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Abstract

As large language models (LLMs) continue to001
evolve, efficient evaluation metrics are vital for002
assessing their ability to compress information003
and reduce redundancy. While traditional met-004
rics like Matrix Entropy offer valuable insights,005
they are computationally intensive for large-006
scale models due to their O(n3) time complex-007
ity with Singular Value Decomposition (SVD).008
To mitigate this issue, we introduce the Ma-009
trix Nuclear-Norm, which not only serves as a010
metric to quantify the data compression profi-011
ciency of LLM but also provides a convex ap-012
proximation of matrix rank to capture both pre-013
dictive discriminability and diversity. By em-014
ploying the L1,2-norm to further approximate015
the nuclear norm, we can effectively assess the016
model’s information compression capabilities.017
This approach reduces the time complexity to018
O(n2) and eliminates the need for SVD com-019
putation. Consequently, the Matrix Nuclear-020
Norm achieves speeds 8 to 24 times faster than021
Matrix Entropy for the Cerebras-GPT model022
as sizes increase from 111M to 6.7B. This per-023
formance gap becomes more pronounced with024
larger models, as validated in tests with other025
models like Pythia. Additionally, evaluations026
on benchmarks and model responses confirm027
that our proposed Matrix Nuclear-Norm is a028
reliable, scalable, and efficient tool for assess-029
ing LLMs’ performance, striking a balance be-030
tween accuracy and computational efficiency.031

1 Introduction032

Large language models (LLMs), such as Gem-033

ini (Gemini et al., 2023), Deepseek (Guo et al.,034

2025), and GPT-4 (GPT-4 Achiam et al., 2023),035

have shown exceptional performance in numer-036

ous natural language processing (NLP) tasks (Zhao037

et al., 2023). These models are transforming the038

way we approach NLP tasks, providing unprece-039

dented capabilities and solutions to complex prob-040

lems. They are revolutionizing NLP (Saul et al.,041

2005; Liu et al., 2023; Sawada et al., 2023) and042

positively impacting computer vision (Lian et al., 043

2023a; Wang et al., 2024) and graph neural net- 044

works (Zhang et al., 2024; Chen et al., 2024), 045

achieving top results on leaderboards. Despite 046

these advancements, evaluating a model’s ability 047

to compress information remains a critical research 048

challenge (Delétang et al., 2023). This challenge 049

is essential for improving the overall efficiency of 050

these models. 051

Compression involves efficiently extracting es- 052

sential information from large datasets while re- 053

moving redundant data, highlighting a model’s 054

ability to understand the data’s underlying struc- 055

ture (Wei et al., 2024). LLMs are expected to per- 056

form this compression during training (Zhao et al., 057

2023). Initially, after random initialization, the 058

data representations are chaotic, but as training 059

progresses, they become organized, allowing the 060

model to filter out unnecessary information. Thus, 061

assessing an LLM’s compression capacity is vital 062

for understanding its learning efficiency and repre- 063

sentational power, which are crucial for practical 064

applications and real-world deployment. 065

Current compression metrics like Wei et al. 066

(2024)’s Matrix Entropy analyze output representa- 067

tions but face scalability limits due to O(n3) SVD 068

complexity (Kung et al., 1983; Zhang, 2015). To 069

address this, we propose a novel metric called Ma- 070

trix Nuclear-Norm. This metric measures predic- 071

tive discriminability and output diversity, serving 072

as an upper bound for the Frobenius norm and 073

providing a convex approximation of the matrix 074

rank. We enhance the Matrix Nuclear-Norm by 075

using the L1,2-norm to approximate the nuclear 076

norm, improving stability across multiple classes. 077

This approach efficiently assesses a model’s com- 078

pression capabilities and redundancy elimination, 079

streamlining evaluation. The Matrix Nuclear-Norm 080

has a computational complexity of O(n2), a signif- 081

icant improvement over Matrix Entropy’s O(n3). 082

This optimization achieves > 8× acceleration in 083
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evaluation speed for large models while preserving084

reliability.085

To validate the Matrix Nuclear-Norm, we con-086

ducted preliminary experiments on two language087

models of different sizes. Results showed a con-088

sistent decrease in Matrix Nuclear-Norm values089

as model size increased, indicating enhanced com-090

pression capabilities. We also performed inference091

experiments on benchmark datasets, AlpacaEval092

(Dubois et al., 2024) and Chatbot Arena (Chiang093

et al., 2024), covering diverse language generation094

tasks. These benchmarks provide a comprehensive095

assessment of model inference performance. Our096

findings confirm that the Matrix Nuclear-Norm ac-097

curately measures model compression capabilities098

and ranks models based on performance, demon-099

strating its reliability and efficiency. Our empirical100

investigations yield the following insights:101

• Proposal of the Matrix Nuclear-Norm: We102

introduce a method leveraging the nuclear103

norm, reducing computational complexity104

from O(n3) to O(n2). This reduction min-105

imizes SVD dependence, making Matrix106

Nuclear-Norm a more efficient alternative to107

Matrix Entropy.108

• Extensive Experimental Validation: We val-109

idated the Matrix Nuclear-Norm on language110

models of various sizes. Results show this111

metric accurately assesses model compression112

capabilities, with values decreasing as model113

size increases, reflecting its robust evaluation114

capability.115

• Benchmark Testing and Ranking: We con-116

ducted inference tests on benchmark datasets,117

AlpacaEval and Chatbot Arena, evaluating in-118

ference performance across different model119

sizes and ranking them based on the Ma-120

trix Nuclear-Norm. Results demonstrate this121

metric efficiently and accurately evaluates122

medium and small-scale models, highlight-123

ing its broad application potential in model124

performance assessment.125

2 Related Work126

LLM Evaluation and Scaling Laws. Evaluat-127

ing large language models (LLMs) is a multi-128

faceted challenge, as it requires capturing both task-129

specific performance and internal representational130

efficiency. Scaling laws have become a founda-131

tional framework for studying how LLM perfor-132

mance evolves with model size and data volume133

(Kaplan et al., 2020; Ruan et al., 2024). These stud- 134

ies demonstrate that model performance on tasks 135

like language modeling and fine-tuning often fol- 136

lows predictable power-law relationships with re- 137

spect to model parameters and dataset size, empha- 138

sizing the importance of scaling for achieving state- 139

of-the-art results.However, scaling laws typically 140

focus on external metrics such as cross-entropy 141

loss, offering limited insight into how LLMs man- 142

age internal knowledge representation. For in- 143

stance, the ability of LLMs to compress knowledge, 144

eliminate redundancy, and retain structured infor- 145

mation remains poorly understood with traditional 146

methods. Addressing these gaps requires structural 147

metrics that go beyond task outcomes to directly 148

evaluate the internal embeddings and activation 149

patterns of LLMs. 150

LLM Evaluation Metrics. Traditional evalua- 151

tion metrics such as perplexity, BLEU (Papineni 152

et al., 2002), and ROUGE (Lin, 2004) primarily 153

measure task-specific outcomes, assessing how 154

well model outputs align with ground truth data. 155

While these metrics are effective for evaluating 156

surface-level outputs, they do not capture the under- 157

lying mechanisms of LLMs, such as the diversity 158

or compression of embeddings. Similarly, accu- 159

racy and F1 score (Sasaki, 2007) focus on classifi- 160

cation performance, making them less applicable 161

to the generative tasks typical of LLMs.To bridge 162

this gap, structural metrics such as Matrix Entropy 163

have been introduced. Matrix Entropy (Wei et al., 164

2024) employs information theory to assess the en- 165

tropy of covariance matrices derived from LLM 166

embeddings. This metric evaluates how effectively 167

a model removes redundancy and encodes struc- 168

tured information, offering a measure of its com- 169

pression capabilities. For instance, Matrix Entropy 170

can reveal differences in embedding distributions 171

across models of varying sizes, reflecting their ca- 172

pacity to extract meaningful patterns from large 173

datasets. However, its reliance on Singular Value 174

Decomposition (SVD) results in a computational 175

complexity of O(n3), limiting its applicability to 176

modern large-scale models. To overcome these lim- 177

itations, we propose the Matrix Nuclear-Norm as a 178

scalable alternative. By leveraging the L1,2 norm as 179

a convex approximation of matrix rank, the Matrix 180

Nuclear-Norm reduces computational complexity 181

to O(n2). This makes it feasible for evaluating em- 182

beddings from large-scale LLMs while preserving 183

the insights provided by Matrix Entropy, such as 184

compression efficiency. 185
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3 Preliminaries186

This section presents the fundamental concepts for187

model performance evaluation: discriminability,188

diversity, and nuclear norm.189

3.1 Discriminability Measurement: F-NORM190

Higher discriminability corresponds to lower pre-191

diction uncertainty in the response matrix A. When192

A is normalized as a probability matrix (i.e.,193 ∑C
j=1Ai,j = 1, ∀i ∈ [B]), this uncertainty can194

be quantified using Shannon Entropy (Shannon,195

1948):196

H(A) = − 1

B

B∑
i=1

C∑
j=1

Ai,j log (Ai,j) (1)197

where B is the number of samples, C the fea-198

ture dimension, and Ai,j the normalized activa-199

tion value. Lower entropy indicates higher discrim-200

inability.201

An alternative measurement is the Frobenius202

norm:203

∥A∥F =

√√√√ B∑
i=1

C∑
j=1

|Ai,j |2. (2)204

This norm reflects activation intensity, with205

higher values indicating more concentrated distri-206

butions.207

Theorem 1. For a row-normalized matrix A ∈208

RB×C
+ (i.e.,

∑C
j=1Ai,j = 1, ∀i), H(A) and ∥A∥F209

are strictly inversely monotonic.210

The norm satisfies dimensional bounds:211 √
B

C
≤ ∥A∥F ≤

√
B (3)212

where the lower bound achieves when A has213

uniform distributions (maximal uncertainty), and214

the upper bound when A contains one-hot vectors215

(minimal uncertainty). The proof is given in Ap-216

pendix A.5.217

3.2 Diversity Measurement: Matrix Rank218

In LLMs, diversity reflects the model’s ability to219

utilize its latent representation space effectively.220

For a given dataset D, the expected diversity of221

outputs is defined as:222

EC = EA∼D
[
Cp(A)

]
(4)223

To approximate Cp(A), we construct a sparse 224

matrix M ∈ {0, 1}B×C where each row contains 225

a one-hot vector indicating the argmax position: 226

Mi,j =

{
1, j = argmaxk Ai,k

0, otherwise
(5) 227

The capacity measure then becomes: 228

Cp(A) = rank
(
M ⊙A

)
≈ rank(A) (6) 229

where ⊙ denotes element-wise product. 230

The maximum value of Cp(A) is min(B,C), 231

where C is the output representation dimension. 232

Maximizing Cp(A) ensures effective utilization 233

of the representation space, promoting robustness 234

through reduced redundancy. 235

3.3 Nuclear Norm 236

The nuclear norm is an important measure related 237

to diversity and discriminability. 238

Theorem 2. When ∥A∥ ≤ 1 (where ∥A∥ is the 239

spectral norm), the convex envelope of rank(A) is 240

the nuclear norm ∥A∥⋆. The theorem is proved in 241

Fazel (2002). 242

For a matrix A ∈ RB×C with ∥A∥F ≤
√
B, let 243

D = min(B,C). The relationships between the 244

nuclear norm and Frobenius norm are: 245

∥A∥F ≤ ∥A∥⋆ ≤
√
D · ∥A∥F . (7) 246

Therefore, maximizing ∥A∥⋆ encourages higher 247

rank, which implies high diversity and discrim- 248

inability. The upper bound of ∥A∥⋆ is further 249

bounded by: 250

∥A∥⋆ ≤
√
D ·B. (8) 251

4 Methodology 252

4.1 Motivation 253

Evaluating large language models (LLMs) requires 254

metrics that not only capture model performance 255

but also efficiently handle computational demands. 256

Our initial exploration into Matrix Entropy high- 257

lighted its potential as a promising metric for as- 258

sessing model capabilities, particularly in the realm 259

of information compression. However, its practical 260

application is severely limited by high computa- 261

tional complexity, which escalates with model size, 262

leading to inefficiencies in evaluation. To overcome 263

these challenges, we propose the Matrix Nuclear- 264

Norm as an alternative, inspired by its relation- 265

ship with matrix rank—a key component of Matrix 266
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Entropy. This connection is well-documented in267

literature, such as Huang and Wolkowicz (2018)268

where the nuclear norm effectively approximates269

matrix rank, thus offering a pathway to mitigate270

the computational intensity of Matrix Entropy. Our271

experiments demonstrate that the Matrix Nuclear-272

Norm not only reduces computational complexity273

but also preserves the evaluative strengths of Matrix274

Entropy. By utilizing the L1,2-norm to approximate275

the nuclear norm, we achieve substantial efficiency276

gains, ensuring scalability and robustness in LLM277

evaluation. Therefore, the Matrix Nuclear-Norm278

serves as a viable surrogate for Matrix Entropy,279

providing a comprehensive framework for assess-280

ing information compression in large-scale models.281

This approach allows us to evaluate LLMs more ef-282

fectively, addressing both theoretical and practical283

challenges in model assessment.284

4.2 Matrix Nuclear-Norm285

For a matrix A ∈ RB×C , computing its exact286

nuclear norm via Singular Value Decomposition287

(SVD) requires O(min(B2C,BC2)) time, which288

is equivalent to O(n3) with n = max(B,C).289

While feasible for small matrices, this becomes290

computationally prohibitive for large-scale mod-291

els. Additionally, numerical instability may arise292

in SVD computations for ill-conditioned matrices.293

Sparsity Prior: When A exhibits column-wise294

sparsity (i.e., non-zero activations concentrate in a295

subset of columns), we can approximate its sin-296

gular values by leveraging column norms. Let297

∥A∥F denote the Frobenius norm, bounded by298

∥A∥F ≤
√
min(B,C) ·σmax(A), where σmax(A)299

is the largest singular value.300

Theorem 3. (Column-Norm Approximation)301

If A has rapidly decaying column norms302

{∥A:,j∥2}Cj=1, the j-th largest singular value σj(A)303

can be approximated by the j-th largest column304

norm:305

σj(A) ≈ Sort
(
{∥A:,j∥2}Cj=1

)
[j]
, j ∈ {1, . . . , r},

(9)306

where r = rank(A). The proof is given in Sect.307

A.6 (Supplementary Materials). The nuclear norm308

is then approximated as:309

∥Â∥⋆ ≈
D∑
j=1

Sort
(
{∥A:,j∥2}Cj=1

)
[j]
, (10)310

where D ≤ r is a hyperparameter controlling ap-311

proximation precision, and Ã denotes the column-312

sparse approximation of A.313

Remark: This approximation holds under 314

the assumption that off-diagonal correlations be- 315

tween columns are negligible (i.e., A⊤A ≈ 316

diag(∥A:,1∥22, . . . , ∥A:,C∥22)). For correlated 317

columns, a diagonal correction term may be re- 318

quired. 319

This approach indicates that the primary com- 320

ponents of the L1,2-norm can effectively approxi- 321

mate the nuclear norm when ∥A∥F is close to
√
B, 322

while other components can be considered noise. 323

Compared to traditional SVD-based methods (e.g., 324

Guo et al. (2015)), this approach reduces computa- 325

tional complexity from O(n3) to O(n2) and avoids 326

convergence issues by using only standard floating- 327

point operations. The complete algorithm is de- 328

tailed in Algorithm 1. 329

Definition of Matrix Nuclear-Norm. The ap- 330

proach can ultimately be expressed as: 331

Matrix Nuclear-Norm(X) =

∑D
i=1

(√∑m
j=1X

2
i,j

)
Linput

(11) 332

Here, Linput denotes the length of the input se- 333

quence, ensuring comparability through normaliza- 334

tion. Our observations indicate that Matrix Nuclear- 335

Norm values increase with longer sequences; fur- 336

ther details can be found in Section 5.3.2. 337

Algorithm 1 Algorithm of Matrix Nuclear-Norm

Require: Sentence representations S = {Xi}mi=1,
where Xi ∈ Rd×1, d is the hidden dimension, and
Linput is the sentence length.

1: µ = 1
m

∑m
i=1 Xi // Mean embedding

2: Xnorm = X−µ
∥X−µ∥2,row

// Normalize matrix

3: L2(Xnorm) =
√∑m

i=1 X
2
i,j // Column L2-norm

4: ΣD = {σ1, σ2, . . . , σD} // Top D norms

5: Matrix Nuclear-Norm(X) =
∑D

i=1(
√∑m

j=1 X2
j,i)

Linput

6: return Matrix Nuclear-Norm

5 Experiments of Large Language Models 338

The models and datasets used in this paper are 339

thoroughly introduced in A.2. 340

5.1 Baselines 341

Cross-Entropy Loss. Cross-entropy is a key met- 342

ric for evaluating LLMs by measuring the diver- 343

gence between predicted and true probability distri- 344

butions. The formula is given as (Wei et al., 2024): 345
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LCE = − 1

T

T∑
i=1

logP (ui | u<i; Θ) (12)346

where ui is the target token at position i, P (ui |347

u<i; Θ) is the conditional probability predicted by348

the model, and T is the sequence length. Lower349

values indicate better prediction accuracy. We com-350

pare this baseline with the Matrix Nuclear Norm351

metric, using the same datasets and models from352

(Kaplan et al., 2020).353

Perplexity. Perplexity measures how well a lan-354

guage model predicts a sequence of words. For a355

text sequence U = {u1, . . . , uT }, it is defined as356

(Neubig, 2017; Wei et al., 2024):357

PPL(U) = exp

(
− 1

T

T∑
i=1

logP (ui | u<i; Θ)

)
(13)358

Lower perplexity indicates better performance,359

showing that fewer attempts are needed to predict360

the next token.361

Matrix Entropy of a Dataset. For a dataset362

D = {Si}ni=1, where Si ∈ Rd×d represents sen-363

tence embedding covariance matrices, the normal-364

ized matrix entropy is defined as (Wei et al., 2024):365

H(D) =
1

n log d

n∑
i=1

H

(
σ(Si)

∥σ(Si)∥1

)
(14)366

where σ(Si) denotes the singular values of matrix367

Si, and H(·) is the Shannon entropy computed over368

the normalized singular value distribution.369

5.1.1 Language Models370

In our experiments, we selected a range of widely371

used transformer-based LLMs. Notably, we in-372

cluded Cerebras-GPT (Gao et al., 2020), a pre-373

trained model well-suited for studying scaling laws.374

The selection of Cerebras-GPT is particularly ad-375

vantageous due to its diverse model sizes, which376

span from 111 million to 13 billion parameters.377

This diversity allows for a comprehensive analy-378

sis of pre-trained language models across varying379

scales. Additionally, we utilized various scaled ver-380

sions of the Pythia model (Biderman et al., 2023),381

ranging from 14 million to 12 billion parameters, to382

further examine performance variations as model383

scale changes, thus validating the effectiveness of384

the proposed Matrix Nuclear-Norm metric.385
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Figure 1: Cerebras-GPT: Time comparison

We conducted Matrix Nuclear-Norm calcula- 386

tions and comparative analyses on inference re- 387

sponses from these models using two benchmark 388

datasets: AlpacaEval and ChatBot Arena. The spe- 389

cific models included in our study are the DeepSeek 390

series (Guo et al., 2024) (1.3B, 6.7B, 7B), the 391

Llama3 series (Dubey et al., 2024) (8B, 70B), the 392

QWEN 2 series (Yang et al., 2024) (0.5B, 1.5B, 7B, 393

72B), and the Vicuna series (Chiang et al., 2023) 394

(7B, 13B, 33B). We also evaluated models of the 395

same scale, specifically Gemma-7B (Team et al., 396

2024) and Mistral-7B (Jiang et al., 2023). The 397

inclusion of these diverse models enriches our re- 398

search perspective and facilitates an in-depth ex- 399

ploration of the inference performance and scaling 400

laws of LLMs across different parameter sizes. 401

5.2 Matrix Nuclear-Norm Observation 402

5.2.1 Comparing Computational Time 403

To evaluate the computational efficiency of Matrix 404

Nuclear-Norm in comparison to Matrix Entropy 405

for LLMs, we conducted experiments across vari- 406

ous model sizes using multiple benchmark datasets. 407

The results, summarized in Table 1, demonstrate a 408

clear advantage of Matrix Nuclear-Norm in terms 409

of computation time, particularly for larger models. 410

As model sizes increased, Matrix Entropy’s com- 411

putation time rose dramatically, reaching approxi- 412

mately 16.3 hours for the 13B model . In contrast, 413

Matrix Nuclear-Norm only required about 0.82 414

hours for the same model, representing nearly a 415

20-fold reduction in computation time. This trend 416

was consistent across all model sizes, with Ma- 417

trix Nuclear-Norm consistently proving to be much 418

faster (as illustrated in Figure 1). For example, the 419

111M model showed that Matrix Nuclear-Norm 420
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was 8.58 times quicker than Matrix Entropy.421

The significant efficiency gain is due to the lower422

complexity of Matrix Nuclear-Norm, O(m · n +423

n log n), versus Matrix Entropy’s O(n3), where424

m is the embedding dimension (columns). This425

makes it an efficient metric for LLM evaluation,426

especially for large-scale models.427

In summary, Matrix Nuclear-Norm achieves428

comparable evaluation accuracy to Matrix Entropy429

but with vastly superior computational efficiency,430

making it a practical and scalable choice for assess-431

ing LLMs.432

Model Size ME Time(s) MNN Time(s) Ratio

111M 623.5 72.7 8.6
256M 1213.1 110.8 10.9
590M 2959.7 184.8 16.0
1.3B 6760.2 379.0 17.8
2.7B 12083.7 732.6 16.5
6.7B 38791.2 1598.4 24.3
13B 59028.4 2984.2 19.8

Table 1: Cerebras-GPT: Time Comparison between Ma-
trix Entropy (ME) and Matrix Nuclear-Norm (MNN)

5.2.2 Scaling Law of Matrix Nuclear-Norm433

To affirm Matrix Nuclear-Norm’s efficacy as an434

evaluative metric, we evaluated Cerebras-GPT435

models on four datasets including dolly-15k,436

Wikipedia, openwebtext2, and hh-rlhf comparing437

Matrix Nuclear-Norm, matrix entropy, perplexity,438

and loss. As shown in Table 10, Matrix Nuclear-439

Norm decreases consistently with model size, in-440

dicating better data compression and processing441

in larger models. This trend (Figure 2b) validates442

Matrix Nuclear-Norm’s utility across datasets. No-443

tably, anomalies at the 2.7B and 13B highlight ar-444

eas needing further exploration.445

5.2.3 Relationship of Benchmark Indicators446

Findings indicate the efficacy of the Matrix447

Nuclear-Norm as a metric for evaluating LLM, as448

shown in Table 9 (Appendix), there is an overall449

downward trend in Matrix Nuclear-Norm values450

with increasing model sizes, signifying enhanced451

compression efficiency. However, notable anoma-452

lies at the 2.7B and 13B checkpoints suggest that453

these specific model sizes warrant closer exami-454

nation. Despite these discrepancies, the Matrix455

Nuclear-Norm consistently demonstrates superior456

computational efficiency and accuracy compared457

to traditional metrics, highlighting its promising458

applicability for future model evaluations.459
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Figure 2: Comparison of Matrix Nuclear-Norm, matrix
entropy when model scales up.

5.3 Language Investigation 460

5.3.1 Sentence Operation Experiments 461

Figure 3 shows sentence manipulations impact Ma- 462

trix Nuclear-Norm values. These values decrease 463

with model size, in line with established scaling 464

laws similar to those governing matrix entropy and 465

perplexity (PPL). As models grow larger, they can 466

capture data patterns more efficiently, reducing re- 467

dundant information representation, which directly 468

lowers the nuclear norm. 469

The ranking Reverse > Shuffle & Reverse > 470

Shuffle > Base reflects input disruption. Reverse 471

flips the sentence, introducing maximum disorder 472

and causing a large norm increase. Shuffle only 473

partially rearranges elements, leading to a smaller 474

rise. The unaltered Base condition enables optimal 475

compression. 476

Notably, the 2.7B model has slightly higher Shuf- 477

fle and Base values than the 1.3B model, yet this 478

doesn’t challenge the conclusion that larger mod- 479

els compress better. The norm increases with text 480

length because longer texts carry more information, 481

increasing entropy and computational complexity. 482

More data means more potential redundancy for 483

the model to process, driving up the norm value. 484

These results clarify model behavior in relation to 485

size, input structure, and length. 486
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Figure 3: Results of sentence operation. Shuffling and
reversing disrupt the text structure and diminish the
informational content, leading to an increase in Matrix
Nuclear-Norm.
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Figure 4: The Matrix Nuclear-Norm values increase
consistently with longer text input lengths, reflecting
the model’s ability to capture more information.

5.3.2 Analysis of Length Dynamics487

The analysis reveals that Matrix Nuclear-Norm gen-488

erally increase as input length rises, aligning with489

our expectations (see Figure 4). Longer inputs490

necessitate that the model manage and compress491

more information, which naturally leads to higher492

Matrix Nuclear-Norm. Most models exhibit this493

trend, indicating effective handling of the increased494

information load.495

However, the Cerebras-GPT-2.7B and Cerebras-496

GPT-13B models display anomalies in their Matrix497

Nuclear-Norm values at 64 and 128 tokens, where498

the value at 128 tokens is lower than that at 64 to-499

kens. This discrepancy may be attributed to these500

models employing different information compres-501

sion mechanisms or optimization strategies tailored502

to specific input lengths, allowing for more effec-503

tive compression at those lengths.504

Overall, aside from a few outliers, the results505

largely conform to expectations, demonstrating that506

Matrix Nuclear-Norm values increase with input507

length, reflecting the greater volume and complex-508

ity of information that models must handle.To ad-509

dress the observed trend of rising Matrix Nuclear-510

Norm values with longer sentences, we incorpo- 511

rated a normalization step in our methodology via 512

dividing the Matrix Nuclear-Norm values by the 513

sentence length. This adjustment helps mitigate 514

any biases introduced by models that tend to gener- 515

ate longer sentences during inference. 516

5.3.3 Analysis of Prompt Learning 517

The experimental results (shown in Table 2) indi- 518

cate that we performed inference on different sizes 519

of Cerebras-GPT models using three carefully se- 520

lected prompts (shown in Table 12) and calculated 521

the Matrix Nuclear-Norm values of their responses. 522

As the model size increased, the Matrix Nuclear- 523

Norm values gradually decreased, demonstrating 524

that larger models possess greater information com- 525

pression capabilities. The prompts significantly 526

influenced Matrix Nuclear-Norm, with variations 527

reflecting the models’ responses to prompt com- 528

plexity. Specifically, Cerebras-GPT-1.3B showed 529

a notable decrease in Matrix Nuclear-Norm af- 530

ter the input prompts, indicating its sensitivity to 531

them, while Cerebras-GPT-2.7B exhibited smaller 532

changes. In contrast, Cerebras-GPT-6.7B displayed 533

minimal variation across all prompts, suggesting 534

stable performance regardless of prompt detail. 535

Overall, more detailed prompts resulted in larger 536

information volumes in the model’s responses, lead- 537

ing to corresponding changes in Matrix Nuclear- 538

Norm values. 539

Table 2: Results of prompt learning without Prompt and
with (Prompt 1, 2, 3) the use of prompts. Incorporating
prompts as prefixes before the QA pairs enhances the
models’ ability to achieve better compression.

ADDING PROMPT TO QA PAIRS
MODELS EMPTY PROMPT PROMPT 1 PROMPT 2 PROMPT 3 AVERAGE ∆x

Cerebras-GPT-1.3B 0.150955 0.147577 0.140511 0.141358 0.14453 ↓0.006425

Cerebras-GPT-2.7B 0.150130 0.151522 0.142834 0.151842 0.14844 ↓0.001690

Cerebras-GPT-6.7B 0.132042 0.128346 0.124094 0.133211 0.12923 ↓0.002812

6 Evaluating and Ranking LLMs 540

6.1 Inference-Based Model Assessment 541

In this section, we evaluated model inference across 542

the AlpacaEval and Chatbot Arena benchmarks us- 543

ing the Matrix Nuclear-Norm metric prior to the fi- 544

nal MLP classification head. The analysis revealed 545

that Matrix Nuclear-Norm reliably ranks model per- 546

formance, with lower values indicating enhanced 547

information processing efficiency, particularly as 548

model size scales up. 549

For instance, the Llama-3 70B model demon- 550

strated superior compression capabilities compared 551
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to its 8B counterpart, as reflected by significantly552

lower Matrix Nuclear-Norm values across both553

benchmarks (see Table 7). A similar trend was ob-554

served in the Vicuna family, where Matrix Nuclear-555

Norm values consistently decreased from 0.4623556

for the 7B model to 0.3643 for the 33B model557

on the AlpacaEval dataset, indicating progressive558

improvements in information handling (see Table559

3). Additionally, the DeepSeek models exhibited a560

consistent decrease in Matrix Nuclear-Norm values561

as model size increased, further demonstrating the562

metric’s validity.563

Overall, these results substantiate Matrix564

Nuclear-Norm as a robust and reliable tool for eval-565

uating and ranking LLMs, demonstrating its capac-566

ity to capture critical aspects of model performance567

across diverse benchmarks.568

Model Data 1.3B 6.7B 7B

DeepSeek Alpaca 0.4882 0.3472 0.3352
Arena 0.5754 0.4175 0.4357

Vicuna Alpaca 0.4623 0.4159 0.3643
Arena 0.4824 0.4311 0.3734

Table 3: Matrix Nuclear-Norms in Vicuna and
DeepSeek Responses

6.2 Matrix Nuclear-Norm for Model Ranking569

In this experimental section, we utilized Matrix570

Nuclear-Norm to evaluate the responses of LLMs,571

focusing on 7B and 70B variants. Notably, lower572

Matrix Nuclear-Norm values indicate more effi-573

cient information compression, serving as a robust574

indicator of model performance.575

Among the 7B models, DeepSeek-7B exhib-576

ited the most efficient information processing with577

the lowest average Matrix Nuclear-Norm score578

of 0.3855 across Alpaca and Arena datasets (see579

Table 3). Gemma-7B followed closely with an580

average score of 0.3879, whereas QWEN 2-7B581

demonstrated less efficient compression with an582

average score of 0.5870. In contrast, the 70B mod-583

els showed varied performance, with Llama 2-70B584

achieving the best average score of 0.3974, slightly585

outperforming Llama 3-70B (0.4951) and QWEN586

models, which scored around 0.5.587

Interestingly, certain 7B models, like DeepSeek-588

7B and Gemma-7B, outperformed larger 70B mod-589

els, underscoring that model efficiency is not solely590

determined by size. These results highlight that fac-591

tors such as architecture, training methodology, and592

data complexity play crucial roles in information593

processing capabilities beyond scale. 594

MODEL
Matrix Nuclear-Norm

Alpaca Arena-Hard Avg Score
QWEN 2-7B 0.5989 0.5751 0.5870
Mistral-7B 0.4980 0.5126 0.5053
QWEN 1.5-7B 0.4866 0.5165 0.5016
LLaMA 2-7B 0.4648 0.5038 0.4843
Vicuna-7B 0.4623 0.4824 0.4724
Gemma-7B 0.3759 0.3998 0.3879
DeepSeek-7B 0.3352 0.4357 0.3855
QWEN 1.5-72B 0.5291 0.5065 0.5178
QWEN 2-72B 0.5261 0.4689 0.4975
Llama 3-70B 0.4935 0.4967 0.4951
Llama 2-70B 0.3862 0.4086 0.3974

Table 4: Descending Competence Rankings via Matrix
Nuclear Norm: Small and Large LMs

To validate the design rationale and robustness of 595

the Matrix Nuclear-Norm, we conducted a series of 596

ablation studies. Due to space constraints, detailed 597

results are provided in A.1 (appendix) to maintain 598

brevity in the main text. These experiments in- 599

cluded evaluations across different model families, 600

such as Cerebras-GPT and Pythia, as well as com- 601

parisons of various data sampling strategies.The 602

results demonstrate that the Matrix Nuclear-Norm 603

consistently performs well across different model 604

scales and sampling variations. This not only con- 605

firms its applicability across diverse models but 606

also verifies its stability and reliability in handling 607

large-scale datasets. We also provide an ablation 608

Cerebras-GPT: study in the appendix, further prov- 609

ing the method’s efficiency and accuracy in evalu- 610

ating LLMs. 611

7 Conclusion 612

In conclusion, Matrix Nuclear-Norm stands out 613

as a promising evaluation metric for LLMs, offer- 614

ing significant advantages in assessing information 615

compression and redundancy elimination. Its key 616

strengths include remarkable computational effi- 617

ciency, greatly exceeding that of existing metrics 618

like matrix entropy, along with exceptional stability 619

across diverse datasets. Matrix Nuclear-Norm’s re- 620

sponsiveness to model performance under varying 621

inputs emphasizes its ability to gauge not only per- 622

formance but also the intricate adaptability of mod- 623

els. This metric marks a significant advancement 624

in NLP, establishing a clear and effective frame- 625

work for future research and development in the 626

evaluation and optimization of language models. 627
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8 Limitations628

Although Matrix Nuclear-Norm (MNN) performs629

well in evaluating LLM performance, it has three630

main limitations. First, as MNN computation relies631

on hidden states, the results are sensitive to model632

architecture and training processes. This may cause633

performance inconsistencies across different model634

designs or training settings (particularly between635

Cerebras-GPT-1.3B and Cerebras-GPT-2.7B), po-636

tentially limiting broader applicability. Second,637

while MNN offers computational advantages over638

traditional methods, it may still face resource chal-639

lenges when evaluating extremely large models,640

requiring further optimization for scalability.641

Third, our current implementation uses MNN642

primarily as an evaluation metric rather than a643

training objective. However, we recognize its po-644

tential for analyzing information compression dy-645

namics during training, which could provide valu-646

able insights into model optimization. Future work647

should explore this direction while addressing the648

method’s sensitivity to architectural variations.649

Notably, despite observed anomalies in specific650

configurations, MNN demonstrates consistent com-651

putational efficiency and accuracy across various652

model sizes and data sampling strategies. We will653

enhance our discussion of these performance vari-654

ations to better clarify the method’s robustness655

boundaries and operational constraints. These lim-656

itations highlight the need for continued research657

into architecture-agnostic evaluation frameworks658

and optimized computation strategies as language659

models scale.660

9 Ethics Statement661

Our study adheres to strict ethical guidelines by662

utilizing only publicly available and open-source663

datasets. We ensured that all datasets used, such664

as dolly-15k, hh-rlhf, OpenBookQA, Winogrande,665

PIQA, AlpacaEval, and Chatbot Arena, are free666

from harmful, biased, or sensitive content. Addi-667

tionally, careful curation was conducted to avoid668

toxic, inappropriate, or ethically problematic data,669

thereby ensuring the integrity and safety of our670

research. This commitment reflects our dedica-671

tion to responsible AI research and the broader672

implications of using such data in language model673

development.674

10 Reproducibility 675

We emphasize the importance of reproducibility in 676

the development and evaluation of our newly pro- 677

posed metric, Matrix Nuclear-Norm. To facilitate 678

reproducibility, we provide detailed information re- 679

garding our data processing and parameter settings: 680

Data Processing and Parameter Settings: We 681

outline the preprocessing steps applied to each 682

dataset, ensuring that other researchers can accu- 683

rately replicate our methodology. All hyperparam- 684

eters and configuration settings used during the ex- 685

periments are specified in the code, offering clarity 686

on the experimental conditions. 687

Experimental Procedures: We detail the spe- 688

cific steps required to evaluate the Matrix Nuclear- 689

Norm, including its application to each dataset and 690

the metrics used for performance assessment. 691

Code Availability: Our implementation code, 692

evaluation scripts, and pretrained models will be 693

made publicly available upon acceptance of this pa- 694

per, enabling others to reproduce our experiments 695

and validate our findings. 696

By adhering to these guidelines, we aim to en- 697

sure that our work is accessible and reproducible 698

for future research endeavors. 699
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A Appendix901

A.1 Ablation Study902

To thoroughly validate the rationale behind our903

metric design, experimental framework, and the904

efficacy of Matrix Nuclear-Norm, we conducted a905

series of ablation studies.906

A.1.1 Different Model Family907
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Figure 5: Comparison of loss, and perplexity when
model scales up.

In addition to evaluating Matrix Nuclear-Norm908

within the Cerebras-GPT model series, we ex-909

tended our experiments to the Pythia model family,910

which spans from 14M to 12B parameters and is911

trained on consistent public datasets. Utilizing the912

same datasets as described in Section 5.2.2, we913

computed matrix entropy, loss values, and Matrix914

Nuclear-Norm for these models. The empirical915

results (see Figure 6c) demonstrate that the Ma-916

trix Nuclear-Norm values for the Pythia models917

adhere to established scaling laws. However, we918

excluded metrics for the 14M, 31M, and 1B mod-919

els due to notable deviations from the expected920

range, likely stemming from the inherent instabil-921

ity associated with smaller parameter sizes when922

tackling complex tasks. This further reinforces Ma-923

trix Nuclear-Norm as a robust metric for assessing924

model performance, underscoring its utility in the 925

comparative analysis of LLMs. 926

Moreover, we compared the computation times 927

for Matrix Entropy and Matrix Nuclear-Norm 928

across the Pythia models (can see in Figure 8). The 929

results unequivocally indicate that Matrix Nuclear- 930

Norm necessitates considerably less computation 931

time than Matrix Entropy, underscoring its effi- 932

ciency. Detailed results are summarized in Table 933

11. 934
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Figure 6: Pythia Model Metrics: Matrix Nuclear-Norm,
Matrix Entropy, and Loss

A.1.2 Sampling Strategy 935

In the ablation experiments, we extracted a base- 936

line subset of 10,000 entries from the extensive 937

Wikipedia dataset using three random seeds to eval- 938

uate the robustness of the Matrix Nuclear-Norm 939

metric. We also tested additional subsets of 15,000 940

and 20,000 entries due to potential entry count is- 941

sues. Given the large scale of the datasets, com- 942
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prehensive calculations were impractical, so we943

employed random sampling.944

The results showed that variations in random945

seeds and sample sizes had minimal impact on946

Matrix Nuclear-Norm values, with a standard devi-947

ation of only 0.0004975 (see Table 5), indicating948

high consistency across trials. These findings con-949

firm the Matrix Nuclear-Norm as a reliable metric950

for large-scale datasets, effectively evaluating infor-951

mation compression and redundancy elimination952

in LLMs.953

A.2 Model Selection and Datasets for Analysis954

Model Selection. To investigate language model955

scaling, we employed a diverse set of transformer-956

based large language models (LLMs) across vary-957

ing parameter sizes. A key focus of our analysis958

was the Cerebras-GPT model (Gao et al., 2020),959

which ranges from 111 million to 13 billion pa-960

rameters, providing a comprehensive look at scal-961

ing effects in pre-trained models. Additionally,962

we included scaled versions of the Pythia model963

(Biderman et al., 2023), with parameter counts964

ranging from 14 million to 12 billion, enabling965

a broader analysis of model performance across966

different scales.967

To ensure a well-rounded evaluation, we also968

tested a variety of models, including the DeepSeek969

series (1.3B, 6.7B, 7B) (Guo et al., 2024), Llama3970

series (8B, 70B) (Dubey et al., 2024), QWEN 2971

series (0.5B, 1.5B, 7B, 72B) (Yang et al., 2024),972

and Vicuna models (7B, 13B, 33B) (Chiang et al.,973

2023). For additional comparative insights, we974

included models of similar scale, such as Gemma-975

7B (Team et al., 2024) and Mistral-7B (Jiang et al.,976

2023).977

Datasets for Analysis. Our experiments were978

conducted using several key benchmark datasets.979

We selected AlpacaEval(Dubois et al., 2024) and980

ChatBot Arena (Zheng et al., 2023) as the primary981

datasets for model evaluation. Additionally, subsets982

from Wikipedia (Foundation, 2024) and OpenWeb-983

Text2 (Skylion007, 2019) were utilized to track984

variations in Matrix Nuclear-Norm values, espe-985

cially with the Cerebras-GPT models.986

To validate the Matrix Nuclear-Norm metric, we987

employed the dolly-15k dataset (Conover et al.,988

2023) for instruction tuning and the hh-rlhf dataset989

(Bai et al., 2022) for reinforcement learning with990

human feedback (RLHF). Further evaluations were991

performed on benchmark datasets such as Open-992

BookQA (Mihaylov et al., 2018), Winogrande993

(Sakaguchi et al., 2021), and PIQA (Bisk et al., 994

2020). Lastly, prompt learning experiments with 995

the OpenOrca dataset (Lian et al., 2023b) provided 996

a comprehensive framework for assessing the Ma- 997

trix Nuclear-Norm’s effectiveness across a variety 998

of inference tasks. 999

A.3 Supplementary Experiment Results 1000

The following results provide additional insights 1001

into the Matrix Nuclear-Norm evaluations and com- 1002

parisons across various language models: 1003

1. Tables 7 and 6 present the Matrix Nuclear- 1004

Norm evaluation results during the inference 1005

process for Llama-3 and QWEN-2. 1006

2. Figure 7 illustrates that as model size in- 1007

creases, the computation time for Matrix 1008

Entropy grows exponentially, while Matrix 1009

Nuclear-Norm demonstrates a significant time 1010

advantage. This further emphasizes Matrix 1011

Nuclear-Norm’s efficiency in assessing model 1012

performance.The complete results are pre- 1013

sented in Table 8, which includes all relevant 1014

time data for the Pythia model family. 1015

3. Table 10 contains the complete results for 1016

the comparison of Matrix Nuclear-Norm and 1017

other metrics based on Cerebras-GPT family 1018

considered in Figure 2b. 1019

4. Table 9 demonstrates the correlation be- 1020

tween Matrix Nuclear-Norm and other bench- 1021

mark indicators, showing a consistent trend 1022

where values decrease as model size increases. 1023

This analysis examines the performance of 1024

language modeling indicators across Open- 1025

BookQA, Winogrande, and PIQA datasets. 1026

5. Table 11 illustrates the numerical results of 1027

Figure 6c in the ablation study of Pythia fam- 1028

ily. 1029

6. Table 12 shows the prompts used for the in- 1030

vestigation of prompt learning. 1031

A.4 Analysis of Algorithmic Complexity 1032

The primary computational expense of Matrix 1033

Nuclear-Norm arises from the calculation and sort- 1034

ing of the L2 norm of the matrix. By avoiding Sin- 1035

gular Value Decomposition (SVD), we reduce the 1036

time complexity from the traditional nuclear norm 1037

of O(n3) to O(n2), giving Matrix Nuclear-Norm a 1038
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Table 5: Ablation study of different sampling strategies on the Wikimedia(Foundation, 2024) dataset.

MODEL SAMPLING STRATEGY STANDARD DEVIATION10000 (SEED 1) 10000 (SEED 2) 10000 (SEED 3) 15000 20000

CEREBRAS-GPT-1.3B 0.5684 0.5670 0.5676 0.5699 0.5693 0.0004975

Model DataSet 0.5B 1.5B 7B 72B

Alpaca 0.6551 0.6176 0.5989 0.5261QWEN 2 Arena 0.6872 0.6374 0.5751 0.4689

Table 6: Matrix Nuclear-Norm in QWEN 2 Responses

Model DataSet 8B 70B

Llama-3 Alpaca 0.5782 0.4935
Arena 0.5817 0.4967

Table 7: Matrix Nuclear-Norm in Llama 3 Responses

significant advantage in handling large-scale data.1039

This reduction in complexity greatly enhances the1040

algorithm’s practicality, especially for applications1041

involving large matrices.1042

When analyzing the time complexity of the1043

newly proposed Matrix Nuclear-Norm (L2-Norm1044

Based Approximation of Nuclear Norm) against1045

traditional Matrix Entropy, our objective is to1046

demonstrate that Matrix Nuclear-Norm signifi-1047

cantly outperforms Matrix Entropy in terms of time1048

efficiency. We will support this claim with detailed1049

complexity analysis and experimental results.1050

A.4.1 Time Complexity Analysis1051

Analysis 1: Time Complexity of Matrix Entropy1052

The computation of Matrix Entropy involves sev-1053

eral complex steps, with the key bottleneck being1054

Singular Value Decomposition (SVD), which is1055

central to computing eigenvalues. The following1056

steps primarily contribute to the time complexity:1057

1. Matrix Normalization: This step has a time1058

complexity of O(m · n), where m is the num-1059

ber of rows and n is the number of columns.1060

2. Computing the Inner Product Matrix: Cal-1061

culating ZTZ has a time complexity of O(n2 ·1062

m) due to the multiplication of two matrices1063

sized m× n.1064

3. Singular Value Decomposition (SVD): The1065

time complexity of SVD is O(n3), which is1066

the primary computational bottleneck, espe-1067

cially for large n.1068

14M 31M 70M 160M 410M 1B 1.4B 2.8B 6.9B 12B
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Figure 7: Pythia: Time Comparison of Matrix Entropy
and Nuclear-Norm

Model Size ME (s) MNN (s) Ratio

14M 52.9 22.3 2.4
31M 114.1 28.2 4.0
70M 320.7 24.3 13.2

160M 632.0 41.6 15.2
410M 1040.9 81.0 12.8

1B 4650.1 114.1 40.8
1.4B 6387.0 347.9 18.4
2.8B 8127.1 343.4 23.7
6.9B 28197.8 816.6 34.5
12B 47273.5 1276.1 37.0

Table 8: Pythia Model: Matrix Entropy(ME) vs. Matrix
Nuclear-Norm(MNN) Time Comparison

Therefore, the total time complexity of Matrix 1069

Entropy can be approximated as: 1070

O(m · n+ n2 ·m+ n3) = O(n3) 1071

This complexity indicates that Matrix Entropy be- 1072

comes increasingly impractical for large-scale mod- 1073

els as n grows. 1074

Analysis 2: Time Complexity of Matrix 1075

Nuclear-Norm 1076

Matrix Nuclear-Norm avoids the SVD step by 1077

approximating the nuclear norm using the L2 norm, 1078

resulting in a more efficient computation. The anal- 1079

ysis is as follows: 1080

1. Matrix Normalization: Similar to Matrix 1081

14



GPT MODEL SIZEBENCHMARKS INDICATORS 111M 256M 590M 1.3B 2.7B 6.7B 13B

ACCURACY 0.118 0.158 0.158 0.166 0.206 0.238 0.286
MATRIX ENTROPY 0.3575 0.3416 0.3237 0.3140 0.2991 0.2848 0.2767

LOSS 5.6196 5.3536 5.1881 4.9690 4.8723 4.7195 4.7050
PPL 148.38 108.10 83.45 65.10 50.93 41.80 40.89

OPENBOOKQA

MATRIX NUCLEAR-NORM 0.4447 0.4057 0.3941 0.3644 0.4606 0.3672 0.4423

ACCURACY 0.488 0.511 0.498 0.521 0.559 0.602 0.646
MATRIX ENTROPY 0.4073 0.3915 0.3706 0.3605 0.3419 0.3272 0.3149

LOSS 4.7869 4.5854 4.4141 4.2513 4.1107 4.0109 4.0266
PPL 39.81 30.25 26.57 21.87 18.55 16.53 16.94

WINOGRANDE

MATRIX NUCLEAR-NORM 0.4802 0.4479 0.4440 0.4133 0.5232 0.4220 0.4964

ACCURACY 0.594 0.613 0.627 0.664 0.701 0.739 0.766
MATRIX ENTROPY 0.4168 0.3991 0.3783 0.3676 0.3504 0.3344 0.3264

LOSS 4.8425 4.5470 4.4029 4.1613 4.0075 3.8545 3.8826
PPL 69.80 47.94 37.88 28.76 23.15 19.76 19.72

PIQA

MATRIX NUCLEAR-NORM 0.4868 0.4327 0.4164 0.3826 0.4452 0.3675 0.4149

Table 9: Language modeling indicators on openbookqa, winogrande and piqa.Except for the matrix nuclear norm,
the data is sourced from (Wei et al., 2024)

Entropy, this step has a time complexity of1082

O(m · n).1083

2. Calculating the L2 Norm: For each column1084

vector, the L2 norm is computed with a com-1085

plexity of O(m ·n), where we take the square1086

root of the sum of squares for each column1087

vector.1088

3. Sorting and Extracting the Top D Features:1089

Sorting the L2 norms has a complexity of1090

O(n log n).1091

Therefore, the overall time complexity of Matrix1092

Nuclear-Norm is:1093

O(m · n+ n log n) ≈ O(n2) when m ≈ n1094

This indicates that Matrix Nuclear-Norm is com-1095

putationally more efficient, especially as n in-1096

creases.1097

A.4.2 Experimental Validation and1098

Comparative Analysis1099

To empirically validate the theoretical time com-1100

plexities, we conducted experiments using matri-1101

ces of various sizes. Figure 7 shows that as n in-1102

creases, Matrix Nuclear-Norm consistently outper-1103

forms Matrix Entropy in terms of runtime, confirm-1104

ing the theoretical advantage.1105

Discussion of Assumptions and Applicability1106

Our complexity analysis assumes m ≈ n, which1107

holds in many real-world applications, such as eval- 1108

uating square matrices in large-scale language mod- 1109

els. However, in cases where m ̸= n, the time com- 1110

plexity might differ slightly. Nonetheless, Matrix 1111

Nuclear-Norm is expected to maintain its efficiency 1112

advantage due to its avoidance of the costly SVD 1113

operation. 1114

Impact of Constant Factors Although both 1115

O(n2) and O(n3) indicate asymptotic behavior, 1116

Matrix Nuclear-Norm’s significantly smaller con- 1117

stant factors make it computationally favorable 1118

even for moderately sized matrices, as evidenced 1119

in our experimental results. 1120

A.4.3 Conclusion of the Complexity Analysis 1121

Through this detailed analysis and experimental 1122

validation, we conclude the following: 1123

• Matrix Entropy, with its reliance on SVD, has 1124

a time complexity of O(n3), making it com- 1125

putationally expensive for large-scale applica- 1126

tions. 1127

• Matrix Nuclear-Norm, by using the L2 norm 1128

approximation, achieves a time complexity of 1129

O(m · n + n log n) ≈ O(n2), significantly 1130

reducing computational costs. 1131

• Experimental results confirm that Matrix 1132

Nuclear-Norm offers superior time efficiency 1133

for evaluating large-scale models, particularly 1134

those with millions or billions of parameters. 1135
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Table 10: The table illustrates the performance metrics for a range of GPT models on the Dolly-15k, Wikipedia,
OpenWebText2, and HH-RLHF datasets, encompassing matrix entropy, loss, and perplexity. Except for the matrix
nuclear norm, the data is sourced from (Wei et al., 2024), underscoring the relationship between model scale and its
performance.

DATASET INDICATORS
GPT MODELS SIZE

111M 256M 590M 1.3B 2.7B 6.7B 13B

DOLLY-15K

MATRIX ENTROPY 0.5976 0.5840 0.5582 0.5477 0.5240 0.5064 0.4859
LOSS 3.6710 3.2907 3.0359 2.7517 2.5015 2.2911 2.3098
PPL 39.93 27.53 21.42 16.15 12.50 10.23 10.30

MATRIX NUCLEAR-NORM 0.6207 0.5565 0.5063 0.4553 0.4639 0.3904 0.4859

WIKIPEDIA

MATRIX ENTROPY 0.6177 0.6077 0.5848 0.5786 0.5523 0.5368 0.5126
LOSS 3.2900 2.9343 2.6854 2.4282 2.2045 2.0216 2.0327
PPL 31.38 22.51 17.89 13.85 11.08 9.19 9.32

MATRIX NUCLEAR-NORM 0.6744 0.6422 0.6094 0.5639 0.5438 0.4660 0.4708

OPENWEBTEXT2

MATRIX ENTROPY 0.6527 0.6479 0.6206 0.6142 0.5855 0.5683 0.5463
LOSS 3.7509 3.3852 3.1414 2.8860 2.6465 2.4708 2.4685
PPL 36.79 25.82 20.34 15.89 12.51 10.57 10.51

MATRIX NUCLEAR-NORM 0.7147 0.7066 0.6823 0.6363 0.6017 0.5133 0.4991

HH-RLHF

MATRIX ENTROPY 0.5753 0.5635 0.5350 0.5268 0.4971 0.4813 0.4640
LOSS 3.3078 2.9964 2.8171 2.6431 2.4622 2.3526 2.3323
PPL 18.97 14.01 11.62 9.73 8.12 7.27 7.19

MATRIX NUCLEAR-NORM 0.6309 0.5716 0.5307 0.4771 0.4959 0.4277 0.4518

A.5 Proof of Theorem 11136

We prove the strictly inverse monotonic relation-
ship between the entropy H(A) and the Frobenius
norm ∥A∥F for a non-negative matrix A ∈ RB×C

where each row represents a probability distribu-
tion:

C∑
j=1

Ai,j = 1, Ai,j ≥ 0, ∀i = 1, . . . , B.

Definitions:1137

• Entropy:1138

H(A) = − 1
B

∑B
i=1

∑C
j=1Ai,j log(Ai,j)1139

• Frobenius norm:1140

∥A∥F =
√∑B

i=1

∑C
j=1A

2
i,j1141

Step 1: Single-Row Analysis1142

For a row a = [a1, . . . , aC ] with
∑

j aj = 1:1143

• Row entropy: Hi = −
∑C

j=1 aj log aj1144

• Row norm: ∥a∥2 =
√∑C

j=1 a
2
j1145

Extrema via Lagrange Multipliers:
The Lagrangian L = −

∑
j aj log aj +λ(

∑
j aj −

1) yields:

∂L

∂aj
= − log aj − 1 + λ = 0 =⇒ aj = eλ−1.

Normalization gives aj = 1
C , achieving:1146

• Maximum entropy: Hi = logC 1147

• Minimum norm: ∥a∥2 =
√

1
C 1148

Minimum entropy occurs when ak = 1 (one- 1149

hot vector): 1150

• Minimum entropy: Hi = 0 1151

• Maximum norm: ∥a∥2 = 1 1152

Monotonicity: For fixed C, Hi and ∥a∥2 are 1153

strictly inversely monotonic (shown via derivative 1154

analysis or majorization theory). 1155

Step 2: Matrix-Level Generalization 1156

For the full matrix: 1157

• H(A) = 1
B

∑B
i=1Hi 1158

• ∥A∥F =
√∑B

i=1 ∥ai∥22 1159

Key Observation: If each row’s entropy Hi 1160

decreases (increases), its norm ∥ai∥2 increases (de- 1161

creases). Thus: - ∥A∥2F =
∑B

i=1 ∥ai∥22 decreases 1162

(increases) as H(A) increases (decreases). 1163

Step 3: Norm Bounds 1164

Maximum ∥A∥F : When all rows are one-hot:

∥A∥F =
√
B

Minimum ∥A∥F : When all rows are uniform:

∥A∥F =

√
B

C
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Table 11: Language modeling indicators for Pythia models across Dolly-15k, Wikipedia, OpenWebText2, and
HH-RLHF datasets (lower values indicate better performance). Except for the matrix nuclear norm, data is derived
from (Wei et al., 2024), showcasing the correlation between model scale and performance.

PYTHIA MODELS SIZE
DATASETS INDICATORS 14M 31M 70M 160M 410M 1B 1.4B 2.8B 6.9B 12B

MATRIX ENTROPY 0.7732 0.7155 0.6707 0.6243 0.5760 0.5328 0.5309 0.5263 0.5003 0.4876
LOSS 4.4546 4.0358 3.5990 3.1323 2.6752 2.4843 2.3816 2.2484 2.1368 2.0616DOLLY-15K

MATRIX NUCLEAR-NORM 0.7508 0.7735 0.6984 0.6104 0.5760 0.4710 0.4922 0.4585 0.4202 0.4181

MATRIX ENTROPY 0.7938 0.7442 0.7003 0.6580 0.6039 0.5584 0.5587 0.5553 0.5314 0.5140
LOSS 4.1112 3.6921 3.2694 2.8207 2.4017 2.2213 2.1292 2.0140 1.9120 1.8489WIKIPEDIA

MATRIX NUCLEAR-NORM 0.6053 0.6700 0.6996 0.6718 0.6464 0.5591 0.5787 0.5410 0.4850 0.4768

MATRIX ENTROPY 0.8144 0.7749 0.7370 0.6980 0.6415 0.5944 0.5916 0.5887 0.5591 0.5417
LOSS 4.3965 4.0033 3.6284 3.2031 2.7838 2.6198 2.5228 2.4005 2.3133 2.2502OPENWEBTEXT2

MATRIX NUCLEAR-NORM 0.5041 0.6186 0.7142 0.7258 0.7105 0.6215 0.6378 0.5967 0.5275 0.5110

MATRIX ENTROPY 0.7673 0.7114 0.6607 0.6126 0.5552 0.5054 0.5032 0.4977 0.4699 0.4528
LOSS 3.7466 3.4018 3.1146 2.7366 2.4340 2.3311 2.2687 2.1992 2.1199 2.0905HH-RLHF

MATRIX NUCLEAR-NORM 0.7353 0.7674 0.6964 0.6182 0.5886 0.4825 0.5141 0.4839 0.4562 0.4481

Prompt ID Prompt Content

Prompt 1 You are an AI assistant. You will be given a task. You must generate a detailed and long answer.

Prompt 2 You are a helpful assistant, who always provide explanation. Think like you are answering to a five year old.

Prompt 3 You are an AI assistant. User will give you a task. Your goal is to complete the task as faithfully as you can. While performing the task think step-by-step and justify your steps.

Table 12: The prompts selected from OpenOrca(Lian et al., 2023b) dataset.

GPT MODEL SIZE
LENGTH

111M 256M 590M 1.3B 2.7B 6.7B 13B

64 0.4574 0.4125 0.3787 0.3486 0.4053 0.3315 0.4148

128 0.5293 0.4680 0.4270 0.3835 0.4143 0.3477 0.4032

512 0.7883 0.6978 0.6251 0.5554 0.5265 0.4468 0.4422

1024 0.9132 0.8787 0.7802 0.6953 0.6351 0.5383 0.5028

Table 13: Analysis of Length Dynamics

Step 4: Implications for LLMs1165

The inverse monotonicity implies:1166

• High ∥A∥F : Concentrated predictions (low1167

entropy, high confidence).1168

• Low ∥A∥F : Dispersed predictions (high en-1169

tropy, high diversity).1170

Thus, ∥A∥F serves as a proxy for evaluating1171

LLM confidence-diversity tradeoffs.1172

Conclusion1173

The strict inverse monotonicity between H(A)1174

and ∥A∥F is rigorously established, justifying1175

∥A∥F as a metric for LLM evaluation.1176

A.6 Proof of Theorem 31177

Assuming ∥A∥F ≈
√
B and the columns of A are1178

approximately orthogonal, we approximate the j-th1179

largest singular value σj as the j-th largest column 1180

norm of A. Formally, 1181

σj ≈ top


√√√√ B∑

i=1

A2
i,j , j

 , 1182

where top(S, j) denotes the j-th largest element in 1183

set S. This approximation holds under the follow- 1184

ing analysis: 1185

1. Decomposition and Gram Matrix: Let 1186

A = UΣV T be the SVD of A, where Σ = 1187

diag(σ1, . . . , σD) with D = min(B,C). The diag- 1188

onal entries of the Gram matrix ATA are: 1189

(ATA)j,j =

B∑
i=1

A2
i,j = ∥aj∥22, 1190

where aj is the j-th column of A. 1191

2. Relating Column Norms to Singular Val- 1192

ues: When columns of A are nearly orthogonal, 1193

σj ≈ ∥aj∥2. Under ∥A∥F ≈
√
B, the nuclear 1194

norm ∥A∥⋆ =
∑D

j=1 σj is dominated by the largest 1195

column norms. 1196

3. Singular Value Approximation: For ma- 1197

trices with low column-wise correlations, the j-th 1198

singular value satisfies: 1199

σj ≈ top ({∥ak∥2 | 1 ≤ k ≤ C}, j) . 1200
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4. Efficient Nuclear Norm Approximation:1201

The batch nuclear norm is approximated as:1202

∥Â∥⋆ =
D∑
j=1

top ({∥ak∥2}, j) .1203

This approximation is valid when A has approxi-1204

mately orthogonal columns, a condition implied by1205

∥A∥F ≈
√
B.1206
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