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Abstract

Parametric, feature-based reward models are employed by a variety of algorithms in decision-making
settings such as bandits and Markov decision processes (MDPs). The typical assumption under which
the algorithms are analysed is realizability, i.e., that the true values of actions are perfectly explained by
some parametric model in the class. We are, however, interested in the situation where the true values
are (significantly) misspecified with respect to the model class. For parameterized bandits, contextual
bandits and MDPs, we identify structural conditions, depending on the problem instance and model class,
under which basic algorithms such as ε-greedy, LinUCB and fitted Q-learning provably learn optimal
policies under even highly misspecified models. This is in contrast to existing worst-case results for, say
misspecified bandits, which show regret bounds that incur a linear scaling with time horizon, and shows
that there can be a nontrivially large set of bandit instances that are robust to misspecification.

1 Introduction

Sequential optimization over a set of decisions, e.g., actions in a multi-armed bandit and policies in an MDP, is often carried
out by assuming a parametric model for the payoff of a decision that is learnt over time. Well-known instantiations of this
approach are algorithms for structured multi-armed bandits, e.g., linear bandits (Rusmevichientong & Tsitsiklis, 2010) and
generalized linear bandits (Filippi et al., 2010), linear contextual bandits (Chu et al., 2011), and, more generally, value function
approximation-based methods for Markov Decision Processes (Sutton & Barto, 2018).

Learning algorithms that make decisions based on an estimated reward model are known to enjoy strong performance (e.g.,
regret) guarantees when the true rewards encountered are perfectly realizable by the model, e.g., Abbasi-Yadkori et al. (2011);
Filippi et al. (2010); Jin et al. (2020). However, it is often the case that a parametric class of models is, at best, only an
approximation of reality, succinctly expressed by the aphorism ‘All models are wrong, but some are useful’ (Box, 1976).
But even if the rewards of, say, all arms in a multi-armed bandit are estimated with a large error, one may still hope to discern
the optimal arm if its (admittedly erroneous) estimate ends up dominating those of the other arms. This begs the natural
question: While the task of reward estimation can be fraught with (arbitrarily large) error under misspecified models, when
(if at all) can the task of optimal action learning remain immune to it?

We initiate a rigorous study of the extent to which sequential decision-making algorithms based on reward model estimation
can be robust to misspecification in the model. In particular, we are interested in characterizing the interplay between i) the
actual (ground truth) rewards in a decision-making problem and ii) the reward model class used by the algorithm, and how
it governs whether the algorithm can still learn to play optimally if the true rewards are not realizable by the reward model.
In this respect, our specific contributions are as follows:

1. For misspecified linear bandits, we identify a new family of instances (reward vectors) that are elements of a robust
region. Reward vectors in this region are characterized by an invariance property of the greedy action that they
induce after being projected, with respect to any weighted Euclidean norm, onto the linear feature subspace (space of
all instances that are realizable by features). This region, depending upon the feature subspace, can be non-trivially
large, and need not be confined to within a small deviation from the subspace.

2. We prove that for any instance (i.e., the vector of true mean arm rewards) in the robust observation region, both
(i) the ε-greedy algorithm, with least-squares parameter estimation and an exploration rate of 1/

√
t in each round

t, and (ii) the LinUCB (or OFUL) algorithm, achieve O(
√

T) cumulative regret in time T .
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3. We extend our characterization of robust instances to linear contextual bandits, for which we provide a generalization
of the robust observation region. We show that both the ε-greedy and LinUCB algorithms for linear contextual
bandits get O(

√
T) regret whenever the true, misspecified, reward vector belongs to this robust observation region.

4. We provide a structural criterion for a finite-horizon Markov Decision Process (MDP), together with a Q-value
approximation function class, for which the fitted Q-iteration algorithm provably learns a (near) optimal policy
in spite of arbitrarily large approximation error (in the∞-norm sense).

We stress that our results pertain to the original algorithms (i.e., not modified to be misspecification-aware in any manner).
Our analytical approach shows that they can achieve nontrivial sublinear regret even under arbitrarily large misspecification
error1. This is in contrast to, and incomparable with, existing results that argue that, in the ‘worst case’ across all reward
vectors that are a constant distance away from the feature subspace, any algorithm must incur regret that scales linearly with
the time horizon, e.g., (Lattimore et al., 2020, Thm. F.1).

Our results help lend credence, in a rigorous sense, to the observation that reinforcement learning algorithms presumably
equipped with only approximate value function models are often able to learn (near-) optimal behavior in practice across
challenging benchmarks (Mnih et al., 2013; Lillicrap et al., 2015). They also show the precise structure of bandit problems
that makes robustness possible in the face of significant misspecification.

Illustrative Examples This paper’s key concepts and results can be understood using two stylized examples:

Example 1: A misspecified 2-armed (non-contextual) linear bandit. Consider a 2-armed (non-contextual) bandit in which
the vector of mean rewards of the arms (the “instance") is µ=

[
µ1,µ2

]⊤ =
[
20,3

]⊤
in R2 (marked by× in Fig. 1(a)). Suppose

one attempts to learn this bandit via a 1-dimensional linear reward model in which the arms’ features are assumed to be
φ1 =3 and φ2 =1. It follows that (i) any (2-armed) bandit instance in this linear model is of the form Φθ, where θ∈R and
Φ=

[
φ1,φ2

]⊤ =
[
3,1

]⊤∈R2×1, and corresponds to an element in the range space of Φ, and (ii) the instance µ is misspecified
as it is off this subspace2.

For ease of exposition, we also assume that there is no noise in the rewards observed by pulling arms. In this case, the
ordinary least squares estimate of θ, computed at time t from n1 observations of arm 1 and n2 observations of arm 2, is
θ̂t = n1φ1µ1+n2φ2µ2

n1φ2
1+n2φ2

2
. A key observation is that θ̂t can always be written as a convex combination of µ1/φ1 = 6.7 and

µ2/φ2 =3: θ̂t = n1φ2
1

n1φ2
1+n2φ2

2

(
µ1/φ1

)
+ n2φ2

2
n1φ2

1+n2φ2
2

(
µ2/φ2

)
, for any sampling distribution of the arms. The corresponding

parametric reward estimate Φθ̂t, must thus lie in the set {[3θ,θ]⊤ :θ∈ [3,6.7]}, which appears as the hypotenuse of the right
triangle with vertex (20,3) in Fig. 1(a).

Note that if a greedy rule is applied to play all subsequent actions (At+1 = argmaxi∈{1,2}φ⊤
i θ̂t), then the action will be

1 since the point Φθ̂t will always be ‘below’ the standard diagonal µ1 =µ2 (the black line in Fig. 1(a)). Since action 1 is
optimal for the (true) rewards µ, the algorithm will never incur regret in the future.

The instance above has a misspecification error significantly smaller than the reward gap (2.75 < 17). One can also find
instances at the other extreme, e.g., µ̃=[20,18]⊤ (marked by ◦ in Fig. 1(a)) for which the misspecification error is much
larger than the gap (8.5>2), that remain robust in the sense of regret. Such instances (all of them colored green) fall outside
the scope of existing work on misspecified bandits (Zhang et al., 2023), and we address them in our work.

Example 2 (an extreme case of misspecification): A misspecified nonlinear bandit. A rather extreme form of robustness
in the face of arbitrary misspecification is depicted in Fig. 1(b). Here, the model class is a, tube-like set of radius3 ε
in R2, defined as {(x,y) ∈ R2 : |y−x| = ε}, of effective dimension 1. Here, any bandit instance in the green-shaded
region is robust. For example, for the instance µ = [−10,10]⊤, the model estimate for any sampling distribution is[
−10α+10(1−α)− (1−α)ε,−10α+10(1−α)+αε

]⊤
, for any any sampling fraction α of arm 1. This is a convex

combination of the extreme points [−10,−10+ε]⊤ and [10−ε,10]⊤, and thus a greedy strategy would result in arm 2 being
pulled. One can show from similar arguments as above that almost all instances µ∈R2 yield sublinear regret under, say,
ε-greedy sampling.

1The term ‘misspecification error’ is to be understood as the distance of the arms’ reward vector to the model reward subspace.
2The l∞ misspecification error (deviation from subspace) of µ, for this example, is 2.75.
3If a connected set is desired, then one can replace the tube with a very thin and long rectangle stretched along the diagonal, with similar conclusions.
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For a non-linear parameterized model class, consider the following extension of the previous example. The class is defined
as the set of all (x,y)∈R2, which satisfies the following piecewise constraints

(x(t),y(t))=


x0+400t⃗u, if 0⩽t⩽1/4
x0+100u⃗−(2t−1)2ε⃗v, if 1/4⩽t⩽1/2
x0+100u⃗−2ε⃗v−100(4t−2)⃗u, if 1/2⩽t⩽3/4
x0−2ε⃗v+2ε(4t−3)⃗v, if 3/4⩽t⩽1 .

where u⃗=(1,1) and v⃗ =(−1,1), and x0 =[−50−ε,−50+ε]⊤. This represents a long narrow rectangle oriented along the
y=x, with length 100 and width 2ε. Figure 1(b), can be considered as a zoomed-in picture of this model class.

Consider, again the bandit instance [µ1,µ2]=[−10,10] as in the previous example. If arm-1 has been sampled α1 fraction of
times and arm 2 has been sampled α2 fraction of times, it is clear the the estimate t̂= α1(40+ε)+α2(60−ε)

400 , can be written as a

convex combination of 40+ε
400 and 60−ε

400 . The corresponding model estimate is
[
−10α1+(10−2ε)α2
(−10+2ε)α1+10α2

]
, which itself is a convex

combination of the extreme points
[
−10
−10+2ε

]
and

[
10−2ε

10

]
, corresponding to the estimates 40+ε

400 and 60−ε
400 respectively.

The remainder of the paper formalizes this observation for a variety of decision problems (bandits, both contextual and
otherwise, and MDPs), and algorithms that incorporate some form of exploration (ε-greedy and optimism-based). It explicitly
characterizes the set of all (true) reward instances for which no-regret learning is possible.

(a) Example 1: A 2-armed, noiseless bandit with 1-dimensional linear approx-
imation. Each point in the plane represents the true rewards of both arms
(the “instance"). The blue line is the set of instances expressed by the linear
approximation. The green and red regions denote the robust regions and the
non-robust regions for this linear function approximation. The misspecified
instances (20,3) and (20,18) yield no regret under greedy arm selection based
on an estimated linear model since any linear estimate of the rewards always
has arm 1 dominating arm 2.

(b) Example 2: A function approximation class which is described as an ε-
radius tube about the diagonal. We give a representative diagram for a R2

space corresponding to a bandit problem with two arms. We see that except for
a measure zero set of bandit instances on the diagonal, which can be interpreted
as both arms having the same rewards, all instances are robust.

Figure 1: Illustration of robust regions for two bandits with function approximation

2 Related Work

Linear Bandits The text by Lattimore & Szepesvári (2020) provides a comprehensive text on the study of bandit algorithms.
The classical works on stochastic linear bandits with finitely many arms have been studied by Auer (2002). Algorithms
based on the principle of optimism in the face of uncertainty (Dani et al., 2008; Abbasi-Yadkori et al., 2011) and Thompson
Sampling (Agrawal & Goyal, 2012; Abeille & Lazaric, 2017) are popular choices of algorithms which enjoy sub-linear regret
even in the worst case of Õ(

√
T). Phased elimination with optimal design based algorithms attain a regret of Õ(

√
dT) as

shown in Lattimore & Szepesvári (2020).
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Contextual Linear Bandits The bandit problem where the arm set changes at every time, described in the literature as
the contextual bandit setup, has also been studied extensively. We mention the classic work of Auer (2002); Chu et al. (2011).
The classic algorithms of SupLinRel (Auer, 2002) and SupLinUCB (Chu et al., 2011) are elimination based algorithms and
enjoy a worst-case regret bound of Õ(

√
dT). In practice, optimism-based algorithms like LinUCB (Abbasi-Yadkori et al.,

2011) as well as Thompson Sampling (Agrawal & Goyal, 2013) enjoy sub-linear regret of Õ(
√

T).

Misspecified Bandits With Linear Regret Model misspecification in linear bandits was first studied in Ghosh et al.
(2017). They pointed that in the presence of model error, the worst-case regret of LinUCB (Abbasi-Yadkori et al., 2011)
is of linear order. They further showed that in a favorable case, when one can test the linearity of the reward function, the
RLB algorithm (Ghosh et al., 2017) can switch between the linear bandit algorithm and finite-armed bandit algorithm to
address the misspecification issue and achieve a O(min{

√
K,d}

√
T) regret. Under the definition of uniform l∞ model error

ε, Lattimore et al. (2020) presented an algorithm based on the principle of phased elimination which achieves a worst case
regret of O(d

√
T +ε

√
dT). They also showed that contextual linear bandits LinUCB achieve the same regret after modifying

the confidence width using knowledge of the misspecification. In the same contextual bandit settings, Foster & Rakhlin
(2020) showed a similar linear regret. They showed that under the assumption of an oracle regressor, the algorithm SquareCB
(Foster & Rakhlin, 2020) suffers a regret of O(

√
dKT +ε

√
dT). Zanette et al. (2020b) has also shown a similar regret in

the contextual setting. There has also been work based on altered definitions of misspecifications. Kumar Krishnamurthy
et al. (2021) defines the misspecification as an expected square loss between the true reward class and the approximation
function class and uses a model-based algorithm ε- FALCON, which again suffers linear regret. Foster et al. (2020) defines
an empirical misspecification as observed by the data. However, these still suffer linear regret.

Missecified Bandits With Sub-Linear Regrets Recently, there has been some work along a positive direction: to develop
conditions and associated algorithms under which misspecified bandits can give sub-linear regret. This positive type of result is
the main focus of this work. Recent works as that of Liu et al. (2023) analyzes the LinUCB algorithm when the sub-optimality
gaps of the arms bound the misspecification. They show that when the misspecification is of low order, the algorithm enjoys
sub-linear regret. Under a similar condition, Zhang et al. (2023) were able to extend the study to the contextual setting.
They propose a phased arm elimination algorithm, which performs similarly to SupLinUCB (Chu et al., 2011) but requires
knowledge of the sub-optimality gap.

Markov Decision Processes Function approximation in Reinforcement Learning has had a rich history. As a comprehensive
reference we direct the reader to the manuscript of Bertsekas & Tsitsiklis (1996). There has been recent interest in the finite-time
analysis of function approximation in reinforcement learning. For example Bhandari et al. (2018) shows the convergence of
policy evaluation with linear function approximators. Control problems, i.e., problems that require both policy evaluation and
improvement, are notoriously hard to evaluate under function approximators, and well-known algorithms like Q-learning and
SARSA are known to not converge with function approximations (Bertsekas & Tsitsiklis, 1996). Theoretically, there have been
efforts to mitigate this problem, for example in Zou et al. (2019) analyses the sample complexity of SARSA with linear function
approximators under a Lipschitz continuous policy improvement operator. On the other hand, there have been works on develop-
ing online algorithms founded on bandit literature that focus on the exploration-exploitation dynamics in an MDP. For example,
Van Roy & Wen (2014) introduced RLSVI, a Thompson Sampling-based algorithm that has gone on to receive some attention
in the recent past (Osband et al., 2016; Zanette et al., 2020a; Agrawal et al., 2021). However, these algorithms are based on a
realizability and closedness assumption termed Linear MDPs. The framework of Linear MDPs has been popular in the recent
literature on the online learning framework of Reinforcement Learning because of its amenability to theory. It has been shown
that under the Linear MDP model algorithms enjoy sublinear regret, (Jin et al., 2020) and has been extended to general function
classes under the realizability and closedness assumption of the Bellman Operator (Dann et al., 2022). However, without the
assumption of realizability and closedness, the theory fails, in the sense that one is not able to show the algorithm learns an
optimal policy. For example, Jin et al. (2020) shows that Least-Squares-Value-Iteration with UCB exploration bias suffers linear
regret if the Linear MDP assumption is removed. Similarly Zanette et al. (2020b) shows a linear regret under a misspecification
notion termed as Inherent Bellman Error. In this regard we believe our work is a first of its kind to show that standard algorithms,
like fitted Q-learning under a behavioral policy can learn the optimal policy, even if the model is grossly misspecified.
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3 Multi Armed Bandits

Problem Statement We consider a K-armed bandit with mean rewards {µi}Ki=1. We assume each arm i is associated
with a known feature vector φi∈Rd. We also have a given parametric class of functions serving to (approximately) model
the mean reward of each arm; each function in this class is of the form fθ :Rd→R for a parameter θ∈Θ⊂Rd, and applying
it to arm i yields the expressed reward fθ(φi)∈R. Let us assume that the number of arms, K, is larger than the dimensionality
of the parameter θ, that is K >d and, for ease of analysis, consider the set of features {φi}Ki=1 to span Rd. We denote the
set of true mean rewards by the vector, µ=

[
µi

]
i∈[K]∈R

K and the feature matrix Φ=
[
···φ⊤

i ···
]

i∈[K]∈R
K×d. We use the

standard matrix norm notation of ∥x∥2A to denote x⊤Ax.
Remark 3.1 (Linear Bandits). Our setting is rather general and covers a broad class of parametric bandits. For example,
in linear bandits (Dani et al., 2008), it is assumed that the means are linear functions of the features, that is, there exists a
θ∗, such that µ=Φθ∗.
Remark 3.2 (Misspecification). The novelty of our setting is that we allow the vector of the true rewards µ to be arbitrary,
without imposing a realizability condition like µ ∈ {fθ(φi)∀i∈ [K] :θ∈Rd}.

Main Result We begin by defining greedy regions in RK which characterize the reward vectors that share the same unique
optimal arm.

Definition 3.3 (Greedy Region Gk). Define by Gk, for any k∈ [K], as the region in RK for which the kth arm is the unique
optimal arm, i.e., Gk≜

{
µ∈RK :µk >µi∀i≠k

}
.

Note that these K-dimensional greedy regions partition the entire Rk space into K disjoint spaces. Any K-armed bandit
with a unique optimal arm must belong to an unique greedy region Gi, by definition.

For the purposes of clarity, let us fix our model class to be linear so that the least squares estimate has a closed-form
solution. Denoting the sampling frequency of arm i as λi, the least squares estimate θ̂ can be written in closed form as
(Φ⊤ΛΦ)−1Φ⊤Λµ̂, where µ̂ is the vector of estimated sample means of the rewards, Λ is a diagonal matrix with λis on
its diagonal (Gopalan et al., 2016). We shall assume for the remainder of this work that Φ⊤ΛΦ is invertible and discuss
in detail in Appendix E how to remove this assumption.

Definition 3.4 (Model Estimate under Sampling Distribution). For any bandit instance µ in RK , we shall denote the model
estimate of µ under any sampling distribution, Λ=diag({λi}Ki=1), where {λi}Ki=1∈∆K, the K−1 dimensional simplex,
as PΛ(µ)≜argminθ

∥∥Φθ−µ
∥∥

Λ1/2 .

The model estimate is an algorithmic dependent estimate. It is the canonical ordinary least squares estimate of µ, where
we denote show the dependence on the sampling distribution {λi}Ki=1.

Given a given bandit instance µ, assume, without loss of generality, that it belongs to the kth greedy region Gk. If the
projection, ΦPΛ(µ) belongs to the same greedy region Gk, then under the sampling distribution of Λ, the function
approximation of µ would return the optimal arm under a greedy strategy. That is, argmaxi∈[K]φ

⊤
i PΛ(µ) would result

in the kth arm being pulled. With this motivation, we define robust regions.

Definition 3.5 (Robust Parameter Region). We define the kth robust parameter region Θk as the the set of all θ such that
the range space of Φ restricted to Θk lies in the kth greedy region Gk. That is Θk =

{
θ∈Rd :Φθ∈Gk

}
, for any arm k.

Remark 3.6. Note that ΦΘk is the set of all realizable bandit instances with optimal arm as k. Specifically, these are the
instances which suffers no misspecification.

Definition 3.7 (Robust Observation Region). We define the kth robust observation regionRk, as the set of all bandit instances
with optimal arm k, such that the model estimate, computed under any sampling distribution, lies in the kth robust parameter
region, Θk. That is,

Rk =
{
µ∈Gk :PΛ(µ)∈Θk∀Λ∈P(∆K)

}
,

where P(∆K) is defined as

P(∆K)=
{

Λ=diag({λi}Ki=1):{λi}Ki=1∈∆k ∧Φ⊤ΛΦ is invertible
}

,

where ∆K is the K−1 dimensional simplex.
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Figure 2: For ambient dimension K, (the number of arms), we can expect a maximum of K robust regions for any K×d- dimensional feature matrix.
For each (K,d) pair, we sample 50 random feature matrices, and for each feature matrix, we comupte the number of robust regions it can accommodate.
We plot the number of robust regions as a fraction of the total number of arms K. We restrict our feature dimension d < K. For any K, the higher the
feature dimension, the more robust regions it can express. However, interestingly, even low dimension feature matrices can express a non-trivial number
of robust regions as can be seen on the left-upper corner of the figure.

Remark 3.8. In Appendix E we introduce the standard regularized least squares estimate, and remove the extra assumtion
about the invertibility of Φ⊤ΛΦ.
Remark 3.9. The robust regionRk is the set of all bandit instances with optimal arm k, whose projection on the feature space
Φθ always belongs to the greedy region Gk. Note that, this observation is independent of any measure of misspecification,
that is, the distance that the bandit instance is from the feature space.
Remark 3.10. We agree that our notion of RK is rather a strong sufficient condition. In practice, we do not need to be
bothered by all the sampling distributions in ∆K . The sampling distributions generated by an algorithm is sufficient to define
robust regions for that particular algorithm.

Thus, µ∈Rk is a sufficient condition that the greedy policy based on ΦPΛ(µ) is the optimal under any algorithm-driven
sampling strategy.
Remark 3.11. Note that, from the definitions of robust regions, that these are functions on the feature matrix Φ. We omit
this dependency in notation to avoid clutter, especially when the context is clear.

Characterization of the Robust Region In the class of linear models, Rk has a closed-form solution as shown in the
following Theorem 3.12. This result allows us to compute robust observation regions given a feature matrix Φ as illustrated
In Appendix F.1.

Theorem 3.12. µ belongs to the robust observation regionRk if and only if every d×d full rank sub-matrix of Φ, denoted
by Φd, along with the corresponding d rows of µ, denoted by µd, satisfies the condition that Φ−1

d µd∈Θk. In other words,
µ∈Rk if and only if Φ−1

d µd∈Θk for every d×d full rank sub-matrices of Φ and the corresponding d rows of µ.

Proof. The proof uses a result of Forsgren (1996), presented in Lemma I.4, that for any any sampling distribution
{λi}Ki=1∈∆K , the model estimate PΛ(µ) lies in the convex hull of the basic solutions Φ−1

d µd. Thus for any µ∈Gk

µ∈Rk⇐⇒PΛ(µ)∈Θk ∀ Λ∈P(∆K)⇐⇒ conv{Φ−1
d µd ∀ Φd⊂Φ}⊂Θk⇐⇒Φ−1

d µd∈Θk ∀ Φd⊂Φ.

The second condition follows from Lemma I.4. (We abuse notation to denote d×d full rank sub-matrices of Φ by Φd⊂Φ
and use conv to denote the convex hull.) The last assertion follows because Θk is a convex set.
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Example We return to our example 1 presented at the beginning (in Figure 1(a)) to highlight the definitions we have made
so far. The greedy regions, G1 and G2, are the two half-spaces separated by the diagonal µ1 =µ2. From our choice of the
feature matrix Φ as

[
3, 1

]⊤
, we note that for any parameter θ more than 0, the range space of Φ belong to G1. Thus, Θ1,

the robust parameter region corresponding to arm 1, is the set of all positive scalars. Similarly, Θ2, is the set of all negative
scalars. R1, the robust observation region, corresponding to arm 1, is given by the set, {µ∈R2 :µ1 >µ2 >0}. The robust
observation region for arm 2,R2 is given by the set {µ∈R2 : µ1 <µ2 <0}. This illustrates the existence of a large class
of bandit problems, which are misspecified but robust for our model class.

A natural question that arises is: how frequently do the conditions of Theorem 3.12 hold in practice? While a precise
characterization is challenging, we offer a few remarks that may provide some insight. First, it is straightforward to observe
that for any feature matrix Φ, there always exists at least one robust region associated with it. This follows from the fact that the
range space of Φ must intersect with some greedy region Gi over a set of positive measure. Around any point in this intersection,
one can construct a sufficiently small neighborhood that lies entirely within the greedy region and hence forming a robust region.

To further explore this question, we conduct an empirical study to estimate the average number of robust regions one can
expect to encounter at a particular ambient dimension(K) and feature dimensions (d). We plot the results in Figure 2. For
a fixed (K,d) pair, we sample random feature matrices Φ, and compute the number of feasible robust regions, using Theorem
3.12. Particularly, we say that if there exists a µ which satisfies the conditions of Theorem 3.12, then there exists a robust
region. The maximum number of robust regions any arbitrary Φ can have is K, which implies that all arms can be expressed
correctly. We plot the average fraction of robust regions out of K for various (K,d) pairs. The results indicate that even
in settings with low feature dimensions and high ambient dimensions, a typical feature matrix Φ can express a relatively
high number of robust regions, while high dimensional features can almost express any arm correctly. This could suggest
why even low dimensional feature spaces are able to give rise to reasonably good policies.

3.1 Instance Dependent Zero Regret Algorithms

We analyze two well-known algorithms ε-greedy (Sutton & Barto, 2018) and LinUCB (Abbasi-Yadkori et al., 2011) and
show that if the bandit instance belongs to a robust region, then the algorithms enjoy zero regrets, even under misspecification.
We assume the following conditions: that the noise of the observations is sub-Gaussian and that the instance µ is an interior
point of the robust regionRk.
Assumption 3.13 (sub-Gaussian Noise). We shall assume that the K armed bandit instance µ is 1/2 sub-Gaussian4.
Assumption 3.14 (Interior Point). We shall assume that µ is an interior point ofRk, that is, there exists a δ>0, such that
the K-dimensional open rectangle, with length δ and center µ, is entirely contained inRk. 5

Remark 3.15. As can be observed from Figure 1(a), larger the separation between the arms (∆i), larger the δ that can be
chosen so that the open rectangle centered at µ,6 is contained inRk. Thus, instances with larger sub-optimality gaps are
more interior and hence more robust. This observation leads us to consider δ as a measure of robustness.

3.1.1 ε-Greedy Algorithm

We show that a misspecified bandit instance enjoys sublinear regret (asymptoticaly) under the ε-greedy algorithm, provided
it belongs to the robust region as defined by the feature matrix. The proof is deferred to in Appendix A.1.
Theorem 3.16. Given a feature matrix Φ and a fixed bandit instance µ satisfying Assumptions 3.13 and 3.14, the ε-greedy
algorithm with εt being varied as 1/

√
t over episodes, the cumulative regret, asymptotically enjoy sub-linear regret, that

is lim
T→∞

Regret√
T

⩽∆max, where ∆max is the maximum sub-optimality gap, ∆max =maxi∈[K]µk−µi and regret is the expected

cumulative regret,
∑T

t=1E[µk−µAt].
Remark 3.17. The proof uses the same technique as presented in Auer et al. (2002). The critical observation is that the
least squares estimate θ̂t, in our notation PΛ(µ̂t), is guaranteed to generate optimal play under the greedy strategy if the
sample mean estimate µ̂t falls inside the robust regionRk. The concentration of sub-Gaussian random variables ensures that
given enough samples µ̂t will fall within a δ-neighbourhood of the true rewards µ. The fact that µ is an interior point ofRk,
ensures a that there exists δ- neighbourhood about µ that is contained in the robust regionRk. Our experiments illustrated
in Appendix F.1 corroborate this.

4The reason for choosing 1/2 is purely for ease of calculation and can be replaced by any other constant.
5For the purpose of analysis we take the topology of RK , as open rectangles instead of open balls.
6We shall denote the open rectangle with length δ, centered at µ as 1δ(µ)
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3.1.2 LinUCB Algorithm

Our notion of robust instances captures the sublinear regret enjoyed by misspecified instances under the LinUCB algorithm.

The difficulty in the proof for LinUCB type algorithms is that while it is true that the sample estimates µ̂t of robust instances µ
fall within robust observation regions with high probability (because of the SaubGaussian nature), one cannot trivially conclude
the same for the parameter estimates θ̂t. We rely on the following constant, as defined in Lemma 3.18, which can be thought
of as the sub=optimality gap in the feature space for any robust instance µ. The key observation is that, for any robust instance,
the suboptimality gap in the feature space must also be (it could albeit be small but nevertheless) a finite positive constant.

Lemma 3.18. If µ is an interior point of the robust observation region, that is, if µ∈Int(ROPT(µ)) then there exists a ∆min >0,
such that for any sampling distribution {λi(t)}i∈[K]∈P(∆K) for time t⩾1, we have φ⊤

OPT(µ)PΛt(µ)−φ⊤
i PΛt(µ)⩾∆min

for any suboptimal arm i.

Remark 3.19. Note that ∆min is a function of only the feature matrix Φ and the bandit instance µ and is algorithm independent.

With this notion, we have the following regret bound, (proof in Appendix C, which follows a standard technique as in
Abbasi-Yadkori et al. (2011)),

Theorem 3.20. Given a feature matrix Φ satisfying Assumptions C.2 and C.3, and any bandit parameter µ which is an
interior point of the robust observation region,ROPT(µ) and satisfies Assumption C.1, the LinUCB algorithm achieves regret

of the order Õ(d
√

t). That is, with βt(δ) set as 2R2log
(

(1+t/d)d/2

δ

)
for any δ>0, we have with probability at least 1−δ

∀t>1,

t∑
s=1

µOPT(µ)−µAs
⩽

4
√

tR∆max

∆min

√
log

((1+t/d)d/2

δ

)√
log(1+t/d)d,

where ∆min is as defined in Lemma 3.18 and ∆max is defined as the worst sub-optimal gap, that is,
∆max =maxi∈[K]µOPT(µ)−µi.

Remark 3.21. The theorem asserts that for any Φ and a fixed bandit instance µ belonging to a robust region with respect
to Φ, the LinUCB algorithm achieves a regret of Õ(d

√
T).

Comparison to the works of Liu et al. (2023) The authors study the problem of misspecification under a robustness criterion
which characterizes the misspecification to be dominated by the suboptimality gap. Under such a condition, they show that
LinUCB enjoys O(

√
T) regret when the misspecification is of low order, specifically, it is of order O

(
1

d
√

logT

)
. Note that this

result is still non-trivial since the worst-case regret for LinUCB under uniform model error is ρT if ρ is the misspecification error.
However, we would like to address the following points while comparing our work : (i) Our notion of robustness is significantly
different from theirs as we are able to show examples which achieve sub-linear regret even if the misspecification error dom-
inates the sub-optimality gap. (ii) For our analysis of LinUCB we do not require the assumption of low misspecification error.
Remark 3.22. We would like to take this opportunity to paraphrase our contribution at this stage. While previous works
have analyzed the same algorithms as presented here, it relied on the realizability of the instance by the features. We, show
that this realizability assumption is not required to achieve the same results, for some special instances.

3.2 Non-Linear Function Approximation

In this subsection, we illustrate the robust conditions for parameterized function classes.

Definition 3.23 (Parameterized Function Class). We consider a real-valued function class parameterized by θ∈Rd, that
takes any arm i∈ [K] and returns a real value,

{
fθ :{1,2,···,K}→R∀θ∈Rd

}
as the feature representation. We shall denote

by fθ as the K dimensional vector of {fθ(i)}i∈[K].

The model estimate calculated under a sampling distribution Λ=diag
(
{λi}i∈[K]

)
, for the observation pairs

(
fθ,µ

)
is defined

as, PΛ(µ)≜argminθ

∥∥fθ−µ
∥∥

Λ1/2 . We define the robust regions as

Definition 3.24 (Robust Parameter Region). We define the kth robust parameter region Θk as the set of all parameters
θ∈Rd such that fθ belongs to the kth greedy region Gk. That is, Θk =

{
θ∈Rd :fθ(k)>fθ(i)∀i≠k

}
.

Definition 3.25 (Robust Observation Region). We define the kth robust observation region Rk as the set of all bandit
instances with optimal arm k, such the model estimate calculated under any sampling distribution, lies in the kth robust

8
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parameter region Θk. That is,Rk =
{
µ∈Gk :PΛ(µ)∈Θk∀Λ∈P(∆K)

}
, where P(∆K) is the set of all diagonal matrices

whose elements belong in the K−1 dimensional simplex.

ε-greedy algorithm We have the following sub-linear regret guarantee for the ε-greedy algorithm. The result follows from
the analysis of the ε-greedy algorithm as given in Appendix A.1.

Theorem 3.26. Given feature representation fθ and any bandit instance µ satisfying Assumptions 3.13 and 3.14, the ε-greedy
algorithm with εt being varied as 1/

√
t over episodes, the cumulative regret, asymptotically enjoy sub-linear regret, that

is limT→∞
Regret√

T
⩽∆max, where ∆max is the maximum sub-optimality gap between arms, ∆max =maxi∈[K]µa−µi.

3.3 Robust Features in Bandits: Extension of Example 2 (extreme case of misspecification)

In this subsection, we design a feature representation using a highly nonlinear function with a provably large robust region.
The motivation for this feature representation arises from Figure 1(b), and we develop a higher-dimensional variant of the
function. We observe that the greedy regions {Gi}Ki=1 partition RK into K-disjoint partitions. Consider the subsetMi(ε)⊂Gi

defined as
{
µ∈RK s.t µi >µj +ε ∀j ≠ i

}
, for a fixed ε>0 and for any arm i∈ [K]. We define the feature-representation

F(ε) by the disjoint union of the manifolds F(ε)=
⊔K

i=1∂Mi(ε), where ∂Mi(ε) is the boundary ofMi(ε).
Theorem 3.27. For the feature representation defined above as F(ε), the region ⊔K

i=1Mi(ε) is robust. Note that as ε
decreases, the robust region increases, and hence we can have an arbitrarily large class of robust bandit instances.

Proof. Let us take an arbitrary µ∈⊔K
i=1Mi(ε) and w.l.o.g. assume µ∈Mk(ε) for some k∈ [K]. This is valid since the

Mi(ε)-s form a disjoint set. Note that for any sampling distribution, the projection of the chosen µ on F(ε) belongs to
∂Mk(ε) since ∂Mk(ε) is the boundary of the setMk(ε). Since ∂Mk(ε) is a subset of the greedy region Gk, we see that
the robust condition is satisfied. This completes the proof.

Illustration in 3-dimensions For R3 we illustrate the feature representation as follows. Robust regions are described as
the disjoint union ofM1(ε),M2(ε) andM3(ε), expressed as

{
(x,y,z) s.t x>y+ε,x>z+ε

}
⊔

{
(x,y,z) s.t y>z+ε,y>

x+ε
}
⊔

{
(x,y,z) s.t z>x+ε,z>y+ε

}
for a fixed epsilon. Thus, the functionF(ε) is defined as the union of the boundaries{

(x,y,z) s.t x=y+ε,x=z+ε
}
⊔

{
(x,y,z) s.t y=z+ε,y=x+ε

}
⊔

{
(x,y,z) s.t z=x+ε,z=y+ε

}
.

3.4 ε-Optimal Arms

In this subsection, we discuss the phenomenon of the robust region being large enough to ensure the greedy policy returns an
ε-optimal arm. In the context of multi-armed bandits, an ε optimal arm is an arm if ε is larger than the minimum sub-optimal
gap of arms ∆min. We shall assume that the optimal arm is k for the following discussion.

Definition 3.28 (ε-optimal set). Let the arms whose rewards are at most ε worse than the optimal arm be defined as
Aε(µ)={i∈ [K]:µi >µk−ε}

Note that Aε(µ) is a nonempty set as it contains µk by definition. The cardinality of Aε(µ) can be more than one only if
ε is more than ∆min, the minimum suboptimal gap of the bandit instance µ.

Definition 3.29 (ε-robust observation region). We define the kth robust observation region asRε
k =

{
µ∈Gk : ΦPΛ(µ)∈⊔

i∈Aε(µ)
Gi∀Λ∈P(∆K)

}
, where P(∆K) is the set of all diagonal matrices whose elements belong to the simplex ∆K.

The above definition implies that the greedy policy based on the estimate ΦPΛ(µ) would return an ε-optimal arm for any
sampling strategy Λ. By definition, the robust regionRk, is a subset of the ε-robust regionRε

k.

Characterization of Robust Region As in Theorem 3.12, we can characterize the robust region in terms of the feature
matrix. The proof follows along the same line as for Theorem 3.12.

Theorem 3.30. µ belongs to the ε-robust observation regionRε
k if and only if every d×d full rank sub-matrix of Φ, denoted

by Φd, along with the corresponding d rows of µ, denoted by µd, satisfies the condition that ΦΦ−1
d µd∈Gi for some specific

i in Aε(µ). In other words, µ∈Rε
k if and only if every ΦΦ−1

d µd∈Gi for some specific i∈Aε(µ)
Remark 3.31. Since ⊔Gi is not a convex region, we require every basic solution to lie in the same greedy region.
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ε-Optimal Arm Identification We demonstrate polynomial sample complexity for identifying an ε-optimal arm when
it belongs to an ε-robust region.
Theorem 3.32. Let an arbitrary bandit instance µ belong in the ε-robust observation region and satisfy Assumptions 3.13
and 3.14 with width δ. Then, for any α>0, a sampling strategy that samples each arm at least Ti > ln

(
K
α

) 1
2δ2 times would

play an ε-optimal arm under the greedy policy with probability at least 1−α.

Proof. Note that because of Assumption 3.13, when each arm has been sampled for at least ln
(

K
α

) 1
2δ2 , the sample estimate

of µ̂ lies within a δ open-rectangle of µ with probability at least 1−α. From Assumption 3.14, this implies µ̂ lies is the
ε-robust region and the result follows from the definition of the robust region.

4 Contextual Bandits

We consider the more general setting of a contextual bandit in which contexts are drawn from a finite set X , and each context
has finite arms inA giving rewards with means {µx,a}(x,a)∈X×A. We assume that each context-arm pair (x,a) is associated
with a known feature φ(x,a) in Rd. We also have an available parametric class of functions that serves to (approximately)
model the mean reward of each context-arm pair; each function in this class is of the form fθ :Rd→R for a parameter
θ∈Θ⊂Rd, and applying it to arm a at context x yields the expressed reward fθ(φ(x,a))∈R.

Notation We denote the context space size and the action space size by X and A, respectively. We shall assume that the
number of arms is larger than the dimension of the parameter, that is A>d and, for ease of analysis, consider the set of features
{φ(x,a)}x∈X ,a∈A to spanRd. We shall denote the true reward mean as a vector in XA-dimension, µ=

[
µx,a

]
x∈X ,a∈A∈R

XA

and the feature matrix by Φ=
[
···φ(x,a)⊤···

]
x∈X ,a∈A an element in RXA×d. We shall denote by Φx, the context specific

feature matrix, as the A×d sub-matrix of Φ corresponding to the features [φ(x,a)]a∈A for a fixed context x. Similarly we
shall denote by µx, the context specific reward vector, as the A dimensional sub-vector of µ corresponding to the rewards
[µx,a]a∈A for a fixed context x. We shall use the notation of OPT(x) to denote the optimal arm at context x

Remark 4.1 (Linear Contextual bandits). In linear contextual bandits (Chu et al., 2011), it is assumed that the mean rewards
for a context-action pair µx,a is a linear function of the features φ(x,a), that is there exists a θ∗ such that µ = Φθ∗. Note
that we make no such assumption.

Main Result We define analogous concepts as those introduced in the bandits setting for the contextual setting. The critical
observation is that we recover the multi-armed bandit setup for any fixed context.
Definition 4.2 (Greedy Region G for context x). Define by Gx

a , for any context x and arm a, as the region in RA for which
the ath arm is the optimal arm at context x, that is Gx

a ≜
{
µx∈RA :µx,a >µx,b∀b≠a

}
.

We fix our model class to be linear, for which least square estimate can be written as θ̂=(Φ⊤ΛΦ)−1Φ⊤Λµ̂, where Λ is a diag-
onal matrix with sample frequencies of context-action pair {λx,a}(x,a)∈X×A on the diagonal. Analogous to the bandit section,
we define the model estimate as the least squares estimate calculated using observation pairs of (Φ,µ) under a sampling distri-
bution of Λ as PΛ(µ)≜argminθ

∥∥Φθ−µ
∥∥

Λ1/2 . We then define the robust parameter region and robust observation region.

Definition 4.3 (Robust Parameter Region for context x). We define the ath robust parameter region Θx
a for a context x

as the set of all parameters θ such that the range space of the context-specific feature matrix, Φx, restricted to Θx
a lies in

the greedy region Gx
a . That is, Θx

a =
{
θ∈Rd :Φxθ∈Gx

a

}
.

Definition 4.4 (Robust Observation Region for context x). We define the ath robust observation regionRx
a for context x as the

set of all contextual bandit instances µ satisfying (i) the A armed bandit problem at context x has arm a as the optimal and (ii) the
model estimate PΛ(µ) calculated under any sampling distribution belongs in the (x,a)th robust parameter region Θx

a. That is,

Rx
a =

{
µ : µx∈Gx

a ,PΛ(µ)∈Θx
a∀Λ∈P(∆XA)

}
,

where P(∆XA) is defined as

P(∆XA)=
{

Λ=diag({λx,a}(x,a)∈X×A :diag({λx,a}(x,a)∈X×A∈∆XA∧Φ⊤ΛΦ is invertible
}

,

where ∆XA is the (XA−1) dimensional simplex.7

7In Appendix E, we discuss how to carry over all previous discussion to the case where Φ⊤ΛΦ is not assumed invertible by using a regularizer, of
the form Φ⊤(λI+Λ)Φ.
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In the following theorem, we show that µ belonging in RX defined as
⋂

x∈XRx
OPT(x)

8 is a sufficient condition that the
greedy policy based on ΦPΛ(µ) is the optimal strategy under any algorithm-driven sampling strategy for every context x.
Theorem 4.5 (Sufficient Condition). If µ ∈ RX then ΦxPΛ(µ) ∈ Gx

OPT(x) for any context x and under any sampling
distribution. That is, argmaxa∈Aφ(x,a)⊤PΛ(µ)=OPT(x) for every context x.

Proof. If µ ∈ RX , then µ ∈ Rx
OPT(x) for every context x. Thus, for every context x, we have µx ∈ Gx

OPT(x) and for
every sampling distribution, the model estimate PΛ(µ)∈Θx

OPT(x). Thus, from the definition of Θx
OPT(x), we have that

ΦxPΛ(µ)∈Gx
OPT(x). Therefore, the greedy algorithm is guaranteed to play optimally in every context.

Characterization of Robust Region In the class of linear models RX can be described analytically in the following
Theorem 4.6. We can use this result to compute the robust region for any given feature matrix Φ as illustrated in Appendix
F.2. The proof is presented in Appendix B.3.
Theorem 4.6. Define ΘX ≜

⋂
x∈X Θx

OPT(x). A contextual bandit instance µ belongs to the robust observation regionRX

if and only if for each d×d full rank sub-matrix of Φ, denoted by Φd, along with the corresponding d rows of µ, denoted
as µd, satisfy Φ−1

d µd∈ΘX . That is µ∈RX if and only if Φ−1
d µd∈ΘX for every d×d full rank sub-matrices of Φ and

the corresponding d rows of µ.

4.1 Instance Dependent No-Regret Algorithms

We analyze and prove that ε-greedy and LinUCB algorithms can achieve sub-linear regret on misspecified contextual bandits,
provided they are in the robust observation regions. We assume the following settings: the noise is sub-Gaussian, each context
has a positive probability of observation, and the instance µ is an interior point of the robust region.
Assumption 4.7 (sub-Gaussian Noise). We shall assume that for any context x, the A armed bandit instance µx is 1/2
sub-Gaussian.
Assumption 4.8 (Context Distribution). Each context x∈X has positive probability px of observation.
Assumption 4.9 (Interior Point). We shall assume that µ is an interior point ofRX , that is there exists a δ > 0, such the
XA-dimensional open rectangle, with length δ and centre µ, is entirely contained inRX .

4.1.1 ε-Greedy Algorithm

Analogous to the bandit setting, we can show that ε-greedy enjoys sub-linear regret for misspecified instances provided they
are robust, as shown in the next theorem. We present the proof in Appendix B.1.
Theorem 4.10. Given feature matrix Φ and a fixed contextual bandit instance µ satisfying Assumptions 4.7, 4.8
and 4.9, the ε-greedy algorithm with εt varied as 1/

√
t, the cumulative regret, asymptotically enjoys sub-linear re-

gret. That is, limT→∞
Regret√

T
⩽ ∆max, where ∆max is the maximum sub-optimality gap between context-arm rewards,

∆max =maxx∈X maxa∈Aµx,OPT(x)−µx,a.

Remark 4.11. The proof follows the same lines as in the Bandits section. Note that our regret guarantee in Theorem 4.10
does not depend on the misspecification error and depends only on the suboptimality gap. Our experiments illustrated in
Appendix F.2 corroborate this.

4.1.2 LinUCB Algorithm

We analyze the LinUCB algorithm in the contextual setting and show that misspecified instances can enjoy sub-linear regret
under the LinUCB strategy, provided they are robust. Much, like the Bandits scenario, the proof for the LinUCB algorithm relies
on the observation, that the minimum sub-optimal gap in the value-function space has to be positive, for any robust instance.
Lemma 4.12. If µ is an interior point of the robust observation region, that is, if µ∈Int(RX ), then there exists a ∆min >0,
such that under any sampling distribution {α(x,a,t)}a∈A at any time t⩾1, we have for any context x,

φ⊤
x,OPT(x)PΛt(µ)−φ⊤

x,aPΛt(µ)⩾∆min ,

for any sub-optimal arm a at context x.
8Here we use the notation OPT(x) to denote the optimal arm of context x
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Note that ∆min is an instance dependent quantity, which depends on the µ and the feature matrix Φ. With this we can arrive
at our reegret bound as shown in the following theorem.
Theorem 4.13. Under Assumptions D.1, D.2 and D.3, for any contextual bandit instance µ lying in the robust regionRX

of a given feature matrix Φ, we have for any t⩾1, and for any δ>0, the regret of LinUCB as,
t∑

s=1
µXs,OPT(Xs)−µXs,AS

⩽
4
√

tR∆max

∆min

√
log

((1+t/d)d/2

δ

)√
log(1+t/d)d ,

with probability at least 1−δ. Here ∆max =max(x,a)∈X×AµxOPT(x)−µx,a.

The proofs are present in Appendix D.

Comparison with the results of Zhang et al. (2023) Zhang et al. (2023) study misspecified contextual bandits with the
misspecification dominated by the minimum sub-optimality gap. We see this characterization as being more in line with the
work of Liu et al. (2023). Under this robustness criterion, they develop a sophisticated algorithm (DS-OFUL) which they show
to be regret-optimal. We believe their characterization of robustness is not directly comparable to our work. For example, our
framework allows for the study of problems whose misspecification error can be (much) larger than the sub-optimality gap.

5 Markov Decision Processes (MDPs)

Problem Statement We consider a finite horizon episodic MDP setting where at horizon/stage, h∈ [H], states are drawn
from a finite set S, and each state has finite actions inA. The reward function at any stage h∈ [H] is a deterministic function
of the state and action, that is, Rh :S×A→R. The state transition kernel at any stage h∈ [H] is denoted by Ph(s′|s,a) and
the actions are chosen according to a behavioral policy πb :S→∆A. The optimal Q∗

h value at any stage h∈ [H] is a function
of the state-action pair, that is, Q∗

h :S×A→R and satisfies the optimal Bellman equation Q∗
h(s,a)=ThQ∗

h+1(s,a) where
ThQ∗

h+1(s,a) is the Bellman Operator, Rh(s,a)+E
[
maxa′∈AQ∗

h+1(s′,a′)|sh =s,ah =a
]
.

Function Approximation In RL with function approximation, we employ a parametric function class Fh to approximate
Q∗

h values. Consider a function class
{
fθh

}H

h=1, where θh ∈ Rdh is a learnable parameter for {Q∗
h}Hh=1. Each fθh

is a
real-valued function that takes states and actions and returns an approximate value function fθh

:S×A→R. Consider the
Fitted-Q learning Algorithm (Algorithm 1) as presented in Szepesvári (2022). At each stage (sh,ah,rh,sh+1) transitions
are observed according to behavior policy πb to estimate θh.

Algorithm 1 Fitted-Q Learning
Input: Behavioral Policy πb

Output: Updated parameters {θ̂h}Hh=1 after T rounds
1: Set {Dh}Hh=1 =∅.
2: for episode t=1 to T do
3: Set θ̂H+1 =0.
4: for Horizon h=H to 1 do
5: Fit Q-function with least squares regression

θ̂h =argmin
θ

∑
(sh,ah,rh,sh+1)∈Dh

(
fθ(sh,ah)−rh−max

a
f̂

θh+1
(sh+1,a)

)2

6: end for
7: Sample one episode (s1,a1,r1,···,sH,aH,rH) using πb

8: Update the observation datasetDh←Dh∪{(sh,ah,rh,sh+1)} for all h∈ [H].
9: end for

Main Result We shall develop robust conditions and give PAC guarantees for the Fitted-Q Learning algorithm without
any realizability or completeness assumption. Particularly, we do not assume Q∗

h ∈Fh for any h, nor do we assume that
the Bellman Operator satisfies Thfh+1∈Fh for all fh+1∈Fh+1.

12



Under review as submission to TMLR

Robust Condition We note that any Q∗
h(s,·) is an element of RA and hence belongs to the greedy region Gs

OPT(s). The
model estimate at stage h under the behavioral policy is defined as

Pπb(h)(θ′)=argmin
θ

∑
s,a,s′

απb

h (s,a,s′)
(

fθ(s,a)−r−max
a′

fθ′(s′,a′)
)2

, for any θ′.

Here απb

h (s,a,s′) is the true distribution of observing the pair (s,a,s′) under the behavioral policy πb at stage h given by
Pπb{sh =s,ah =a,sh+1 =s′}. The robust parameter region at stage h for a state s, is Θs

h =
{
θ : fθ(s, ·)∈Gs

OPT(s)
}

. We
denote the robust parameter region at stage h as Θh =

⋂
s∈S

Θs
h. The robust condition can thus be described as

Pπb(h)(θh+1)∈Θh ∀θh+1∈Θh+1, for all h∈ [H]. (1)

PAC Guarantees We assume that if a MDPM, function class
{
fθh

}H

h=1 and a behavior policy πb satisfies the robust
condition, then any behavior policy "close" to πb would also be robust.

Assumption 5.1 (Interior Point). Given an MDPM, a function class
{
fθh

}H

h=1, and a behavior policy πb that satisfies
the robust condition, Equation 1, there exists a δ >0 such that any policy π satisfying |απ

h(s,a,s′)−απb

h (s,a,s′)|⩽δ for all
(s,a,s′) and at every stage h∈ [H], is robust, that is, satisfies Pπ(h)(θh+1)∈Θh ∀θh+1∈Θh+1 for all h∈ [H] .

We present our PAC guarantee for the Fitted-Q Learning algorithm for an MDPM, function class
{
fθh

}H

h=1 and behavior
policy πb for which it satisfies the robust condition.

Theorem 5.2 (Sample Complexity of Fitted Q-Learning). Let an MDPM, function class
{
fθh

}H

h=1, and behavioral policy

πb satisfy the robust condition 1 along with Assumption 5.1 with parameter δ. Then for any ε>0 and for T ⩾ ln
(

S2AH
ε

)
1

2δ2

with probability more than 1 − ε, the greedy policy, defined as πgreedy
h (s) = arg maxa f̂

θT
(s,a) is the optimal policy

argmaxa∈AQ∗(s,a).

Proof. Let nh(s, a, s′, t) denote the number of times the transition (sh = s, ah = a, sh+1 = s′) is ob-
served till time t under the behavioral policy πb. Since every trajectory is sampled independently we have

E
[

nh(s,a,s′,T)
T

]
= E

[∑T

i=1
1
{

shi=s,ahi=a,sh+1,i=s′
}

T

]
= απb

h (s, a, s′). Thus, from Hoeffding’s Inequality, we get

P
{∣∣∣nh(s,a,s′,T)

T −απb

h (s,a,s′)
∣∣∣ > δ

}
⩽ 2exp(−2δ2T). Taking a uniform bound over all (s,a,s′) observations and all H

stages, we find that the Assumption 5.1 is not satisfied with probability less than S2AHexp
(
−2δ2T

)
.

5.1 Example of a Misspecified but Robust (Deterministic) MDP

In this subsection, we illustrate robust conditions for a simple two-stage deterministic MDP and a theoretical feature
representation under a uniform behavioral policy. For a stochastic MDP under an arbitrary behavioral policy, we present
an analysis of robust conditions in Appendix H.

MDP description We present a simple two-stage MDP,M, with three states, each having two actions as shown in Figure
3(b). The state transitions are deterministic based on the actions. At stage h = 1, the process starts at state s1 and, based
on the action, gets the associated reward and moves on to either state s2 or state s3. At each of the subsequent states, one
chooses one of two available actions again, observes the reward, and the process ends. The rewards are such that r11 >r12,
r21 >r22 and r31 >r32. To ensure that employing a myopic greedy strategy fails, we require that the optimal policy at each
state be π∗(s1)=a2, π∗(s2)=a1 and π∗(s3)=a1.

Behavior Policy We assume the behavior policy, πb, to sample uniformly across all actions at any state s. This ensures
that the approximate values are orthogonal projections to the function space.
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(a) A function approximation feature class which is described
as an ε-radius tube about the diagonal. We give a representative
diagram for a R2 space corresponding to a bandit problem with
two arms. All instances are robust except for a measure zero set
of bandit instances on the diagonal, which can be interpreted as
both arms having the same rewards.

(b) A 2 stage deterministic MDP with three states and each
state having two actions. The rewards are ordered as r11 >
r12, r21 >r22, r31 >r32. However, the rewards are designed
such that the optimal action in state s1 is a2, because r31 is
significantly higher than r21.

Figure 3: An example of a MDP and a function class we designed to approximate the Q value. The optimal Q∗ values are
misspecified in the function class, yet we can learn the optimal policy using this function class.

Function Class We choose a function class that is a tube of radius ε about the diagonal of the RSA space. At stage h=2,
the function approximation class is defined by

F2 =
{

[x,x,x,x]⊤+ε
v

∥v∥2
∀v∈

(
[1,1,1,1]⊤

)⊥ ∀x∈R
}

, for a fixed ε>0.

where ([1,1,1,1]⊤)⊥ represents the orthogonal space to [1,1,1,1]⊤. At stage h=1, it is defined as

F1 =
{

[x,x]⊤+ε
v

∥v∥2
∀v∈

(
[1,1]⊤

)⊥ ∀x∈R
}

, for a fixed ε>0.

The function class F1 is shown in Figure 3(a) 9. The figure shows that almost all 2 armed bandit instances are robust.

Condition for Robustness Stage Two At stage h=2 , there are four possible state-action pairs, (s2,a1), (s2,a2), (s3,a1)
and (s3,a2). Thus at stage h=2, the reward vector r2 =[r21, r22, r31, r32]⊤ is an element of R4. Thus the value function
f2 is such that

f2 =arg min
f∈F2
∥f−r2∥2

The function approximated Q values functions for the states can be read off as[
f2(s2,a1)
f2(s2,a2)

]
=

[
x0
x0

]
+ ε

∥r2−x0∥

[
r21−x0
r22−x0

]
and

[
f2(s3,a1)
f2(s3,a2)

]
=

[
x0
x0

]
+ ε

∥r2−x0∥

[
r31−x0
r32−x0

]
,

where x0 =(r21+r22+r31+r32)/4 and x0 =[x0, x0, x0, x0]⊤. Note that one can have a potential huge misspecification
error of l2 norm approximately ∥r2−x0∥. Observe that since r21 >r22 and r31 >r32 we have, f2(s2,a1)>f2(s2,a2) and
f2(s3,a1)>f2(s3,a2), and thus argmaxaf2(s2,a)=π∗(s2) and argmaxaf2(s3,a)=π∗(s3).

Stage One At stage h=1 we use the function class F1. The value function f1 is such that

f1 =arg min
f∈F1
∥f−r1∥2

where r1 =
[
r11+maxaf2(s2,a)
r12+maxaf2(s3,a)

]
=

[
r11+x0+ ε

∥r2−x0∥(r21−x0)
r12+x0+ ε

∥r2−x0∥(r31−x0) .

]
.

9We remove the dependency on ε from the text to reduce burden of notation
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Since F1 is such that almost all bandit instances are robust, to ensure argmaxaf1(s1,a) = π∗(s1), we must have r1∈G1.
This is true if r11 <r12 + ε

∥r2−x0∥(r31−r21). Thus, under the uniform behavioral policy, the given MDPM, along with
the function class F1,F2, is robust if the preceding condition is satisfied.

6 Discussion

In this work, we present a systematic study of model misspecified instances in the bandit, contextual bandit, and
Markov-decision-process settings compliant with practical algorithms. Previous theoretical works have all indicated that these
algorithms are insufficient to learn the optimal policy without the realizability assumption, despite their panacean use and often
impressive performance. In this regard, we hope to have provided some insight into explaining why such learning systems
perform as well as they do. However, we realize several limitations to our study, the primary of which is that we are uncertain
how one can better utilize the concept of robust regions to construct better feature representations or design better algorithms.
We can also not explain how these results might extend to settings with an exponential number of states and actions. But,
we hope to have convinced the reader that there is a natural existence of benign instances in the model misspecified setting.
We hope future research can be devoted to better explainability of function-approximated learning algorithms.
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Algorithm 2 ε-greedy algorithm
1: for t = 1 to T do
2: With an estimate θ̂t, play arm i such that

At =argmax
i∈[K]

φ⊤
i θ̂t w.p.1−εt

=play uniformly over K armsw.p.εt

3: Observe the reward Yt.
4: Update the estimate as

θ̂t+1 =argmin
θ

t∑
s=1

[φ⊤
As

θ−Ys]2

5: end for
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A Description of Algorithms and Proofs of Theorems in Bandits

A.1 ε-Greedy Algorithm

ε-greedy algorithm is a popular forced-exploration-based algorithm widely used in practice. For completeness, we describe
it in Algorithm 2. We give a detailed description and proof of the result presented in Theorem 3.16.
Theorem 3.16. Given a feature matrix Φ and a fixed bandit instance µ satisfying Assumptions 3.13 and 3.14, the ε-greedy
algorithm with εt being varied as 1/

√
t over episodes, the cumulative regret, asymptotically enjoy sub-linear regret, that

is lim
T→∞

Regret√
T

⩽∆max, where ∆max is the maximum sub-optimality gap, ∆max =maxi∈[K]µk−µi and regret is the expected

cumulative regret,
∑T

t=1E[µk−µAt
].

Remark A.1. The proof uses the same technique as presented in Auer et al. (2002). The critical observation is that the least
squares estimate θ̂t, in our notation PΛ(µ̂t), is guaranteed to generate optimal play under the greedy strategy if the sample
mean estimate µ̂t falls inside the robust regionRk. The concentration of sub-Gaussian random variables ensures that given
enough samples µ̂t will fall within a δ-neighbourhood of the true rewards µ. The fact that µ is an interior point of Rk,
ensures a that there exists δ- neighbourhood about µ that is contained in the robust regionRk.
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Proof. Since µ is an interior point of the robust region Rk, by Assumption 3.14, there exists a δ-open-rectangle centred
at µ, denoted as 1δ(µ) which is contained in the robust observation regionRk. We observe that the probability of choosing
a sub-optimal arm i at tth round is either due to a random play, which happens with probability εt

K or during the greedy play
when the reward estimate µ̂t does not belong to 1δ(µ), the δ open-rectangle of µ. That is,

P[At =i]⩽ εt

K
+(1− εt

K
)P[µ̂t /∈1δ(µ)].

Now P[µ̂t /∈1δ(µ)], from the definition of the δ-open-rectangle, can be upper bounded by taking a union bound over all
arms to give

P[µ̂t /∈1δ(µ)]⩽
K∑

i=1
P

[
|µ̂ni,t

i −µi|⩾δ
]
,

where µ̂
ni,t

i is the sample estimate of arm i, having played ni,t times till time t. The remainder of the proof has the same flavor
as in the work of Auer et al. (2002). We provide here for the sake of completeness. Note that each term P

[
|µ̂ni,t

i −µi|⩾δ
]

can be bounded in the following manner,

P
{
|µ̂ni,t

i −µi|⩾δ
}

=
t∑

s=1
P

{
|µ̂s

i−µi|⩾δ,ni,t =s
}

=
t∑

s=1
P

{
ni,t =s | |µ̂s

i−µi|⩾δ
}
P

{
|µ̂s

i−µi|⩾δ
}

⩽
t∑

s=1
P

{
ni,t =s | |µ̂s

i−µi|⩾δ
}

2exp(−2sδ2),

where we use the sub-Gaussian concentration by Assumption 3.13 and Lemma I.5,

⩽
t0∑

s=1
P

{
ni,t =s | |µ̂s

i−µi|⩾δ
}

+
t∑

s=t0+1
2exp(−2sδ2)

⩽
t0∑

s=1
P

{
ni,t =s | |µ̂s

i−µi|⩾δ
}

+ 1
δ2 exp(−2t0δ2) ,

where we use the identity
∑∞

t=x+1exp(−κt)⩽ 1
κexp(−κx). Let nR

i,t be the number of times arm i has been played randomly
till time t, then,

t0∑
s=1

P
{

ni,t =s | |µ̂s
i−µi|⩾δ

}
⩽

t0∑
s=1

P
{

nR
i,t⩽s | |µ̂s

i−µi|⩾δ
}

⩽
t0∑

s=1
P{nR

i,t⩽s}

⩽t0P{nR
i,t⩽t0}.

Now

E
[
nR

i,t

]
= 1

K

t∑
s=1

εs

and variance of nR
i,t is

V[nR
i,t]=

t∑
s=1

εs

K

(
1− εs

K

)
⩽

t∑
s=1

εs

K
.
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Thus, choosing t0 = 1
2K

∑t
s=1εs, we have

P{nR
i,t⩽t0}⩽exp(−t0/5) ,

from Bernstein’s Inequality, Lemma I.6. Thus, putting it all together, we have,

P[At =i]⩽ εt

K
+Kt0exp(−t0/5)+ K

δ2 exp(−2t0δ2).

Thus, to complete the proof, we only need to find a lower bound on t0. As per our definition,

t0 = 1
2K

t∑
s=1

εs.

Plugging the value of εs =1/
√

s, we get

t0 = 1
2K

t∑
s=1

1√
s

⩾
1
K

(
√

t+1−1).

Thus for t⩾(1+K)2−1,

P[At =i]⩽ 1
K
√

t
+(
√

t+1−1)exp(−
√

t+1−1
5K

)+ K

δ2 exp
(
− 2δ2(

√
t+1−1)
K

)
.

Therefore, regret at any time t⩾(1+K)2−1 is

Regrett =
K∑

i=1
∆iP[At =i]⩽ ∆max√

t
+o(1/tα), for any α>1

where ∆i is the sub-optimality gap µk−µi and ∆max =maxi∈[K]∆i. The asymptotic behavior of the cumulative regret is

lim
T→∞

∑T
t=1Regrett√

T
⩽∆max

.

A.2 Interior Point

The reason that we demand explicitly for µ to be an interior point of Rk is because Rkis not necessarily an open set, as
shown in Proposition A.2.

Proposition A.2. The robust observation regionRk is a Gδ set that is a countable intersection of open sets.

Proof. Note that the for any arbitrary but fixed sampling distribution {λi}Ki=1 belonging in the K dimensional simplex ∆K,
we have {

µ∈Gk :PΛ(µ)∈Θk

}
,

is an open set as the set Θk is an open set, and the projection operator is continuous. Now, since any sampling distribution
{λi}Ki=1 are rationals, that is {λi}Ki=1∈QK, we have

Rk≜
⋂

{λi}K
i=1∈∆K

{
µ∈Gk :PΛ(µ)∈Θk

}
,

is a Gδ set.

19



Under review as submission to TMLR

Algorithm 3 Generic ε-greedy algorithm
1: for t = 1 to T do
2: Observe context Xt at time t
3: With an estimate θ̂t, play arm At such that

At =argmax
a∈A

φ(Xt,a)⊤θ̂t w.p.1−εt

=play uniformly overA armsw.p.εt

4: Observe the reward Yt.
5: Update the estimate as

θ̂t+1 =argmin
θ

t∑
s=1

[φ(Xs,As)⊤θ−Ys]2.

6: end for

B Description of Algorithms and Proofs of Theorems in Contextual Bandits

B.1 ε-Greedy Algorithm

The ε-greedy algorithm in the contextual setup is described in Algorithm 3 for completeness. We now give a detailed
description and proof of the result presented in Theorem 4.10.

Theorem 4.10. Given feature matrix Φ and a fixed contextual bandit instance µ satisfying Assumptions 4.7, 4.8
and 4.9, the ε-greedy algorithm with εt varied as 1/

√
t, the cumulative regret, asymptotically enjoys sub-linear re-

gret. That is, limT→∞
Regret√

T
⩽ ∆max, where ∆max is the maximum sub-optimality gap between context-arm rewards,

∆max =maxx∈X maxa∈Aµx,OPT(x)−µx,a.

Remark B.1. The proof uses the same technique for the bandits section. The key observation is that the least squares estimate
θ̂t, in our notation PΛ(µ̂t), is guaranteed to generate optimal play under the greedy strategy if the sample mean estimate
µ̂t falls inside the robust regionRX . The concentration of sub-Gaussian random variables ensures that given enough samples
µ̂t will fall within a δ-neighbourhood of the true rewards µ. The fact that µ is an interior point ofRX , ensures a that there
exists δ- neighbourhood about µ that is contained in the robust regionRX .

Proof. Since µ is an interior point of the robust regionRX , by Assumption 4.9, there exists a δ-open-rectangle centred at
µ, defined as 1δ(µ) which is contained in the robust observation region RX . The probability of choosing a sub-optimal
arm a in state x at tth round is either due to a random play, which happens with probability εt

A or, during the greedy play,
the reward estimate µ̂t∈RXA does not belong to the δ open-rectangle of µ, 1δ(µ). That is,

P[At =a |Xt =x]⩽ εt

A +(1− εt

A)P[µ̂t /∈1δ(µ)].

Now P[µ̂t /∈1δ(µ)], from the definition of the δ-open-rectangle, can be upper bounded by taking a union bound over all
arms and contexts to give

P[µ̂t /∈1δ(µ)]⩽
∑
a∈A

∑
x∈X

P
[
|µ̂nx,a,t

x,a −µx,a|⩾δ
]
,

where µ̂
nx,a,t
x,a is the sample estimate of the state-action pair (x,a), having been sampled nx,a,t times till time t. The remainder

of the proof has the same flavor as in the work of Auer et al. (2002). We provide here for the sake of completeness. Note
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that each term P
[
|µ̂nx,a,t

x,a −µx,a||⩾δ
]

can be bounded in the following manner,

P
{
|µ̂nx,a,t

x,a −µx,a|⩾δ
}

=
t∑

s=1
P

{
|µ̂s

x,a−µx,a|⩾δ,nx,a,t =s
}

=
t∑

s=1
P

{
nx,a,t =s |

∣∣µ̂s
x,a−µx,a

∣∣⩾δ
}
P

{
|µ̂s

x,a−µx,a|⩾δ
}

⩽
t∑

s=1
P

{
nx,a,t =s |

∣∣µ̂s
x,a−µx,a

∣∣⩾δ
}

2exp(−2sδ2),

where we use the sub-Gaussian concentration by Assumption 4.7 and Lemma I.5,

⩽
t0∑

s=1
P

{
nx,a,t =s |

∣∣µ̂s
x,a−µx,a

∣∣⩾δ
}

+
t∑

s=t0+1
2exp(−2sδ2)

⩽
t0∑

s=1
P

{
nx,a,t =s |

∣∣µ̂s
x,a−µx,a

∣∣⩾δ
}

+ 1
δ2 exp(−2t0δ2) ,

where we use the identity
∑∞

t=x+1exp(−κt) ⩽ 1
κ exp(−κx). Let nR

x,a,t be the number of times arm a has been played
randomly at state x till time t, then,

t0∑
s=1

P
{

nx,a,t =s |
∣∣µ̂s

x,a−µx,a

∣∣⩾δ
}

⩽
t0∑

s=1
P

{
nR

x,a,t⩽s | |µ̂s
i−µi|⩾δ

}
⩽

t0∑
s=1

P{nR
x,a,t⩽s}

⩽t0P{nR
x,a,t⩽t0}.

Now, since states x∈X is chosen statistically independently with probability px over the state-space (Assumption 4.8) and
during random play actions are chosen independently and uniformly over action spaceA, we have,

E
[
nR

x,a,t

]
= px

A

t∑
s=1

εs

and variance of nR
x,a,t is

V[nR
x,a,t]=

t∑
s=1

pxεs

A

(
1−pxεs

A

)
⩽

px

A

t∑
s=1

εs.

Thus, choosing t0 = px

2A
∑t

s=1εs, we have

P{nR
x,a,t⩽t0}⩽exp(−t0/5) ,

from Bernstein’s Inequality, Lemma I.6. Thus, putting it all together, we have,

P[At =a |Xt =x]⩽ εt

A +XAt0exp(−t0/5)+ XA
δ2 exp(−2t0δ2).

Thus, to complete the proof, we only need to find a lower bound on t0. As per our definition,

t0 = px

2A

t∑
s=1

εs
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Plugging the value of εs =1/
√

s, we get

t0 = px

2A

t∑
s=1

1√
s

⩾
px

A (
√

t+1−1).

Thus for t⩾(1+A/px)2−1 (Note that by Assumption 4.8, we have px >0 for any context x),

P[At =a |Xt =x]⩽ 1
A
√

t
+pxX(

√
t+1−1)exp(−px(

√
t+1−1)
5A )+ XA

δ2 exp
(
− 2δ2px(

√
t+1−1)

A

)
.

Thus, the expected regret at time t⩾(1+A/px)2−1 at state x is

Regretx,t =
∑
a∈A

∆x,aP[At =a |Xt =x]

⩽∆x
1√
t
+o(1/tα) for any α>1 ,

where ∆x =maxa∈A∆x,a and ∆x,a =µx,OPT(x)−µx,a. Thus, the expected regret at time t⩾(1+A/px)2−1 is

Regrett =
∑
x∈X

Regretx,tP[Xt =x]⩽
∑
x∈X

px

(
∆x

1√
t
+o(1/tα)

)
⩽

∆max√
t

+o(1/tα) ,

where ∆max =maxx∈X ∆x. The asymptotic behavior of the cumulative regret is, therefore,

lim
T→∞

∑T
t=1Regrett√

T
⩽∆max.

B.2 Corollary of Theorem 4.5

As a corollary of Theorem 4.5 we can show that the model estimate PΛ(µ) computed under any sampling distribution
{λx,a}(x,a)∈X×A must belong to the robust parameter region Θx

OPT(x) for every context x.

Corollary B.2. For any contextual bandit instance µ, we have µ∈RX if and only if the model estimate PΛ(µ), computed
under any sampling distribution {λx,a}(x,a)∈X×A∈∆XA, belongs to ΘX , where ΘX ≜

⋂
x∈X Θx

OPT(x).

Proof. For any µ we have µx∈Gx
OPT(x) for every context x, by definition. Thus, from definition ofRX =

⋂
x∈XRx

OPT(x)
we have,

µ∈RX ⇐⇒µx∈Rx
OPT(x)∀x∈X .

⇐⇒PΛ(µ)∈Θx
OPT(x)∀x∈X .

for any sampling distribution {λx,a}(x,a)∈X×A∈∆XA. This follows from definition ofRx
OPT(x). But this is the definition

of set intersection, that is,

⇐⇒PΛ(µ)∈
⋂

x∈X
Θx

OPT(x)

for any sampling distribution {λx,a}(x,a)∈X×A∈∆XA.
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B.3 Characterization of the Robust Observation Region in Contextual Settings

When the model class is chosen to be linear, the robust observation region,RX , has an explicit analytic description which
was presented without proof in Theorem 4.6. We provide the proof here.

Theorem 4.6. Define ΘX ≜
⋂

x∈X Θx
OPT(x). A contextual bandit instance µ belongs to the robust observation regionRX

if and only if for each d×d full rank sub-matrix of Φ, denoted by Φd, along with the corresponding d rows of µ, denoted
as µd, satisfy Φ−1

d µd∈ΘX . That is µ∈RX if and only if Φ−1
d µd∈ΘX for every d×d full rank sub-matrices of Φ and

the corresponding d rows of µ.

Proof. The proof uses a result of Forsgren (1996), presented in Lemma I.4, that for any any sampling distribution
{λx,a}(x,a)∈X×A∈∆XA, the model estimate PΛ(µ), with Λ=diag({λx,a}x,a)∈X×A), lies in the convex hull of the basic
solutions Φ−1

d µd. Note that for any µ, we have µx∈Gx
OPT(x) for any context x by definition. Therefore, we have

µ∈RX ⇐⇒PΛ(µ)∈ΘX ∀Λ∈P∆XA

⇐⇒ conv{Φ−1
d µd∀Φd⊂Φ}⊂ΘX ,

⇐⇒Φ−1
d µd∈ΘX ∀Φd⊂Φ.

The first line above follows from Corollary B.2, and the second line follows from Lemma I.4. (We abuse notation to denote
d×d full rank sub-matrices of Φ by Φd⊂Φ and use conv to denote the convex hull.) The last assertion follows because
ΘX is a convex set.

C LinUCB

LinUCB remains a canonical regret optimal bandit algorithm. In this section we show that under standard assumptions, we
retain the optimal regret of LinUCB even under misspecified settings, given that the bandit instance belongs to the robust
region. We begin by first introducing the algorithm in Algorithm 4.

Algorithm 4 OFUL Algorithm
1: Forced Exploration Phase of d linearly independent features
2: Set V =0d×d and S =0d

3: for i=1 to 2d do
4: Play feature φi and observe noisy reward yi

5: Compute V =V +φiφ
⊤
i

6: Compute S =S+φiyi

7: end for
8: Standard OFUL Phase
9: Set Vt =V and St =S

10: for t = 1 to T do
11: Estimate θ̂t =

[
Vt

]−1
St

12: Play arm At, such that φAt
,θ̃t =argmaxi∈[K],θ∈Rt

φ⊤
i θ, whereRt =

{
θ :

∥∥θ−θ̂t

∥∥
Vt
⩽

√
βt(δ)

}
13: Observe the reward yt.
14: Update Vt+1 =Vt+φAt

φ⊤
At

15: Update St+1 =St+φAt
yt

16: end for

We added a forced exploration of d linearly-independent features to ensure the invertibility of the design matrix. In Appendix
E, we remove the forced exploration phase by adding a regularizer to the design matrix. The rest of the assumptions are
standard in the analysis of LinUCB (Abbasi-Yadkori et al., 2011).

Assumption C.1 (Conditionally sub-Gaussian Noise). At any time t, the observation yt corresponding to the arm played
At, is given by

yt =µAt
+ηt,
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where ηt is conditionally R-sub Gaussian, that is,

E[eληt |A1:t,η1:t−1]⩽exp
(λ2R2

2

)
∀λ∈R.

Assumption C.2 (Bounded Features). We assume that for any arm i in the arm set [K], the corresponding feature φi is
bounded in the l2 norm by 1, that is,

∥φi∥2⩽1 ∀i∈ [K].
Assumption C.3 (d rank feature matrix). We assume that the design matrix computed in the forced exploration phase, V ,
has minimum eigen-value λmin(V )⩾1.
Remark C.4. Note that, since we have the forced exploration phase to be 2d times, we have, trace(V )⩽2d∥φ∥22⩽2d. We also
have trace(V )⩾dλmin(V ). This ensures that λmin(V )⩽2, thus resolving any contradictions with respect to Assumption C.3.
Theorem 3.20. Given a feature matrix Φ satisfying Assumptions C.2 and C.3, and any bandit parameter µ which is an
interior point of the robust observation region,ROPT(µ) and satisfies Assumption C.1, the LinUCB algorithm achieves regret

of the order Õ(d
√

t). That is, with βt(δ) set as 2R2log
(

(1+t/d)d/2

δ

)
for any δ>0, we have with probability at least 1−δ

∀t>1,

t∑
s=1

µOPT(µ)−µAs
⩽

4
√

tR∆max

∆min

√
log

((1+t/d)d/2

δ

)√
log(1+t/d)d,

where ∆min is as defined in Lemma 3.18 and ∆max is defined as the worst sub-optimal gap, that is,
∆max =maxi∈[K]µOPT(µ)−µi.

We define the tth model estimate, PΛt(µ) as the least squares estimate calculated using µ under the sampling distribution
{λt

i}Ki=1 of the K arms at time t, that is,

PΛt(µ)=
( ∑

i∈[K]

λt
iφiφ

⊤
i

)−1 ∑
i∈[K]

λt
iφiµi .

The proof of the Theorem depends on the following lemmas.
Lemma 3.18. If µ is an interior point of the robust observation region, that is, if µ∈Int(ROPT(µ)) then there exists a ∆min >0,
such that for any sampling distribution {λi(t)}i∈[K]∈P(∆K) for time t⩾1, we have φ⊤

OPT(µ)PΛt(µ)−φ⊤
i PΛt(µ)⩾∆min

for any suboptimal arm i.
Lemma C.5 (Upper Bound of Sub-Optimal Plays). Given a feature matrix Φ satisfying Assumptions C.2 and C.3, and any
bandit parameter µ which is an interior point of the robust observation region,ROPT(µ) and satisfies Assumption C.1, the

LinUCB algorithm, Algorithm 4, plays sub-optimally at most Õ(d
√

t). That is, with βt(δ) set as 2R2log
(

(1+t/d)d/2

δ

)
for

any δ>0, we have with probability at least 1−δ

t∑
s=1

1{As≠OPT(µ)}⩽ 4
√

tR

∆min

√
log

((1+t/d)d/2

δ

)√
log(1+t/d)d,

where ∆min is as defined in the previous Lemma 3.18.

With the above two lemmas, the regret bound is straightforward. Formally,

Proof of Theorem 3.20. The cumulative regret, defined as,
t∑

s=1
µOPT(µ)−µAs

=
t∑

s=1

(
µOPT(µ)−µAs

)
1{As≠OPT(µ)}

⩽∆max

t∑
s=1

1{As≠OPT(µ)}.

The proof is completed using Lemma C.5.
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Proof of Lemma 3.18. We observe that if, µ∈Int
(
ROPT(µ)

)
then PΛt(µ) belongs to the robust parameter region ΘOPT(µ)

for all t⩾1.

Note that, we have from Theorem 3.12, that PΛt(µ) belongs to the closed convex hull of all
(

K
d

)
basic solutions. We denote the

convex hull byK, and note thatK is contained in ΘOPT(µ). Thus for any time t⩾1, and for any sub-optimal arm i, we have(
φOPT(µ)−φi

)⊤PΛt(µ)⩾min
θ∈K

(
φOPT(µ)−φi

)⊤
θ⩾ min

θ∈ΘOPT(µ)

(
φOPT(µ)−φi

)⊤
θ=∆i >0.

by definition of ΘOPT(µ), since we have restricted to instances with unique optimal arms. We take a finite minimum of
∆i over K minimums to define ∆min =mini∈K∆i.

Remark C.6. ∆min represents the minimum sub-optimality gap of the bandit instance in the model space.

The crux of the proof of Lemma C.5 is similar to the one found in Abbasi-Yadkori et al. (2011).

Proof of Lemma C.5. Consider the following quantity,

x⊤PΛt(µ̂t)−x⊤PΛt(µ),

for any vector x∈Rd. Recall the definitions of PΛt(µ̂t) and PΛt(µ), as

PΛt(µ̂t)=
( t∑

s=1
φAs

φ⊤
As

)−1 t∑
s=1

φAs
(µAs

+ηs)≜ θ̂t

PΛt(µ)=
( t∑

s=1
φAs

φ⊤
As

)−1 t∑
s=1

φAs
µAs

,

where φAs is the feature of the arm played at time s and µAs +ηs is the observation at time s having played arm As. This gives

x⊤PΛt(µ̂t)−x⊤PΛt(µ)

=x⊤
( t∑

s=1
φAs

φ⊤
As

)−1 t∑
s=1

φAs
ηs

⩽∥x⊤V −1
t ∥Vt

∥∥∥ t∑
s=1

φAs
ηs

∥∥∥
Vt

−1

=∥x∥Vt
−1

∥∥∥ t∑
s=1

φAs
ηs

∥∥∥
Vt

−1
.

We can now use Lemma I.1 to write (after noting that V =I, the Identity Matrix in d dimension),

x⊤PΛt(µ̂t)−x⊤PΛt(µ)⩽∥x∥Vt
−1R

√
2log

(detV 1/2
t

δ

)
.

Thus setting x=Vt

(
PΛt(µ̂t)−PΛt(µ)

)
, we have

∥∥∥PΛt(µ̂t)−PΛt(µ)
∥∥∥

Vt

⩽R

√
2log

(detV 1/2
t

δ

)
, (2)

with probability at least 1−δ for all t⩾1.

What this means is that under any sampling distribution, the Projection under that sampling distribution ( Definition 3.4)
lies within the high confidence ellipsoid centered around the estimated least squares solution.

Now let us consider the regret in the function space at any time t as defined by the sampling distribution Λt, given by

φ⊤
OPT(µ)PΛt(µ)−φ⊤

At
PΛt(µ).
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The algorithm, at any time chooses (φAt
,θ̃t) as the optimistic estimate, where θ̃t lies in the high confidence ellipsoid defined

by Equation 2. To be consistent in our notation, we shall call the optimistic estimate θ̃t as PΛt(µ̃t). This gives,

φ⊤
OPT(µ)PΛt(µ)−φ⊤

At
PΛt(µ)

⩽φ⊤
At

PΛt(µ̃t)−φ⊤
At

PΛt(µ)
=φ⊤

At
PΛt(µ̃t)−φ⊤

At
PΛt(µ̂t)+φ⊤

At
PΛt(µ̂t)−φ⊤

At
PΛt(µ)

=φ⊤
At

(
PΛt(µ̃t)−PΛt(µ̂t)

)
+φ⊤

At

(
PΛt(µ̂t)−PΛt(µ)

)
⩽∥φAt

∥Vt
−1

∥∥∥PΛt(µ̃t)−PΛt(µ̂t)
∥∥∥

Vt

+∥φAt
∥Vt

−1

∥∥∥PΛt(µ̂t)−PΛt(µ)
∥∥∥

Vt

⩽2∥φAt∥Vt
−1

√
βt(δ),

where βt(δ)=2R2log
(

detV 1/2
t

δ

)
, with probability at least 1−δ. Thus the cumulative regret in the function space is

t∑
s=1

φ⊤
OPT(µ)PΛs(µ)−φ⊤

As
PΛs(µ)

⩽
t∑

s=1
2∥φAs

∥Vs
−1

√
βs(δ)

=
t∑

s=1
2∥φAs∥Vs

−1R

√
2log

(detV 1/2
s

δ

)
⩽2
√

2R

t∑
s=1
∥φAs

∥Vs
−1

√
log

((1+s/d)d/2

δ

)
,

where in the last inequality we use Lemma I.2 and our Assumption C.2 on bounded features. Thus continuing, we have,

2
√

2R

t∑
s=1
∥φAs

∥Vs
−1

√
log

((1+t/d)d/2

δ

)
⩽2
√

2R

√
log

((1+t/d)d/2

δ

) t∑
s=1
∥φAs∥Vs

−1

⩽2
√

2R

√
log

((1+t/d)d/2

δ

)√
t

√√√√ t∑
s=1
∥φAs∥2Vs

−1.

From our assumption that ∥φAs
∥2⩽1 and from the forced exploration start we have λmin(V )=1, we use Lemma I.3 to get,

2
√

2R

√
log

((1+t/d)d/2

δ

)√
t

√√√√ t∑
s=1
∥φAs∥2Vs

−1

4
√

tR

√
log

((1+t/d)d/2

δ

)√
logdetVt

⩽4
√

tR

√
log

((1+t/d)d/2

δ

)√
log(1+t/d)d

=Õ(d
√

t).
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Thus what we have shown is that the regret in the function space is of order Õ(d
√

t). Note that from our definition of the
minimum regret in the function space, ∆min given by Lemma 3.18, we have

t∑
s=1

φ⊤
OPT(µ)PΛs(µ)−φ⊤

As
PΛs(µ)

⩾
t∑

s=1
1{As≠OPT(µ)}∆min.

Together, this gives the result.

D LinUCB in Contextual Bandits

We show that in the contextual setting, LinUCB achieves sub-linear regret for any contextual bandit instance lying in the
robust observation region.

Algorithm 5 OFUL Algorithm
1: Forced Exploration Phase of d linearly independent features
2: Set V =0d×d and S =0d

3: for i=1 to 2d do
4: Observe context Xi

5: Play feature φXi,Ai and observe noisy reward Yi

6: Compute V =V +φXi,Ai
φ⊤

Xi,Ai

7: Compute S =S+φXi,Ai
Yi

8: end for
9: Standard OFUL Phase

10: Set Vt =V and St =S
11: for t = 1 to T do
12: Estimate θ̂t =

[
Vt

]−1
St

13: Observe context Xt

14: Play arm At, such that φAt
,θ̃t =argmaxa∈A,θ∈Ct

φ⊤
Xt,Aθ, where Ct =

{
θ :

∥∥θ−θ̂t

∥∥
Vt
⩽

√
βt(δ)

}
15: Observe the reward Yt.
16: Update Vt+1 =Vt+φXt,At

φ⊤
Xt,At

17: Update St+1 =St+φAt
Yt

18: end for

We added a forced exploration phase of d linearly independent features to ensure the invertibility of the design matrix. In
Appendix E we remove the forced exploration phase by adding a regularizer. The rest of the assumptions are standard in
the analysis of LinUCB (Abbasi-Yadkori et al., 2011).

Assumption D.1 (Conditionally sub-Gaussian Noise). At any time t, the observation Yt corresponding to the arm played
At at context Xt, is given by

Yt =µXt,At +ηt,

where ηt is conditionally R-sub Gaussian, that is,

E[eληt |A1:t,η1:t−1]⩽exp
(λ2R2

2

)
∀λ∈R.

Assumption D.2 (Bounded Features). We assume that the features φx,a is bounded in the l2 norm by 1, that is,

∥φx,a∥2⩽1 ∀x∈X ,a∈A.

Assumption D.3 (d rank feature matrix). We assume that the design matrix computed in the forced exploration phase, V
has minimum eigen value λmin(V )⩾1.
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Theorem 4.13. Under Assumptions D.1, D.2 and D.3, for any contextual bandit instance µ lying in the robust regionRX

of a given feature matrix Φ, we have for any t⩾1, and for any δ>0, the regret of LinUCB as,
t∑

s=1
µXs,OPT(Xs)−µXs,AS

⩽
4
√

tR∆max

∆min

√
log

((1+t/d)d/2

δ

)√
log(1+t/d)d ,

with probability at least 1−δ. Here ∆max =max(x,a)∈X×AµxOPT(x)−µx,a.

We define the tth model estimate PΛt(µ) as the least squares estimate calculated using µ under a sampling distribution
{λt

x,a}(x,a)∈X×A at time t.

The proof of the Theorem depends on the following Lemmas
Lemma 4.12. If µ is an interior point of the robust observation region, that is, if µ∈Int(RX ), then there exists a ∆min >0,
such that under any sampling distribution {α(x,a,t)}a∈A at any time t⩾1, we have for any context x,

φ⊤
x,OPT(x)PΛt(µ)−φ⊤

x,aPΛt(µ)⩾∆min ,

for any sub-optimal arm a at context x.

The proof follows the same line as in the proof of Lemma 3.18.
Lemma D.4 (High Confidence Ellipsoids). Under Assumptions D.1, D.2 and D.3,we have for any that for t⩾1 and for
any δ>0, we have, ∥∥∥PΛt(µ̂t)−PΛt(µ)

∥∥∥
Vt

⩽R

√
2log

((1+t/d)d/2

δ

)
,

with probability at least 1−δ.
Lemma D.5 (Cumulative Regret in the Model Space). Under Assumptions D.1, D.2 and D.3,we have for any that for t⩾1
and for any δ>0, we have,

t∑
s=1

φ⊤
Xs,OPT(Xs)PΛs(µ)−φ⊤

Xs,As
PΛs(µ)⩽4

√
tR

√
log

((1+t/d)d/2

δ

)√
log(1+t/d)d ,

with probability at least 1−δ

Lemma D.6 (Upper Bound on Sup-Optimal Plays). Under Assumptions D.1, D.2 and D.3, for any contextual bandit instance
µ lying in the robust regionRX , we have for any t⩾1, and for any δ>0,

t∑
s=1

1{AS ≠OPT(Xs)}⩽ 4
√

tR

∆min

√
log

((1+t/d)d/2

δ

)√
log(1+t/d)d ,

with probability at least 1−δ.

The proofs for the above three lemmas follow the same lines as in the Proof for Lemma C.5 (Here, we subdivide the proof
section into three different lemmas just to make the proofs go more straightforward). This gives us the regret for LinUCB
in contextual bandits,

Proof of Theorem 4.13.
T∑

s=1
µXs,OPT(Xs)−µXs,AS

=
T∑

s=1
1{AS ≠OPT(Xs)}∆Xs,As

⩽
T∑

s=1
1{AS ≠OPT(Xs)}∆max

⩽
4
√

tR∆max

∆min

√
log

((1+t/d)d/2

δ

)√
log(1+t/d)d .
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E Weighted Ridge Regression

In our definition of the robust observation region, we have implicitly assumed the invertibility of Φ⊤ΛΦ. For the purposes
of mathematical rigor, a consistent definition of the robust observation region would be (see Lemma I.4),

Definition E.1 (Robust Observation Region). For a given feature matrix Φ, we define the kth robust observation region
Rk, as the set of all K armed bandit instances µ with optimal arm k, such that under any sampling distribution {λi}Ki=1∈∆K,
the corresponding model estimate, PΛ(µ), lies in the kth robust parameter region, Θk.

Rk =
{

µ∈Gk :PΛ(µ)∈Θk∀Λ∈P(∆K)
}

for any arm k,

where

P(∆K)=
{

Λ=diag({λi}Ki=1):{λi}Ki=1∈∆K∧Φ⊤ΛΦ is invertible
}

.

This necessitates a forced exploration phase in our algorithms. In practice, however, one uses a regularizer λ>0 to bypass
the issue of invertibility. We discuss how our theory of robust regions extends naturally to the case when one uses a weighted
regularized least squares estimate rather than the ordinary least squares estimate. Consider the weighted regularized least
squares estimate,

PΛ
λ (µ)≜

(
Φ⊤ΛΦ+λI

)−1
Φ⊤Λµ ,

for some λ>0. Define the corresponding regularized robust observation region as

Rλ
k =

{
µ∈Gk :PΛ

λ (µ)∈Θk∀Λ∈P(∆K)
}

,

where

P(∆K)=
{

Λ=diag({λi}Ki=1):{λi}Ki=1∈∆K

}
.

Characterizing Robust Region We can again give an explicit description of the set Rλ
k. Given a feature matrix Φ, a

sampling distribution Λ∈P(∆K) and a K dimensional element µ, define the following augmented elements

Φ∗ =
[

Φ√
λId×d

]
, Λ∗ =

[
Λ 0
0 Id×d

]
and µ∗ =

[
µ
0

]
,

where Φ∗∈RK+d×d, Λ∗∈RK+d×K+d and µ∗∈RK+d. Define the set J (Φ∗) as the set of row indices associated with
non-singular d×d sub-matrices of Φ∗, and let I be the set of row indices corresponding to {K+1,···,K+d}.
Theorem E.2. For any reward vector µ with optimal arm k,

µ∈Rλ
k⇐⇒Φ∗−1

J µ∗
J ∈Θk

for all J∈J (Φ∗)\I.

Proof. For a sampling distribution Λ we have

PΛ
λ (µ)=

(
Φ∗⊤

Λ∗Φ∗
)−1

Φ∗⊤
Λ∗µ∗

Thus, from the result in Lemma I.4, we have that regularized model estimate PΛ
λ(µ) to lie within the convex hull of at most(

K+d
d

)
basic solutions Φ∗−1

d µ∗
d for any Λ∈P(∆K). That is,

PΛ
λ (µ)=

∑
J∈J (Φ∗)

( detΛ∗
JdetΦ∗2

J∑
K∈J (Φ∗)detΛ∗

KdetΦ∗2
K

)
Φ∗−1

J µ∗
J , ∀Λ∈Λ
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Corresponding to the set of indices of I, we have Φ∗−1

I µ∗
I = 0. Thus decomposing the set of row indices J (Φ∗) into

J (Φ∗)\I and I, we have, from Lemma I.4,

PΛ
λ (µ)=

∑
J∈J (Φ∗)

( detΛ∗
JdetΦ∗2

J∑
K∈J (Φ∗)detΛ∗

KdetΦ∗2
K

)
Φ∗−1

J µ∗
J

=
∑

J∈J (Φ∗)\I

( detΛ∗
JdetΦ∗2

J∑
K∈J (Φ∗)\IdetΛ∗

KdetΦ∗2
K +λd

)
Φ∗−1

J µ∗
J

=
∑

J∈J (Φ∗)\I

( detΛ∗
JdetΦ∗2

J∑
K∈J (Φ∗)\IdetΛ∗

KdetΦ∗2
K

)
cλΦ∗−1

J µ∗
J ,

where cλ =
∑

K∈J (Φ∗)\I
detΛ∗

KdetΦ∗2
K∑

K∈J (Φ∗)\I
detΛ∗

K
detΦ∗2

K
+λd

is necessarily positive for any Λ∈P(∆K). Thus we have µ∈Rλ
k, if and only

if, cλΦ∗−1

J µ∗
J ∈Θk for all row indices J in J (Φ∗)\I. But since Θk is a convex cone, this implies the result holds if

Φ∗−1

J µ∗
J ∈Θk.

E.1 LinUCB

We now present an analysis of LinUCB (Abbasi-Yadkori et al., 2011) without a forced exploration phase and under the
standard assumptions. That is without the Assumption C.3. This is the result that one would find, say in, Abbasi-Yadkori
et al. (2011). But we present here without the realizability assumption.

Assumption E.3 (Bounded Features). We assume that for any arm i in the arm set [K], the corresponding feature φi is
bounded in the l2 norm by L, that is,

∥φi∥2⩽L ∀i∈ [K].

Assumption E.4 (Regularization). We assume that the regularizer λ, so chosen satisfies

λ⩾max{1,L2} ,

where L is as defined in Assumption E.3

Theorem E.5. Given a feature matrix Φ satisfying Assumptions E.3, regularization parameter λ satisfying Assumption E.4,
and any bandit parameter µ which is an interior point of the regularized robust observation region,Rλ

OPT(µ) and satisfies
Assumption C.1, the LinUCB algorithm, (Abbasi-Yadkori et al., 2011), achieves regret of at most Õ(d

√
t).

That is, with βt(δ) set as 2R2log
(

(λ+tL2/d)d/2

δ

)
for any δ>0, we have with probability at least 1−δ, for t⩾1,

t∑
s=1

µOPT(µ)−µAs ⩽
4
√

tR∆max

∆min

√
log

((1+tL2/λd)d/2

δ

)√
log(1+tL2/λd)d,

where ∆min is as defined above and ∆max is defined as the worst sub-optimal gap, that is, ∆max =maxi∈[K]µOPT(µ)−µi.

We provide a sketch of the proof: As in Lemma, 3.18, we have the following result for any bandit instance µ belonging
to the interior of the regularized robust observation regionRλ

OPT(µ).

Lemma E.6 (Lower Bound of per instant Regret in the Function Space). If µ is an interior point of the regularized robust
observation region, that is, if µ ∈ Int

(
Rλ

OPT(µ)
)
, then there exists a ∆min > 0, such that for any sampling distribution

{λi(t)}i∈[K] at any time t⩾1, we have φ⊤
OPT(µ)P

Λt

λ (µ)−φ⊤
i PΛt

λ (µ)⩾∆min for any sub-optimal arm i.

We, also have the following result, as in Lemma C.5,
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Lemma E.7 (Upper Bound of Sub-Optimal Plays). Given a feature matrix Φ satisfying Assumptions E.3, regularization
parameter λ satisfying Assumption E.4, and any bandit parameter µ which is an interior point of the regularized robust
observation region, Rλ

OPT(µ) and satisfies Assumption C.1, the LinUCB algorithm, (Abbasi-Yadkori et al., 2011), plays
sub-optimally at most Õ(d

√
t).

That is, with βt(δ) set as 2R2log
(

(1+tL2/λd)d/2

δ

)
for any δ>0, we have with probability at least 1−δ, for t⩾1

t∑
s=1

1{As≠OPT(µ)}⩽ 4
√

tR

∆min

√
log

((1+tL2/λd)d/2

δ

)√
log(1+tL2/λd)d,

where ∆min is as defined in the previously.

Proof. Note that, following the arguments as in Lemma C.5, we have, from Technical Lemma I.1,

∥∥∥PΛt

λ (µ̂t)−PΛt

λ (µ)
∥∥∥

Vt

⩽R

√
2log

(detV 1/2
t detλI−1/2

δ

)
, (3)

with probability at least 1−δ for all t⩾1. Therefore, the per-instant, value function regret, can be bounded by at most

φ⊤
OPT(µ)P

Λt

λ (µ)−φ⊤
At

PΛt

λ (µ)⩽2∥φAt
∥Vt

−1

√
βt(δ),

where βt(δ)=2R2log
(

detV 1/2
t detλI−1/2

δ

)
, with probability at least 1−δ for all t⩾1. Using Technical Lemma I.2, we have

2R2log
(detV 1/2

t detλI−1/2

δ

)
⩽2R2log

((1+tL2/λd)d/2

δ

)
.

Therefore, the cumulative regret in the function space is (Following from the steps in Lemma C.5)

t∑
s=1

φ⊤
OPT(µ)PΛs(µ)−φ⊤

As
PΛs(µ)

⩽2
√

2R

t∑
s=1
∥φAs∥Vs

−1

√
log

((1+sL2/λd)d/2

δ

)

⩽2
√

2R

√
log

((1+tL2/λd)d/2

δ

)√
t

√√√√ t∑
s=1
∥φAs∥2Vs

−1

⩽4
√

tR

√
log

((1+tL2/λd)d/2

δ

)√
log detVt

detλI

⩽4
√

tR

√
log

((1+tL2/λd)d/2

δ

)√
log(1+tL2/λd)d ,

where for the last two lines we have used technical Lemma I.2 and Lemma I.3. The proof finishes as in Lemma C.5.

The proof of Theorem E.5 is completed analogously.

F Experiments

In this section, we run some simple experiments to corroborate our findings.

F.1 Bandits

In this section, we shall use Theorem 3.12 to explicitly calculate the robust observation region for a simple feature matrix.
We shall then sample bandit instances from the calculated robust observation region and run ε-greedy algorithm on these
bandit instances.
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Calculation of Robust Regions We choose an arbitrary feature matrix, Φ as

2 3
4 5
2 1

.

We shall start by computing the robust parameter regions. Recall from the definition of the robust parameter region Θi as
the domain of the feature matrix Φ such that the range belongs to the ith greedy region Gi. Thus for any arm in [3], we have
Θi =

{
θ∈R2 : Φθ∈Gi

}
. Thus, for each i∈ [3], we must solve for 2 linear inequalities in 2 unknowns. Namely for Θ1

we have the following set of inequalities

φ⊤
1 θ−φ⊤

2 θ>0
φ⊤

1 θ−φ⊤
3 θ>0 ,

which upon solving, we get the following condition θ1 <−θ2∧θ2 >0 for any θ=
[
θ1
θ2

]
to belong to Θ1. Similarly, for the

regions Θ2 and Θ3 we have the following set of equations,

φ⊤
2 θ−φ⊤

1 θ>0
φ⊤

2 θ−φ⊤
3 θ>0

φ⊤
3 θ−φ⊤

2 θ>0
φ⊤

3 θ−φ⊤
1 θ>0

Upon solving, we arrive at the following descriptions of the robust parameter regions

Θ1 ={θ∈R2 :θ1 <−θ2∧θ2 >0}
Θ2 ={θ∈R2 :(θ1 >0∧θ2 >−θ1/2)∨(θ1 <0∧θ2 >−θ1)}
Θ3 ={θ∈R2 :θ2 <0∧θ2 <−θ1/2}.

In Figure 4, as a matter of interest, we plot robust parameter regions in R2. We note that the robust parameter regions
partitions the parameter space R2; this is unsurprising since the greedy regions Gi partition the RK space.

Figure 4: The parameter space R2 is partitioned into disjoint sets of the robust parameter regions corresponding to the different arms for feature matrix

Φ=

[
2 3
4 5
2 1

]
.

With the exact descriptions of the sets Θi, we can calculate the robust observation regions. Using Theorem 3.12), this turns
out to be the set of all µ such that Φ−1

2 µ2 belongs to Θi for every 2×2 full rank sub-matrix of Φ. Thus for the robust region,
R1, we have the following equations,

[
2 3
4 5

]−1[
µ1
µ2

]
∈Θ1,

[
2 3
2 1

]−1[
µ1
µ3

]
∈Θ1,

[
4 5
2 1

]−1[
µ2
µ3

]
∈Θ1.

Thus solving for µ1,µ2 and µ3 gives the description forR1 as

R1 =
{

µ∈R3 :(µ1 >µ2/2)∧(µ1 >µ2)∧(µ2 >2µ3)∧(µ2 <−µ3)∧(µ1 >µ3)∧(µ1 <−µ3)
}

.
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Similarly from the descriptions of Θ2 and Θ3, we get the following descriptions forR2 andR3 respectively,

R2 =
{

µ∈R3 :(µ1 <µ2 <3µ1)∧(−µ1 <µ3 <3µ1)∧
(
(µ3 <µ2 <5µ3)∨(µ2 >5µ3∧µ2 >−µ3)

)}
R3 =

{
µ∈R3 :(µ1 <µ2/2)∧(µ1 <µ2/3)∧(µ3 >3µ1)∧(µ3 >µ1)∧(µ3 >µ2)∧(µ3 >µ2/2)

}
.

(a) The robust region for arm one R1, shown in the blue shade,
is a subset of R3. We depict the range space of the feature
matrix as the plane.

(b) The robust region for arm two R2 shown in the gray shade,
is a subset of R3. We depict the range space of the feature
matrix as the plane.

(c) The robust region for arm three R3, shown in the green
shade, is a subset of R3. The range space of the feature matrix
is depicted as the plane.

Figure 5: Visualization of the robust observation regions for a three-armed bandit problem, calculated for the feature matrix Φ=

[
2 3
4 5
2 1

]
, along with

the range space of the feature matrix Φθ. Note that these are 3-dimensional plots with the robust regions Ri shown in shaded regions of blue, gray, and
green colors. These regions are subsets of R3 whereas the range space of the feature matrix, shown in a "plasma" color, spans R2.

In Figure 5, we try to visualize these regions in R3. In particular Figures 5(a), 5(b) and 5(c) represent the regionsR1,R2
andR3 respectively. Note that these images represent regions in R3. In particular, we have used a shading effect to highlight
the three-dimensional nature of the regions. The range space of the feature matrix, Φθ, has also been highlighted as a
two-dimensional plane, passing through the robust regions in Figures 5(a) and 5(b), while bordering the regionR3 in Figure
5(c). Note that we have plotted these images by restricting µ to lie within a bounded region, which might give the appearance
of being bound. As could be deduced from the set theoretic descriptions of the robust observation regions these are convex
cones and are unbounded sets.

Experiments with ε-greedy Algorithm. We sample 10 instances from the robust regionR2. We observe from Figure 6 the
mean and dispersion of the cumulative regret generated by ε-greedy algorithm with εt =1/

√
t on these sampled instances. We

also note the misspecification error (denoted by ρ), the maximum sub-optimality gap (denoted by ∆max), and the minimum
sub-optimality gap (denoted by ∆min) for each of these instances. To demonstrate our results with high probability, we form
confidence intervals of the cumulative regret with three standard deviations. We observe that the cumulative regret grows
at a sub-linear rate with high probability.

Observations We note that instances with higher ∆max values tend to have higher regret than the instances with lower
∆max values. In this regard, we note that the misspecification error ρ does not influence the regret as much as the ∆max,
corroborating our theory. For example, note that the regret curve corresponding to misspecification error ρ=9.02 is lower than
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Figure 6: The growth of the cumulative regret for 10 misspecified bandit instances sampled from the robust region ofR2
under the ε-greedy algorithm with εt =1/

√
t. The plot represents the average of 10 trials. The Y -axis denotes the cumulative

regret
∑T

t=1µ∗−µAt
. The X-axis denotes the rounds T . We observe the sub-linear growth trend of the cumulative regret.

For each instance the values of the l∞ misspecification error (ρ), the maximum sub-optimality gap (∆max) and the minimum
sub-optimality gap (∆min) are also noted. We observe that instances with higher ∆max suffer more regret at any time than
instances with lower ∆max as expected from our theorem.

the curve corresponding to ρ=0.23; we can explain this using the fact that the ∆max of the former curve is 12.07 whereas, for
the latter curve, it is 50.69. One can observe that misspecification error does not play a significant role in the near regret curves
for the instances whose ∆max are the same marked as 12.07; however, one has misspecification error ρ as 1.03 whereas
the other has 9.02. We also note the presence of one sampled instance whose ∆min is less than the misspecification error
ρ (The example in focus has ∆min =4.83 while misspecification error ρ is 9.02); this is in sharp contrast to the type of robust
instances considered in the works of Liu et al. (2023).

F.2 Contextual Bandits

In this section, we shall use Theorem 4.6 to explicitly calculate the robust observation region for a simple feature matrix.
We shall then sample contextual bandit instances from the calculated robust observation region and run ε-greedy algorithm
on these contextual bandit instances.

Calculation of Robust Regions Let Φx1 =

2 3
4 5
2 1

 and Φx2 =

2 3
4 5
6 7

.

The above feature matrices represent a 2 context bandit, each with a 3 arms setting. Note that the instance is in R6, and
thus the robust observation regions would be of dimension at most 6. From the definition of the robust parameter region
for context x1 we have,

Θx1
1 ={θ∈R2 :θ1 <−θ2∧θ2 >0}

Θx1
2 ={θ∈R2 :(θ1 >0∧θ2 >−θ1/2)∨(θ1 <0∧θ2 >−θ1)}

Θx1
3 ={θ∈R2 :θ2 <0∧θ2 <−θ1/2}.

For context x2, we can repeat the same procedure to find the robust parameter space for context x2 as

Θx2
1 ={θ∈R2 :θ1 <−θ2}

Θx2
3 ={θ∈R2 :θ1 >−θ2}.
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Note that for this feature matrix choice, we have found that the robust parameter region for arm two at context x2, Θx2
2 is ∅.

We use Theorem 4.6 to evaluate the robust observation regions. Observe that a bandit instance µ∈Rx1
i ∩R

x2
j if and only if

the basic solutions belong to Θx1
i ∩Θx2

j . The non empty intersections of Θx1
i and Θx2

j are as follows

Θx1
1 ∩Θx2

1 =Θx1
1

Θx1
3 ∩Θx2

1 ={θ∈R2 : θ1 <−θ2∧θ2 <0}
Θx1

2 ∩Θx2
3 =Θx1

2

Θx1
3 ∩Θx2

3 ={θ∈R2 : θ2 <0,−θ1 <θ2 <−θ1/2}.

ThusRx1
3 ∩R

x2
1 is the set of all µ∈R6, such that the basic solutions are in Θx1

3 ∩Θx2
1 . Solving, gives us the description of

the setRx1
1 ∩R

x2
1 as the set of all µ∈R6 such that the following conditions are satisfied

Rx1
3 ∩R

x2
1 =

{
µ∈R6 :µ1 >µ2,µ1 <µ2/2,µ1 <µ3,µ1 <−µ3,

µ1 >µ5,µ1 <µ5/2,µ1 >µ6,µ1 <µ6/3,

µ2 <2µ3,µ2 <−µ3,µ4 <µ2/2,µ2 <µ4,

µ2 >µ6,µ2 <2/3µ6,µ4 <µ3,µ3 <−µ4,

µ5 <2µ3,µ3 <−µ5,µ6 <3µ3,µ3 <−µ6,

µ4 >µ5,µ4 <µ5/2,µ4 >µ6,µ4 <µ6/3,

µ5 >µ6,µ5 <2/3µ6

}
.

Experiments with ε-greedy Algorithm. We observe from Figure 7 the mean and dispersion of the cumulative regret on
10 contextual bandit instances, sampled from the robust regionRx1

3 ∩R
x2
1 , for the ε-greedy algorithm with εt =1/

√
t for

different context distributions. We also note the misspecification error (denoted by ρ), the maximum sub-optimality gap
(denoted by ∆max), and the minimum sub-optimality gap (denoted by ∆min) for each such sampled instance. To demonstrate
our results with high probability, we form confidence intervals of the cumulative regret with three standard deviations. We
can observe that the growth of the cumulative regret is sub-linear with high probability.

Observations We note that instances with higher ∆max values tend to have higher regret than the instances with lower
∆max values. In this regard, we note that the misspecification error ρ does not influence the regret as much as the ∆max,
corroborating our theory. For example, note that in Figure 7(c), the regret curve corresponding to misspecification error
ρ=2.11 is lower than the curve corresponding to ρ=1.58. We can explain this observation by noting that the ∆max of the
former curve is 10.53, whereas, for the latter curve, it is 25.26. One can observe the fact that misspecification error does
not play a significant role by noting in the different regret curves for the instances whose misspecification error ρ are the
same marked as 2.11 but has different ∆max as 21.05, 16.84 and 10.53. We also note the presence of one sampled instance
whose ∆min is less than the misspecification error ρ (The example in focus has ∆min =2.11 while misspecification error
ρ is 2.63). This example contrasts sharply with the type of robust instances considered in the works of Zhang et al. (2023).

G Robust Features for Contextual Bandits

The robust features construction for Bandits (Section 3.3) can be extended to Contextual Bandits as well. Note that any
two-context, two-armed contextual bandit instance lies in R4 space and thus can be represented as an element (w,x,y,z)
in R4. Without loss of generality let any contextual bandit instance be represented by [µs1,a1, µs1,a2, µs2,a), µs2,a2]⊤, that
is the coordinates of R4 represent the reward of first context first action, first context second action etc. Consider the greedy
regions which partition R4, as

G1
1 =

{
(w,x,y,z) s.t w>x, y>z

}
G1

2 =
{
(w,x,y,z) s.t w>x, z>y

}
G2

1 =
{
(w,x,y,z) s.t x>w, y>z

}
G2

2 =
{
(w,x,y,z) s.t x>w, z>y

}
.
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(a) px1 =0.1 and px2 =0.9 (b) px1 =0.5 and px2 =0.5

(c) px1 =0.9 and px2 =0.1

Figure 7: The growth of the cumulative regret for 10 misspecified bandit instances sampled from the robust region of
Rx1

3 ∩R
x2
1 under the ε-greedy algorithm with εt =1/

√
t for different context distributions px1 and px2 . The plots represent

the average of 10 trials. The Y -axis denotes the cumulative regret
∑T

t=1µ∗
t−µAt

. The X-axis denotes the rounds T . We
observe the sub-linear growth trend of the cumulative regret. For each instance the values of the l∞ misspecification error
(ρ), the maximum sub-optimality gap (∆max) and the minimum sub-optimality gap (∆min) are also noted. we can observe
that instances with higher ∆max suffer more regret at any time than instances with lower ∆max as expected from our theorem.

Let

M1
1(ε)=

{
(w,x,y,z) s.t w>x+ε, y>z+ε

}
(*)

M1
2(ε)=

{
(w,x,y,z) s.t w>x+ε, z>y+ε

}
M2

1(ε)=
{
(w,x,y,z) s.t x>w+ε, y>z+ε

}
M2

2(ε)=
{
(w,x,y,z) s.t x>w+ε, z>y+ε

}
for a fixed ε be the the disjoint 4 dimensional manifolds with eachMj

i(ε)⊂Gj
i . Note that any contextual bandit µ∈R4

must lie in one of the greedy regions Gj
i . We define the feature representation by the disjoint union of the manifolds

F(ε)=
⊔
i,j

∂Mj
i(ε)={w=x+ε,y=z+ε}⊔{w=x+ε,z=y+ε}⊔{x=w+ε,y=z+ε}∪{x=w+ε,z=y+ε} .

We have the following theorem, whose proof follows along the lines of Theorem 3.27.

Theorem G.1. Any contextual bandit instance lying in the region ⊔i,jMj
i(ε) is robust for the feature representation defined

above by the function F(ε).
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H Example of a Misspecified but Robust (Stochastic) MDP

This section analyzes a stochastic MDP under an arbitrary behavioral policy. For the function class, we shall use the one
introduced in the previous Appendix G.

MDP Description Consider the two-stage MDP,M as in Figure 3(b) with three states. At stage h = 1, we are at state
s1. We can take two actions depending on a behavioral policy, and move to either state s2 or state s3 depending on the
transition probability, P{sj | s1,ai}. We observe an associated reward of r11 or r12 respectively. At stage h = 2, one can
again choose action a1 or action a2 and get an associated reward of r21 or r22 or r31 or r32 respectively. The rewards are
such that r11 >r12, r21 >r22 and r31 >r32. To ensure that employing a myopic greedy strategy fails, we require that the
optimal policy at each state be π∗(s1)=a2, π∗(s2)=a1 and π∗(s3)=a1.

Behavioral Policy We have an arbitrary behavioral policy πb and denote the probability of a transition,
Pπb(sh = a,ah = a,sh+1 = s′), by α(s,a, s′). Thus, at stage h = 1, we have the following transition probabilities
α(s1,a1,s2), α(s1,a1,s3), α(s1,a2,s2) and α(s1,a2,s3). For stage h=2, since s′ is a terminal state, we drop the dependency
of s′ from the notation and have α(s2,a1), α(s2,a2), α(s3,a1) and α(s3,a2).

Function Class We choose the function class F2 and F1 for stages two and one as the one described in Appendix G.
Specifically, F2 is the function class introduced for the two-context-two-armed contextual bandit, described in Appendix
G. F1 is the two-dimensional variant of the function class as shown in Figure 3(a).

Condition for Robustness Stage Two At stage h = 2, let the function approximate value be f2 with elements
[µ21,µ22,µ31,µ32]⊤. The reward instance r2 is the vector of elements [r21,r22,r31,r32]⊤. Thus, based on the frequency of
observations, we solve for f2 as the following least squares problem.

f2 =argmin
f∈F2

(f−r2)⊤Λ(f−r2)

where Λ=


α(s2,a1) 0 0 0

0 α(s2,a2) 0 0
0 0, α(s3,a1) 0
0 0 0 α(s3,a2)

.

Note that since r21 >r22 and r31 >r32, we have, r2∈M1
1, whereM1

1 is the robust region as per our notation in Section
G, equation *. Thus, we have

µ21 = α(s2,a1)r21+α(s2,a2)r22+α(s2,a2)ε
α(s2,a1)+α(s2,a2)

µ22 = α(s2,a1)r21+α(s2,a2)r22−α(s2,a1)ε
α(s2,a1)+α(s2,a2)

µ31 = α(s3,a1)r31+α(s3,a2)r32+α(s3,a2)ε
α(s3,a1)+α(s3,a2)

µ32 = α(s3,a1)r31+α(s3,a2)r32−α(s3,a1)ε
α2(s3,a1)+α(s3,a2)

It can be observed that µ21 > µ22 and µ31 > µ32. That is maxa f2(s2, a) = µ21 and maxa f2(s3, a) = µ31. Thus
argmaxaf2(s2,a)=π∗(s2) and argmaxaf2(s3,a)=π∗(s3).
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Stage One Let f1∈F1 be the value function approximation at stage 1 with elements [µ11,µ12]⊤. Let the reward vector
be r1 be [r11,r12]⊤. Thus we have the following regression problem.

f1 =argmin
f∈F1

α(s1,a1,s2)
[
f(s1,a1)−r11−max

a
f2(s2,a)

]2+α(s1,a1,s3)
[
f(s1,a1)−r11−max

a
f2(s3,a)

]2

+α(s1,a2,s2)
[
f(s1,a2)−r12−max

a
f2(s2,a)

]2+α(s1,a2,s3)
[
f(s1,a2)−r12−max

a
f2(s3,a)

]2

= argmin
(µ11,µ12)∈F1

(
α(s1,a1,s2)+α(s1,a1,s3)

)(
µ11−r11−

α(s1,a1,s2)µ21+α(s1,a1,s3)µ31

α(s1,a1,s2)+α(s1,a1,s3)

)2
+

(
α(s1,a2,s2)+α(s1,a2,s3)

)(
µ12−r12−

α(s1,a2,s2)µ21+α(s1,a2,s3)µ31

α(s1,a2,s2)+α(s1,a2,s3)

)2

Thus, for the optimal policy at state s1 to be action a2, we need the following condition to hold,

r11+ α(s1,a1,s2)µ21+α(s1,a1,s3)µ31

α(s1,a1,s2)+α(s1,a1,s3) <r12+ α(s1,a2,s2)µ21+α(s1,a2,s3)µ31

α(s1,a2,s2)+α(s1,a2,s3) .

Thus, any MDPM with behavioral policy πb that satisfies the above condition is robust.

I Technical Lemmas

Lemma I.1 (Self Normalized Bound for Vector Valued Martingales Abbasi-Yadkori et al. (2011)). Let {Ft}∞t=0 be a filtration.
Let {ηt}∞t=1 be a real valued stochastic process such that ηt is Ft- measurable and ηt is conditionally R-sub-Gaussian for
some R>0, i.e.

∀λ∈R E[eληt |Ft−1]⩽exp
(λ2R2

2

)
.

Let {φt}∞t=1 be a Rd-valued stochastic process such that φt is Ft−1-measurable. Assume V is a d×d positive definite matrix
and for any t⩾0 define

Vt =V +
t∑

s=1
φsφ⊤

s St =
t∑

s=1
ηsφs.

Then for any δ>0, with probability at least 1−δ, for all t⩾0,

∥St∥2Vt
−1 ⩽2R2log

(detV 1/2
t detV −1/2

δ

)
.

Lemma I.2 (Determinant Trace Inequality Abbasi-Yadkori et al. (2011)). Suppose {φs}ts=1 ⊂ Rd be such that
∥φs∥2⩽L∀s∈ [t]. Let Vt =λI+

∑t
s=1φsφ⊤

s for some λ>0. Then

detVt⩽(λ+tL2/d)d

Lemma I.3 (Abbasi-Yadkori et al. (2011)). Let {φt}∞t=1 be a sequence in Rd, V a d× d positive definite matrix and
Vt =V +

∑t
s=1φsφ⊤

s . Then

log
(detVt

detV

)
⩽

t∑
s=1
∥φs∥2Vs

−1.

Moreover, if ∥φs∥2⩽L for all s and if λmin(V )⩾max{1,L2}, then

t∑
s=1
∥φs∥2Vs

−1 ⩽2log
(detVt

detV

)
.
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Lemma I.4 (Forsgren (1996)). Let Φ be a K×d full column matrix, let µ be a K dimensional matrix. Let Λ be the set
of all positive semi-definite diagonal matrices such that Φ⊤ΛΦ is invertible for any Λ∈Λ, that is

Λ={Λ∈RK×K : Λ is diagonal and positive semi-definite ∧Φ⊤ΛΦ is invertible}.

Then the solution to the weighted least-squares problem lies in the convex hull of the basic solutions, that is,(
Φ⊤ΛΦ

)−1
Φ⊤Λµ=

∑
J∈J (Φ)

( detΛJdetΦ2
J∑

K∈J (Φ)detΛKdetΦ2
K

)
Φ−1

J µJ ,

where J (Φ) is the is the set of column indices associated with non-singular d×d sub-matrices of Φ.

Lemma I.5 (sub-Gaussian Concentration). Assume {Xi−µ}ni=1 are n independent σ-sub-Gaussian random variables, then

P[|µ̂n−µ|⩾ε]⩽2exp(−nε2

2σ2 ) ,

where µ̂n =
∑N

i=1
Xi

n .

Lemma I.6 (Bernstein inequality). Let {Ti}ni=1 be random variables in [0,1], such that

n∑
i=1

V[Ti |Ti−1,Ti−2,···,1]=σ2 ,

then

P

[
n∑

i=1
Ti⩾E[

n∑
i=1

Ti]+ε

]
⩽exp

{
− ε2/2

σ2+ε/2

}
.
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