
Large Language Model-Enhanced RL
for Diverse and Novel Recommendations

Jiin Woo∗

Carnegie Mellon University
jiinw@andrew.cmu.edu

Alireza Bagheri Garakani
Amazon

alirezg@amazon.com

Tianchen Zhou
Amazon

tiancz@amazon.com

Zhishen Huang
Amazon

hzs@amazon.com

Yan Gao
Amazon

yanngao@amazon.com

Abstract

In recommendation systems, diversity and novelty are essential for capturing varied
user preferences and encouraging exploration, yet many systems prioritize click
relevance. While reinforcement learning (RL) has been explored to improve diver-
sity, it often depends on random exploration that may not align with user interests.
We propose LAAC (LLM-guided Adversarial Actor Critic), a novel method that
leverages large language models (LLMs) as reference policies to suggest novel
items, while training a lightweight policy to refine these suggestions using system-
specific data. The method formulates training as a bilevel optimization between
actor and critic networks, enabling the critic to selectively favor promising novel
actions and the actor to improve its policy beyond LLM recommendations. To
mitigate overestimation of unreliable LLM suggestions, we apply regularization
that anchors critic values for unexplored items close to well-estimated dataset
actions. Experiments on real-world datasets show that LAAC outperforms existing
baselines in diversity, novelty, and accuracy, while remaining robust on imbalanced
data—effectively integrating LLM knowledge without expensive fine-tuning.

1 Introduction

In recommendation systems (RS), diversity and novelty are crucial factors to address diverse user
preferences and promote exploration of new interests. Many search and recommendation systems tend
to prioritize click relevance, which often limits diversity, especially when data or user experiences
are limited. Recognizing that reinforcement learning (RL) can offer personalized and dynamic
recommendations by prioritizing long-term user satisfaction, several studies have investigated RL
methods, enhancing diversity in recommendations [29, 24, 36] by encouraging random exploration
or introducing explicit rewards for diversity. Such approaches may not consistently yield optimal
results, as randomly selected items may not cater to users’ needs.

A more effective approach is to leverage prior knowledge to explore novel items selectively. Large
language models (LLMs), trained on enormous corpus of data, can be a reliable source of novel items
beyond the system’s limited user experiences. To utilize LLMs to enhance RS, some works have
used LLMs as recommenders by generating recommendations directly from LLMs with prompts [15]
or fine-tuning LLMs [3], but these approaches incur significant computational costs for inference.
Meanwhile, recent research has suggested to use LLMs as an environment component to augment
limited training data [32], reducing inference-time computational costs. This approach still requires
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significant computational resources for LLM training and risks losing the diverse user preferences
learned during pretraining when models are retrained on specific datasets. Therefore, it is crucial
to strategically integrate LLM suggestions into RL training without costly fine-tuning, to ensure
fast adaptation to new data, scalability, and preservation of diverse user preferences learned during
pretraining.

To address this issue, we investigate an RL method that uses LLM as a reference policy rather than
retraining it. We can leverage its ability to suggest potentially appealing items and train a separate,
lightweight policy to refine and align these recommendations using datasets collected from target
systems. This approach enables practical deployment and personalization without modifying the
LLM itself. However, using LLMs’ suggestions without additional training can be risky, as not all
recommendations of LLMs meet user expectations in the target systems, potentially compromising
user satisfaction. Therefore, it’s crucial to be selectively optimistic on LLMs’ suggestions likely to
yield high rewards, while also retaining popular items proven effective in datasets. To this end, we
formulate the RL problem as a two-player game between a policy and a critic function [7, 4], where
the policy seeks to learn actions that selectively improve upon the LLM’s suggestions, while the critic
learns to provide realistic value estimates that encourage promising novel recommendations from
the LLM while remaining grounded in dataset observations. The adversarial dynamics between the
policy and critic prevent both greedy exploitation of popular items in the datasets and blind optimism
towards LLM recommendations, enabling the selective integration of novel items outside the dataset’s
coverage.

In this paper, we present an LLM-guided adversarial actor-critic training method (LAAC) that
iteratively refines the actor and critic networks based on LLM recommendations and datasets,
optimizing the adversarial objectives against one another. To prevent overestimation on unreliable
LLM suggestions, we incorporate novel regularizations that ensure the critic values for unexplored
items remain close to those for actions reliably estimated from the dataset. As a result, the algorithm
develops a balanced policy that recommends both popular items in the dataset and novel items
suggested by LLMs. We summarize our main contributions as follows:

• We propose LAAC, a novel adversarial actor-critic method that leverages LLMs as reference
policies to guide exploration toward diverse and novel items, replacing uninformed exploration in
existing diversity-promoting RL approaches with targeted LLM-guided exploration.

• We demonstrate that LAAC consistently outperforms both baselines across accuracy, diversity,
and novelty metrics on real-world data, achieving superior diversity-accuracy trade-offs without
requiring costly LLM fine-tuning.

• We provide comprehensive analysis of the method’s regularization mechanisms, showing how
grounding loss (α) and temporal difference loss (β) parameters control the balance between
optimism for novel LLM suggestions and realism for dataset observations, along with robustness
analysis on imbalanced data.

1.1 Related work

1.1.1 Reinforcement learning for diversity and novelty in recommendation systems

In RS, diversity and novelty are key factors for enhancing user experience and uncovering hidden
preferences. Recent studies have explored RL algorithms to deliver more diverse and dynamic
recommendations, focusing on long-term user satisfaction. To enhance diversity, [36] examined
exploration-exploitation strategies in RL by randomly selecting item candidates from the vicinity of
the currently recommended item. To maximize diversity in recommendation results, while preserving
relevance, [24] integrated a determinantal point process model with the deep deterministic policy
gradient algorithm. Lastly, [29] introduced a scalarized multi-objective RL algorithm that optimizes
three key reward objectives: accuracy, diversity, and novelty.

1.1.2 Large language models for recommendation systems

LLMs [35, 23, 26], pre-trained on large natural language datasets, demonstrate improved transfer
capabilities and are receiving growing interest in the field of recommendation systems [6, 22, 11]. To
harness LLMs for recommendation tasks, some studies have suggested using LLMs as recommenders
directly, generating suggestions with proper prompts in a zero-shot manner [15]. Additionally, to
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following movies: [𝑠!]
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↔

𝜋 𝑓

Figure 1: Overview of LAAC. At each training step t, transition samples are drawn from dataset D
and the corresponding LLM policy πLLM is constructed based on LLM recommendations. The critic
f is updated to favor novel actions suggested by πLLM over the policy π, and subsequently the policy
π is refined using the updated critic f .

align LLMs with specific recommendation systems, other research has proposed retraining these
models to serve as new recommenders via fine-tuning [26] or prompt-based tuning [23, 27]. Recent
studies [17, 33] have explored training recommenders by analyzing user-item interactions alongside
item features extracted from BERT [10], yielding promising results for cross-domain recommen-
dations. Furthermore, [3] efficiently fine-tunes LLaMA-7B [31] using LoRA adapters [18] and an
instruction prompt that incorporates item text descriptions to facilitate few-shot recommendations.
However, these methods for employing LLMs as recommenders often entail significant time and
computational costs during both training and inference. Recently, [32] has proposed a method that
uses LLMs as an environment component within an RL framework, with the objective of augmenting
the performance of existing recommenders, which reduces computational costs at inference time.
Nevertheless, this approach still requires considerable computation for LLM training to function as an
environmental simulator, and it risks losing the diverse user preferences learned during pre-training
when LLMs are retrained on specific datasets.

2 Method

2.1 Preliminary

2.1.1 RL formulation

In RL, sequential RS can be framed as a Markov Decision Process (MDP), where an agent interacts
with users by sequentially recommending items to maximize clicks or ratings. The MDP is char-
acterized by M = (S,A, P,R, ρ0, γ), where S represents the user’s state, A is a set of candidate
action items, and the transition probability P : S × A × S → [0, 1] defines p(s′|s, a), indicating
the likelihood of transitioning from state s to state s′ when action a is taken. The reward function
r : S × A 7→ R specifies that r(s, a) gives a rating or click from users for item a in state s. ρ0
denotes the initial state distribution and γ ∈ [0, 1] is the discount factor. A policy π denotes an
action-selection rule where π(a|s) represents the probability of taking action a in state s.

For a given policy π, the state-action value function (i.e., Q-function) Qπ : S × A → R, which
measures the expected discounted cumulative reward from an initial state-action pair (s, a), defined
as

Qπ(s, a) := r(s, a) + E

[ ∞∑
t=1

γtr(st, at)
∣∣ s0 = s, a0 = a

]
.

Here, the expectation is taken with respect to the randomness of the trajectory {st, at, rt}∞t=0, sampled
based on the transition probability (i.e., st+1 ∼ P (·|st, at)) and the policy π (i.e., at ∼ π(·|st)) for
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any t ≥ 0. In this setting, the goal of the agent is to learn an optimal policy π⋆ that maximizes
expected total rewards (ratings), i.e., π⋆ = argmaxπ Es∼ρ0,a∼π(s) [Q

π(s, a)].

2.1.2 Limited datasets and a reference policy

When the underlying MDP is unknown, the optimal policy can be trained from a dataset D composed
of transition samples (s, a, r, s′) collected from past user interactions, which provide the user response
r = r(s, a) and the user state transition s′ ∼ P (·|s, a) for an interacted item a at state s. However,
the vast item space in RS makes exhaustive exploration impractical, leading the agent – trained on
limited datasets – to focus on a narrow selection of popular items in datasets, which reduces diversity
and overlooks potentially appealing yet unexplored items. One effective approach to address the
limitation of datasets with insufficient coverage of good items is to utilize a reference policy. In many
RL studies, leveraging baseline/reference policies or experts to regularize RL training has been shown
to enhance sample efficiency and training stability [28, 34, 4, 19, 30]. Especially, when datasets
lack sufficient observations to determine the optimal actions, these reference policies can offer safe
alternatives. With the support of a reliable reference policy, agents can effectively learn novel actions
beyond the dataset with minimal risk.

2.1.3 Robust policy improvement via adversarial optimization

A game-theoretic formulation for RL has been introduced in [7] to safely improve a behavior policy
(the policy used to collect training data), formulated as a bilevel optimization problem:

max
π

g(π, fπ), s.t. fπ ∈ argmin
f

h(π, f),

where the two competing players are a policy π (action selector) and a critic f (value estimator), with
g and h as their respective objective functions. They proposed an actor-critic algorithm (ATAC) that
solves this optimization through adversarial training, where the policy and critic compete against each
other. The policy π improves based on values predicted by the critic fπ , which deliberately provides
pessimistic evaluations of π compared to the original behavior policy used for dataset collection.
This adversarial training setup guarantees that the resulting policy provably outperforms the behavior
policy across a wide range of hyperparameter choices, though it restricts the policy to only recommend
actions that were observed in the training dataset. Recently, [4] extended this adversarial optimization
framework to incorporate an arbitrary reference policy (which can be different from the behavior
policy) in model-based RL settings. This extension enables developing an improved policy based on
the reference policy, allowing actions beyond the available data support.

2.2 Adversarial optimization guided by LLMs

In this paper, we explore an RL approach that enhances the diversity of a policy through adversarial
optimization [7, 4], using LLMs as a reference policy to suggest novel and potentially appealing items
beyond the dataset, thereby improving diversity while avoiding excessive exploration. Given their
proven effectiveness in recommendation tasks [9, 15], LLMs serve as a strong candidate for a reliable
reference policy in RS. Here, we denote a reference policy generated from LLMs as πLLM, where
πLLM(a|s) indicates the probability of the LLM suggesting action a for state s. Our goal is to obtain
a balanced policy that recommends a diverse mix of popular and novel items by carefully managing
the trade-off between exploring new items from the LLM policy πLLM and exploiting high-reward
popular items from the dataset D.

To integrate novel items from the LLM policy while retaining popular items from the dataset, a policy
should be trained to select the novel items only when data is insufficient and optimal actions are
uncertain, while prioritizing high-reward items when enough observations are available. To this end,
inspired by the game-theoretic formulation of RL [7, 4], we formulate the problem as the following
minimiax optimization:

π̂ = argmax
π

E(s,a,r,s′)∼D

[
f(s, π)− f(s, πLLM)

]
s.t. f = argmin

f
E(s,a,r,s′)∼D

[
f(s, π)− f(s, πLLM)

]
+ αEg(f, πLLM) + βEtd(f, π) (1)
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Algorithm 1 LAAC (LLM-guided Adversarial Actor Critic)
Input: Dataset D, discount factor γ ∈ [0, 1], constants α, β ≥ 0, learning rates ηcritic, ηactor,
candidate size nc, response size nr

1: Initialize critic networks f1, f2 and a actor network π.
2: for i = 1, 2, . . . , N do
3: Sample minibatch Dmini from dataset D.
4: Initialize L(f, π), Eg(f), Etd(f) = 0 for each f ∈ {f1, f2}.
5: for (s, a, r, s′) ∈ Dmini do
6: Generate πLLM(s) from LLM responses.
7: Compute losses for each critic f ∈ {f1, f2}

L(f, π)+ = f(s, π)− f(s, πLLM)
Eg(f, πLLM)+ = (f(s, a)− f(s, πLLM))2

Etd(f, π)+ = (f(s, a)− r − γf(s′, a′))2, where a′ ∼ π(s′)
8: end for
9: Update critic networks f ∈ {f1, f2}

lcritic(f) :=
1

|Dmini| (L(f, π) + αEg(f, πLLM) + βEtd(f, π))

f ← f − ηcritic∇lcritic(f, π)
10: Update actor network π

lactor(π) = − 1
|Dmini|L(f1, π)

π ← π − ηactor∇lactor
11: end for

where α, β ≥ 0 are hyper parameters for the following losses:

Eg(f, πLLM) := E(s,a,r,s′)∼D

[
(f(s, a)− f(s, πLLM))2

]
Etd(f, π) := E(s,a,r,s′)∼D

[
(f(s, a)− r − γf(s′, π))2

]
.

Here, f(s, π) = Ea∼π(·|s)[f(s, a)], where the critic function f(s, a) represents the estimated ex-
pected reward for item a at state s, approximating the Q-function Q(s, a). This optimization can be
viewed as a two-player game, where one player refines a policy π in relation to the LLM policy πLLM
based on a given critic value f , while the other player adversarially updates the critic f to encourage
optimism towards novel actions suggested by πLLM over π. Ultimately, this process optimizes the
policy π for the worst-case performance (f ) inferred from both the dataset D and the LLM policy
πLLM. Notably, the optimization process only necessitates updating the policy π and the critic f ,
without the need for training of LLMs, which can be computationally intensive and time-consuming.
In this manner, we can guide the policy to learn only effective actions from πLLM consistent with the
provided dataset D, even if πLLM it is not perfectly aligned with the target system.

Grounding the critic function via regularization. To guarantee compatibility with the target
system without direct modification of πLLM, we introduce the regularization losses Eg and Etd in (1).

• Temporal difference loss (Etd): The TD loss enforces Bellman consistency in the critic (f ),
ensuring it learns realistic values for in-sample actions aligning with the dataset D. For frequently
observed actions in D, the loss strongly aligns the critic f with actual reward observations, while
for actions rarely observed in D, the loss has a smaller effect, allowing the critic f to maintain
optimistic values.

• Grounding loss (Eg): Limiting critic values only for in-sample actions is insufficient, as it may
still overestimate values for LLM-suggested items not seen in D. To address this, we introduce
a grounding loss that constrains f(s, πLLM), the critic values of πLLM, to stay close to those of
in-sample actions. This reduces excessive optimism for unexplored actions and ensures a grounded
evaluation based on the reliable values of popular actions.

With proper choices of α and β, the critic f learns to estimate values for novel items that are optimistic
yet still grounded within the constraints of the training datasets. Meanwhile, the policy π evolves to
generate recommendations that strike a balance between exploring novel items and exploiting popular
ones. We will analyze the impact of α and β on performance in Section 3.
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Dataset Models
Accuracy Reward Diversity Novelty

HR@5 HR@10 HR@20 NDCG@5 NDCG@10 NDCG@20 R@5 R@10 R@20 CV@10 CV@20 Entropy NCV@10 NCV@20 NC@1

πLlama3 0.0036 0.0064 0.0115 0.0022 0.0031 0.0044 55 99 179 0.9803 0.9803 2.2747 0.9692 0.9692 1,731

πClaude3 0.0061 0.0112 0.0161 0.0039 0.0055 0.0067 93 169 242 0.5318 0.5335 2.0651 0.2989 0.3018 209

MovieLens

GRU4Rec 0.0401 0.0644 0.1026 0.0261 0.0339 0.0435 622 994 1,574 0.6773 0.7350 1.5207 0.3764 0.4782 219

SMORL 0.0380 0.0620 0.0994 0.0243 0.0320 0.0414 587 954 1,523 0.6682 0.7310 - 0.3644 0.4727 191

LAAC (Llama3) 0.0458 0.0720 0.1104 0.0303 0.0387 0.0484 711 1,109 1,687 0.6899 0.7674 8.0594 0.4235 0.5464 268

LAAC (Claude3) 0.0458 0.0720 0.1104 0.0305 0.0389 0.0486 712 1,109 1,690 0.6877 0.7646 8.0595 0.4192 0.5410 278

Table 1: Performance comparison of baseline methods (GRU4Rec and SMORL) and LAAC evaluated
on the MovieLens dataset across accuracy, reward, diversity, and novelty metrics. Best scores
are highlighted in boldface, excluding the standalone LLM policies πLlama3 and πClaude3. LAAC
(Llama3) and LAAC (Claude3) represent LAAC trained with πLlama3 and πClaude3 reference policies,
respectively.

2.3 LLM-guided adversarial actor critic (LAAC)

To solve the optimization problem (1), we present an LLM-guided Adversarial Actor Critic (LAAC),
which constructs an LLM policy πLLM from LLMs’ responses and trains actor (π) and critic (f )
networks to optimize their empirical losses computed based on batch datasets and πLLM. The complete
description of LAAC is provided in Algorithm 1.

2.3.1 Constructing LLM policy πLLM

Obtaining the exact probability distribution of the LLM policy πLLM over a large action space is challenging,
and LLMs may suggest actions outside the predefined space. To address this, we extract recommendations Ar

from the LLM by providing a prompt p(s,Ac, nr), which includes a candidate action set Ac ⊆ A, the size of
recommendations nr , and the current state s. We then construct the LLM policy πLLM as uniformly distributed
over Ar . To control prompt and response length, we randomly sample Ac from A and specify nr = |Ar|.
We adopt a uniform policy over the list of items recommended by the LLM to ensure broader coverage of its
suggestions, rather than disproportionately focusing on the top-ranked item. This design encourages exploration
and aligns with our goal of promoting diversity and novelty in recommendations. The example of the prompts
and LLM responses in movie recommendation scenarios is illustrated in Figure 1.

2.3.2 Adversarial actor critic training

We present a practical actor-critic approach that iteratively updates actor (π) and critic (f ) networks to optimize
the adversarial objectives in (1), where the loss is computed based on a sampled mini-batch dataset Dmini ⊆ D
and the LLM policy πLLM. During the critic updates (Line 9 in Algorithm 1), the critic networks f are updated to
minimize the adversarial loss L(f, π) added with the regularization terms Eg(f) and Etd(f). This increases the
values of novel actions recommended by πLLM in comparison to the actions of π. To avoid the deadly triad issue,
we implement the double Q heuristic [7, 12, 13], using two critic networks (f1 and f2) for loss computation.
Once critic networks are chosen, the actor network π is updated to maximize the adversarial loss L(f, π), in
contrast to the critic updates, thereby improving the policy π in relation to the LLM policy πLLM (Line 10 in
Algorithm 1). After N iterations of the updates, the algorithm outputs the actor π and the critics f1 and f2.

3 Experiment

In this section, we evaluate the performance of LAAC for recommendation on real-world datasets.

3.1 Experimental settings

3.1.1 Datasets

We perform experiments using the real-world movie rating dataset MovieLens-1M [14], including 1 million
ratings for 3,503 movies. Items with fewer than three interactions and users whose interaction length is smaller
than three are removed from the datasets. From the datasets, we randomly sample ratings, organize them
chronologically, and group them by user to create a sequence of interactions for each individual. For each user
sequence, at each time step t, we define a state as st = G(xt−5:t), where xt−5:t represents the five most recent
items the user has watched prior to time step t, and G is an encoder for the sequential model that transforms
the input sequence into a hidden state. Additionally, action at corresponds to an item ID rated by the user, and
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Dataset Models
Accuracy Reward Diversity Novelty

HR@5 HR@10 HR@20 NDCG@5 NDCG@10 NDCG@20 R@5 R@10 R@20 CV@10 CV@20 Entropy NCV@10 NCV@20 NC@1

MovieLens
(skewed)

GRU4Rec 0.0387 0.0613 0.0962 0.0251 0.0324 0.0412 606 953 1,485 0.6460 0.6913 1.6640 0.3433 0.4117 202

SMORL 0.0330 0.0535 0.0850 0.0215 0.0281 0.0360 515 830 1,314 0.6366 0.6900 - 0.3312 0.4107 169

LAAC (Llama3) 0.0399 0.0618 0.0932 0.0267 0.0337 0.0416 624 958 1,438 0.6722 0.7444 8.0545 0.4041 0.5147 264

LAAC (Claude3) 0.0397 0.0610 0.0929 0.0268 0.0336 0.0416 621 949 1,431 0.6672 0.7397 8.1613 0.3959 0.5062 265

Table 2: Performance comparison between baseline methods (GRU4Rec and SMORL) and LAAC
on the skewed MovieLens dataset, which contains exclusively male user samples. All methods are
evaluated on the MovieLens dataset with its original user distribution across metrics of accuracy,
reward, diversity, and novelty. Boldface indicates best performance. LAAC (Llama3) and LAAC
(Claude3) represent LAAC variants using πLlama3 and πClaude3 reference policies, respectively.

reward rt is the rating given by the user for that item, which ranges from [1, 5]. Accordingly, we obtain 26,511
samples from 160 users in the MovieLens dataset, along with the corresponding suggestions generated from
LLMs. Of these, 21,421 samples are used for training, while 5,090 samples are reserved for evaluation.

3.1.2 Baselines
• LLM policy (πLLM): We establish the LLM policy as a baseline to understand the raw potential and limitations

of LLM suggestions for diversity and accuracy. To ensure our evaluation is robust across different LLMs, we
use two distinct LLMs to construct the LLM policy: LLama3-8B-Instruct [1] and Claude3 Haiku [2]. The
LLM policy operates by generating responses to prompts that describe states in text format (as detailed in
Section 2.3.1), then creating a uniform distribution over the items suggested in these responses. We denote the
resulting baseline policies as πLlama3 and πClaude3 respectively.

• GRU4Rec [16]: GRU4Rec is a recurrent neural network model for RS, utilizing gated recurrent units (GRUs)
[8] to encode sequences of user-item interactions. It is trained in a supervised manner using cross-entropy loss
to predict the next item.

• Scalarized multi-objective RL (SMORL) [29]: SMORL is a multi-objective RL approach specifically
designed to improve diversity and novelty in RS. It performs scalarized Q-learning for three different objectives
– accuracy, diversity, and novelty – by employing distinct output layers for each of these objectives.

3.1.3 Implementation details.

For all algorithms, except πLLM, to generate state st = G(xt−5:t), we use the five most recent items’ embeddings
xt−5:t and GRUs [8] to encode the input sequence. The item embedding size and hidden size are both set
to 64 for all models. The learning rate is set as 0.005 for GRU4Rec, 0.01 for SMORL as suggested in [29],
and ηcritic = 0.01 and ηactor = 0.001 for LAAC to ensure the critic stably evaluates the policy [5, 25]. For the
RL algorithms, we set the discount factor γ to 0.5 for SMORL as suggested in [29] and 0.99 for LAAC. For
SMORL, we set equal weights for each reward objective for accuracy, novelty and diversity, i.e., w = [1, 1, 1].
For LAAC, the default settings for the regularization coefficients are α = 1.0 and β = 1.0. We use adaptive
gradient descent algorithm ADAM [21] and train the models for 10,000 steps with a minibatch size of 128.

The LLM policy πLLM is extracted directly from an LLM by prompting state information in text format. To
generate πLLM(st) for a given state st = xt−5:t, we provide the titles of five items the user has selected before t
in a prompt to the LLM model. To limit prompt and response length, we provide 100 candidate items randomly
sampled from the entire item set and specify nr = 10 recommended items, i.e., nc = 100 and nr = 10. See
Section 2.3.1 for details.

A key practical advantage of LAAC is its computational efficiency profile. During training, LLM calls can
be batched and parallelized across training samples. Crucially, once training is complete, the learned policy
π operates independently of the LLM, requiring only lightweight neural network inference comparable to
traditional recommenders like GRU4Rec. This enables real-time recommendations with sub-millisecond latency,
contrasting sharply with direct LLM recommendation approaches that require expensive LLM inference for each
user query and can introduce latencies of hundreds of milliseconds to seconds, making them impractical for
real-time applications.

3.1.4 Metrics
• Accuracy/reward: We consider two commonly used metrics for their top-k predictions, where k = 5, 10

and 20: hit ratio (HR@k) and normalized discounted cumulative gain (NDCG@k) [20]. HR@k evaluates
whether the ground-truth item appears in the top-k positions of the recommendation list, while NDCG@k is
a rank-sensitive metric that assigns higher scores to items positioned at the top of the recommendation list.
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Figure 2: Performance analysis of LAAC (Llama3) on MovieLens dataset. Left: Evaluated rewards
(R@10) and novelty (NCV@10) for varying α = 0, 1, 3, 5, 10. Higher α improves reward but
reduces novelty. Right: Evaluated rewards (R@10) for varying β = 0, 1, 3, 5, 10 on the full dataset
(r ∈ [1, 5]) and the filtered dataset only consisting of samples with poor ratings (r ∈ [1, 3)). Too low
β dcreases cumulative reward (R) when datasets consist of poor actions with low ratings.

To assess the long-term effect of algorithms’ item recommendations in terms of high ratings, we measure
cumulative reward (R@k), defined as the sum of user ratings for the top-k recommendations.

• Diversity/novelty: We measure item coverage (CV@k), novel item coverage (NCV@k), and the total count
of novel items (NC@k). Here, novel items indicate items fall within the 50% tail in terms of popularity. More
specifically, CV@k is a ratio of all items (less popular items) covered by all top-k recommendations of the test
sequences, and NCV@k is the item coverage ratio only computed for novel items that fall within the 50%
tail in terms of popularity. For GRU4Rec, πLLM, and LAAC, learning stochastic policies, we measured the
entropy of the policies to assess recommendation diversity, where higher entropy indicates more uniform
probability distributions across items and thus greater potential for diverse recommendations.

All models were trained 50 times independently using different random seeds, and the final performance metrics
were obtained by averaging the results across these trials.

3.2 Analysis

3.2.1 LLM Policy: diversity with misaligned relevance

We assess the performance of the LLM policies, πLlama3 and πClaude3, directly derived from the responses of
Llama3 and Claude3 without any additional training. As shown in Table 1, while πLlama3 exhibits notable
diversity and novelty in its recommendations, their accuracy and cumulative rewards are low. Although πClaude3
shows relatively higher accuracy and rewards, it still underperforms compared to other baselines trained on the
dataset. This outcome is expected, as the LLMs are not perfectly aligned with user preferences in the dataset,
resulting in recommendations of lower quality that fail to effectively meet the needs of target users.

3.2.2 LAAC: diversity with aligned relevance

We evaluate LAAC against baseline methods, with SMORL serving as our diversity-focused RL baseline
and GRU4Rec providing a strong sequential recommendation baseline. As presented in Table 1, both LAAC
(Llama3) and LAAC (Claude3) consistently outperform all baselines across relevance and diversity/novelty
metrics, demonstrating the effectiveness of incorporating LLM knowledge. The improvements over SMORL
are particularly notable since both methods use identical GRU-based encoders, highlighting that LLM-guided
exploration is more effective than scalarized multi-objective optimization for achieving diversity-accuracy
trade-offs. While SMORL balances accuracy, diversity, and novelty through weighted objectives with relatively
uninformed exploration, LAAC’s LLM guidance provides more targeted exploration toward novel items likely to
interest users. Remarkably, LAAC achieves both high accuracy and diversity without trade-offs, even though the
LLM policies are not perfectly aligned with the target dataset, proving that unrefined LLM knowledge can be
effectively leveraged while maintaining computational efficiency comparable to traditional recommenders.

3.2.3 The effect of LLM capabilities.

To validate that our algorithm’s effectiveness generalizes across different language models, we evaluate LAAC
trained with two distinct LLMs: LLama3-8B-Instruct [1] and Claude3 Haiku [2], corresponding to baseline
policies πLlama3 and πClaude3 respectively. Our results demonstrate consistent performance improvements from
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LAAC across both models. In terms of accuracy and reward, LAAC (Llama3) and LAAC (Claude3) achieve
similar performance levels, despite πClaude3 initially outperforming πLlama3 on the target task. This suggests
that the original LLM performance has minimal impact on our algorithm’s final effectiveness, as the relevance
alignment achieved through our training process sufficiently compensates for initial capability differences using
the available dataset samples. Interestingly, for diversity and novelty metrics, LAAC (LLama3) outperforms
LAAC (Claude3), which aligns with the relative strengths observed in the base LLM performance.

3.2.4 Robustness to skewed datasets

In RS, the distribution of users in training datasets may differ from that of target users in real applications,
making robustness to distribution shifts crucial. To evaluate this, we create a skewed dataset with 14,883 ratings
from 90 male users and train LAAC and baseline algorithms on it. As shown in Table 2, LAAC and GRU4Rec
perform well in almost all metrics accuracy, diversity, and novelty, while SMORL’s diversity performance
declines significantly with the skewed dataset. These results demonstrate that LAAC’s learned diversity and
novelty handle bias from imbalanced data, generalizing well to different distributions.

3.2.5 The effect of grounding loss (α)

The grounding loss Eg constrains the critic values of novel actions suggested by the LLM to align with the values
of in-sample actions. As shown in Figure 2, increasing α reduces novelty but improves accuracy. This occurs
because large α restricts the optimism toward novel suggestions from the LLM, while promoting stable critic
learning by ensuring that out-of-sample actions’ values align with those of in-sample actions reliably learned
with enough observations, which results in more accurate critic estimates.

3.2.6 The effect of TD loss (β)

The TD loss Etd regularizes the critic f by enforcing Bellman consistency to learn realistic values for in-sample
actions. As shown in Figure 2, increasing β reduces accuracy, as it makes action estimates less optimistic.
However, a very small β harms performance by making the policy blindly mimics actions observed in datasets
or suggested by the LLM, ignoring actual rewards. We additionally tested our algorithm on a low-quality
dataset (actions with ratings below 3) across different β values and found that rewards decrease with β = 0,
demonstrating that too small β is detrimental, especially with poor-quality datasets.

4 Conclusion

We propose a novel RL method that enhances diversity and novelty in recommendations without compromising
accuracy, by leveraging LLM-generated suggestions without the need for expensive LLM fine-tuning. Our
approach learns a balanced policy capable of recommending both popular and novel items. Experiments on
real-world datasets demonstrate that our method achieves significant gains in diversity, novelty, and accuracy,
highlighting its effectiveness and practicality for real-world recommendation systems.
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