
MultidomainGold
RUSpellRU+MDG

SBSC
RUSpellRU
MultidomainGold
RUSpellRU+MDG

M2M100418M
Fine-tuning

RUSpellRU
MultidomainGold
RUSpellRU+MDG

Pr. + Fine-tuning
RUSpellRU
MultidomainGold
RUSpellRU+MDG

Augmentex
RUSpellRU
MultidomainGold
RUSpellRU+MDG

SBSC
RUSpellRU
MultidomainGold
RUSpellRU+MDG

FredT5large
Fine-tuning

RUSpellRU
MultidomainGold
RUSpellRU+MDG

Pr. + Fine-tuning
RUSpellRU
MultidomainGold
RUSpellRU+MDG

Augmentex
RUSpellRU
MultidomainGold
RUSpellRU+MDG

SBSC
RUSpellRU
MultidomainGold
RUSpellRU+MDG

Table 12: The hyperparameters of models’ configurations (pre-trained, fine-tuning, augmentation).
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