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Figure 1: Generated images of InfoScale based on SDXL from lower resolution to higher resolution. Our
method extends SDXL to generate images from 1/16x,1/4x to 4x,16x without any fine-tuning. Best
viewed ZOOMED-IN.

Abstract

Diffusion models (DMs) have become dominant in visual generation but suffer a performance
drop when tested on resolutions that differ from the training scale, whether lower or higher.
Current training-free methods for DMs have shown promising results, primarily focusing on
higher-resolution generation. However, most methods lack a unified analytical perspective
for variable-scale generation, leading to suboptimal results. In fact, the key challenge in gen-
erating variable-scale images lies in the differing amounts of information across resolutions,
which requires information conversion procedures to be varied for generating variable-scaled
images. In this paper, we investigate the issues of three critical aspects in DMs for a unified
analysis in variable-scaled generation: dilated convolution, attention mechanisms, and initial
noise. Specifically, 1) dilated convolution in DMs for the higher-resolution generation loses
high-frequency information. 2) Attention for variable-scaled image generation struggles to
adjust the information aggregation adaptively. 3) The spatial distribution of information in
the initial noise is misaligned with the variable-scaled image. To solve the above problems,
we propose InfoScale, an information-centric framework for variable-scaled image genera-
tion by effectively utilizing information from three aspects correspondingly. For information
loss in 1), we introduce a Progressive Frequency Compensation module to compensate for
high-frequency information lost by dilated convolution in higher-resolution generation. For
information aggregation inflexibility in 2), we introduce an Adaptive Information Aggrega-
tion module to adaptively aggregate information in lower-resolution generation and achieve
an effective balance between local and global information in higher-resolution generation.
For information distribution misalignment in 3), we design a Noise Adaptation module to
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re-distribute information in initial noise for variable-scaled generation. Our method is plug-
and-play, and extensive experiments demonstrate its effectiveness in variable-scaled image
generation.

1 Introduction

Diffusion models (DMs) have witnessed remarkable progress in visual generation (Rombach et al., 2022; Ho
et al [2020; [Song et al., 2020]), which converts the information from initial noises to image space. Despite
the powerful generation capabilities of DMs, for variable-scaled image generation that is often required in
practical applications, directly inputting initial noise with resolutions lower or higher than the training
resolution setting usually leads to visual defects, such as incomplete content in lower-resolution images and
distorted structure in higher-resolution images. This is a challenging issue since the information conversion
procedures are different in variable-scaled image generation, and the components in DMs (i.e., convolution,
attentions) are over-optimized to process the information in training settings. Although fine-tuning DMs is
a choice, it requires substantial computation resources and high-quality data.

Recently, quantities of training-free approaches for variable-scaled image generation have emerged and have
attracted widespread attention. Primarily, most of them are focused on higher-resolution generation (He
et al.} |2023; |[Huang et al.||2024; |Du et al.| 2024} |Qiu et al.| 2024} [Zhang et al [2023). One line of training-free-
based higher-resolution generation methods primarily relies on incorporating dilated convolution or samplings
(i.e., ScaleCrafter (He et al. [2023) and FouriScale (Huang et all |2024)) to align higher-resolution image
structure information with the training resolution. While another line focuses on firstly generating the main
structure in the training resolution and refining the details in the higher resolution (i.e., DemoFusion (Du
et al., 2024) and FreeScale (Qiu et al. 2024) ), which also requires dilated convolution or samplings in
higher-resolution generation procedures to avoid artifacts appearing. However, the dilated convolution used
in these methods often leads to details information losses in higher-resolution generation. Meanwhile,
Only a few works (Jin et al.| [2023}; Haji-Ali et al., [2024) focus on variable-scaled (both lower and higher
resolution) image generation. However, their generated results often lack sufficient detail or require large
latency overheads.

Although the aforementioned approaches have made great efforts, a unified analytical perspective for variable-
scaled (both lower and higher resolution) generation has rarely been discussed. In fact, the key challenge in
generating variable-scaled images is that the amount of information in the generated image is varied across
resolutions, as shown in Fig. 2a] Higher-resolution images or latents generally contain a greater amount
of information and larger proportions of high-frequency components, while lower-resolution ones behave
oppositely. Since DMs are only optimized to convert the initial noise to the generated image at the level
of training-resolution information amount, the contradiction in information conversion procedures across
resolutions constrains the potential of applying DMs in generating variable-scaled images.

In this paper, we investigate the problems of three critical aspects in DMs for a unified analysis in variable-
scaled generation: dilated convolution, attention mechanisms, and initial noise. Specifically, 1) In higher-
resolution generation, directly applying dilated convolution loses some high-frequency information, as shown
in Fig. which prevents generating more image details. 2) In lower-resolution generation, scaled attention
struggles to aggregate enough information in the limited contextual range. However, in higher-resolution
generation, attention tends to aggregate redundant and repetitive information, as shown in Fig. [3] This
inflexible information aggregation leads to unreasonable information utilization. 3) In lower-resolution gen-
eration, DMs struggle to handle non-uniform information distribution (i.e., lower entropy) in initial noise
compared to the training setting, resulting in incomplete content. In higher-resolution generation, the infor-
mation distribution of initial noise is over-uniform and contains multiple responses to the prompt, causing
the information in these regions to be processed independently into repetitive objects, see Fig. [

Therefore, in order to achieve effective utilization of information without the aforementioned three infor-
mation utilization obstacles, we propose InfoScale, an information-centric variable-scaled image generation
framework, including three key designs corresponding to them, respectively. Specifically, for the information
loss in 1), we introduce a Progressive Frequency Compensation (PFC) module to extract high-frequency
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components from cached noise of the previous timestep to compensate for the predicted noise at the current
timestep when applying dilated convolution in higher-resolution generation. For information aggregation
inflexibility in 2), we introduce the Adaptive Information Aggregation (AIA) module to adaptively adjust
the information aggregation ability of attention. We design dual-scaled attention (DSAttn) based on the
original scaled attention by adjusting the attention entropy to be more adaptive, enhancing the informa-
tion aggregation ability of attention in lower-resolution generation. We further fuse the features of DSAttn
and original attention to effectively balance local-enhanced information (aggregated by DSAttn) and global
information (original Attn) in higher-resolution generation.

For information distribution misalignment in 3): we introduce the Noise Adaptation (NA) module, which
enhances the uniformity of information distribution in the central region to encourage information aggrega-
tion in lower-resolution generation. We gradually suppress the uniformity of information distribution from
centric to the surrounding region through the NA module to alleviate the repeated response to the prompt
in higher-resolution generation. The designs of our method are training-free and are flexibly plug-and-play
for DMs. Extensive experiments demonstrate that our framework significantly improves the visual quality
in variable-scaled image generation.

Our core contributions can be summarized as follows:

o We propose InfoScale, an information-centric variable-scaled image generation framework, offering
a unified analytical perspective for variable-scaled image generation.

o We design progressive frequency compensation, adaptive information aggregation, and noise adap-
tation modules to achieve efficient information utilization.

o Extensive experiments validate the effectiveness of our framework by plugging into DMs in a training-
free way.

2 Related Work

2.1 Text-to-image generation

Diffusion models (DMs) (Dhariwal & Nichol, 2021; [Li et al., 2024; [Liu et al., [2024a; Zhuo et al., [2024} |Li
et al} |Ganz & Elad| 2024) have attracted widespread attention due to their excellent image generation
quality. Denoising Diffusion Probabilistic Models (DDPM) (Ho et al.| [2020) demonstrated the potential
of DMs in image generation. Moreover, Classifier-Free Guidance (CFG) (Ho & Salimans| 2022) ennobled
DMs to generate images conforming to given prompts. Since operations in pixel space require substantial
computational resources, Latent Diffusion Models (LDM) (Rombach et al.l 2022) proposed to transfer the
diffusion process to latent space (Blattmann et al. [2023; He et al.| [2022)), thereby reducing the training
burden and laying the foundation for high-resolution image generation. Thanks to large-scale training
data (Schuhmann et al., 2022)), the Stable Diffusion series (Podell et al., 2023; [Rombach et al., 2022|) has
achieved groundbreaking progress in visual generation.

2.2 Variable-scaled image generation

Due to being trained on limited resolutions, directly applying pre-trained diffusion models to generate images
with novel resolutions often results in visual defects, such as incomplete content at lower-resolution images
and repeated objects or distorted structures at higher-resolution images. For higher-resolution generation,
some approaches propose training or fine-tuning models with higher-resolution images to improve the per-
formance of models (Hoogeboom et al., 2023} |Liu et al., 2024b; |Ren et al.l |2024; |Chen et al.,[2024)). However,
the scarcity of high-resolution image data and the significant increase in computational resource demands
due to resolution scaling limit the applicability of such methods. Many training-free approaches propose us-
ing specific strategies during inference to fully leverage the potential of diffusion models in higher-resolution
image generation (Hwang et al., 2024} Lee et al.| |2023; [Kim et al., [2024; [Lin et al.l 2024a; [Yang et al., [2024;
Zhang et all 2024} [Lu et al.| |2023; |Yang et al., |2025). ScaleCrafter (He et al., [2023) and FouriScale (Huang
et all 2024) achieve structural consistency across different resolution by incorporating dilated convolution,
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(b) Information loss in dilated convolution. During the
steps using dilated convolution, the information amount
shows a significant decrease, indicating that dilated con-
volution reduces redundant information, while frequency
analysis shows that this information includes some high-
frequency components. Vanilla refers to no dilated con-
volution.

while HiDiffusion (Zhang et al., 2023) dynamically resizes features to align with the training resolution.
Nevertheless, these methods still suffer from degraded image details. MultiDiffusion (Bar-Tal et al., |2023)
extends to larger resolutions by generating overlapping patches. DemoFusion (Du et al., 2024), AccDiffu-
sion (Lin et al., 2024Db), and FreeScale all first generate images at the training resolution
to provide guidance for higher-resolution generation, yet their requires dilated convolution or samplings in
higher-resolution generation procedures to avoid artifacts appearing. challenging. For variable-scaled image

generation including lower-resolution generation, Attn-SF (Jin et all) 2023) adjusts attention entropy to
achieve variable-scaled image generation, which has much space for improvement.

3 Method Motivation and Discussion

3.1 Information Loss

Information entropy (Shannonl|1948)) is a fundamental concept in information theory. In this work, we calcu-
late it based on the self-attention scores from DMs, which quantifies the information conversion procedures
across different resolutions. The information entropy H(X) is defined as:

H(X)=- Zp(xi)logp(xi) (1)

i=1
where X is attention score after Softmax operation and i represents each position.

Directly scaling pre-trained diffusion models to higher resolutions results in generating images with repetitive
objects. This is because the model needs to process more information for higher-resolution generation, as
shown in Fig. To mitigate this repetition issue, Scalecrafter replaces the standard
convolution in U-Net with dilated convolution with a large receptive field, which has proven to be effective
and is commonly used by further higher-resolution generation works (i.e., FourierScale (Huang et al.| [2024)

and FreeScale (Qiu et all [2024)), but it inevitably leads to image quality degradation with details losses.

This raises the question of what causes this phenomenon.

We conduct experiments on 100 randomly generated prompts in higher-resolution generation to investigate
the impact of dilated convolutions. We analyze the changes in information entropy during the sampling
under different configurations. As shown in Fig. compared to standard convolution, dilated convolution
tends to align the information to the training resolution in both conditional and unconditional sampling.
This suggests that dilated convolution effectively compresses redundant information in higher-resolution
generation, contributing to generating correct structures.

To further analyze the difference in information in predicted noise using dilated convolutions in the early
stages, we performed frequency analysis for both unconditional and conditional predicted noise. The re-
sults show that, compared to standard convolutions, dilated convolutions cause the predicted noise to lose
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Figure 3: The top and bottom figures illustrate the inflexible aggregation ability of the model for lower-
and higher-resolution generation, respectively. We use dual-scaled factors to achieve wider aggregation for
lower-resolution generation, and vice versa for higher-resolution generation.

high-frequency information. In fact, high-frequency components generally occupy a larger proportion in
high-resolution images compared to low-resolution images, as shown in Fig. 2a] Therefore, the loss of this
high-frequency information potentially harms the quality of the generated image. To take advantage of di-
lated convolution in reducing redundant information while mitigating the loss of high-frequency information,
frequency compensation is required to address this critical information-utilization bottleneck, see Sec.

3.2 Information Aggregation Inflexibility

For DMs, the scaled dot-product attention allows the model to focus on prominent parts of the input during
the generation, facilitating efficient information aggregation.

We conduct experiments on information entropy and attention maps to analyze, see Fig. [3] The results
indicate that the self-attention focused solely on narrower local regions at lower-resolution images, failing
to fully utilize global information to generate complete content. Meanwhile, the self-attention attempts
to attend to more redundant and repetitive information in higher resolutions, leading to the generation of
repeated structures. In comparison, Attn-SF applies adaptive aggregation of information
according to resolutions, but it is still limited to only scaling the value inside the Softmax. This approach
leaves room for further improvements in scaling self-attention, as it fails to fully exploit the potential of
adaptive aggregation that could dynamically adjust across different resolutions (see Sec. |4.2)).
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Figure 4: The left figure illustrates that increasing the variance to adjust the information distribution of
the initial noise promotes the information aggregation in lower resolution generation. The high-resolution
generation in the right figure is the opposite.

3.3 Information Distribution Misalignment

The distribution of initial noise is important for DMs. InitNo (Guo et al., 2024) reveals that initial noise
includes both semantically consistent and inconsistent components. Inspired by this, we focus on the spatial
distribution of information in initial noise. For higher resolution, the spatial distribution of initial noise
is more uniform (i.e., more like Gaussian) than the training resolution, which contains multiple regions
that respond to prompts, mainly manifested as multiple peaks in spatial distribution. For lower resolution,
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Figure 5: Overall framework of InfoScale. (a) In higher resolution generation, the Noise Adaptation (NA)
module first modulates the initial noise according to resolution. Then, the Progressive Frequency Com-
pensation (PFC) module extracts high-frequency components from cached noise of the previous timestep
to compensate for the predicted noise at the current timestep when applying dilated convolution. The
Adaptive Information Aggregation module further fuses local (blue) and global information (red). (b) In

lower-resolution generation, we also usethe NA module and replace the original self-attention layer with
DSAttn.

the spatial distribution of initial noise is less uniform (i.e., less like Gaussian) than the training resolution,
which struggles to form a completely effective region to respond to the prompts, resulting in incomplete
content. We conducted experiments in Fig. [4] that appropriately adjust the spatial distribution of the
central area with variance scaling to align the training distribution. The experimental results show that
this alignment improves information entropy, generating lower-resolution images with complete structures
and higher-resolution images without repetitive objects. Therefore, we can further improve the utilization
of information by adjusting a more appropriate initial noise distribution (see Sec. .

4 Method

We propose InfoScale, which consists of three modules that correspond to the above three analyses, re-
spectively: Progressive Frequency Compensation (PFC) module, Adaptive Information Aggregation (AIA)
module, and Noise Adaptation (NA) module.

4.1 Progressive Frequency Compensation

Consider the hidden feature h and a convolution layer f that it will pass through, where the convolution
kernel is k. The dilated convolution operation ®4(-) can be represented as:

fi(h) = h@ ©4(k), (h® ®4(k))(0) = > h(p (2)

s+d-t=p

where o, p,q are spatial locations used to index the feature and kernel, ® denotes a convolution opera-
tion. This operation is equivalent to incorporating a down-sampling process before an up-sampling process,
resulting in the loss of high-frequency information (Huang et al.l 2024). Here, we aim to minimize the
high-frequency information loss during the early stages of using dilated convolution.
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We propose the Progressive Frequency Compensation module to address the loss of high-frequency infor-
mation. Considering the cumulative frequency loss in the iteration process of the diffusion model and the
continuity between consecutive latents, when predicting current noise €;, we naturally employ the noise pre-
dicted in the previous step €;_; as the compensation for high-frequency information, which retains richer
high-frequency information unaffected by dilated convolution. We identically process the conditional and
unconditional noise. Denoting N = {unc, ¢}, it can be shown as:

N =FFT(N )01 —-H), ¢'=FFT()oH, & =IFFT(e ) +eh), (3)

where FFT is the Fast Fourier Transform and ZFFT is the Inverse Fast Fourier Transform. H is the low-
pass filter (LPF) with stop frequency of Dy = 0.25 by default. More details can be found in the appendix.

4.2 Adaptive Information Aggregation

In order to adaptively adjust the aggregation degree of information in self-attention, we propose Dual-Scaled
Attention (DSAttn). Specifically, following prior work (Jin et all) 2023), we introduce a scaled factor «
within the Softmax operation in the self-attention layer, determined by the number of tokens in the current
attention layer during both training and inference phases. Additionally, for low-resolution image generation,
we incorporate an empirical hyperparameter ¢, to rescale the entire attention feature. This stems from our
empirical observation that dual-scaled factors allow attention to cover a broader range, thereby achieving
better visual generation quality, which is shown below:

a- QK
Vd

where a and w are scaled factors, d is token dimension. Specifically, we calculate o and w in following form:

DSAttn(Q, K, V) = w - Softmax( WV, (4)

L>N

a = /log, N, w:{cw (5)

1 LN

where L, N are the number of tokens in self-attention in the training and testing phase. ¢, is a hyperparam-
eter with the value 0.75. In practice, we adopt different strategies for low- and high-resolution generation.

Lower-Resolution Generation. We only replace the original attention layer with DSAttn in lower reso-
lution generation to improve the ability to aggregate information.

Higher Resolution Generation. After using PFC module and DSAttn, the details of local features are ef-
fectively enhanced. To further leverage the original attention advantage in processing global information, we
further fuse features from DSAttn and original attention to enhance global details and local structure. Specif-
ically, we extract the low-frequency and high-frequency components of the features computed by DSAttn and
the original attention layer, respectively. The low-frequency component is obtained by downsampling and
then upsampling the feature, while the high-frequency component is obtained by subtracting the transformed
result. Then, we fuse these two parts to obtain the enhanced feature.

he =U (D(h})) + (he = U (D(hy))) (6)
where U and D represent upsampling and downsampling operations (Nearest Neighbor interpolation).
4.3 Noise Adaptation
We design a noise adaptation module to align the information distribution in the initial noise without

incurring additional computational burden. Specifically, we modulate the initial noise Zp to obtain adaptive
noise Zp using a mask W with Gaussian weights. For different resolutions, W has different weights.

ZT =W e Zr. (7)
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Table 1: Quantitative results. - indicates no data available for this metric. +Our is plug-and-play

Method Factor SD1.5 SD2-1 SDXL
FID|] KID] FID.] KID. | FID] KID] FID.] KID. | FID| KID] FID.] KID, Clipf Time]

Direct-Inference 114.76  0.031 - - 101.79  0.026 - - 96.31 0.017 78.72 0.021 30.26 3s
Attn-ASFA 05x0.5 | 95:09  0.021 - - 88.34  0.019 - - 71.85 0.014  49.20  0.009  30.62 3s
ElasticDiffusion |W 94.40  0.030 - - 9216 0.028 - - 7045 0.011  49.96  0.009 3098  50s
Ours 90.34  0.017 - - 82.93  0.016 - - 71.02 0013  49.05  0.008  31.04 3s
Direct-Inf 86.97 0014 4645 0.009 | 80.82 0.011 4056  0.007 | 117.07 0.033 12805 0.041 3145 35
Attn-SF 82.28 0.011 4545 0007 | 79.81 0.010 37.87  0.006 | 111.86 0.030 12417 0.035 3155  35s
HiDiffusion (Zhang ct al.|[2023 7500 0.009 4420  0.008 | 66.96 0.006 3813  0.007 | 10462 0.024 108.32 0.025 3192  19s
MegaFusion (Wu et al.|[2025 6743  0.008  38.92 0.007 | 64.11  0.005  37.09 0.007 72.38  0.007  93.06 0.018 32.47 18s
DiffuseHigh (Kim et al.[|2024 - - - - - - - - 60.87  0.004 84.33 0.015 32.96 40s
DemoFusion (Du et al.] [2024] - - - - - - - - 54.25  0.003  71.69  0.013 3358  90s
Accdiffusion (Cin et al.|[2024b 952 - - - - - - - - 55.34  0.003 7615  0.008  33.69  98s
FreCaS (Zhang et al. - - - - - - - - 5401  0.003  62.50  0.007 3399  23s
FouriScale (Huang ct al.| 2024 68.81  0.008 39.79  0.007 | 65.22 0.006 3819  0.007 | 7817 0.017 93.75  0.025 3222 65
FouriScale (Huang et al.| 2024} +Our 68.16  0.008 39.03  0.007 | 6374 0.005 3684 0.006 | 77.47 0017 9318  0.024 3245  67Ts
ScaleCrafter (He et al.][2023 69.02  0.008 40.72  0.007 | 6493 0.006 37.70  0.006 | 73.14 0.012 9126  0.021  32.98  38s
ScaleCrafter (He et al.|[2023) +Our 66.34  0.007  37.97 0006 | 6273 0.004 3647  0.006 | 72.57 0.012 9103  0.021  33.08  40s
FreeScale (Qiu et al.|[2022 - - - - - - - - 51.99  0.003  60.99  0.006 34.23  4Ts
FreeScale (Qiu et al. +Our - - - - - - - - 50.79  0.002 59.50 0.004 34.26 48s
Direct-Inf 180.47 0.062 5856  0.020 | 173.75 0.058 53.05 0.0L1 | 189.08 0.078 16543 0.059 30.17  504s
Attn-SF (Jin et al.|[2023 169.05 0.054 57.72 0018 | 17472 0.059 5190 0009 | 187.24 0.079 161.68 0.056  30.79  504s
HiDiffusion (Zhang et al.|[2023 135.00 0.043 62,66  0.027 | 119.76 0.033  76.03  0.026 | 144.08 0.056 18645 0.079 3134  138s
DiffuseHigh (Kim et al.|[2024 - - - - - - - - 7543 0.022 11540 0.031 3207  557s
DemoFusion (Du et al.|[2024 - - - - - - - - 60.60 0.006 94.81 0.019 32.46 861s
Accdiffusion (Cin ot al.| 2022 - - - - - - - - 70.34  0.018 109.15  0.028 3218  896s
FreCaS (Zhang et al. 4x4 - - - - - - - - 65.19 0015 9455  0.019 3221  130s
FouriScale (Huang et al.| 2024 76.63  0.011 5719  0.019 | 75.09 0.009 5548  0.019 |113.25 0.033 161.24 0062 31.64  654s
FouriScale (Huang ct al.| 2024} +Our 76.15 0.011 5711  0.018 | 75.02  0.009 54.90 0018 |113.06 0.033 158.32 0.060  31.68  657s
ScaleCrafter (He et al.|[2023 7046 0.008 5341  0.016 | 7611 0.011 5599  0.020 | 119.86 0.036 172.25 0.070 3140  693s
ScaleCrafter (He ot al.|[2023) +Our 7037 0.007 5252 0.015 | 7547 0.010 5569  0.020 | 119.10 0.035 170.98 0.068 3147  698s
FreeScale (Qiu et al.| [2024 - - - - - - - - 60.16  0.008 9420  0.019 3275 532
FreeScale (Qiu et al. 4)4+Our - - - - - - - - 59.74  0.007  92.82 0.017 32.88 534s

Lower-Resolution Generation. The weight of W increases from the center to the surrounding to con-
centrate the information in the central area, which aims to generate a complete object.

Higher Resolution Generation. The weight of W decreases from the center to the surroundings, which
aims to mitigate distorted structure and repetitive objects.

5 EXPERIMENTS

Experimental Settings. To demonstrate the effectiveness of our method, we perform evaluation on
SD1.5 (Rombach et all [2022), SD2.1 and SDXL (Podell et all [2023). We perform three
unseen resolutions, with scaling factors of 0.25 x 0.25, 2 x 2, 4 x 4 relative to the original training resolution.
Specifically, we generate images of 256 x 256, 1024 x 1024, and 2048 x 2048 for SD1.5 and SD2.1, while
512 x 512, 2048 x 2048 and 4096 x 4096 for SDXL. We randomly select 1024 prompts to conduct evaluation
from LAION-5B (Schuhmann et all [2022), which contains 5 billion image-caption pairs.

Evaluation metrics. Following prior work, we report Frechet Inception Distance (FID) (Heusel et al.
and Kernel Inception Distance (KID) (Binkowski et al., 2018) to evaluate the quality and diversity of
generated images. Following previous work (Chai et al., 2022} |Qiu et al., [2024)), we use crop local patches to
calculate the above metrics, defined as FID, and KID.. Notably, for lower resolution generation on SD1.5
and SD2.1, the images cannot be further cropped, so they do not have FID. and KID.. Additionally, we
also report the CLIP score (Clip) (Radford et all [2021)) and inference time (Time).

5.1 Main Results.

For lower resolution generation, we compare our method with SDXL (Podell et al.| [2023)) Direct-Inference,
Attn-SF (Jin et all [2023), and ElasticDiffusion (Haji-Ali et al. 2024). For higher resolution, we compare
with SDXL (Podell et al., [2023) Direct-Inference, Attn-SF (Jin et al., [2023), ScaleCrafter (He et al), [2023),
FouriScale (Huang et al [2024), HiDiffusion (Zhang et al., [2023)), AccDiffusion (Lin et all [2024b), MegaFu-
sion (without experimental setting at 40962 resolutions) (Wu et al., 2025), DiffuseHigh (Kim et al., [2024),
FreCaS (Zhang et all, 2024), DemoFusion (Du et all, 2024) and FreeScale (Qiu et al.| [2024)). Additionally,
we integrate our method into (He et al) 2023; Huang et al| 2024; |Qiu et al. 2024). More results on
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Figure 6: Qualitative comparison of images with other baselines. The training resolution of SDXL is
10242(1/16x). Our method generates complete visual content on lower resolution, even up to 2562(1/16x ).
Best viewed ZOOMED-IN.

higher-resolution, SD3 (Esser et all [2024), and comparisons with Super-Resolution are available in
the supplementary materials.

Quantitative results. In Table[I] for lower resolution generation, our method achieves the best perfor-
mance in almost all metrics, demonstrating effectiveness in generating complete and detailed visual content.
It’s important to note that the inference times for ElasticDiffusion are approximately 15 times longer than
ours. For higher resolution generation, our method further enhances the performance of three baselines,
particularly in terms of FID. and KID.. In the 2 x 2 experiments on SD1.5 and SD2.1, ScaleCrafter4+Our
(integrated with our method) outperforms other approaches. In all experiments on SDXL, FreeScale+Our
achieves the best scores on almost all metrics.
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Qualitative results. In the Fig. [, we show the visual comparison results. For lower resolution, the
generated results of our method have richer details and a more complete structure compared with Attn-SF
and ElasticDiffusion, including a smaller scaling factor (0.25 x 0.25), which demonstrates the powerful ability
of our method. For higher-resolution generation, our method further reduces the small local repetition that
appears in Scalecrafter and freescale on the 2x2 experiment. For the 4x4 experiment, the cat’s eyes and
ears in ScaleCrafter have obvious aliasing, and FreeScale fails to generate an accessory on the chest. In
comparison, our results have better visual quality.

Table 2: Ablation studies for each component in InfoScale

PFC AJA NA FID KID FID, KID.
63.99 0.005 37.40 0.006

v 6348 0.005 37.08 0.007

v 62.95 0.005 36.73 0.006
v v 6273 0.004 36.47 0.006

SSENENEN

5.2 Ablation Study

In this section, we use the SD2.1 and conduct a series of ab-
lation experiments with 2x2 scale factor setting to verify the
effectiveness of each component, as shown in Table

Effect of Progressive Frequency Compensation (PFC).
As shown in Fig. [7] (c). Although the dilated convolution signif-
icantly reduces the repetition issue, the background of the gen-
erated images becomes blurred. Compared with (a), our PFC
compensatesfor the high-frequency information loss caused by
the dilated convolution, making the background clearer and
improving the global details.

Effect of Adaptive Information Aggregation (AIA).
DSAttn has better information aggregation ability as shown
in Fig. We further utilize the AIA module in higher res- (©) + NA+PFC (@) + NA+PFC + AIA
olution to balance local and global information, as shown in
Fig. [7] (d). After adopting AIA, the image details are further
improved. The comparison results of DSAttn and ATA can be
found in the supplementary material.

Figure 7: Qualitative results for ablation
study.

Effect of Noise Adaptation (NA). We use NA module to suppress the distribution of information in the
central region to mitigate the phenomenon of repetitive content in higher resolution. As shown in Fig. El (b),
the messy hair on the face is successfully removed after using the NA module.

6 CONCLUSION

We propose InfoScale, an information-centric variable-scaled image generation framework, achieving effec-
tive information utilization for DMs. We believe that information amount of the generated image is different
across resolutions, leading to the information conversion procedures needing to be varied when converting
the initial noise to variable-scaled images. We design the Progressive Frequency Compensation module,
the Adaptive Information Aggregation module, and the Noise Adaptation module to address these chal-
lenges. Our method is plug-and-play for DMs, and extensive experiments demonstrate the effectiveness of
our method.

10
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A Appendix

A.1 Motivation for Variable-scaled Generation

Investigating variable-scaled generation is a significant research. Just as Attention-SF (Jin et al.l 2023)
and ElasticDiffusion (Haji-Ali et al., 2024)) did lower- and higher-resolution generation, we follow their task
setting. Additionally, (1) we need to discuss both lower- and higher-resolution generation to comprehensively
explain the essence of information utilization in Diffusion models. (2) In Table |3} our method requires less
inference time and GPU memory, especially on portable devices, with a partial trade-off in fidelity.

Additionally, we provide more low-resolution generated visual results on three different SD models: SD 1.5,
SD 2.1, and SDXL, as shown in Fig.

Table 3: Quantitative Results on the SDXL 512x512 setting

Method | FID Time GPU Memory (GB)
Direct-Inf 96.31 4s 7.6
SDXL+DownSampling | 58.44 9s 10.5
Our 71.02 4s 7.6

A.2 Implementation Details
A.2.1 Information Entropy

Information entropy (Shannon, [1948) is a fundamental concept in information theory. It is used to quantify
the uncertainty or unpredictability of random variables or information. For a discrete random variable X,
its entropy H (X) is defined as:

n
H(X)=- Zp(xi)logp(xi) (8)
i=1
where x; is a possible outcome of the random variable X and p(z;) indicates the probability of the x;.
Information entropy measures the average uncertainty of random variables. Due to the calculation charac-
teristics of softmax, the attention score can be well used as the probability value in the information entropy
formula. Each attention map can be regarded as a random variable. Therefore, information entropy can be
linked to the attention mechanism (Li et al. 2025), where a larger entropy indicates that a wider range of
contextual information is considered, while a smaller entropy otherwise. Based on the above analysis, we
use the attention scores from the self-attention layer in the second-to-last block of the model to dynamically
measure the information amount of the latent.

A.2.2 High-Frequency Energy Ratio

We quantify the amount of high-frequency information in images of different resolutions by calculating the
proportion of high-frequency component to the total energy.

A.2.3 Noise Adaptation

In Noise Adaptation module, our W is a Gaussian weight obtained from a 2D Gaussian function. Specifically,

e = %, Py = 5, Op = %, and o, = 2, where h represents Height, w represents Width, and K represents

KERNEL DIVISION, with a default value of 3.

A.2.4 Experiments Setting

We perform DDIM (Song et al.l [2020) sampling with 50 steps for all experiments, with the classifier-free
guidance set to 7.5 by default. For the integration of FouriScale (Huang et al., 2024]) and FreeScale (Qiu
et al.) [2024), we only use the Progressive Frequency Compensation module and Noise Adaptation module.

14
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Specifically, for Freescale, all our modules operate at a higher resolution, with no processing applied to the
first stage. Additionally, we note that Freescale performs interpolation operations in Self-Cascade Upscaling,
and our experiments found that this interpolation affects the supplementation of high frequencies. Therefore,
we made appropriate adjustments: during the time steps of dilated convolutions, we changed the interpolation
operation to frequency fusion, similar to (Yang et al., [2024)). The difference is that we used a fixed stop
frequency, and we execute Freescale’s default operations at timestamp without dilated convolution.

A.2.5 Plug-and-Play

Our proposed method is plug-and-play for DMs and can be integrated into FreeScale (Qiu et all [2024) to
achieve effective utilization of information. Fig. illustrates our integration on FreeScale (Qiu et al., [2024)).

NA PFC NA PFC

Phase 1 Phase 2

Figure 8: Plug-and-play of applying our method for FreeScale.

A.2.6 Progressive Frequency Compensation

Regarding the loss of high-frequency information in dilated convolutions, the predicted noise at the current
time step without dilated convolution is an ideal source of high-frequency components, but it is difficult
to obtain unless noise prediction is performed again. We consider that the latent at adjacent timesteps
have continuity, and the loss of high-frequency components in the noise from the previous step is relatively
smaller compared to the noise at the current step. Therefore, we use the noise predicted at the previous time
step as a compensation source of high-frequency information. In addition, we perform Adaptive Instance
Normalization (AdalIN) before frequency fusion to align the statistics of the cached noise with the predicted
noise at the current time step. This is due to the difference in the signal-to-noise ratio (SNR) (Hoogeboom,
between them, and directly using the predicted noise from the previous step for frequency fusion
can easily disrupt the distribution of the current predicted noise, causing out-of-distribution issues.

A.3 More Results

A.3.1 Ablation studies

(a) + NA + PFC + DSAttn (b) + NA + PFC + AFF

Figure 9: Comparison of DSAttn and AFF.
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We experimentally find that directly utilizing Dual-Scaled Attention (DSAttn) in higher-resolution generation
will cause some local content to appear in the generated image, as shown in the Fig.[0] As for the reason for
this phenomenon, we believe that DSAtn weakens its ability to pay attention to global information because
it focuses on local information. To this end, we perform Attention Feature Fusion(AFF) in higher-resolution
generation. In contrast, by combining information at different scales, we achieved better visual effects.

SD3 + Our

Figure 10: Visual Results on SD3. From left to right, the prompts used in the examples are: (1) "Stylized
Character Rendering". (2) "mountain scene from frozen 2". (3) "Greg Lecoeur - Crabeater seal'. (4) "old
man with a hat by azatyeman'.

A.3.2 Experiments on DiT

SD3 (Esser et al., 2024) is based on the DIT (Peebles & Xie, 2023) structure, which is different from Unet-
based SD1.5 (Rombach et al., [2022) and SDXL (Podell et al. 2023). We performed experiments on SD3
512 x 512, 2048 x 2048 and 3072 x 3072 settings to verify the generality of our method. As shown in the
Fig. [I0] and Tab. [d] we observe that our method further improves the quality of image generation, achieving
lower FID and KID scores.

Table 4: Quantitative Results on the SD3

Method | Scale Factor | FID KID FID,., KID,
Direct-Inf 0.5 x 0.5 85.49 0.028 79.06 0.020
Our ' ’ 84.16 0.025 78.34 0.018
Direct-Inf 9 % 9 71.24 0.017 67.56  0.025
Our 70.38 0.016 67.12  0.023
Direct-Inf 33 129.58 0.041 117.24 0.035
Our 128.70 0.039 116.42 0.034

A.3.3 Experiments on other aspect ratio

We compare with SDXL (Podell et al., 2023) Direct-Inference, Attn-SF (Jin et all, [2023), ScaleCrafter
et all, [2023)), FouriScale (Huang et al. [2024), AccDiffusion (Lin et al., [2024b) and DemoFusion (Du et al.

2024) on other aspect ratios (2:4) to verify the effectiveness of our method on other aspect ratios, as shown
in Table

16
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Table 5: Quantitative Results on the SDXL 2048 x 4096 setting

Method Scale Factor | FID KID FID,., KID,

Direct-Inf (Huang et al.| [2024) 154.36  0.047 145.06 0.054
Attn-SF (Jin et al.| [2023]) 150.63 0.045 139.85 0.050
DemoFusion (Du et al., 2024) 5744 0.011 81.86 0.024
AccDiffusion (Du et al., [2024])) 9 % 4 56.87 0.010 81.19 0.013
ScaleCrafter (He et al.| |2023]) 92.63 0.028 109.73 0.025
ScaleCrafter (He et al., [2023)+Our 92.11 0.024 109.55 0.023
FouriScale (Huang et al.l [2024) 90.28 0.022 106.37 0.021
FouriScale (Huang et al., |2024)+Our 89.79  0.020 106.02 0.020

A.3.4 Comparison with Super-Resolution methods

We compare with super-resolution methods, including StableSR (Wang et al.} 2024), ESRGAN (Wang et al.,
2018) and Real-ESRGAN (Wang et al., [2021)) on SDXL 512 x 512 and 2048 x 2048 settings to demonstrate
effectiveness of our method, as shown in Table [6]

Table 6: Quantitative Results on the SDXL

Method Scale Factor | FID KID FID, KID,
SDXL+StableSR (Wang et al., 2024 58.53 0.003 64.29 0.008
SDXL+Real-ESRGAN (Wang et al., [2021]) 9% 9 60.32 0.004 65.67 0.012
FreeScale (Qiu et al., [2024) 51.99 0.003 60.99 0.006
FreeScale (Qiu et al.l [2024)) +our 50.79 0.002 59.50 0.004
SDXL+ESRGAN (Wang et al., 2018) 61.85 0.012 98.08 0.024
SDXL+Real-ESRGAN (Wang et al., [2021) 60.95 0.010 97.26 0.022
SDXL+StableSR (Wang et al., [2024) 4 x4 59.93 0.008 95.97 0.021
FreeScale (Qiu et al., [2024)) 60.16 0.008 94.20 0.019
FreeScale (Qiu et al.l [2024)) +our 59.74 0.007 92.82 0.017

A.3.5 More visual results

Our method is plug-and-play for diffusion models. To validate its effectiveness across different model ar-
chitectures and resolution configurations, we provide additional plug-and-play comparative experimental

results, as shown in Fig.
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256x256

512x512 | 512x512
SDXL+Our

Figure 11: Visual results on lower resolution.
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1024x1024 1024x1024

1024x1024 = MM 1024x1024  _ . 1024x1024

ScaleCrafter+Our on SD1.5

Figure 12: Comparative visualization of generated results on SD1.5 1024x1024 setting. From left to right,
the prompts used in the examples are: (1) "Trail running in changing weather while in the Dent du Morcles
area of Switzerland". (2) "Bread and Belgian Beer'. (3) "Hamnoy Epilogue'. (4) "Window Box Painting".

2048x2048 2048x2048 2048x2048
ScaleCrafter on SD1.5

2048x2048 2048x2048

ScaleCrafter+Our on SD1.5

Figure 13: Comparative visualization of generated results on SD2.1 2048 x2048 setting. From left to right,
the prompts used in the examples are: (1) "Francis J. Underwood by alfalert'. (2) "A red fox trotting
through a forest, its fur glowing golden in the soft sunlight filtering through the trees.". (3) "Sunrise Sentinel
by Martin Grelle". (4) "Chapel Painting - Chapel At Ojo Claiente by Steven Boone".
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Figure 14: Comparative visualization of generated results on SD2.1 1024x1024 setting. From left to right,
the prompts used in the examples are: (1) "Striking Portraits Featuring Powerful Women of Color Painted
by Artist Tim Okamura'. (2) "Vintage style beaded wedding dress by Joanne Fleming Design, image by
Rob Howarth". (3) "Canada, Nunavut Territory, Repulse Bay, Polar Bear and young cub (Ursus maritimus)
floating clinging to iceberg near Harbour Islands at sunset'. (4) "Witch’s Hut".

\*
¥

2048x2048 2048x2048

ScaleCrafter+Our on SD2.1

Figure 15: Comparative visualization of generated results on SD2.1 2048 x 2048 setting. From left to right, the
prompts used in the examples are: (1) "Lunar Chronicles - Captain Carswell Thorne by LauraHollingsworth".
(2) "e926 2017 aircraft anthro blacknose canine clothed clothing day detailed background digital media
(artwork) dipstick tail fox mammal multicolored tail outside sky smile stanidng thanshuhai". (3) "A woman
and dog sitting in the snowy mountains'. (4) "standing penguin on sand near snow covered mountain covering
the sun from view at daytime0".
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Figure 16: Comparative visualization of generated results on SD1.5 1024x1024 setting. From left to right,
the prompts used in the examples are: (1) "Dr. House - Hugh Laurie". (2) "St Michael’s Mount". (3) "Frozen
gate Tera by moonworkerl". (4) """A Lone Carmel Cypress - Original Painting"" by Obata, Chiura".

FouriScale on SD1.5

2048x2048

FouriScale+Our on SD1.5

Figure 17: Comparative visualization of generated results on SD2.1 20482048 setting. From left to right,
the prompts used in the examples are: (1) "Photograph Tropical paradise with turtles by Vitaliy Sokol on
500px". (2) "Plein air oil painting of the rural landscape looking across to Table Mountain from Dysart,
Tasmania. By artist Rick Crossland". (3) "Oil Canvas Painting Spring Meadow with Colorful Flowers and
Tree". (4) "MacDOUGALL’s RUSSTAN ART AUCTION 30 MAY 2020".
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Figure 18: Comparative visualization of generated results on SD2.1 1024x1024 setting. From left to right,
the prompts used in the examples are: (1) "old man with a hat by azatyeman". (2) "Tips for Photographing
Rivers". (3) "Mike Svob artwork 'STILL WATERS’ available at Canada House Gallery - Banff, Alberta".
(4) "Anime Landscape 4k Laptop Full Hd 1080p Hd 4k Wallpapers".

2048x2048

-

Fouriscale+Our on SD2.1

Figure 19: Comparative visualization of generated results on SD2.1 20482048 setting. From left to right,
the prompts used in the examples are: (1) "Susanna Madora Salter was the first woman elected to political
office in the United States. She was elected mayor of Arg". (2) "Stock photo of Ashness Jetty, Derwentwater,
Keswick, Lake District National Park". (3) "1789 download wallpaper Animals, Pictures, Pandas screensavers
and pictures for free". (4) "Typical Swedish House Cottage Exterior Sweden House Swedish House".
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