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Abstract

Group equivariance can overly constrain models
if the symmetries in the group differ from those
observed in data. While common methods ad-
dress this by determining the appropriate level
of symmetry at the dataset level, they are lim-
ited to supervised settings and ignore scenarios in
which multiple levels of symmetry co-exist in the
same dataset. In this paper, we propose a method
able to detect the level of symmetry of each in-
put without the need for labels. Our framework
is general enough to accommodate different fam-
ilies of both continuous and discrete symmetry
distributions, such as arbitrary unimodal, symmet-
ric distributions and discrete groups. We validate
the effectiveness of our approach on synthetic
datasets with different per-class levels of symme-
tries, and demonstrate practical applications such
as the detection of out-of-distribution symmetries.
Our code is publicly available here.

1. Introduction
Symmetry transformations change certain aspects of the
world state, e.g., shape, while maintaining others unaffected
or invariant, e.g., class. Introducing inductive biases into the
model architecture that reflect the underlying symmetries of
the data has progressively become a key principle in the de-
sign of more efficient neural networks (Higgins et al., 2018).
This is often achieved through the use of equivariance, a
property that guarantees that a certain transformation made
to the input of a neural network will result in a equivalent
transformation in the corresponding output.
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Group equivariance leads to better generalization when the
symmetries present in the data correspond to those in the
group. However, if this is not the case, equivariance leads
to overly constrained models and worse performance (Chen
et al., 2020). To address this, common approaches involve
manually adjusting the choice of the group to better reflect
the symmetries in the data (Weiler & Cesa, 2019), or restrict-
ing the equivariance to subsets of the group. The latter is the
case of Partial G-CNNs (Romero & Lohit, 2022), which im-
plement partial equivariance layers and learn group subsets
S ⊆ G that best represents the symmetries in the data. This
avoids overly constraining the model, as the equivariance is
respected only for the learned levels of symmetry. Impor-
tantly, Partial G-CNNs learn this level of symmetry in a su-
pervised manner and at a the dataset level, which means that
they are unable to recognize unique, input-specific levels of
symmetry. This poses a problem when different classes in
the dataset exhibit varying symmetry levels (Fig. 1).

In this paper, we introduce a technique for learning levels
of symmetry at a sample-level, without the need for labels.
To achieve this, we build upon the Invariant-Equivariant
Autoencoder (Winter et al., 2022), and infuse it with the
ability to learn partial symmetries. As a result, we are able
to predict the levels of symmetry of inputs during inference,
and detect out-of-distribution symmetries. In addition, the
properties of the network can be leveraged to reorient the
inputs towards their centers of symmetry, allowing for gen-
eration of standardized datasets in which global symmetries
are not present. In summary, our contributions are:

• We introduce a novel method to learn input-dependent
levels of symmetries from data without the need for
labels. Our method is able to determine both partial
symmetries (subsets of the group) and perfect symme-
tries (spanning the entire group). We demonstrate that
our framework is general enough to support a variety
of symmetry distributions, such as arbitrary unimodal,
symmetric distributions and discrete groups.

• We validate on synthetic datasets the efficiency of our
method in predicting input-dependent symmetry lev-
els. Additionally, we present practical applications, in-
cluding the detection of out-of-distribution symmetries
and the generation of symmetry-standardized datasets,
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Figure 1. Self-supervised detection of input-dependent symmetries. In real world scenarios, different classes of objects present different
levels of symmetries (left). Nevertheless, existing methods assume the same distribution of symmetries for all elements of the dataset. Our
method can identify and determine the distribution of symmetries inherent to each input (right).

which can be leveraged to improve the performance of
non-equivariant models.

2. Preliminaries
Our method builds upon Invariant-Equivariant Autoen-
coders (Winter et al., 2022) and it is motivated by Partial
Group Equivariant CNNs (Romero & Lohit, 2022) ideas.
In this section, we introduce these methods as well as the
background concepts required for their understanding. The
necessary basic definitions from group theory that back
these methods can be found in Appendix A.

2.1. Invariant-Equivariant Autoencoder

Invariant-Equivariant Autoencoders (IE-AEs) (Winter et al.,
2022) are able to generate a latent representation (z, g) ∈
Z={Zinv,Zequiv} composed of an invariant z ∈ Zinv and
an equivariant component g ∈ Zequiv. The IE-AE is com-
posed of two main parts: a G-invariant autoencoder, and a
G-equivariant group action estimator.

G-invariant autoencoder. The first component of the IE-
AE is a G-invariant autoencoder δ ○ η composed by a G-
invariant encoder η and a decoder δ. Its latent space Zinv

contains G-invariant representations of the input. Note that,
because η is G-invariant, it holds that:

z = η(x) = η(ρX(g)x) ∈ Zinv, ∀g ∈ G,∀x ∈X. (1)

That is, any G-transformation of an input x ∈X yields the
same latent representation z in Zinv. Consequently, the
decoder δ produces identical reconstructions x̂ for every
transformation the input:

x̂ = δ(z) = δ(η(x)) =
= δ(η(ρX(g)x)), ∀g ∈ G,∀x ∈X.

(2)

The G-invariant reconstruction x̂ corresponds to an element
of the orbit of the input Ox i.e. x̂ = ρX(ĝx)x for some
ĝx ∈ G. This element x̂ is denoted as the canonical repre-
sentation of the decoder δ (or of the input x). As indicated
by Winter et al. (2022), here “canonical” does not reflect any
specific property of the element. It simply refers to the ori-
entation ρX(ĝx) learned from the decoder during training,

which may depend on various factors and hyperparameters.
This is an important observation, as the central mathemati-
cal result of our work will concern the convenient collapse
of this canonical representation via a constraint in the group
action estimator.

Group action estimator. The other component of the
architecture is the group action estimator ψ ∶ X ! G.
Recall that for a given input x ∈ X, the canonical rep-
resentation generated by the G-invariant autoencoder is
x̂=δ(η(x))=ρX(ĝx)x, for some group element ĝx. The
goal of ψ is to predict the transformation that maps the
canonical representation δ(η(x)) back to the original x.
Therefore, such a function ψ must satisfy the property:

ρX(ψ(x)) δ(η(x)) = x, ∀x ∈X. (3)

A learnable function satisfying this property is denoted as a
suitable group action estimator, and it can be constructed
as ψ = ξ ○ µ, where µ ∶X ! Zequiv is a G-equivariant net-
work, and ξ ∶ Zequiv ! G is a fixed deterministic function
that maps the output of µ to a group element g ∈ G.

Training the IE-AE. Winter et al. (2022) trains all the
learnable components of the IE-AE (η, δ,ψ), jointly by opti-
mizing the loss function:

L1 = d (ρX(ψ(x)) δ(η(x)), x) , (4)

where d is a distortion metric, e.g., MSE. Note that Eq. 4
is group invariant by construction. This optimization loss
leads to G-invariant representations of the input in the latent
space Zinv, and a G-equivariant estimation g ∈ Zequiv of
the transformation needed to reorient x̂.

Unlike IE-AEs, our method is not limited to perfect sym-
metries, and generates consistent, meaningful canonical rep-
resentations for semantically similar data-points: an ability
IE-AEs lacks (Fig. 3).

2.2. Partial Group Equivariant Convolutional Neural
Networks

A map h ∶ V ! W is said to be partially equivariant to G

with respect to the representations ρV, ρW if it is equivariant
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Figure 2. Overview of our proposed method.

only to transformations on a subset S of the group G. That
is, if h(ρV(g)x) = ρW(g)h(x), ∀g ∈ S ⊆ G,∀x ∈ X

(Romero & Lohit, 2022).1 Partial G-CNNs can be seen
as G-CNNs able to relax their equivariance constraints to
hold only on subsets S ⊆ G based on the training data.
Partial G-CNNs adaptively learn the subsets S from data
by defining a probability distribution on the group from
which group elements are sampled during the forward pass
at each layer, and learning their parameters during training.
In the context of continuous groups, Partial G-CNNs learn
connected subsets of group elements S={θ−1, ..., e, ..., θ} ⊆
G by defining a uniform distribution U[−θ, θ] on the group
and learning the value of θ with the reparameterization trick
(Kingma & Welling, 2013; Falorsi et al., 2019). By doing so,
Partial G-CNNs are able to fine-tune their equivariance to
match the symmetries observed in data, resulting in models
with more flexible equivariance constraints than G-CNNs.

It is worth noting that Partial G-CNNs identify partial sym-
metries at a dataset level, whereas our method identifies
different symmetry levels for individual dataset elements,
without relying on partial convolutions. In addition, our
method generalizes beyond uniform distributions. Here, we
demonstrate its extension to arbitrary unimodal, symmetric
distributions as well as discrete groups.

3. Self-Supervised Detection of Perfect and
Partial Input-Dependent Symmetries

We aim to learn, without the need for labels, the input-
dependent symmetry subsets of the group that accurately
represent the symmetries appearing in the data. Similarly to
Romero & Lohit (2022), we achieve this by learning a prob-
ability distribution p(u) on the group such that p(u) is zero
for transformations that do not appear in the data. Focus-
ing on the continuous group of planar rotations G=SO(2),
we consider a uniform distribution U[−θ, θ] defined over
a connected set of group elements {g−θ, ..., e, ..., gθ}. This

1As noted in Romero & Lohit (2022), partial equivariance is
in general only approximate because S is not necessarily closed
under ⋅. If S is closed under ⋅, then it forms a subgroup of G, and
S-equivariance is exact.

Figure 3. Canonical orientations obtained during inference by the
IE-AE (Winter et al., 2022) (left) and our method (right). Both
models are trained on MNISTRot60-90, a dataset exhibiting uni-
form rotational symmetries within [−60○,60○] for digits 0 to 4 and
[−90○,90○] for digits 5 to 9. Our method is able to consistently
choose the center of each input’s symmetry distribution as the
canonical representation (Prop. 3.1 (ii)).

translates into learning the θ parameter of the distribution,
which we refer to as the symmetry boundary. Assuming
that datasets can have different symmetry boundaries per
sample, this implies that we aim to learn a family of distribu-
tions F={U[−θx, θx]}x∈X , where the symmetry boundary
θx depends on the input x.

The proposed method is detailed in Fig. 2. First, we train
a modified IE-AE, constrained to encourage meaningful
canonical representations across semantically similar in-
puts (Sec. 3.2), to capture the distribution of symmetries of
data. We term this the pre-training phase. Next, we use the
learned distribution to estimate input-dependent symmetry
boundaries, which are then used as pseudo-labels for the
self-supervised training of the network Θ. Θ is ultimately
responsible for the prediction of the level of symmetry of
the input (Sec. 3.4). We term this the self-supervision phase.
After training, the IE-AE can be discarded and the Θ net-
work alone can be used to predict the symmetry level of
an input during inference. In addition, we can leverage the
inferred canonical representations to transform the original
dataset into one in which these symmetries are not present.
We term this symmetry standardization (Sec. 3.5).

3.1. Learning input-depending symmetries from data

Consider the equivalence relation ∼G in X defined by
x ∼G y if and only if ∃g ∈ G such that x=ρX(g)y, and
the corresponding quotient set X/∼G. Under this definition,
two elements of the dataset are related by ∼G if and only
if they are equal up to a G-transformation. Therefore, the
equivalence classes [x] ∈ X/∼G contain the information
about the symmetries of each input x ∈X.

We assume that the rotation symmetries of every input x ∈
X are uniformly distributed in [−θx, θx] for a symmetry
boundary (or level of symmetry) θx that depends on x. We
refer to this assumption as uniformity of symmetries. Then,
every class [x] ∈X/∼G has a unique element c[x] ∈ [x] that
is the center of the uniform symmetry, which corresponds
to a rotation by zero degrees in the interval [−θx, θx]. Note
that under the presented framework, the symmetry boundary
angle depends on the equivalence class of the input rather
than on the input itself, i.e. θx=θ[x]. This is because, as
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per the definition of ∼G, all elements of a given equivalence
class share the same orbit.

With this insight in mind, we can write the elements s of
a class [x] as s=ρX(g)c[x] for group elements g in Sθ[x] ,
which is defined as the subset of G with rotation angles
in the interval [−θ[x], θ[x]]. For instance, in a dataset in
which every input has rotational symmetries in [−60○,60○],
the set Sθ[x] would consist of all the elements of SO(2)
with rotation angle in [−60○,60○]. Lastly, let us denote
ψ([x]) as the images of the elements of [x] obtained by
the group action estimator ψ. Note that if the rotations
in ψ([x]) correspond to the rotations in the distribution
U[−θ[x], θ[x]] for each [x] ∈ X/∼G, then ψ is predicting
precisely the symmetries appearing in the data. Following
the previous example, the equality ψ([x]) = Sθ[x] would
mean that the predictions of ψ for each class are rotations
with angles in [−60○,60○]. We are now ready to state the
following proposition:

Proposition 3.1. Consider a G-invariant autoencoder δ ○ η
and a group action estimator ψ. Under the assumption of
uniformity of symmetries in X, the following statements are
equivalent:

(i) ψ (c[x])=e ∀[x] ∈X/∼G.

(ii) ∀[x] ∈ X/∼G, the canonical representation of any
s ∈ [x] is its center of symmetry c[x].

(iii) ∀[x] ∈X/∼G, it holds that ψ ([x]) = Sθ[x] .

Proof. See Appendix B.

The proposition states that, under the constraint introduced
in (i), conditions (ii) and (iii) are satisfied. This implies that
a group action estimator constrained by (i), which we denote
as ψ̄, can effectively collapse the canonical representation
of an input into the center of symmetry of its equivalence
class, thereby validating its canonical status. Moreover,
it ensures that the choice of the canonical representation
is consistent across inputs sharing the same invariant rep-
resentation. This intra-class consistency with meaningful
canonical representations is not guaranteed in IE-AEs, as
shown in Fig. 3.

Condition (iii) states that the symmetries of the class [x],
given by Sθ[x] , can be obtained by calculating the image of
[x] by ψ. This means that, under this constraint, the group
action estimator effectively learns the input-dependent dis-
tribution of symmetries in the data, unlike in IE-AEs, whose
distribution fails to align with the data’s inherent symme-
tries (Fig. 4). In summary, Prop. 3.1 establishes that the
constraint in Prop. (i) serves as a sufficient and necessary
condition to learn subsets of symmetries in the data, and
achieve consistent, meaningful canonical representations.

Figure 4. Distribution of the transformations predicted by ψ with
the IE-AE and our method in class 8 from MNISTRot60-90 (top).
Our group action estimator ψ̄ correctly captures the different input-
dependent distributions in the dataset by means of the constraint
in Proposition 3.1 (i) (bottom).

3.2. Learning constrained group action estimators

In practice, it is not possible to apply the constraint
ψ(c[x])=e ∀[x] ∈ X/∼G to the group action estimator, as
we do not know a priori which elements in the dataset are
centers of symmetry. However, we can encourage conver-
gence to this solution by minimizing d (ψ(x), e), with d
a distorsion metric, e.g., MSE (see Appendix B.1). Com-
bining this term with the loss term of Eq. 4, we obtain an
optimization loss:

L =L1 +L2 =
= d1 (ρX(ψ(x)) δ(η(x)), x) + d2 (ψ(x), e) .

(5)

Jointly optimizing L1 and L2 encourages convergence to
solutions that comply with Proposition 3.1.

3.3. Estimation of the symmetry boundary

Suppose we have pre-trained our constrained group action
estimator using the loss L as per Eq. 5. Prop. 3.1 (iii) states
that the symmetry distribution of an input x is defined by the
image of its equivalence class [x] under ψ. However, cal-
culating these equivalence classes is infeasible in practice,
since SO(2) is an infinite group. To overcome this problem,
we base our approach on the convenient assumption that sim-
ilar objects share the same distribution of symmetries. This
assumption is grounded in empirical observations across di-
verse real-world scenarios in which different objects within
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the same class exhibit consistent symmetrical patterns, such
as a shared rotational distribution. In essence, we argue that
inputs semantically similar to x contain information about
the symmetries of x, much like its equivalence class [x].
Section 5 contains a practical discussion of this assumption
and its trade-offs.

Motivated by this observation, we shift from using equiva-
lence classes [x] to sets of objects semantically similar to
x for estimating its level of symmetry θx. This approach
bypasses the need for calculating equivalence classes, and
allows for a self-supervised learning of θx through the use
of estimations of θx in the form of pseudo-labels.

3.4. Self-supervised learning of the symmetry
boundaries

Generating the pseudo-labels. Let Nk,d=Nk ∶ X !
P(X) be a function that maps each input x to the set
Nk,d(x) ⊂ X of k-neighbors around x in the G-invariant
latent space Zinv as measured by some distance metric d,
i.e., the k elements of the dataset whose G-invariant em-
beddings are closest to the G-invariant embedding of x,
η(x). Nk(x) acts as a substitute of the equivalence class
[x], and contains elements semantically similar to x, which
we assume to share the symmetry distribution of x. We then
estimate the level of symmetry of x within the dataset X by
estimating the parameter of the distribution corresponding
to ψ(Nk(x)) with an estimator E of uniform distributions
of the form U[−θ, θ]. In practice, we found beneficial to
convert the original distribution U[−θ, θ] to a distribution
U[0, θ] by taking the absolute value of ψ’s predictions. We
then use the Method of Moments estimator for uniform
distributions of this form, which proved to be more robust
to outliers than other estimators, resulting in more reliable
pseudo-labels (Appx. C). Combining all components, we
calculate the pseudo-labels θ̂x that estimate the symmetry
boundary θx as:

θ̂x = (E ○ ∣ψ∣ ○Nk) (x) (6)

Learning the levels of symmetry. Once we calculate the
pseudo-labels, we can use them to learn the levels of sym-
metry of each input x ∈ X in a self-supervised manner.
To this end, we introduce a boundary prediction network
Θ = ω ○ ϕ ∶ X ! R+ consisting of a G-invariant network
ϕ, followed by a fully connected network ω. The boundary
prediction network Θ is trained to minimize the difference
between the predicted symmetry boundary Θ(x), and the
estimated pseudo-label θ̂x:

L3 = d (Θ(x), θ̂x) . (7)

The G-invariance in Θ reflects that all samples on an orbit
share the same level of symmetry θ[x].

3.5. Symmetry standardization

Our method also allows for the removal of symmetries in a
given dataset based on its symmetric properties. Prop. 3.1
states that, under the constraint outlined in Prop. 3.1 (i), the
canonical representation of every element x ∈ [x] is the
center of symmetry c[x] for all [x] ∈X/∼G. Let ψ denote
a group action estimator subject to this constraint. Recall
that any x ∈X belongs to an equivalence class [x] with a
unique center of symmetry c[x]. Since ψ is suitable, then:

x = ρX(ψ(x))δ(η(x)) = ρX(ψ(x))x̂

Prop. 3.1 (ii)

"
=

ρX(ψ(x))c[x] ⇐⇒ ρX(ψ(x)−1)x = c[x].
(8)

That is, the inverse of the group actions predicted by ψ can
be used to reorient the input towards the center of symmetry
of its class. This can be done efficiently for every input with-
out involving the calculation of the classes [x]. Then, the
set X̃={ρX(ψ(x)−1)x}x∈X , is a standardized, G-invariant
version of the data X whose symmetries have been effec-
tively removed by collapsing every input into the orientation
of the center of symmetry of its class.

3.6. Considering other groups and symmetry
distributions

Our method is not restricted to uniform symmetry distribu-
tions. It can consider other symmetry distributions –both
continuous and discrete– by adjusting the hypotheses in
Proposition 3.1, and deriving appropriate estimators for the
pseudo-labels. Furthermore, we show that, for arbitrary uni-
modal, symmetric distributions, the objective L2 converges
to the center of symmetry c[x], allowing us to learn and
predict symmetry levels through the previous construction
(Appx. B.1).

Gaussian symmetries. Consider a dataset X, whose el-
ements are governed by rotational symmetries Sσ[x] ⊂ G

sampled from a Gaussian distributions N(0, σ[x]), whose
center is defined as the center of symmetry c[x]. Under
these assumptions, the following proposition holds:

Proposition 3.2. Consider a G-invariant autoencoder δ ○ η
and a group action estimator ψ. Under Gaussian symme-
tries in X, the following statements are equivalent:

(i) ψ (c[x])=e ∀[x] ∈X/∼G.

(ii) ∀[x] ∈ X/∼G, the canonical representation of any
s ∈ [x] is its center of symmetry c[x].

(iii) ∀[x] ∈X/∼G, it holds that ψ ([x]) = Sσ[x] .
Proof. See Appendix B.

Discrete symmetries. We can also consider datasets gov-
erned by discrete symmetric groups, e.g., the cyclic order n
subgroups of SO(2), Cn. In this case, each dataset sample
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x shows cyclic symmetries given by a group Sn[x]=Cn[x] of
order n[x] ∈ N. Importantly, note that since cyclic groups
are intrinsically symmetric, every element of Sn[x] is equally
valid to serve as center of symmetry. This property of sym-
metric discrete groups lets us relax the condition (i) in
Proposition 3.3:

Proposition 3.3. Consider a G-invariant autoencoder δ ○ η
and a group action estimator ψ. Under cyclic symmetries
in X, the following statements are equivalent:

(i) ψ (c[x])=e ∀[x] ∈X/∼G for some c[x] ∈ [x].
(ii) ∀[x] ∈ X/∼G, the canonical representation of any

s ∈ [x] is the element c[x] ∈ [x].
(iii) ∀[x] ∈X/∼G, it holds that ψ ([x]) = Cn[x] .

Proof. See Appendix B.

As shown in Appx. C, we can construct proper group action
estimators for each of these symmetry distributions in order
to generate appropriate pseudo-labels for Θ.

Other groups. In general, our framework applies to ar-
bitrary groups, given that a method for the estimation of
the symmetry distribution parameter via the neighbors is
provided. We provide proofs for cyclic groups Cn and dis-
tributions in SO(2), but it can be shown that e.g. the group
of reflections around a fixed axis in the 2D case (or around
a fixed plane in the 3D case) also apply. For instance, by
realizing that both these groups are isomorphic to C2. In
this work, we empirically demonstrate our method for uni-
form and Gaussian distributions over SO(2) and for cyclic
groups.

4. Related work
Unsupervised learning of invariant and equivariant rep-
resentations. Unsupervised learning of both invariant and
equivariant representations through the use of autoencoder-
based approaches has been previously proposed (Shu et al.,
2018; Guo et al., 2019; Feige, 2019; Kosiorek et al., 2019;
Koneripalli et al., 2020; Winter et al., 2021; 2022; Yokota &
Hontani, 2022). However, existing methods, e.g., Quotient
Autoencoders (QAE) (Yokota & Hontani, 2022), Invariant-
Equivariant Autoencoders (Winter et al., 2022) obtain arbi-
trary preferred orientations –or canonical representations.
In contrast to existing approaches, our proposed work is not
limited to perfect symmetries, and is able to learn meaning-
ful consistent canonical representations.

Soft equivariance and soft invariance. Typical group
equivariant approaches do not inherently learn their level
of symmetry based on data. Instead, these symmetries are
imposed manually through the choice of the group prior
to training (Cohen & Welling, 2016; Cohen et al., 2018;
Weiler et al., 2018; Weiler & Cesa, 2019; Cohen et al., 2019;
Romero et al., 2020; Romero & Cordonnier, 2020; Wang

et al., 2020). This approach has limitations when dealing
with datasets that contain partial symmetries –such as real-
world images– resulting in overly constrained models. In
such cases, soft or partial equivariance (or invariance) is
desired, allowing these properties to hold only for a sub-
set of the group transformations. Canonical examples are
Augerino (Benton et al., 2020) and Partial G-CNNs (Romero
& Lohit, 2022), which achieve this by learning a probability
distribution over transformations. Other approaches handle
soft equivariance through a combination of equivariant and
non-equivariant models (Finzi et al., 2021a;b). Nevertheless,
existing approaches generally require supervised training,
and only capture levels of symmetry at a dataset-level. In
contrast, our method is able to learn levels of symmetry at a
sample-level, and does so in a self-supervised manner.

Symmetry standardization. Finally, Spatial Transformer
Networks (STN) (Jaderberg et al., 2015) transform the input
to counteract data transformations through a learnable pro-
jective operation. This is similar to our data standardization
process. However, STNs are usually trained in a supervised
manner, as part of a broader network for tasks like classifica-
tion. Instead, we produce symmetry standardization without
relying on labelled examples.

5. Experiments
In this section, we evaluate our approach. Comprehensive
implementation details, including architecture specifications
and optimization techniques, can be found in Appx. D.

Prediction of input-dependent levels of symmetry. To
evaluate the ability of our method to predict the levels
of symmetry, we use standard and synthetic versions of
the MNIST-12K (LeCun et al., 1998) dataset, divided into
12,000 train and 50,000 test images, as well as the Fash-
ionMNIST (Xiao et al., 2017) dataset, divided into 50,000
train and 10,000 test images. We construct RotMNIST60,
an MNIST variation with digits uniformly rotated in the in-
terval [−60○,60○]; RotMNIST60-90, a variation with digits
uniformly rotated in [−60○,60○] for the classes 0−4, and
in [−90○,90○] for the classes 5−9; and MNISTMultiple, a
MNIST variation with different rotational symmetries per
class starting from zero rotation for the class 0, and in-
creasing the maximum rotation by 18○ in each class, i.e.,
[−18○,18○] for class 1, [−36○,36○] for class 2, etc. Simi-
larly, we create FashionMNIST variants for the 60-90 and
multiple symmetries case (Fashion60-90, FashionMultiple).
We also create a Gaussian variation of MNISTMultiple:
MNISTGaussian, which exhibits rotational Gaussian distri-
butions with increasing standard deviations per-class, fol-
lowing multiples of 9○. This choice ensures that 95% of sam-
pled rotations falls within the corresponding MNISTMulti-
ple’s interval. For the cyclic case, we construct MNISTC2-
C4, an analogous to MNISTRot60-90 where rotations are
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Table 1. Comparison of test set accuracy scores of baseline supervised and unsupervised models (ResNet-18 and K-Means respectively),
with and without the use of symmetry standardization.

Dataset RESNET-18 K-MEANS IE-AE + KNNRegular Symmetry Std. Regular Symmetry Std.

MNISTROT60 97.47% 97.39% 65.58% 86.81% 95.58%
MNISTROT60-90 96.99% 97.23% 64.74% 86.36% 95.31%
MNISTMULTIPLE 96.79% 97.16% 61.93% 86.22% 95.80%
MNISTGAUSSIAN 96.70% 96.58% 65.00% 86.06% 95.65%

MNISTC2-C4 97.23% 97.53% 66.01% 81.83% 95.22%
MNISTROT 95.39% 96.35% 42.70% 83.61% 95.25%

FASHION60-90 86.49% 89.07% 58.17% 67.96% 83.43%
FASHIONMULTIPLE 90.08% 90.92% 63.39% 69.55% 84.68%

Table 2. Test accuracy for out-of-distribution symmetry detection.
ACCURACY

ROTMNIST 92.27%
ROTMNIST60-90 91.30%
MNISTMULTIPLE 86.48%
MNISTGAUSSIAN 83.64%

MNISTC2-C4 82.47%

FASHION60-90 88.67%
FASHIONMULTIPLE 81.88%

drawn from C2 and C4 for the corresponding class subsets.
We additionally evaluate our method on the standard MNIST
and rotated MNIST (RotMNIST Larochelle et al. (2007)).

We consider two metrics in our evaluation: the average
predicted symmetry level Θ, and the Mean Absolute Error
(MAE) between the predictions and the true boundary an-
gles θ. All metrics are calculated in the test set, and the
best model is chosen based on best loss obtained during
validation. Our results are summarized in Fig. 5 and shown
in an extended format in Tabs. 3, 4 5, 6.

For datasets with full rotational symmetries (MNISTRot)
and no symmetries (MNIST-12K), our method obtains con-
sistently accurate predictions of the symmetry levels across
all classes. For MNIST-12K, we note minor deviations from
the expected symmetry level of 0○ across all classes. Rather
than an imprecision, we attribute this to the inherent rota-
tional symmetries proper of handwritten digits caused by
diverse writing styles and nuances.

In datasets with partial symmetries, our model consis-
tently identifies the correct level of symmetry across all
classes. This is true even when various levels of sym-
metry are present within a single dataset. For instance,
the MNISTRot60 experiment highlights our model’s abil-
ity to adapt to partial symmetries, while results from the
MNISTRot60-90 experiment show its capability to discern
varying levels of symmetry on a per-class basis. In the chal-
lenging MNISTMultiple dataset, our model consistently pre-
dicts varying symmetry levels for each class, showcasing its
ability to handle diverse, intricate symmetry scenarios. Fur-
thermore, results on MNISTGaussian show that our method

generalizes to other unimodal, symmetric distributions, even
in scenarios with different symmetry distributions per-class.

We observe a similar performance on the FashionMNIST
variants, with moderate deviations from the true symmetry
level for class 8 in Fashion60-90 and class 6 in FashionMul-
tiple. This deviation in class 6 (shirt) can be linked to the
underlying assumption discussed in Section 3.3, where we
assume that similar objects share the same distribution of
symmetries. In the invariant latent space, shirts (class 6)
and t-shirts (class 0) are very close to each other – perhaps
even overlapping. Hence, the deviation arises because the
neighbors selected for the shirt class likely included some
t-shirts (class 0), which have a true symmetry of 0○, thus
skewing the estimated symmetry level for the shirts.

Note that our method exercises the assumption by selecting
a relatively small number of neighbors (45 neighbors, as
detailed in Appendix D) around each input, effectively man-
aging its range. This allows our method to infer different
symmetry levels even for inputs that seemingly violate the
assumption, as we can observe for shirts and t-shirts which
show more than 60○ difference in their predicted symmetry
level. Additionally, this approach tends to perform better
as the dataset grows in size, since a denser latent space
enhances the similarity of neighboring data points.

On MNISTC2-C4 we observe that our model presents some
inaccuracies for the classes 3, 4, and 5. However, looking at
the per-class density estimations (Fig. 6, Appx. D) confirms
that ψ accurately captures data symmetries as outlined in
Prop.3.3. The observed imprecision stems likely from the
limitations of our density-comparison approach for gener-
ating pseudo-labels, which is error-prone due to requiring
very high number of neighbours per-input. Implementing
more sophisticated methods to estimate cyclic groups from
densities could enhance the precision of these estimations.

Out-of-distribution (OOD) symmetry detection. We fur-
ther validate our method for the detection of objects whose
symmetries differ from those observed during training. To
this end, randomly rotated inputs are passed through a classi-
fier, whose task is to predict whether the input’s symmetries
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(a) MNIST-12K (b) RotMNIST60 (c) RotMNIST

(d) MNISTC2-C4 (e) RotMNIST60-90 (f) MNISTMultiple

(g) MNISTGaussian (h) Fashion60-90 (i) FashionMultiple

Figure 5. Prediction of input-dependent levels of symmetry on rotation augmented variants of MNIST and FashionMNIST.

has been seen during training or not. These OOD classifiers
use the boundary prediction network Θ trained on the pre-
vious section, and are tested on fully-rotated unseen inputs
without further training (see Appx. D.2).

As shown in Table 2, all models consistently demonstrate
their ability to identify unseen symmetries during inference.
As expected, there is a modest decline in the performance of
the out-of-distribution detection models as the complexity of
the symmetries in the data increases. Nevertheless, even in
datasets with intricate and multiple symmetries, we achieve
high OOD prediction accuracies (e.g. 86.48% for MNIST-
Multiple and 88.67% on Fashion60-90), which underscores
the potential for practical applications of our method.

Improving non-equivariant models with symmetry stan-
dardization. To conclude, we investigate the impact of sym-
metry standardization in the performance of non-equivariant
models. To achieve this, we consider baseline supervised
and unsupervised learning models: ResNet-18 (He et al.,
2015) and K-Means, and compare the performances ob-
tained with the original datasets against those obtained us-
ing the symmetry-standardized versions generated by our
method. As shown in Tab. 1, both unsupervised and super-
vised methods see performance enhancements from symme-

try standardization, specially for K-Means.

To further evaluate the advantages of symmetry standardiza-
tion, we compare it with a supervised K-Nearest Neighbors
(KNN) classifier trained on the G-invariant embeddings of
an IE-AE (Tab. 1), as done in Winter et al. (2022). While
IE-AE embeddings offer improvements thanks to their G-
invariance, they can only be used as embeddings for other
models as in the KNN case. In contrast, symmetry standard-
ization transfers the G-invariance to the data itself, allowing
other methods to operate directly on the G-invariant data
without being constrained to use the low-dimensional em-
beddings of an IE-AE. It is worth noting that, in principle,
symmetry standardization could also be achieved with regu-
lar IE-AEs. However, it is essential to have consistent, mean-
ingful canonical representations to collapse to during this
process –a property that IE-AEs lack (Fig. 3). We achieve
this through the constraint proposed in Proposition 3.1(i).

6. Conclusions and limitations
We proposed a method to determine the distribution of sym-
metries for each input in the dataset in a self-supervised
manner. We showed through various experiments the ef-
fectiveness of our method, showcasing its ability to adapt

8



Self-Supervised Detection of Perfect and Partial Input-Dependent Symmetries

to multiple, complex symmetries –both perfect and partial–
within a same dataset. Furthermore, our method is able
to accommodate different families of symmetry distribu-
tions and groups, and offers practical benefits, notably in
out-of-distribution symmetry detection.

Limitations. The main limitation of our method is related
to the symmetry distributions it is able to represent. Specifi-
cally, the main assumption for finding c[x] is that the under-
lying symmetry distribution is both unimodal and symmet-
ric. Extending our results to complex, multimodal symmetry
distributions is an interesting direction for future research.
In addition, our method is limited by the group actions
that can be represented by an IE-AE. We observe that in
datasets with high intra-class variability, e.g., CIFAR10,
objects within the same class may not share a G-invariant
representation that connects them through a group action.
In such cases, the MSE loss of IE-AEs is unable to capture
this relationship (Eq. 4), limiting our method. In the future,
we aim to mitigate this through the use of more semantically
meaningful metrics such as SSIM (Wang et al., 2004).
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Appendix
A. Background
Groups and group actions. A group G is a set equipped with a closed, associative binary operation ⋅ such that G contains
an identity element e ∈ G and every element g ∈ G has an inverse g−1 ∈ G. For a given set X and group G, the (left) group
action of G on X is a map ρ ∶ G ×X ! X that preserves the group structure. Intuitively, it describes how set elements
transform by group elements.

Group representations. In this work, we focus on cases where X is a vector space. In such scenarios, the group acts on
it by means of group representations. Specifically, a representation of G is a function ρX ∶ G ! GL(X) that maps each
group element to an invertible n×n matrix from the general linear group GL(X), where n is the dimension of the vector
space X. We consider our datasets to be of the form X={f ∣f ∶ V !W} where V and W are vector spaces. For instance,
an RGB image can be interpreted as a function f ∶ R2 ! R3 that maps each pixel location to a three-channel intensity value.
Following this definition, a group element acts in a data sample as:

[ρX(g)f](x) ≡ ρW(g)f (ρV(g−1)x) . (9)

Throughout this paper, when we refer to representations ρX on X, it is understood that we are implicitly referring to the
previous equation to understand the transformation of each component.

Orbits. A central concept in our study is the orbit of x, defined as Ox={ρX(g)x}g∈G. The orbit of x captures all possible
transformations of x resulting from the action of all elements of G.

Equivalence classes and quotient sets. Our analysis strongly relies on the definition of equivalence classes and their
quotient sets. Let ∼ be an equivalence relation on X and consider the equivalence classes [x]={y ∈X, s.t. x ∼ y} of X.
The quotient set X/∼ is defined as the collection of all equivalent classes in X under the relation ∼.
Group equivariance and group invariance. A map h ∶ V ! W is G-equivariant with respect to the representations
ρV, ρW if h(ρV(g)x) = ρW(g)h(x) ∀g ∈ G,∀x ∈X. In the context of neural networks, G-CNNs (Cohen & Welling, 2016)
are designed to be G-equivariant by using only G-equivariant layers in their constructions. This ensures that applying a
transformation g ∈ G before or after a layer yields the same result. Analogously, a map h is G-invariant with respect to ρV if
h(ρV(g)x)=h(x) ∀g ∈ G,∀x ∈X. That is, if G-transformations of the input yield the same result.

B. Proofs
Proposition B.1. Consider a G-invariant autoencoder δ ○ η and a group action estimator ψ. Under the assumption of
uniformity of symmetries in X, the following statements are equivalent:

(i) ψ (c[x])=e ∀[x] ∈X/∼G.

(ii) ∀[x] ∈X/∼G, the canonical representation of any s ∈ [x] is its center of symmetry c[x].

(iii) ∀[x] ∈X/∼G, it holds that ψ ([x]) = Sθ[x] .

Proof. Let us prove the proposition by proving (i)⇐⇒ (ii) and (i)⇐⇒ (iii).

(i)Ô⇒ (ii) Let [x] ∈X/∼G. Because of uniformity of symmetries, we can write the elements of [x] as s = ρX(g)c[x] ∈ [x],
where g ∈ Sθ[x] . We want to prove that its canonical representation is the center of symmetry of the class, c[x]. The canonical
representation of s is given by

ŝ = δ(η(s)) = δ(η(ρX(g)c[x]))

η G−inv
"
= δ(η(c[x])) (10)

Now let us calculate the canonical representation of the center of symmetry. Because ψ is suitable, we know that

ρX(ψ(x)) δ(η(x)) = x ∀x ∈X (11)

In particular,
ρX(ψ(c[x])) δ(η(c[x])) = c[x] (12)

11



Self-Supervised Detection of Perfect and Partial Input-Dependent Symmetries

Expanding the left-hand side of the previous equation, we get

ρX(ψ(c[x])) δ(η(c[x]))

ψ(c[x])=e ∀c[x]∈X/∼G
"
= δ(η(c[x])) (13)

and joining equation 10, equation 12 and equation 13 we get

ŝ = δ(η(c[x])) = c[x] (14)

as we wanted to show.

(ii)Ô⇒ (i) Let us assume that ŝ = δ(η(s)) = c[x] ∀s ∈ [x] ∀[x] ∈X/∼G. Let s ∈ [x]. Because ψ is suitable, it holds that

s = ρX(ψ(s))δ(η(s)) =
#

δ(η(s))=c[x]

ρX(ψ(s))c[x] (15)

In particular, for s = c[x]
c[x] = ρX(ψ(c[x]))c[x] ⇐⇒ ψ(c[x]) = e (16)

as we wanted to prove.

(i) Ô⇒ (iii) Suppose that ψ(c[x]) = e ∀[x] ∈ X/∼G. Let us prove that the group function ψ is predicting exactly the
symmetries in the data, which are given by Sθ[x] . Let [x] ∈X/∼G . Because of uniformity of symmetries, we can write the
elements of [x] as s = ρX(g)c[x] ∈ [x], where g ∈ Sθ[x] . Therefore,

ψ(s) = ψ(ρX(g)c[x])

ψ G−equiv
"
= g ⋅ ψ(c[x]) =

#
ψ(c[x])=e ∀c[x]∈X/∼G

g ∈ Sθ[x] (17)

This is, the transformations predicted by ψ on [x] are the elements of Sθ[x] i.e. the symmetry distribution of [x] (and vice
versa), as we wanted to prove.

(iii) Ô⇒ (i) Suppose that the transformations in ψ([x]) are those in the data, Sθ[x] . Let us prove by contradiction that
ψ(c[x]) = e ∀[x] ∈ X/∼G. Therefore, suppose that exists a [x]0 ∈ X/∼G s.t. ψ(c[x]0) ≠ e. Let Sθ[x]0 its symmetry
distribution in the data.

Case 1. ψ(c[x]0) = g0 ∉ Sθ[x]0
It is clear that ψ(c[x]0) can not take the value of an element outside of the subset Sθ[x]0 , as then we would have found
a class [x]0 with an element c[x]0 ∈ [x]0 whose image by ψ is not a transformation with angle in [−θ0, θ0], which is a
contradiction with ψ([x]) = Sθ[x] for all [x] ∈X/∼G.

Case 2. ψ(c[x]0) = g0 ∈ Sθ[x]0 , g0 ≠ e
Consider an element of the class s ∈ [x]0. Because of uniformity of symmetries, we can write the elements of [x]0 as
s = ρX(g)c[x]0 ∈ [x]0, where g ∈ Sθ[x]0 . Then,

ψ(s) = ψ(ρX(g)c[x]0)

ψ G−equiv
"
= g ⋅ ψ(c[x]0) =

#
ψ(c[x]0)=g0∈Sθ[x]0

g ⋅ g0 (18)
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Now consider the elements sl, su ∈ [x]0 that are at the lower and upper bound respectively of the uniform symmetry of [x]0.
Then, sl = ρX(g−θ0)c[x]0 and su = ρX(gθ0)c[x]0 where g−θ0 , gθ0 ∈ Sθ[x]0 are the transformations whose rotation angles are
−θ0 and θ0 respectively. Consider their images by ψ as given by equation 18

ψ(sl) = g−θ0 ⋅ g0, ψ(su) = gθ0 ⋅ g0 (19)

Because g0 ≠ e, then g0 = gα for some angle α that is strictly positive or strictly negative. If α > 0, then
ψ(su) = gθ0 ⋅ gα = gθ0+α which is not in Sθ[x]0 . Similarly, if α < 0 then ψ(sl) = g−θ0+α ∉ Sθ[x]0 . In any case, we found an
element of [x]0 whose image by ψ is a transformation with rotation angle not in [−θ0, θ0], which is a contradiction with
ψ([x]) = Sθ[x] for all [x] ∈X/∼G.

Therefore, ψ(c[x]) = e ∀[x] ∈X/∼G as we wanted to show.

Proposition B.2. Consider a G-invariant autoencoder δ ○ η and a group action estimator ψ. Under Gaussian symmetries in
X, the following statements are equivalent:

(i) ψ (c[x])=e ∀[x] ∈X/∼G.

(ii) ∀[x] ∈X/∼G, the canonical representation of any s ∈ [x] is its center of symmetry c[x].

(iii) ∀[x] ∈X/∼G, it holds that ψ ([x]) = Sσ[x] .
Remark B.3. Note that because the angles in Sσ[x] are sampled from a Gaussian distribution N(0, σ[x]), the set Sσ[x] is not
guaranteed to contain the identity element, corresponding to exactly 0○ in the Gaussian distribution sample S ∼ N(0, σ[x]).
For the sake of simplicity, we assume e ∈ Sσ[x] . In practice, this assumption does not present a problem, as the objective
L2 ensures convergence of the canonical representation to the center of the Gaussian distribution (see Appendix B.1).
Additionally, we also assume that the samples from the N(0, σ[x]) are not (by chance) degenerate (Sσ[x] = {e}), or cyclic
(Sσ[x] = Cn), case whose proof is covered in Prop 3.3.

Proof. Let us prove the proposition by proving (i)⇐⇒ (ii) and (i)⇐⇒ (iii).

(i)Ô⇒ (ii), (ii)Ô⇒ (i), (i)Ô⇒ (iii) Same as Prop. 3.1 but for θ[x] = σ[x] and substituting the uniformity of symmetries
condition by Gaussian symmetries condition.

(iii) Ô⇒ (i) Suppose that the transformations in ψ([x]) are those in the data, Sσ[x] . Let us prove by contradiction that
ψ(c[x]) = e ∀[x] ∈ X/∼G. Therefore, suppose that exists a [x]0 ∈ X/∼G s.t. ψ(c[x]0) ≠ e. Let Sσ[x]0 its symmetry
distribution in the data.

Case 1. ψ(c[x]0) = g0 ∉ Sσ[x]0
It is clear that ψ(c[x]0) can not take the value of an element outside of the subset Sσ[x]0 , as then we would have found a
class [x]0 with an element c[x]0 ∈ [x]0 whose image by ψ is not a transformation with angle in S ∼ N(0, σ[x]0), which is a
contradiction with ψ([x]) = Sσ[x] for all [x] ∈X/∼G.

Case 2. ψ(c[x]0) = g0 ∈ Sσ[x]0 , g0 ≠ e
Consider an element of the class s ∈ [x]0. Under Gaussian symmetries, we can write the elements of [x]0 as s =
ρX(g)c[x]0 ∈ [x]0, where g ∈ Sσ[x]0 . Then,

ψ(s) = ψ(ρX(g)c[x]0)

ψ G−equiv
"
= g ⋅ ψ(c[x]0) =

#
ψ(c[x]0)=g0∈Sσ[x]0

g ⋅ g0 (20)

Proceeding as in Prop. 3.1, if we find an element s ∈ [x]0 such that ψ(s) ∉ Sσ[x]0 , we will have proved the result by
contradiction with ψ([x]) = Sσ[x] for all [x] ∈X/∼G.
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Because g0 ≠ e, then g0 = gα for some angle α ∈ S ∼ N(0, σ[x]) that is strictly positive or strictly negative. Assume g0 = gα
with α > 0. Because the sample S is finite, there exists u =max{S}. Consider its corresponding element su ∈ [x]0 w.r.t.
the center of symmetry of the distribution as su = ρX(gu)c[x]0 . By equation 20,

ψ(su) = gu ⋅ gα = gu+α, (21)

where u + α > u Ô⇒ ψ(su) ∉ Sσ[x]0 as u =max{S}, which finalizes the proof.

Proposition B.4. Consider a G-invariant autoencoder δ ○ η and a group action estimator ψ. Under cyclic symmetries in X,
the following statements are equivalent:

(i) ψ (c[x])=e ∀[x] ∈X/∼G for some c[x] ∈ [x].
(ii) ∀[x] ∈X/∼G, the canonical representation of any s ∈ [x] is the element c[x] ∈ [x].

(iii) ∀[x] ∈X/∼G, it holds that ψ ([x]) = Cn[x] .
Proof. The proof is immediate by following the proofs for (i)⇐⇒ (ii) and (i)Ô⇒ (iii) as in Prop. 3.1, by substituting the
uniformity of symmetries condition by cyclic condition. (i)Ô⇒ (iii) is immediate.

B.1. Convergence of L2 towards the centers of symmetry

Minimizing L2 intuitively encourages convergence towards the centers of symmetry of both uniform and Gaussian
distributions, and in general, arbitrary unimodal, symmetric distributions. Consider a class [x] = {ρX(g)c[x] s.t. g ∈ Sθ[x]}
and the proposed minimization objective

L =L1 +L2 = d1 (ρX(ψ(x)) δ(η(x)), x) + d2 (ψ(x), e) . (22)

We know that the standard IE-AE loss L1 results in an arbitrary element of the orbit of x chosen as canonical, that is,
ψ(ox) = e for some ox ∈ Ox.

Now, focusing on minimizing the L2 = d2 (ψ(x), e) loss in our model, it seems to merely ensure that the canonical
representation for an IE-AE is an actual member of the equivalence class, meaning ψ(s) = e for some s ∈ [x]. However, it
can be shown that the specific member within this range that minimizes the L2 loss is in fact the center of this symmetry. To
build on this intuition, consider the uniform case, and define the distance between two group elements gα, gβ with rotation
angles α,β ∈ [−180,180] as d2(gα, gβ) = ∣α − β∣. The objective L2 ensures that the canonical element is some element of
the class i.e. ψ(s0) = e for some s0 ∈ [x] with rotation angle α0 ∈ [−θ, θ]. We will show that this element is precisely the
center of symmetry c[x], i.e. the one corresponding to a zero degree rotation in [−θ, θ]. Let us calculate the expected value
of L2 for the elements in the class:

Es∈[x](L2(s)) = Es∈[x]d2(ψ(s), e) =

= 1

2θ
∫

θ

−θ
d2(gα, e)dα =

1

2θ
∫

θ

−θ
d2(gα, ψ(s0))dα =

1

2θ
∫

θ

−θ
d2(gα, gα0)dα =

= 1

2θ
∫

θ

−θ
∣α − α0∣dα =

1

2θ
(∫

α0

−θ
−α + α0 dα + ∫

θ

α0

α − α0 dα) = (23)

= 1

2θ
(α2

0 + θ2)

This is minimized when α0 = 0, i.e. when the choice of the canonical is ψ(g0) = ψ(c[x]) = e, the center of symmetry.
Therefore, minimizing L2 effectively guarantees solutions that comply with Proposition 3.1.

The previous derivation can be similarly extended to the center of symmetry of Gaussian symmetries. In this context,
we substitute the integral (∫ ) with a summation (∑), considering that we are dealing with finite samples, to arrive to
an equivalent understanding. Furthermore, this reasoning can be applied in general to arbitrary unimodal, symmetric
distributions, that is, any distribution that shows a center of symmetry.

As for the case of cyclic distributions, the result is straightforward, as the requirement of a center of symmetry is relaxed to
any element of the class c[x] ∈ [x] (see Prop. 3.3 (i)), which is already sufficient to capture a cyclic distribution, given its
inherently symmetric structure. The condition c[x] ∈ [x] is inherently satisfied by the L2 minimization, which obviates the
need for further derivations.
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C. Pseudo-label Estimators
Uniform Distributions For simplicity in notation, we use the notation ψ(Nk(x)) both to denote the set of group elements
predicted by ψ in the subset Nk(x) and their rotation angles as a subset of [−180○,180○]. Let’s consider the distribution of
these rotation angles, ψ(Nk(x)), and its absolute value form ∣ψ(Nk(x))∣.
The decision to use the method of moments estimator for generating pseudo-labels is motivated by its robustness to outliers,
compared to other potential estimators. Let’s consider the alternative of a maximum likelihood estimator (MLE) for the
distribution ψ(Nk(x)), which is the maximum in ψ(Nk(x)). This approach is particularly sensitive to outliers. For example,
if any element in Nk(x) has an erroneously predicted high rotation angle, the pseudo-label for x will be disproportionately
influenced by this outlier. In contrast, the method of moments estimator for the ∣ψ(Nk(x))∣ distribution, which we employ,
calculates the pseudo-label as two times the mean of all angles in ∣ψ(Nk(x))∣. This averaging effect mitigates the impact
of any occasional anomalous angles, as these outliers are diluted when calculating the mean. Therefore, the method of
moments approach offers a more stable and representative estimate.

Following this reasoning, we estimate the pseudo-labels as E=2 ⋅ ∣ψ(Nk(x))∣, where ∣ψ(Nk(x))∣ corresponds to the mean
rotation angle in ∣ψ(Nk(x))∣. Additionally, when calculating Nk(x), we exclude the element x from being its own nearest
neighbour to avoid potential biases in the calculation of the pseudo-labels. Finally, we consider the optional implementation
of an outlier detection method for ∣ψ(Nk(x))∣, such as the Interquartile Range (IQR) method. In our approach, rotations
that are more than two standard deviations away from the mean are excluded, aiming to produce more consistent and stable
pseudo-labels.

Gaussian Distributions In the Gaussian case, ∣ψ(Nk(x))∣ follows a half-normal distribution. The standard deviation from
the original normal distribution can be computed as E= σ

1−2/π where σ is the standard deviation of the sample ψ(Nk(x)).

Cyclic Distributions We can estimate the cyclic group to which the distribution ψ(Nk(x)) corresponds by calculating the
Kullback-Leibler divergence from ψ(Nk(x)) to fn, where fn is the equivalent of Cn as a continuous distribution defined in
[−180○,180○].
To determine the cyclic group Cn that best represents the distribution ψ(Nk(x)), we compute the Kullback-Leibler (KL)
divergence between ψ(Nk(x)) and a continuous distribution fn, defined as the continuous counterpart of the discrete cyclic
group Cn over the interval [−180○,180○]. Specifically, fn is constructed as a uniform distribution over n equidistant points
within this interval, reflecting the rotational symmetries in Cn:

fn(α) =
1

n

n

∑
i=1
δ(α − αi), (24)

where δ is the Dirac delta function, α represents the angle in degrees, and αi are the n equidistant angles (symmetry
positions) in [-180,180] corresponding to Cn. The KL divergence between the empirical distribution ψ(Nk(x)) and fn is
then calculated to quantify the similarity between them. This divergence is given by:

DKL(P ∣∣Qn) =∑
i

P (i) log( P (i)
Qn(i)

) (25)

where P is the normalized histogram of ψ(Nk(x)) over 360 bins and Qn is the discretized version of fn over the same bins
as P .

This KL divergence metric allows us to estimate the most likely cyclic group Cn that the distribution ψ(Nk(x)) aligns with,
providing a measure of how well the empirical distribution matches the expected rotational symmetries of Cn. Therefore,
the pseudo-label of x is calculated as:

θ̂x = argminn∈NDKL(P ∣∣Qn) (26)

Practically, our comparisons are limited to a finite range of cyclic groups. We consider the range from C1 to C8 to be
enough for practical applications, although the number of cyclic groups to consider can be increased at the cost of compute.
Finally, note that in order to be consistent with the notation established throughout the paper, we used the notation θ̂x for the
pseudo-labels, although the cyclic group pseudo-labels θ̂x belong to N and represent the corresponding cyclic group, rather
than a continuous value as in the uniform case.
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(a) Density of ψ for digit 3 in MNISTC2-
C4.

(b) Density of ψ for digit 4 in MNISTC2-
C4.

(c) Density of ψ for digit 5 in MNISTC2-
C4.

Figure 6. Density of ψ for MNISTC2-C4 in different classes. It is important to note a visualization artifact near the x-axis limits at −180○
and 180○. Due to these points lying exactly on the circular boundary (the break point of the circle S1), the peaks appear artificially lower
than their actual values in the plot. This apparent reduction in density is a result of projecting the circular distribution onto a straight line
for visualization. In reality, both C2 and C4 distributions exhibit a single, prominent peak at the point where −180○ and 180○ converge on
the circle.

D. Additional experimental information
D.1. Model configuration and training

In all our experiments, the encoder η, the network Θ, and the constrained group function ψ are built using SO(2) equivari-
ant/invariant networks from Weiler & Cesa (2019). We maintained consistent network sizes across all experiments. The
encoder architecture comprises seven SO(2) invariant convolutional layers with feature maps increasing from 128 in the
first layer to 256, and 200 feature maps at the output. Each convolutional layer is followed by a batch normalization and a
ReLU activation, except the final block which employs global average pooling. The ψ function resembles the encoder η
but employing SO(2)-equivariant convolutional layers with feature maps ranging from 64 to 128. Similarly, the Θ network
resembles the group function ψ with 64 initial feature maps for continuous distributions, and 32 for cyclic distributions,
followed by three fully-connected layers with ReLU activations. Lastly, the decoder δ is designed with conventional
convolutional and upsampling layers to inversely replicate the η encoder’s structure. Note that the Θ network has a single
neuron output for the uniform and Gaussian distributions case, while n for the cyclic case, where n is the number of cyclic
distributions that we want to compare to. In our case, we use n = 8, but arbitrarily higher order groups can be considered.

The number of neighbors k for the Θ network varies with each experiment: 45 for uniform and Gaussian distributions, and
150 for cyclic. Cyclic group estimations require more neighbors as this computation relies on the comparison between
distributions via the KL divergence, which demands a higher number of points to be reliable. In contrast, continuous
distributions allow fewer neighbors, as their pseudo-labels are derived through parameter estimation, typically reliable with
k over 30. Selecting the number of neighbors involves balancing more accurate estimations against the risk of incorporating
elements with differing symmetry distributions, which could destabilize the pseudo-label estimations.

During the pre-training phase and self-supervised training, the models undergo 400 and 150 epochs respectively. Both the
constrained IE-AE and the Θ network use the Adam (Kingma & Ba, 2017) optimizer, combined with a cosine scheduler
with 5 warm-up epochs. The learning rates are set at 0.01 for the IE-AE and 0.001 for the Θ network. Additionally, the L2

loss is assigned a weight of 0.03125 to maintain balanced optimization in conjunction with the L1 loss.
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Figure 7. Results for K-Means in MNIST variants.

Figure 8. Results for K-Means in FashionMNIST variants.

D.2. Out-of-distribution and Symmetry Standardization Experiments

For the out-of-distribution symmetries detector, we use the models obtained after training in the datasets with partial
symmetries. No further training is necessary, as the classifier relies on the generalization capabilities of the Θ function,
already trained. During inference, an input is classified to be out of the distribution of the training dataset when its predicted
group action angle ψ(x) is outside of the symmetry distribution predicted by Θ. In the case of cyclic distributions, because
the predicted distributions in Θ are discrete, we consider that an input is out-of-distribution if it deviates more than 5○ from
an element of Cn.

For the symmetry standardization, baseline supervised and unsupervised models are first trained and tested in the datasets
variants to create the “no symmetry standardization” results. Similarly, the “symmetry standardization results” are created
using the symmetry standardized training and test datasets obtained after training our model. K-Means is trained with
different number of clusters as shown in Fig. 7 for MNIST and Fig. 8. Classification of each of K-Means is calculated based
on class majority of that cluster. ResNet-18 is trained from scratch for 100 epochs, using an Adam optimizer with learning
rate 0.001. Finally, a KNN supervised classifier with 5 neighbors is trained on the G−invariant embeddings of the standard,
pre-trained IE-AEs in each of the datasets. Test accuracy is computed similarly, by first computing the IE-AE embeddings
and then predicting with the trained KNN.
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Table 3. Mean predicted level of symmetry for symmetry prediction in test set for each MNIST dataset.

CLASS
MNISTROT60 MNISTROT60-90 MNISTMULTIPLE MNIST MNISTROT MNISTGAUSSIAN

θ Θ θ Θ θ Θ θ Θ θ Θ σ Θ
0 60º 61.04º 60º 65.18º 0º 8.66º 0º 8.22º 180º 177.29º 0º 15.23º
1 60º 63.14º 60º 63.18º 18º 4.87º 0º 1.79º 180º 179.27º 9º 8.06º
2 60º 61.33º 60º 67.66º 36º 35.26º 0º 6.25º 180º 178.23º 18º 23.69º
3 60º 60.45º 60º 66.30º 54º 58.85º 0º 4.14º 180º 179.93º 27º 27.25º
4 60º 59.44º 60º 64.90º 72º 75.70º 0º 6.57º 180º 181.55º 36º 38.89º
5 60º 63.33º 90º 85.46º 90º 88.48º 0º 8.22º 180º 184.55º 45º 42.46º
6 60º 60.64º 90º 85.05º 108º 106.83º 0º 6.68º 180º 178.53º 54º 50.35º
7 60º 60.60º 90º 84.88º 126º 117.91º 0º 3.12º 180º 181.33º 63º 53.02º
8 60º 59.28º 90º 82.78º 144º 134.08º 0º 4.14º 180º 175.30º 72º 59.34º
9 60º 61.55º 90º 83.66º 162º 156.38º 0º 4.48º 180º 179.65º 81º 64.70º

Table 4. Mean Absolute Error of symmetry level prediction in the test set for each MNIST dataset.

CLASS
MNISTROT60 MNISTROT60-90 MNISTMULTIPLE MNIST MNISTROT
θ MAE θ MAE θ MAE θ MAE θ MAE

0 60º 4.92 60º 5.09 0º 25.62 0º 5.43 180º 8.38
1 60º 9.51 60º 7.96 18º 8.19 0º 0.53 180º 6.64
2 60º 4.00 60º 6.24 36º 11.63 0º 2.75 180º 7.94
3 60º 3.72 60º 5.78 54º 8.88 0º 1.56 180º 7.98
4 60º 4.68 60º 6.76 72º 12.51 0º 2.20 180º 9.00
5 60º 5.94 90º 5.43 90º 10.43 0º 1.98 180º 7.98
6 60º 3.86 90º 5.09 108º 11.17 0º 3.16 180º 9.27
7 60º 3.62 90º 7.87 126º 14.95 0º 1.33 180º 8.90
8 60º 4.19 90º 7.27 144º 14.48 0º 1.46 180º 11.78
9 60º 4.67 90º 5.81 162º 18.46 0º 1.41 180º 10.05

Table 5. Mean predicted level of symmetry for symmetry prediction in the test set for each FashionMNIST dataset.

CLASS
FASHION60-90 FASHIONMULTIPLE

θ Θ θ Θ
0 60º 68.92º 0º 17.95º
1 60º 64.27º 18º 20.79º
2 60º 66.91º 36º 54.39º
3 60º 64.76º 54º 60.46º
4 60º 65.95º 72º 73.16º
5 90º 94.23º 90º 112.30º
6 90º 77.27º 108º 77.66º
7 90º 97.05º 126º 152.03º
8 90º 129.00º 144º 153.15º
9 90º 89.40º 162º 164.94º
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Table 6. Mean predicted level of symmetry for symmetry prediction in the test set for each FashionMNIST dataset.

Class FASHION60-90 FASHIONMULTIPLE
θ MAE θ MAE

0 60º 11.63 0º 18.21
1 60º 12.18 18º 5.22
2 60º 10.82 36º 19.98
3 60º 9.85 54º 15.95
4 60º 11.03 72º 11.64
5 90º 7.62 90º 24.98
6 90º 15.87 108º 32.94
7 90º 9.71 126º 26.91
8 90º 42.73 144º 31.02
9 90º 5.32 162º 11.66
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