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Abstract 

 

INTRODUCTION  

The objective of this study is to characterize the molecular changes associated with AD from 

gene expression data of brain tissues taking an interpretable deep learning approach which has 

not been fully exploited.  

 

METHODS  

We trained multi-layer perceptron (MLP) models for the classification of neuropathologically 

confirmed AD vs. controls using the transcriptomic data of three brain regions from the 

ROSMAP study. The whole disease spectrum was then modeled as a progressive trajectory. 

SHAP (SHapley Additive exPlanations) value was derived to explain model predictions and 

identify significant implicated genes for subsequent network analysis of key gene modules 

underlying AD progression. The framework was validated using two external datasets: the Mayo 

RNA-seq study cohort and the Mount Sinai Brain Bank study cohort. 

 

RESULTS 

The MLP models achieved superior performance in classification and prediction in external 

datasets. SHAP explainer revealed common and specific transcriptomic signatures from different 

brain regions.  

 

DISCUSSION 
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We identified common gene signatures in microglia and sex specific modules in neurons that are 

implicated in AD. This work paves the way for utilizing artificial intelligence approaches in 

studying AD at the molecular level. 

 

Key Words 

interpretable deep neural network; postmortem brain tissues; transcriptomics; multilayer 

perceptron; SHAP explainer; pseudotemporal trajectory; co-expression network; sex 

dimorphism; gliosis; microglia; neurodegeneration; transcriptional factor  
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Research-in-Context 

 

1. Systematic review: Postmortem brain transcriptomes have been analyzed to study the 

molecular changes associated with Alzheimer’s disease, usually by a direct contrast 

approach such as differential gene expression analysis. Nuanced gene regulations thus 

cannot be easily pinpointed from convoluted data such as those from bulk-tissue 

profiling. We applied a novel interpretable deep learning approach to dissect the RNA-

seq data collected from three different brain regions of a large clinical cohort and 

identified significant genes for network analysis implicated for AD.     

 

2. Interpretation: Our models successfully predicted neuropathological and clinical traits in 

both internal and external validations. We corroborated known microglial biology in 

addition to revealing novel sex chromosome-linked gene contributing to sex dimorphism 

in AD.  

 

3. Future directions: The framework could have broader utility of interpreting multi-omics 

data such as those from single-cell profiling, to advance our understanding of molecular 

mechanism of complex human disease such as AD. 
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Highlights 

 

• We applied novel interpretable deep learning methods on the postmortem brain 

transcriptomes from three different brain regions 

• We interpreted the models to identify the most important genes implicated for AD 

• Network analysis corroborated known microglial biology and revealed novel sex specific 

transcriptional factors for neuronal loss in AD 
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1. Background  

Despite extensive research of Alzheimer’s disease (AD) for its underlying mechanism of onset, 

manifestation, and progression, the complex molecular events behind the disease spectrum 

remain incompletely understood[1]. Recently, large-scale high-throughput profiling of omics 

data such as RNA-seq has enabled the application of novel machine learning (ML) methods to 

dissect the gene expression profiles of postmortem brain tissues from large clinical AD cohorts, 

thus opening the channel of artificial intelligence (AI) approach for advancing our understanding 

and seeking potential early treatment of the devastating disease[2]. 

 

One of the challenges AI faces for multi-omics data is its interpretability. Complex ML models, 

like Deep Neural Networks (DNNs), although with unparalleled predictability, are often 

considered as “black box” models due to the fact that their decision-making processes are not 

readily understandable by human cognition[3]. Existing literature has reported the use of 

different AI frameworks to uncover deep interrelationships between gene expression and AD 

neuropathologies[4, 5]. However, due to the limited sample sizes available in these studies, the 

interpretation of the models, specifically the DNNs, had to be oversimplified, or rely on the 

outcome trained from the aggregated datasets in multiple cohorts from different brain regions, 

which are known to be affected by AD neuropathology quite differently[6]. Achieving the full 

potential of modern AI techniques in genomics research necessitates a thorough evaluation of the 

model, and a precise, in-depth, and comprehensive interpretation of its mechanisms based on the 

input features. Most recently, through the Accelerating Medicines Project for Alzheimer’s 

Disease (AMP-AD) Target Discovery Consortium and associated open-science consortia[7], 

multidimensional molecular data are made publicly available from more than 2,000 human 
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brains and peripheral tissues from multiple AD cohorts[8]. Coupled with their comprehensively 

profiled neuropathological and clinical data, we are presented with unprecedented opportunities 

to advance our exploration in this direction. 

 

Herein we report the efforts to build and interpret DNN models based on our published ML 

framework[4] using the RNA-seq data from three different brain regions in the Religious Orders 

Study and Memory and Aging Project (ROSMAP) cohort[9, 10] from the AMP-AD open data 

platform, as illustrated in Figure 1. We extend our previous work by applying the framework to 

the data from multiple brain regions with larger sample sizes, and interpret the models using the 

state-of-art model interpretation method[11] to obtain novel biological insights. The models 

achieved superior performance in aligning expression profiles with neuropathological and 

clinical traits, and demonstrated satisfying prediction accuracy when applied to two independent 

AMP-AD datasets, the Mayo RNA-seq study cohort (MAYO)[12] and the Mount Sinai Brain 

Bank (MSBB) study cohort[13]. We revealed gene modules present for microglia activation 

from multiple brain regions and sex specific transcriptional factor in specific brain region which 

may contribute to sexual dimorphism in AD. We believe this work lays the foundation of 

application of explainable artificial intelligence to study AD etiology at molecular level.    

 

2. Materials and Methods 
 

2.1 RNA-seq datasets from AMP-AD consortium 

All the RNA-seq data were obtained from the AMP-AD data portal through Synapse 

(https://www.synapse.org/). Demographic information for each of the cohort (ROSMAP, MAYO 

and MSBB) sampled in the RNA-seq study is reported in Supplementary Table 1. The processed, 
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normalized data were obtained for each cohort respectively, from the harmonized, uniformly 

processed RNA-seq data set across the three largest AMP-AD contributed studies 

(syn21241740). In the ROSMAP studies (syn3219045 and syn22695346), the brain tissue 

samples were collected from three different brain regions: dorsolateral prefrontal cortex 

(DLPFC, n = 1,092), posterior cingulate cortex (PCC, n = 647), and head of caudate nucleus 

(HCN, n = 717). In Mayo RNA-seq study (syn5550404), brain tissue samples were collected 

from cerebellum (CER, n = 246) and temporal cortex (TCX, n = 259). The MSBB study 

(syn3159438) has over 1,000 samples from the Mount Sinai/JJ Peters VA Medical Center Brain 

Bank, which were sequenced from 312 subjects from four brain regions including the frontal 

pole (FP, Brodmann area (BM) 10, n = 278), inferior frontal gyrus (IFG, BM 44, n = 269), 

superior temporal gyrus (STG, BM 22, n = 270) and parahippocampal gyrus (PHG, BM 36, n = 

242), respectively. The harmonized processing of all the data from the three cohorts was 

accomplished using a common workflow (https://sage-bionetworks.github.io/sageseqr/). 

The conditional quantile normalized[14] log counts per million reads (CPM) values from each 

data set (syn26967453, syn27024965, and syn27068756) were used in all the subsequent 

analyses. 

 

2.2 Phenotypical data 

The detailed definitions of phenotypical measurements used in the study, including clinical 

evaluation and postmortem neuropathological quantifications, together with their possible values 

of all three cohorts are reported in Supplementary Table 2.  
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All the clinical and pathological data for the ROSMAP cohort were obtained from the Rush 

Alzheimer’s Disease Center Research Resource Sharing Hub (https://www.radc.rush.edu/), upon 

approval of data-usage agreement. The details of the variables can be found in Supplementary 

Table 2.  

 

For MAYO and MSBB cohorts, subject clinical and pathological data were obtained from 

Synapse (syn27000373 and syn23277389 for Mayo samples and syn27000243 for all the MSBB 

samples). For MAYO cohort, the following data were used in the linear regression to validate the 

two phenotypes: Target variables: Braak = Braak stage; Thal = Thal amyloid stage. Dependent 

variables: ageDeath = age at death; sex = sex; race = racial group; apoe4 = apoe4 allele count; 

RIN = RNA integrity number; PMI = post-mortem interval. For MSBB cohort, the following 

data were used in the linear regression to validate the four phenotypes: Target variables: Braak = 

Braak stage; plaqueMean = plaque mean density; CDR = clinical dementia rating; CERAD = 

CERAD (Consortium to Establish a Registry for Alzheimer’s Disease) score. Dependent 

variables: ageDeath = age at death; sex = sex; race = racial group; apoe4 = apoe4 allele count; 

RIN = RNA integrity number; PMI = post-mortem interval. The original CERAD score in the 

MSBB cohort was defined as: 1, Normal; 2, Definite Alzheimer’s disease; 3, Probable 

Alzheimer’s disease; 4, Possible Alzheimer’s disease. They were recoded to be semi-quantitative 

as follows: 1, Definite Alzheimer’s disease; 2, Probable Alzheimer’s disease; 3, Possible 

Alzheimer’s disease; and 4, Normal, to be consistent with the notion used in the ROSMAP 

cohort. APOE genotypes were obtained from whole genome sequencing harmonization 

(syn11707420) whenever it is missing in the original meta data file. Semiquantitative 
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measurements (e.g. Braak stage, Thal phase, CERAD score, etc) were treated as quantitative. 

Quantitative measurements (e.g. amyloid or tangles) were log transformed.    

 

2.3 Deep learning of the transcriptome from three brain regions in ROSMAP cohort 

We applied a modified ML framework from our previous publication[4] to the datasets in 

ROSMAP cohort for the three brain regions respectively. The framework consists of two major 

components, supervised classification (deep learning) and unsupervised dimensionality 

transformation (Figure 1). 

 

For the DNN classification, we trained multi-layer perceptron (MLP) models using 

neuropathologically confirmed AD patients and normal controls (CN), the two termini of the AD 

spectrum to maximally differentiate the two groups. Data collected from ROSMAP including 

cogdx, braaksc and ceradsc were used to define the class label for AD, control (CN) and OTHER 

groups: 

1. AD: cogdx = 4, braaksc ≥ 4 and ceradsc ≤ 2; 

2. CN: cogdx = 1, braaksc ≤ 3 and ceradsc ≥ 3;  

3. OTHER: all the other samples. 

 

Total number of samples used in the training for each model, their diagnosis classifications and 

split by training/test sets for a five-fold cross validation, and the model configurations are 

reported in Supplementary Table 3. For the DLPFC dataset, visualization of gene expression of 

sex chromosomes (XIST as X-chromosome marker and UTY as Y-chromosome marker) 

revealed two samples with high expressions of both markers, and they were subsequently 
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removed from the modeling process. The input logCPM values from AD and CN samples were 

feature-wise z-transformed, and the mean and standard deviation (SD) of each feature were used 

for scaling for other samples/datasets used in validations.  

 

For all the model training, we adopted the Adam optimizer[15], with a learning rate set to 

0.0001, to update the models’ parameters. The training consisted of 300 epochs and for the 

purpose of selecting the most suitable model, a model checkpoint callback was used to store the 

weights of the best model based on the validation accuracy. The performance evaluation of these 

models was carried out using a comprehensive set of classification metrics, including test 

accuracy, sensitivity/recall, specificity, F1 score, area under the receiver operating characteristic 

curve (AUC) and precision[16].  

 

After each MLP model was trained, the data samples labeled as OTHER were scaled using the 

mean and SD values from the AD-CN samples used in the training process and added back to the 

dataset. Eventually a manifold representation was generated through a forward pass utilizing the 

previously trained neural networks to all the samples of the whole cohort. To visualize the 

manifold, the dimensions of resulting representation of the final layer was further reduced to a 

three-dimensional UMAP space, by the “umap.UMAP.fit_transform” function in python, with 

the following parameters: n_components = 3, metric = “Euclidean”. Other parameters are tuned 

to be specific for each brain region as reported in Supplementary Table 3. 

 

2.4 Applying the deep learning model to external data sets (MAYO/MSBB) 
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The harmonized, uniformly processed RNA-seq data sets from MAYO and MSBB were first 

sorted by the same gene order as the input data set of ROSMAP. Batch effects were then 

removed by the ComBat[17] function in the R package sva[18]. The input expression matrix 

subsequently was transformed to Z-score by scaling to the training dataset in the ROSMAP deep 

learning model. A manifold representation was obtained for all the samples in each cohort by 

forward pass of the trained network. Trajectories were obtained by carrying out the UMAP 

transformation of the existing embedding model from each set of ROSMAP data, by the 

“umap.UMAP.fit_transform” function using the same parameters as each model in python. 

 

2.5 Model validation by correlation with phenotypic data 

We derived an index, the severity index (SI) for staging the progression of AD from normal 

control to terminal disease based on the pseudotemporal trajectory in the UMAP embedding. SI 

was derived for each sample by applying the method of inferring pseudotimes for single-cell 

transcriptomics from the function ‘slingPseudotime’ as implemented in the R package 

Slingshot[19]. To evaluate the models built from three brain regions respectively, SIs were then 

linearly correlated with all the AD clinical and pathological biomarkers individually, in both the 

ROSMAP cohort and the two other independent cohorts (MAYO/MSBB), including the 

covariates PMI, RIN, apoe4 allele count, age at death, sex, race, and educ (ROSMAP only), 

using the following linear regression model: 

 

𝑏𝑖𝑜𝑚𝑎𝑟𝑘𝑒𝑟	~	𝑆𝐼 + 𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑡𝑒𝑠	    (1) 
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For ROSMAP, we also included the following non-AD neuropathological measurements as 

additional covariates: r_pd, r_stroke, dlbdx, hspath_typ, arteriol_scler, tdp_st4, caa_4gp, 

cvda_4gp2, ci_num2_gct, and ci_num2_mct. Their detailed definitions can be found in 

Supplementary Table 2 and data collection is reported in Tasaki et al[20]. The target dependent 

variables (biomarkers) are the AD neuropathological and clinical measurements, also reported in 

Supplementary Table 2. In MSBB cohort, duplicated samples were sequenced for the same 

individuals in some regions, and only one sample with the lowest rRNA rate was kept in the 

linear regression model. Correlation coefficients were obtained by the ‘lm’ function in R. The 

proportion of variance explained (PVE) for each predictor was obtained from the incremental 

sums of squares table by the ‘anova’ function in R on the model, using the order as reported. 

 

2.6 Model interpretation 

We applied the SHAP (SHapley Additive exPlanations) [19] tool to interpret the MLP model 

trained for each brain region, for extracting gene features that explain the classification. The 

following steps were performed to derive a quantitative SHAP metric for each feature:  

 

1. The SHAP values for each feature 𝑥! were computed using the “shap.Explainer” function 

from the SHAP library in Python.  

2. For each feature in each sample, calculate the SHAP values for two diagnosis classes 

separately:  

a. Two sets of SHAP values (𝑆𝐻𝐴𝑃"#(𝑥!)  and 𝑆𝐻𝐴𝑃$%(𝑥!)) were derived 

separately for AD and CN samples, where i Î [1,…,Nfeatures], Nfeatures represents 

the total number of features. 
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b. 𝑆𝐻𝐴𝑃"#(𝑥!) represents the SHAP values for all AD samples for the 𝑖&'	feature  

c. 𝑆𝐻𝐴𝑃$%(𝑥!)  represents the SHAP values for all CN samples for the 𝑖&'	feature  

3. For each class, compute the mean SHAP values for each feature. We computed the mean 

SHAP values for each feature by averaging the individual SHAP values across the 

samples in the AD and CN classes separately: 

a. For each feature 𝑥! ,	computed the mean SHAP value for AD samples as equation 

(2), where 𝑁"# represents the total number of AD samples in the dataset.  

                              𝑆𝐻𝐴𝑃′"#(𝑥!) = 	
(

%!"
∑ 𝑆𝐻𝐴𝑃"#(𝑥! , 𝑗)
%!"
)*(                               (2) 

b. For each feature 𝑥! ,	computed the mean SHAP value for CN samples as equation 

(3), where 𝑁$% represents the total number of CN samples in the dataset.  

      𝑆𝐻𝐴𝑃′$%(𝑥!) = 	
(

%#$
∑ 𝑆𝐻𝐴𝑃$%(𝑥! , 𝑗)
%#$
)*(                                (3) 

4. Compute the mean absolute SHAP Value of each feature for the model:  

𝑆𝐻𝐴𝑃(𝑚𝑜𝑑𝑒𝑙) = 	 (
+
(|𝑆𝐻𝐴𝑃,"#(𝑥!)| + |𝑆𝐻𝐴𝑃,$%(𝑥!)|)   (4) 

5. Run an ensemble of 100 models, each with a different random seed and the same 

hyperparameters, with the goal of sampling a wide range of feature relevance across 

different model iterations. The mean SHAP values of all 100 models were then evaluated 

as the final SHAP value for each feature:  

𝑓𝑖𝑛𝑎𝑙	𝑆𝐻𝐴𝑃 = 	 (
(--

∑ 𝑆𝐻𝐴𝑃(𝑚𝑜𝑑𝑒𝑙!)(--
!*(        (5) 

 

Eventually, we sorted the features by their final SHAP values calculated in equation (5) in 

descending order to identify the most influential features for the classification model while 

making predictions. The cutoff to extract features making significant contributions to the 
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classification was set as 1.5 * interquartile range (IQR) above the third quartile of the 

distribution. These gene features were eventually identified as the “index genes” in each brain 

region that explains AD vs control classification.   

 

2.7 Gene network and functional analysis 

Gene co-expression networks were built by MEGENA[21], based on the expression values of the 

“index genes” from the residualized counts data after regressing out significant covariates, with 

three covariates (diagnosis, age and sex) added back, for the three brain regions (syn31141704) 

respectively. Common networks between those modules from different brain regions were 

identified by the CoDiNA[22], using the correlation coefficients of significant correlation pairs 

derived by MEGENA in each region. Common networks in another brain region are deemed to 

overlap with a DLPFC module if they share more than 25% of nodes, using the DLPFC module 

as a reference. 

 

Functional and cell type enrichment analysis for each module identified in DLPFC networks was 

performed using Metascape[23], which uses a hypergeometric test and Benjamini-Hochberg P-

value correction to identify ontology terms that contain a statistically greater number of genes in 

common with an input list than expected by chance, using the whole transcriptome as 

background. Statistically significant enriched terms based on Gene Ontology[24], KEGG[25], 

Reactome[26] and MSigDB[27] were clustered based on Kappa-statistical similarities among 

their gene memberships. A 0.3 kappa score was applied as a threshold to identify enriched terms. 

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 19, 2023. ; https://doi.org/10.1101/2023.12.18.572226doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.18.572226


 16 

All the gene enrichment analyses were performed in R (version 4.0.0)[28] by Fisher’s Exact Test 

(FET) on the overlaps between the gene sets of interest, using the whole transcriptome as 

background.  

 

Transcriptional gene regulators were identified by Trena[29], using the expression profile of the 

neuron co-expression module in DLFPC in combination with those transcription factors with 

known motifs[30, 31]. Reprocessing of all the ROSMAP data to include combined ZFX+ZFY 

counts was accomplished following the same workflow as previous reported (https://sage-

bionetworks.github.io/sageseqr/), excluding four samples with ambiguous sex markers 

expression. The conditional quantile normalized log counts per million reads (CPM) values were 

used in the analyses. 

 

3. Results 

 
3.1 Classification model architecture and performance 

We initiated our ML framework with a DNN classification model of the two termini of the AD 

disease spectrum, with the goal of separating the AD patients from normal control participants as 

much as possible. Samples were partitioned into training and testing set, containing 80% and 

20% of the samples respectively. The detailed information about the number of AD and CN 

samples for each brain region is shown in Supplementary Table 3. Based on our experiments and 

literature reports[32], the final model utilized for this classification task in each brain region was 

a MLP with their respective architecture reported in Supplementary Table 3. After fine tunings 

of all the hyperparameters, final model performances evaluated by all the classification metrics 

are also reported in Supplementary Table 3, with their receiver operating characteristic (ROC) 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 19, 2023. ; https://doi.org/10.1101/2023.12.18.572226doi: bioRxiv preprint 

https://sage-bionetworks.github.io/sageseqr/
https://sage-bionetworks.github.io/sageseqr/
https://doi.org/10.1101/2023.12.18.572226


 17 

curves shown in Supplementary Figure 1. Notably, the model trained from DLPFC (DLPFC 

model for simplicity, the same below) exhibited exceptional classification accuracy, achieving a 

test accuracy of 97.8% and a sensitivity of 100%, indicating its superior proficiency in accurately 

identifying AD samples. Conversely, the PCC model exhibited a comparably high testing 

accuracy of 96.0% and a sensitivity of 96.2%, highlighting its strong classification capabilities. 

The HCN model performs the least satisfactorily in comparison to the cortex dataset (DLPFC 

and PCC) models, showing a testing accuracy of 81.1% and a lower specificity of 56.3%. The 

distinction of the performance between these models also aligns with the variation in relevance 

to AD pathology among these brain regions, as the cortex regions are known to be highly 

associated with AD in contrast to subcortical regions[33].  

 

3.2 Model the whole disease spectrum as a pseudotemporal trajectory 

AD is a progressive disease. After classifying the two termini of the disease spectrum from their 

expression profiles, we projected all the samples from the whole cohort to the same UMAP space 

by forward passing their expression data into the trained model. As expected, we observed that 

the samples from AD/CN are mainly located at each of the two termini of a trajectory as two 

distinct clusters (Fig. 2A, C, and E). Adding the OTHER samples into the same space clearly 

indicated a continuous disease spectrum as well as a progression course along the trajectory 

(Figure 2B, D, and F), although the trajectory derived from HCN is less smooth. We evaluated 

how accurately the trajectory models AD’s progression, by linearly correlating the SI, i.e. the 

pseudotime each sample travels along the trajectory from the starting point (presumably the 

normal state) to its final location, to its respective neuropathological and clinical biomarkers. We 

found SI show strong correlations with all the AD specific biomarkers excluding diffuse plaques 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 19, 2023. ; https://doi.org/10.1101/2023.12.18.572226doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.18.572226


 18 

(P < 2.2E-16, R2 > 0.31, Figure 2G and H, Supplementary Table 4 and 5). Again, the regression 

metrics are the best for the model built from DLPFC followed by PCC, with HCN performs the 

least satisfactorily. All three models still considerably outperform our previous model built based 

a subset of the DLPFC samples[4].  

 

The three models were then applied individually to the harmonized transcriptomic data from 

both the MAYO and MSBB cohorts to derive their respective trajectories. Data from the MAYO 

cohort came from two different brain regions: TCX and CER. After projecting into the same 3D 

UMAP space, the subject distributions along the trajectories from the two different brain regions 

showed drastically different patterns (Figure 3A and B, DLPFC model only). For TCX, it 

showed the distributions of different locations for AD versus CN subjects along the trajectory 

similarly to those from ROSMAP data, while this was not observed for CER. This is confirmed 

by the results obtained from linear regression of the SI versus pathological biomarkers (Braak 

and Thal scores, Fig. 3C and D). Only in the TCX samples were the SIs found to be significantly 

correlated with both Braak (P = 7.98E-14, 4.80E-9 and 7.40E-6 respectively) and Thal scores (P 

= 2.95E-7, 1.04E-5, and 5.13E-3 respectively). Again, when applied to TCX dataset, the models 

explained a large amount of variance overall for both biomarkers, with correlation coefficient R 

in the range of 0.61 to 0.72 for the three models respectively. We also observed that the model 

from DLPFC is the most, while HCN is the least predictive to all the biomarkers in the MAYO 

cohort (Figure 3E and F, Supplementary Table 6). Interestingly, the models derived from DLPFC 

and PCC also show some predictive power for Braak score in CER dataset (P = 4.94E-4 and 

9.84E-3) although the PVEs are low (< 0.09 in comparison with > 0.29 in TCX data), indicating 
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although not present in cerebellum, tauopathy from AD could result in widespread 

transcriptomic change in the brain.  

  

For the MSBB cohort, the models were applied to the gene expression profile of all four sampled 

regions [FP (BM10), STG (BM22), PHG (BM36), and IFG (BM44)] and all regions show 

similar albeit slightly different trajectories (Figure 4A-D, DLPFC model only), with the SI 

consistently significantly correlated with all the neuropathological and clinical biomarkers 

(Braak score, PlaqueMean, CDR scale and CERAD score, Supplementary Table 7), for the 

models from DLPFC and PCC. Still, the model from HCN doesn’t predict some of the 

biomarkers when applied to certain brain regions (Figure 4E and F, Supplementary Table 7).  

 

3.3 Comparison of the models trained from and applied to different brain regions 

As reported in 3.1 and 3.2, when comparing the models trained from three different brain regions 

in ROSMAP, it is evident that neuropathology and cognitive impairment from AD are better 

delineated from the transcriptomes of cortical regions. The model from HCN shows relatively 

poor performance in classification metrics, aligning with phenotypical traits within the cohort, 

and prediction in external datasets. In contrast, models from DLPFC and PCC show comparably 

excellent performances, especially considering that PCC was trained with a smaller number of 

samples. We subsequently focused the comparison of the models’ predictive performances from 

these two regions. When applied to external datasets, we observed that the model from DLPFC 

demonstrates the greatest predictive power and correlation coefficient of traits on the 

transcriptome from the TCX region of MAYO cohort, and IFG and STG regions of MSBB 

cohort, all of which are located at the either prefrontal cortex (DLPFC and IFG) or temporal lobe 
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(TCX and STG). Conversely, the model from PCC is more predictive to the data from PHG of 

MSBB cohort (Figure 3 and 4), both of which are deemed as part of the hippocampocentric 

subdivision of the paralimbic zone[34]. This illustrates that nuanced molecular changes in 

different brain regions affected by AD could be captured by sophisticated ML methods.           

 

3.4 “Index genes” (IGs) derived from the model interpretation 

We set out to interpret our models using one of the latest model interpreting methods, the SHAP 

values, to reveal which features have the most impact on the specific prediction, whether 

positively or negatively. We averaged out the feature contributions to AD and CN respectively, 

then took the absolute mean of the two to evaluate their importance to the classification. To 

robustly capture highly relevant genes, the training procedure was repeated 100 times using the 

same hyperparameters but different random number seeds, with the goal of simulating a 

“consensus network” and sampling as much space as possible. The process of averaging the 

SHAP values of all the features from each training to obtain the final SHAP metric and extract 

the list of the most salient genes is illustrated in Supplementary Figure 2.   

 

Following this procedure, we selected 1,317, 1,594 and 1,643 genes for the models from three 

brain regions respectively (Supplementary Table 8A-C). They were labeled as “index genes” 

(IGs) for the subsequent in-depth analysis. We compared the IGs with those differentially 

expressed genes (DEGs) identified from the same datasets (syn26967457), by the same contrast 

of neuropathological confirmed AD vs CN comparison. There are some overlaps, but still 

considerable differences between the IGs and DEGs for the same brain region, as shown in 

Supplementary Figure 3A. Unlike those DEGs, IGs are not bounded by their fold changes or P 
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values in the contrast, as in fact, the logFC and P values in the contrast for these IGs show a 

consistently even distribution (Supplementary Figure 3B and C), characterized by the 

coordinated regulations at molecular level.  

 

We observed more overlaps between IGs of DLPFC and PCC as expected. All highly significant 

(P < 2.2E-16), the odds ratio (OR) of the overlaps between DLPFC and PCC (20.3) is higher 

than those between DLPFC and HCN (10.3) and PCC and HCN (15.5), confirming that the 

expression profiles of the two from cortical regions are more similar with each other than the 

subcortical region (HCN). 

 

3.5 Co-expression modules of IG reveal molecular changes associated with AD from 

different brain regions 

We derived co-expression network modules for the IGs based on the gene expression profiles of 

the whole cohort from the three regions respectively. For DLPFC, five distinct modules were 

resolved from the profile (Figure 5A-E), ranging from 78 to 542 genes in each module. 

Functional annotations implicated them in different cellular processes from five major cell types 

(Figure 5F, Supplementary Table 8A). Most of the genes in the modules from microglia and 

oligodendrocytes are upregulated, while those from neurons are downregulated (Supplementary 

Figure 3B and C), indicating a consistent pattern of gliosis and neurodegeneration. The wide 

range of gene regulation in astrocyte module also illustrates the cell type specific heterogeneity 

from their diverse functions in AD[35]. In contrast, we obtained 14 and 18 modules ranging from 

25 to 227 genes for PCC and HCN profiles respectively (Supplementary Table 8B and C), some 

of which are subsets of the five modules from DLPFC. The more fragmented module structure 
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could be attributed to the facts that the RNA qualities for PCC are significantly lower than 

DLPFC (mean RIN = 5.64 vs 6.26, P = 4.82E-18, Mann-Whitney U test), while the model from 

HCN doesn’t perform well. In addition, we have smaller numbers of the samples to train the two 

models than DLPFC. Consequently, there are very few common networks shared among the 

modules from all three regions. Nevertheless, we still observe sizeable submodules in common 

between the networks of DLPFC and PCC, especially for the networks from neurons, astrocytes, 

and microglia (Figure 5A, D and E), with at least two out of total three submodules in microglia 

and three submodules in astrocytes overlapped.  

 

We subsequently focused our analysis on the modules from DLPFC, for a comprehensive 

interpretation of the best model in our study to obtain the biological insights of molecular 

changes in one of the most important brain regions implicated in AD. We observed that the gene 

nodes are enriched in genetic risk loci[36, 37] from genome-wide association studies (GWAS) in 

the two glial modules (e.g. TREM2, MYO1E, PLCG2, CD33, HLA genes among others in 

microglia, P = 7.45E-6, OR = 8.75; and CR1, ADAMTS1, C2, C4A/B, IQCK among others in 

astrocytes, P = 2.87E-3, OR = 2.65, Supplementary Table 8A).  

 

Interestingly, the microglia module depicts an extensive picture of immune response in AD 

(Figure 6A). In addition to the enrichment of GWAS loci, there is a high enrichment of disease 

associated microglia (DAM) signature genes[38] such as SPP1, ITGAX, CLEC7A, TMEM119, 

and TREM2 (P = 5.09E-12, OR = 20.36), as well as the TYROBP causal network in microglia 

(WP3625)[39] (P = 5.28E-26, OR = 182.9) and the CD33/LAIR-1 inhibitory networks[40]. In 

the center of the networks, as well as from an overlapped module in PCC, is the hub gene 
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C3AR1, recently identified as a major player mediating neuroinflammation and tau pathology in 

AD[41, 42]. It is notable that many of these genes (e.g. PLCG2, MYO1E, VSIG4, LAIR1 and 

HLA genes) are not identified as DEGs in the same datasets used in our study by falling short of 

logFC or P value cutoff, but has been spotted as differentially expressed in single-nucleus RNA 

sequencing (snRNA-seq) data[43, 44], demonstrating the power of deep learning methods 

uncovering nuanced signals in convoluted data. 

 

The astrocyte module presents the largest overlaps between DLPFC and PCC regions from our 

models (Figure 5A). Among them, we identified the signatures from the GJA1 centered genetic 

networks[45] (P = 3.41E-27, OR = 7.62), the disease associated astrocytes (DAA) such as 

GFAP, LGMN, C4A/B [46] (P = 9.46E-7, OR = 5.86) and other astrocyte signatures obtained 

from snRNA-seq data [47]. Some hubs of the networks are also novel AD risk gene (SASH1) 

identified using machine learning GWAS platform[48] or known risk gene (ITPKB) for other 

neurodegenerative diseases such as Parkinson’s disease (PD)[49] but also implicated in AD[50]. 

 

3.6 Sex-linked module and transcriptional factor (TF) in DLPFC neurons 

We observed that the neuron module possesses several key gene hubs such as CACNG3, VGF, 

NPTX2, RPH3A, SVOP, and BDNF, recently reported to exhibit positive associations with 

global cognitive function and negative associations with neuropathology across various 

excitatory neuron subtypes in AD (Figure 5D). They were found to be within a consensus 

signature significantly associated with global cognitive function in at least three different 

excitatory neuron subtypes, and prominently linked to both pre- and postsynaptic compartments, 

from a comprehensive analysis of snRNA-seq data from the prefrontal cortex (PFC) brain region 
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within the ROSMAP cohort[51]. Again, they are not completely recapitulated by DEG analysis 

from the bulk tissue RNA-seq data. 

 

Our data show one prominent hub gene, which interconnects many of the aforementioned hubs, 

is the gene encoding synaptic vesicle 2 related protein (SVOP), a protein involved in synaptic 

vesicle transport. Intriguingly, SVOP is also connected with a co-expression submodule 

primarily composed of sex-linked genes such as XIST, TTTY14, and KDM5D (Figure 6B), by 

the X-linked zinc finger transcriptional regulator ZFX, which is known to escape X chromosome 

inactivation (XCI)[52, 53]. We assessed the transcriptional regulation of SVOP using the 

expression profile of DLPFC neuron module, and identified the candidate TFs that regulates 

SVOP expression (Supplementary Table 9). Among them, three TFs (SP1, MXI1, and ZFX) are 

directly connected to SVOP in the module (Figure 6B), all of which would act as transcriptional 

repressors from their reversed expression correlation to SVOP.  

 

Since ZFX and ZFY are X-Y homolog pairs assumed to have the same function, we examined 

the contribution of the two sex-linked genes to the expression of SVOP, for the whole cohort 

from DLPFC region. A simple linear regression shows both genes’ expression is significantly 

correlated with SVOP expression, although ZFY is at a much lesser degree (Figure 7A, 

Supplementary Table 10). In addition, both correlations show considerable residual sex effects in 

the model. To account for their additive effects, we reprocessed the dataset with raw gene counts 

(syn22231797), adding an additional feature by combining ZFX+ZFY gene counts. Indeed, we 

observed that the cumulative expression of ZFX and ZFY completely accounts for the sex 

differences of SVOP expression, with no residual sex effect, or additional diagnosis difference 
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unaccounted for in the linear model (Figure 7A, Supplementary Table 10). Nevertheless, the 

cumulative TF expression is still lower in male, due to the escape of XCI of ZFX in females and 

lower expression of ZFY in males in comparison with their homolog ZFX expression[54]. 

Consequently, SVOP is more significantly downregulated in AD females than their male 

counterparts (Figure 7B). Given the central role of SVOP in the co-expression module implicated 

in neuronal loss in AD, as well as the ubiquitous more significant downregulation of the other 

hub genes in females, our work therefore presents a direct link of sex chromosome and sexual 

dimorphism in AD.           

 

4. Discussion  

In this study we present a comprehensive interpretable deep learning framework on the RNA-seq 

data obtained from multiple postmortem brain regions of the ROSMAP cohort, a large clinical 

cohort of AD. We also applied the trained models to the transcriptomic data from two 

independent cohorts, the MAYO and MSBB cohort. Our models show excellent predictive 

power in aligning the transcriptomes with clinical and neuropathological traits in both internal 

and external validations, as indicated by the model metrics from the SI for delineating the 

progressive pseudotemporal trajectories in each dataset. This underscores the broader 

applicability of the framework in the study of neurodegenerative diseases such as AD as a 

continuum[55]. 

 

By individually modeling the transcriptomes from three distinct brain regions of the ROSMAP 

cohort, we demonstrate the capacity of deep learning methods to learn and capture subtle 

distinctions present in diverse brain regions affected by AD. The models successfully 
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differentiate the non-specific subcortical region in AD, i.e. HCN. Moreover, they distinguish 

nuanced variations in the data from the two cortical regions (DLPFC vs. PCC), evident in the 

observable differences in predictive accuracy when applied to data from other relevant regions in 

an external cohort (MSBB, Figure 4, Supplementary Table 7). This reiterates the notion that 

molecular changes in AD-affected brains are both specific and regional, underscoring the 

importance of considering these factors in comprehensive studies[56]. 

 

The most pivotal insights derived from the study come from the IGs through model 

interpretation. By applying the SHAP method based on cooperative game theory to explain the 

outcome of the model, our approach provides a way to fairly allocate contributions of each 

feature, with both global and local interpretability. The summarized importance score would 

therefore offer an overview of feature importance across the entire dataset for AD vs control 

classification. Our framework consistently excels in extracting input features that go beyond the 

constraints of logFC or P values stemmed from traditional DEG analysis, thus revealing 

nonlinear, coordinated, and cell type specific gene regulation from bulk tissue data. These signals 

are otherwise only available from deconvoluted or higher resolution omics data, such as single 

cell RNA-seq. It would eventually be desirable to apply the framework to such kind of data to 

obtain even more novel biological insights for disease etiology at cell level. 

 

The co-expression networks derived from the IGs from the two cortical regions, particularly 

DLPFC highlight the critical roles of gliosis and neurodegeneration in AD. In microglia, the 

networks corroborate many of the established activated pathways implicated in AD, such as 

TYROBP causal network and the DAM signatures. In particular, the networks draw attention to 
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the significance of the TREM2-DAP12-SYK pathway, which coordinates neuroprotective 

microglial responses in AD[57, 58]. It will be worthwhile to further investigate the relationship 

of this pathway and the C3 and C3A receptor (C3AR1) signaling given their close co-expression 

pattern. The data also brings to light the neuroimmune axis as evidenced by MHC class II 

signaling transduction. This suggests an intricate interplay of adaptive and innate immune 

systems both within and outside the brain influencing the etiology and pathogenesis of AD[59]. 

It is worth noting that the networks also implicate the role of the C1Q/CD33/LAIR-1 inhibitory 

complex in AD, and it seems it is only present in DLPFC. Since the complex has been reported 

to dampen monocyte immune response[60], in-depth study is thus warranted to explore the 

functions of this complex and its influence the balance between immune activation and tolerance 

in AD, and whether this effect is brain region specific.  

 

It has now been widely acknowledged that AD disproportionately affects women in both disease 

prevalence and rate of symptom progression, but the mechanisms underlying this sexual 

divergence are still being actively pursued. From transcriptional analyses, gene dysregulation in 

AD is particularly prominent in the neuronal cell populations, especially in the females[61]. 

Notably, for almost all the hub genes identified in the neuronal module in this study such as 

CACNG3, VGF, NPTX2, RPH3A, SVOP, and CA10, their fold changes in DE analysis are more 

significant in the females than males by sex stratified analysis (syn26967458), which suggests a 

more severe neuronal damage in females. Conversely, the transcriptional factors predicted to 

repress the expression of SVOP (SP1, MXI1 and ZFX) all show more pronounced upregulation 

in females in DLPFC (Supplementary Figure 4). Recently it has been reported that the human Y 

and inactive X chromosomes similarly modulate autosomal gene expression, with the 
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homologous transcription factors – ZFX and ZFY acting in a mutually and cumulatively dose-

dependent fashion[62]. Most importantly, they are prioritized as one of the genes on sex 

chromosomes most likely to contribute to male-female differences in common disease[63]. We 

observed highly correlated co-expression between their cumulative expression and that of SVOP, 

with the sum greater in females and more significantly upregulated in AD. Together with the two 

other transcriptional factors (SP1 and MXI1), their expressions explain over 70% variances of 

the expression of SVOP in the DLPFC data, indicating a highly probable orchestrated 

transcriptional regulation.  

 

SVOP is a member of the synaptic vesicle glycoprotein 2 (SV2) family primarily associated with 

synaptic vesicles. It plays a role in the regulation of neurotransmitter release at synapses[64] 

although there is limited study for its characterization. Its expression has been found to be 

positively correlated with cognitive function and consistently downregulated in multiple neuron 

subtypes from AD brains especially in females, in numerous transcriptomic profiles by snRNA-

seq[51, 65-67]. Further characterization of the transcript and protein and their roles in 

neurological function and disorder is thus warranted. 

 

Although still significant, the co-expressions of SVOP with the TFs in the two other brain 

regions are not as strong, with residual sex effect not completely modeled (Supplementary Table 

10). It remains to be further investigated the details of the epigenomic landscape of the TFs 

around SVOP in different cell types from different AD affected brain regions, and how and why 

their regulations are disrupted in AD differently in the two sexes. To our knowledge, our study is 

the one of the first to identify direct genetic link with sex chromosome in AD transcriptomics. It 
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therefore provides valuable preliminary data for further research on the biological mechanism(s) 

of action and the implications for disease pathogenesis of sex differences in AD.   

 

Among the gene nodes in the sex-linked submodule, excluding the female sex marker XIST, all 

the other sex-linked genes (RPS4Y1, LINC00279, DDX3Y, TMSB4Y, TTTY14, AC010889.1, 

KDM5D, and EIF1AY) are on the Y chromosome. Their joint co-expression presence is most 

likely due to the distribution of sex effect to several highly expressed Y-linked genes, since they 

are only linked to the parent module by ZFX. Nevertheless, there is another Y-linked gene 

PCDH11Y showing co-expression with several genes in the neuronal module including ZFX, 

SLC22A25, and SVOP (Figure 6B). It is notable that its X-homolog PCDH11X has been 

reported to be associated with higher risks of developing AD in women, although the finding 

cannot be repeated in subsequent studies[68], which leaves the window open for more research. 

All of these illustrate the power of applying state-of-the-art AI approach in deciphering high-

dimensional data for molecular changes associated with AD. 

 

One limitation of our study is that we applied the framework on the transcriptomes obtained 

from bulk-tissue which could be affected by cell type proportion during disease progression. As 

we have demonstrated the capability of it to detangle highly convoluted data, with the ever-

growing multi-omics data profiled at single cell level, the approach would have broader utility 

helping advance our understanding of complex human diseases such as AD.   
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Figure Legend: 

 

Figure 1. The deep learning and interpretation framework employed in this work. 1) Model 

training. Using the gene expression profiles from AD and control subjects and their diagnosis 

class as the input for supervised classification, the model was trained by a multilayer neural 

network. The trained network was passed forward to the profiles from the whole cohort with the 

resulting output manifold subject to unsupervised dimensionality transformation (UMAP) to 

obtain the pseudo-temporal trajectory and SI. SI was linearly correlated with phenotypic data for 

evaluation. 2) Trained model was interpreted by SHAP explainer to obtain the most salient 

features (IGs). Their co-expression relationship was examined for biological interpretation. The 

framework was applied to the three brain regions (DLPFC, PCC, and HCN) from ROSMAP 

cohort respectively.  

 

Figure 2. The pseudo-temporal trajectories from the trained models for the transcriptome from 

three regions of ROSMAP cohort and the SI correlation with phenotypical data. A-B): DLPFC 

without and with OTHER samples. C-D): PCC without and with OTHER samples. E-F): HCN 

without and with OTHER samples. G-H): Spider plots showing the linear correlations of SIs 

with phenotypical traits for all three models.  

 

Figure 3. The pseudo-temporal trajectories from the forward pass of ROSMAP model and 

mapping to the same 3D space as ROSMAP (DLPFC only), based on the transcriptome from two 

regions of MAYO cohort and the SI correlation with phenotypical data from all three models’ 

predictions. PA: pathological aging; PSP: progressive supranuclear palsy. A) TCX mapped to 
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DLPFC; B) CER mapped to DLPFC. C-D): Spider plots showing the linear correlations of SIs 

with phenotypical traits from all three models.   

 

Figure 4. The pseudo-temporal trajectories from the forward pass of ROSMAP model and 

mapping to the same 3D space as ROSMAP (DLPFC only), based on the transcriptome from 

four regions of MSBB cohort and the SI correlation with phenotypical data from all three 

models’ predictions. A-D) Four regions (FP, STG, PHG, and IFG) mapped to DLPFC. E-F): 

Spider plots showing the linear correlations of SIs with phenotypical traits from all three models. 

 

Figure 5. Co-expression modules resolved from the expression profiles of IGs in DLPFC region 

and their functional annotations. A-E) Five modules clustered by their cell type enrichment. Only 

hub genes are labeled. F) Functional enrichment for each module. 

 

Figure 6. Curated co-expression plots for two modules from DLPFC region with all gene nodes 

labeled. A) Microglia module. B) A subset from the neuron module including the hub gene 

SVOP and a sex-linked submodule. 

 

Figure 7. SVOP and ZFX (ZFY) co-expression based on the reprocessed ROSMAP data from 

DLPFC region. A) Regression between SVOP and ZFX, ZFY and their combined expression. B) 

Boxplots showing ZFX, ZFY, their cumulation and SVOP expression stratified by sex. 

 

Supplementary Figure 1. Receiver operating curves (ROCs) for the three trained models. 
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Supplementary Figure 2. The process of training 100 models and obtaining the final SHAP 

values for feature selection. 

 

Supplementary Figure 3. The comparisons of the IGs and DEGs of ROSMAP. A) An upset plot 

comparing the IGs and DEGs for all three regions. B) The IGs distribution on the Volcano plot 

from DLPFC DEG analysis (data from syn26967457). Each module is colored respectively. C) 

Boxplots for the IGs distribution by their -logP and log2FC in the DEG analysis. Color scheme is 

the same as B). 

 

Supplementary Figure 4. Heatmap showing the log2FC for the IGs in the neuronal module (377 

genes) in AD vs control comparison by DEG analysis (data from syn26967458) stratified by sex. 

Data is sorted by the middle panel from joint analysis. The sex-linked genes are labeled on the 

left. Other important genes are labeled on the right. DEG cutoffs for the joint analysis (|log2FC| > 

0.263) are marked.  
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