

000
001
002
003

4D LATENT WORLD MODEL FOR ROBOT PLANNING

004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
559
560
561
562
563
564
565
566
567
568
569
569
570
571
572
573
574
575
576
577
578
579
579
580
581
582
583
584
585
586
587
588
589
589
590
591
592
593
594
595
596
597
598
599
599
600
601
602
603
604
605
606
607
608
609
609
610
611
612
613
614
615
616
617
618
619
619
620
621
622
623
624
625
626
627
628
629
629
630
631
632
633
634
635
636
637
638
639
639
640
641
642
643
644
645
646
647
648
649
649
650
651
652
653
654
655
656
657
658
659
659
660
661
662
663
664
665
666
667
668
669
669
670
671
672
673
674
675
676
677
678
679
679
680
681
682
683
684
685
686
687
688
689
689
690
691
692
693
694
695
696
697
698
699
699
700
701
702
703
704
705
706
707
708
709
709
710
711
712
713
714
715
716
717
718
719
719
720
721
722
723
724
725
726
727
728
729
729
730
731
732
733
734
735
736
737
738
739
739
740
741
742
743
744
745
746
747
748
749
749
750
751
752
753
754
755
756
757
758
759
759
760
761
762
763
764
765
766
767
768
769
769
770
771
772
773
774
775
776
777
778
779
779
780
781
782
783
784
785
786
787
788
789
789
790
791
792
793
794
795
796
797
798
799
799
800
801
802
803
804
805
806
807
808
809
809
810
811
812
813
814
815
816
817
818
819
819
820
821
822
823
824
825
826
827
828
829
829
830
831
832
833
834
835
836
837
838
839
839
840
841
842
843
844
845
846
847
848
849
849
850
851
852
853
854
855
856
857
858
859
859
860
861
862
863
864
865
866
867
868
869
869
870
871
872
873
874
875
876
877
878
879
879
880
881
882
883
884
885
886
887
888
889
889
890
891
892
893
894
895
896
897
898
899
899
900
901
902
903
904
905
906
907
908
909
909
910
911
912
913
914
915
916
917
918
919
919
920
921
922
923
924
925
926
927
928
929
929
930
931
932
933
934
935
936
937
938
939
939
940
941
942
943
944
945
946
947
948
949
949
950
951
952
953
954
955
956
957
958
959
959
960
961
962
963
964
965
966
967
968
969
969
970
971
972
973
974
975
976
977
978
979
979
980
981
982
983
984
985
986
987
988
989
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1098
1099
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1198
1199
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1298
1299
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1398
1399
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1498
1499
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1598
1599
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1698
1699
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1798
1799
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1898
1899
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1909
1

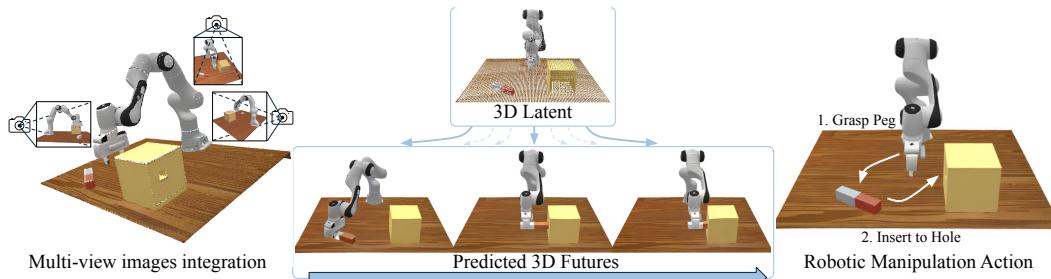


Figure 1: Our 4D latent world model integrates multi-view images and text instructions to forecast future 3D dynamics, enabling robots to plan and execute tasks that require precise 3D understanding.

tasks demand more than recognition of visual appearance: they require an accurate understanding of 3D geometry, object pose, and spatial relationships. This fundamental challenge exposes a key limitation of modern robot learning.

Modeling the dynamics of a scene directly in 3D, however, is a challenging task. Traditional 3D representations, such as point clouds and meshes, preserve geometry but lose rich visual detail necessary for semantic understanding. Photorealistic representations like Neural Radiance Fields (NeRFs) (Mildenhall et al., 2021) or 3D Gaussian Splatting (Kerbl et al., 2023) better capture appearance, but are computationally intensive and not easily amenable to dynamic modeling. A common compromise is to predict RGB video along with depth and normals Zhen et al. (2025), which provide partial 3D cues but still reduce to surface-level projections, leaving them vulnerable to occlusions and viewpoint shifts. This leads to a question, *Can we build a model that inherently simulates dynamic 3D structures of the world?*

In this paper, we propose a **4D latent world model** for robot planning. Following the success of Latent Diffusion Models (Rombach et al., 2022) which utilize spatially-aware 2D feature maps rather than unstructured 1D global latents, we adopt a structured 3D latent representation (Xiang et al., 2025) for 3D scenes. Specifically, we encode the scene into a sequence of sparse voxel grids where active voxel holds a compact feature vector. The *grid latent* design allows us to maintain explicit 3D spatial biases, while benefiting from the computational efficiency and semantic abstraction of a low-dimensional latent space. Based on the structured 3D latents, our model learns the dynamics for the 3D scene and generates plausible future latents conditioned on current observations and text instructions. Unlike methods restricted to surface maps or videos, our latent captures holistic 3D information of the scene that can be decoded into various formats, such as point clouds or 3D Gaussian Splatting. This approach enables our world model to achieve a more complete understanding of 3D structures and generate futures with superior physical and spatial consistency. This detailed 3D information is then leveraged by a goal-conditioned inverse dynamics model, which translates the generated futures into precise robot actions and is especially effective for fine-grained, 3D-aware tasks. In summary, our contributions are as follows:

- i) We introduce a 4D latent world model that predicts future 3D structures conditioned on current observations and text goal, achieving high visual quality, physical consistency, and robust viewpoint generalization.
- ii) We propose a planning framework that leverages our model’s detailed 3D predictions as geometrically rich goals for an inverse dynamics controller, enabling precise and spatially-aware manipulation.
- iii) Experiments demonstrate that our method outperforms state-of-the-art robot world models in both generation quality and downstream robotic task performance, including strong zero-shot generalization to various visual changes, and effective transfer to a real-world robot task.

2 RELATED WORK

General Purpose Embodied Models. A dominant paradigm in robotic learning and embodied agents has been the development of large multitask policies that directly map sensory inputs to output actions. Through the collection of large-scale multi-task embodied and robotics datasets, such models (Reed et al., 2022; Lee et al., 2022; Huang et al., 2023; Zitkovich et al., 2023; Kim et al., 2024; Barreiros et al., 2025; Hou et al., 2025; NVIDIA et al., 2025; Black et al., 2024) are able to

108 solve tasks across many environments. However, there are two large challenges with constructing
 109 such general-purpose policies across many environments. First, the action space across environments
 110 is often misaligned, with existing works requiring careful action tokenization (Reed et al.,
 111 2022), and second, small changes in the environment cause policies to fail. To circumvent these is-
 112 sues, our work focuses on learning a 3D model of the world and then planning on top of the model to
 113 act in the environment. This approach allows us to use a shared underlying 3D state of the world to
 114 transfer across environments. At the same time, by learning the more complex task of modeling the
 115 3D dynamics of the world, we are able to effectively generalize across many environmental changes.

116 **Generative World Models for Planning.** Learned world models have recently been explored for
 117 robot planning, often through video prediction from a single viewpoint (Janner et al., 2022; Ajay
 118 et al., 2022; Li, 2023; Ajay et al., 2023; Du et al., 2023a; Ko et al., 2023; Yang et al., 2023; Li
 119 et al., 2023; He et al., 2023; Alonso et al., 2024; Chen et al., 2024; Ubukata et al., 2024; Bar et al.,
 120 2025; Qi et al., 2025; Xie et al., 2025a). For example, UniPi (Du et al., 2023b) frames planning
 121 as generating a video trajectory, which improves interpretability but lacks explicit 3D structure,
 122 leading to inconsistencies under occlusion or viewpoint change. To address this, hybrid approaches
 123 such as TesserAct (Zhen et al., 2025) extend video models to predict future depth and normal maps,
 124 providing stronger spatial priors for manipulation. **However, these methods are fundamentally 2.5D**
 125 **and operate in pixel space, which remain surface-level projections that struggle to maintain full**
 126 **multi-view coherence.** In contrast, our method models dynamics directly in a 3D latent space, **which**
 127 **enables inherent 3D modeling rather than relying solely on 2.5D projections**, ensuring consistent
 128 multi-view rollouts and providing geometrically grounded subgoals.

129 **3D Dynamics and Planning with Explicit Geometry.** A parallel line of research learns dynamics
 130 over structured 3D representations such as point clouds, meshes, or NeRF-like fields, enabling
 131 physical simulation or relational reasoning for manipulation tasks. These include behavior-primitive
 132 dynamics for stowing (Chen et al., 2023), point-cloud relational planning (Huang et al., 2025), and
 133 deformable-object digital twins (Jiang et al., 2025). Similarly, graph-based dynamics have been
 134 applied to elasto-plastic manipulation (Shi et al., 2023; 2022) and latent relational planners (Huang
 135 et al., 2024), while others utilize compositional NeRFs for multi-object scenes (Driess et al., 2023).
 136 While these methods succeed in specific domains, they typically rely on object-centric factoriza-
 137 tions, pre-defined primitives, or task-specialized graph structures. In contrast, our approach learns
 138 a holistic latent 3D scene representation. It aggregates multi-view geometry into a unified state,
 139 supports 4D rollouts directly in latent space, and decodes into diverse 3D formats (point clouds
 140 or multi-view images rendered from 3D Gaussians). This formulation allows our model to jointly
 141 model dynamics and planning in a unified framework while maintaining flexibility across tasks,
 142 without requiring predefined object primitives or action parameterizations.

3 FORMULATION OF LATENT WORLD MODELING

3.1 PROBLEM FORMULATION

146 Our goal is to build a 4D world model that learns the dynamics of a 3D environment over time. We
 147 formalize it as a conditional generator $g(\mathbf{o}_{t+1}, \dots, \mathbf{o}_{t+T} | \mathbf{o}_t, a)$. Here, given the state of the 3D scene
 148 \mathbf{o}_t at time t and an action a , the model predicts a sequence of future 3D scene states $\{\mathbf{o}_{t+1}, \dots, \mathbf{o}_{t+T}\}$
 149 over a horizon T .

150 In practice, the complete 3D scene \mathbf{o}_t is not directly observable. Instead, it is only seen through par-
 151 tial observations $\{\mathbf{o}_t^{(i)}\}$, such as RGB or depth images from multiple cameras in real-world setups,
 152 or renderings from simulated viewpoints. These observations must be geometrically consistent, as
 153 they all describe the same underlying 3D structure \mathbf{o}_t . The action a can range from a low-level
 154 control signal to a high-level semantic instruction. In this work, we focus on text-based instruc-
 155 tions that specify the desired evolution of the agent and the environment. **In our implementa-
 156 tion, language instructions serve as the high-level action input that guides the latent rollout, while the
 157 inverse dynamics module produces the low-level robot commands as absolute joint positions.**

158 Prevailing world modeling methods are primarily based on video generation, predicting se-
 159 quences of 2D frames (sometimes augmented with depth and normals) from a single viewpoint
 160 $g^{(i)}(\mathbf{o}_{t+1}^{(i)}, \dots, \mathbf{o}_{t+T}^{(i)} | \mathbf{o}_t^{(i)}, a)$. A straightforward extension to 3D is to train separate world models for
 161 each viewpoint and then fuse their outputs. However, such designs do not naturally support true

162 4D world modeling. Instead, we introduce a *4D latent world model* that directly addresses the key
 163 requirements:

- 165 • **3D consistency:** By encoding the complete 3D scene at timestep t into a single holistic latent
 166 representation z_t , our model ensures that predictions across views adhere to the same underlying-
 167 ing 3D structure.
- 168 • **Multi-view reasoning:** The shared latent aggregates information from multiple observations,
 169 allowing cues from one view to inform predictions in others.
- 170 • **Flexible generalization:** The latent can be decoded into diverse explicit 3D formats (e.g., point
 171 clouds, 3D Gaussians), allowing the framework to adapt to novel viewpoints and various scene
 172 representations.

173 Together, these properties enable a unified 4D latent world model that predicts future latent states,
 174 $g(z_{t+1}, \dots, z_{t+T} | z_t, a)$. The latent z_t is designed to be decodable into various explicit 3D represen-
 175 tations, such as point clouds or 3D Gaussians, which allows use to obtain any desired observation
 176 $o_t^{(t)}$ decoded from the state.

178 3.2 3D LATENT FOR SCENE REPRESENTATIONS

180 Our world model requires a 3D latent representation z that is both compact enough for efficient
 181 dynamic modeling and expressive enough to capture the fine details of the complete 3D structure.
 182 Traditional representations, such as meshes, point clouds, or SDFs, often lack photorealism, while
 183 modern representations, like NeRFs (Mildenhall et al., 2021) or 3D Gaussians Kerbl et al. (2023),
 184 are computationally expensive to generate directly at every timestep.

185 To balance efficiency and expressivity, we adopt a structured, sparse latent representation inspired
 186 by SLAT (Xiang et al., 2025). Our latent scene representation z_t is defined as a set of sparse voxel
 187 features: $z_t = \{(p_i, f_i)\}_{i=1}^L$. Here, within a discretized $N \times N \times N$ grid of the 3D scene, $p_i \in$
 188 $\{0, 1, \dots, N-1\}^3$ denotes the 3D coordinate of one of the L active voxels, and $f_i \in \mathbb{R}^d$ is a feature
 189 vector encoding local geometry and color. **This representation balances structural information with**
 190 **latent compression. Compared to a standard dense 3D grid at resolution $N = 64$ requiring 64^3**
 191 **elements, our structured voxel latent mostly utilize a sparse set of approximately $L \approx 8000$ active**
 192 **voxels, each carrying a compact feature $d = 8$ in our settings. This is similar to the design of 2D**
 193 **Latent Diffusion Models, where the latent space preserves spatial topology ($H \times W$) but compresses**
 194 **the channel dimension for efficient generative modeling. This latent representation is connected to**
 195 **2D multi-view observations with an encoder-decoder framework.**

196 **Encoding from images to 3D latent.** To construct the latent z_t from multi-view images, a pre-
 197 trained DINOv2 encoder extracts patch-level embeddings. Then these 2D embeddings are unpro-
 198 jected in the 3D voxel grid. **For each voxel, the unprojected DINOv2 features from multi-view**
 199 **images will be averaged to an embedding, then a sparse encoder \mathcal{E} to produce the latent features f_i .**

200 **Decoding from 3D latent to images.** To get back to a renderable scene, a sparse decoder \mathcal{D} maps
 201 each latent voxel feature f_i to a set of K 3D Gaussians $\{(o_i^k, c_i^k, s_i^k, \alpha_i^k, r_i^k)\}_{k=1}^K$, which can be
 202 rendered into images from arbitrary viewpoints or be converted into a point cloud. This establishes
 203 a mapping from the 3D latent z_t to observation $o_t^{(i)}$.

204 **We use the pre-trained 3D encoder-decoder from TRELLIS, which was trained using RGB recon-
 205 struction losses (L1, D-SSIM, LPIPS) to supervise the 3D Gaussians.** This encoder-decoder archi-
 206 tecture bridges raw visual perception (2D images) and a structured internal 3D world state (z_t). With
 207 this representation in place, the next step is to learn temporal dynamics in latent space.

210 4 4D LATENT WORLD MODEL

212 We propose a *4D latent world model* to predict the dynamics of 3D scenes. The model generates
 213 future 3D structures conditioned on current observations and textual instructions. With the ability
 214 to model 3D dynamics, it can serve as a planner for robot manipulation tasks, and when combined
 215 with an inverse dynamics module, it converts predicted 3D futures into executable robot actions. An
 216 overview of the framework is shown in Fig. 2.

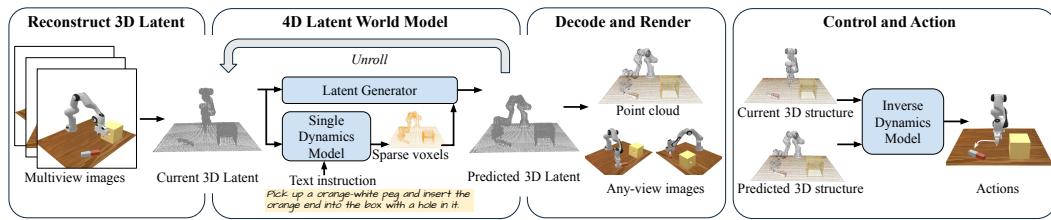


Figure 2: **4D latent world model for robot planning.** The model reconstructs a 3D latent from multi-view images. A 4D latent world model then predicts future latents conditioned on the current state and a text instruction, using a Single Dynamics Model for coarse structural changes and a Latent Generator for detailed features. The predicted latents are decoded into explicit 3D formats such as point clouds or rendered views, which are subsequently used by a goal-conditioned inverse dynamics model to produce robot actions.

4.1 CONDITIONED 3D LATENT SEQUENCE GENERATION

We formulate 4D world modeling as a conditional generator in latent space: $g(z_{t+1}, \dots, z_{t+T} | z_t, a)$, as detailed in Section 3. The generator operates autoregressively $g(z_{t+1} | z_t, a)$, and future states are obtained by iterative rollout. Due to the complexity of generating a full 3D latent state at once, we adopt a two-step pipeline: a Single Dynamics Model SD that forecasts the coarse geometry of the next state, and a Latent Generator LG that fills in detailed feature representations. Together, they construct the next latent z_{t+1} , which is then fed forward for rollout.

Data Preparation. Each training sequence is represented as (z_1, \dots, z_T, a) . For a robot task, we uniformly sample T intermediate timesteps as subgoals. At each t , multi-view images are processed by a pre-trained encoder (Xiang et al., 2025) to obtain a 3D latent z_t . During training, we randomly choose $t \in \{1, \dots, T-1\}$ and use (z_t, z_{t+1}, a) pairs for supervision.

4.1.1 SINGLE DYNAMICS MODEL

The single dynamics model $SD(\{p_i\}_{t+1} | z_t, a)$ focuses on the dynamics, which predicts the sparse voxels of the next state conditioned on the current latent and the text instruction.

Modeling. We use conditional flow matching (Lipman et al., 2022) for generative modeling, which is closely related and largely equivalent in formulation to standard diffusion/score-matching objectives. Here, we adopt flow matching for simplicity and consistency in our setup. The voxel grid $\{0, 1\}^{N^3}$ is first encoded by 3D convolutional blocks and compressed into a latent tensor $\mathbb{R}^{N_c^3}$ with lower resolution ($N_c < N$). A transformer denoiser then operates in this compressed space.

Conditioning. Text instructions are encoded with a pre-trained CLIP model (Radford et al., 2021). The current latent z_t is processed by 3D convolutions and aligned to resolution N_c . Both conditions share positional encodings with the voxel tokens, enabling the model to capture correlations, and are injected in each transformer block through cross-attention. To improve robustness to partial observations, we use condition augmentation, randomly dropping out voxel features from the input latent condition z_t and adding Gaussian noise to its features $\{f_i\}$.

4.1.2 LATENT GENERATOR

The latent generator $LG(\{f_i\}_{t+1} | \{p_i\}_{t+1}, z_t, a)$ predicts voxel features for the structure given by SD . Unlike SD , LG focuses on appearance and visual details rather than dynamics. Similar to SD , it adopts a flow-matching framework with a transformer backbone, conditioned on text and 3D latent features via cross-attention. With this design, SD and LG can be trained separately but applied iteratively: SD predicts voxel positions, and LG fills in their features, producing complete 3D latents z_{t+1}, \dots, z_{t+T} over time.

4.2 PLANNING WITH INVERSE DYNAMICS

The 4D latent world model serves as the core of a robotic planner. Given a text instruction a and the current state latent z_0 , the model predicts future states z_1, \dots, z_T describing how the agent will interact with the environment.

Goal-Conditioned Inverse Dynamics. To translate predicted latents into robot control, we use a goal-conditioned inverse dynamics module: $ID(s_1, \dots, s_H | z_t, z_{t+1})$, which outputs an action se-

270 quence (s_1, \dots, s_H) , **absolute joint positions representing low-level robot commands**, from the current state z_t to the subgoal z_{t+1} . Since this model does not perform long-horizon planning, it does
 271 not require the full details of the latent. Instead, we decode z_t and z_{t+1} into lighter point cloud
 272 representations pc_t and pc_{t+1} . Then, a pyramid convolutional encoder (Ze et al., 2024a) to extract
 273 features from the point clouds, which are concatenated with robot joint states and passed to a diffusion
 274 head to predict the action sequence. To support different horizons, we randomly vary the action
 275 length during training and truncate or repeat them to a fixed horizon H . The inverse dynamics
 276 module is trained independently of the world model.
 277

278 **Planning Pipeline.** The complete planning process is summarized in Algorithm 1. Starting from
 279 initial observations, the world model generates subgoals z_1, \dots, z_T . The inverse dynamics model
 280 then predicts action sequences to reach each subgoal z_{t+1} , repeatedly replanning as needed. For
 281 closed-loop planning, latents can be updated from new observations after executing actions. This
 282 integration enables the 4D latent world model to serve as a planner for diverse robotic tasks.

283 **Algorithm 1** 4D Latent World Model for Robot Planning

285 1: Observe initial multi-view images $\{o_0^{(i)}\}$.
 286 2: Encode initial state: $z_0 \leftarrow \mathcal{E}(\{o_0^{(i)}\})$.
 287 3: Generate future 3D latents $\{z_1, \dots, z_T\}$ conditioned on z_0 and instruction a .
 288 4: **for** $t = 0, \dots, T - 1$ **do**
 289 5: **while** agent has not reached subgoal z_{t+1} **do**
 290 6: Decode latent to point cloud $pc_t \leftarrow \mathcal{D}(z_t)$ and $pc_{t+1} \leftarrow \mathcal{D}(z_{t+1})$.
 291 7: Predict action chunk with inverse dynamics model $s_1, \dots, s_H \leftarrow ID(pc_t, pc_{t+1})$.
 292 8: Agent execute $H_a \leq H$ actions s_1, \dots, s_{H_a} .
 293 9: **if** close loop planning **then**
 294 10: Observe new multi-view images $\{o_{t+1}^{(i)}\}$.
 295 11: Update next state: $z_{t+2} \leftarrow LG(SD(\mathcal{E}(o_{t+1}^{(i)})))$
 296 12: **end if**
 297 13: **end while**
 298 14: **end for**

300 **5 EXPERIMENTS**

302 We evaluate the proposed 4D latent world model on both generation quality and downstream robot
 303 planning. Our experiments are designed to answer the following key questions:

304

- **4D Generation Quality:** How well does our model generate future 3D structures compared to
 305 state-of-the-art video-based and 4D world models, in terms of visual quality, physical consis-
 306 tency, and viewpoint invariance?
- **Robot Planning Performance:** Can the generated 3D structures be effectively used for robot
 307 planning, and how does our approach perform on complex manipulation tasks compared to
 308 baseline methods?

311 **5.1 EXPERIMENTAL SETUP**

313 **Training Data for 4D Latent World Model.** We collect training data from various robot planning
 314 tasks in ManiSkill3 (Tao et al., 2025) and LIBERO (Liu et al., 2023) simulators. Each task is paired
 315 with a language instruction and a set of successful trajectories. For ManiSkill3, we generate 1,000
 316 demonstrations per task, and for LIBERO-90, 50 demonstrations per task. From each trajectory,
 317 we uniformly sample 4–10 intermediate timesteps and render multi-view observations using 40
 318 cameras distributed spherically around the scene. To focus on relevant regions, we remove the
 319 background outside a pre-defined task-specific bounding box. Following the data preparation
 320 pipeline described in Section 4.1, each demonstration is converted into a standardized format for
 321 training the world model.

322 **Inverse Dynamics for Robot Planning.** We evaluate robot planning on three ManiSkill3 tasks:
 323 StackCube-v1, PullCubeTool-v1, and PegInsertionSide-v1 (Tao et al., 2025). For each task, we col-
 324 lect 1,000 demonstration trajectories with point cloud observations aggregated from four cameras,

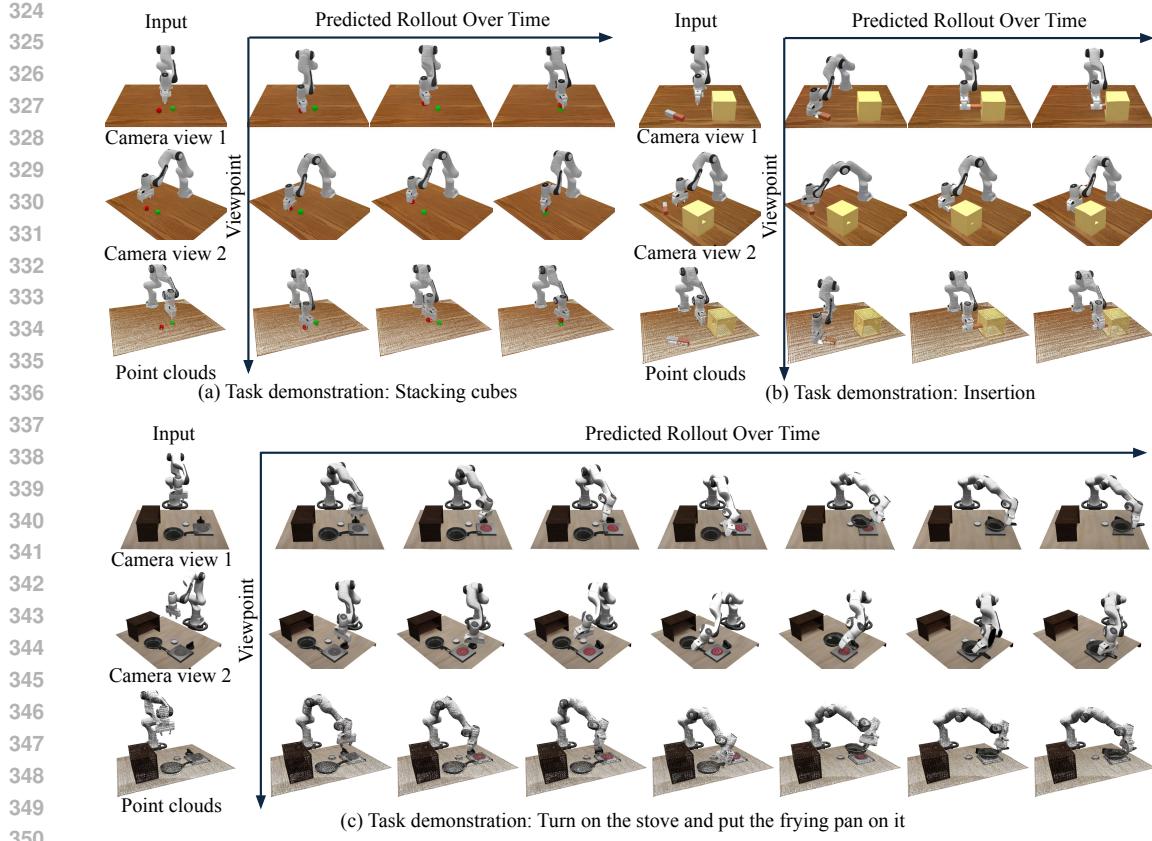


Figure 3: 4D generation visualizations. Given input observations in the first column, our model unrolls the 4D latent world to generate future 3D structures over time. The first two rows show renderings from different camera viewpoints, and the third row shows corresponding point cloud visualizations. Text instructions for each task: (a) Pick up a red cube and stack it on top of a green cube, and let go of the cube without it falling. (b) Pick up an orange-white peg and insert the orange end into the box with a hole in it. (c) Turn on the stove and put the frying pan on it.

paired with corresponding action sequences. These demonstrations are used to train the inverse dynamics module (Section 4.2), which converts generated subgoals into executable actions. Evaluation is performed on the same tasks under different random initial conditions. The three tasks require varying levels of 3D understanding: StackCube-v1 involves stacking one cube on another, PullCubeTool-v1 requires using an L-shaped tool to pull a distant cube, and PegInsertionSide-v1 demands precise 3D alignment to insert a peg into a hole. The latter is especially sensitive to fine geometric accuracy; for this task, we relax the success clearance from 0.003 to 0.01.

Baselines. We compare our 4D generation and robot planning ability with the following baselines:

- **UniPi** (Du et al., 2023b) is a video planner that generates a single video about the robot manipulation trajectory and leverages inverse dynamics to get the robot control signal. Here we finetune a **Wan 2.1** (Wan et al., 2025) video generation model as the video planner.
- **TesserAct** (Zhen et al., 2025) is a 4D embodied world model that generates a sequence of paired RGB, depth, and normal, which enables robot manipulation.
- **OpenSora** (Zheng et al., 2024) is an image-to-video generation model, which is regarded as a baseline in world modeling generation comparisons.
- **Diffusion Policy** (Chi et al., 2023) and **3D Diffusion Policy** (Ze et al., 2024b) are state-of-the-art imitation learning methods.

UniPi and TesserAct are first finetuned on the same dataset to generate the video trajectory for each task. Then, an image-based diffusion inverse dynamics module is used to convert the generated video plan to robot actions. DP and DP3 are trained on expert demos for each task.

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
Table 1: **Evaluation of 4D generation.** We collect 5 key frames per trajectory and 40 camera views per frame, and evaluate both standard image quality metrics (PSNR, SSIM, LPIPS) and 3D consistency metrics from MVG Bench (Xie et al., 2025b) (Chamfer Distance, depth error, cPSNR, cSSIM, cLPIPS). Compared to Wan-2.1, TesserAct, and OpenSora, our method achieves the best results on most metrics, with especially large improvements in 3D consistency, owing to its explicit 3D latent representation.

	PSNR \uparrow	SSIM \uparrow	LPIPS \downarrow	CD \downarrow	depth \downarrow	cPSNR \uparrow	cSSIM \uparrow	cLPIPS \downarrow
Wan-2.1	19.87	0.84	0.09	43.09	25.06	16.86	0.62	0.24
TesserAct	21.63	0.86	0.07	42.79	23.87	17.91	0.65	0.23
OpenSora-1.3	19.89	0.82	0.09	44.07	25.82	16.67	0.60	0.25
Ours	22.45	0.79	0.13	5.95	9.38	27.42	0.86	0.07

Figure 4: **Novel view generalization.** All models were trained on fixed global views but tested on a novel local viewpoint. Our model generates a consistent 3D scene from an unseen view, outperforming baselines significantly.

5.2 4D GENERATION RESULTS

Visual Quality. We begin by demonstrating the 4D generation capabilities of our proposed latent world model. Given multi-view images of the initial frame as input, our model autoregressively generates a sequence of future 3D latents to simulate the task’s completion. Figure 3 visualizes the generated rollouts for several tasks. For each trajectory, we render the predicted 3D latents as images from two camera views and as a global point cloud. The results demonstrate that our generated 3D sequences maintain physical plausibility and temporal consistency while exhibiting high visual fidelity.

Multiview Consistency. Video generation-based approaches UniPi, TesserAct, and OpenSora, struggle to effectively integrate multi-view information. A common strategy for these models is to generate independent video sequences for each viewpoint and then attempt to fuse them at each timestep. However, without explicit 3D constraints, the independently generated views tend to lose consistency over time, which hinders the ability to leverage this multi-view information for downstream tasks, such as robot planning. In contrast, our model directly generates a unified 3D latent representation, which inherently enforces a consistent 3D structure and thus guarantees multi-view consistency by design. Table 1 presents a quantitative comparison against fine-tuned Wan 2.1, TesserAct, and OpenSora 1.3. As shown in the table, our method significantly outperforms the video-based approaches for multiview consistency.

Viewpoint Generalization. Many real-world tasks, particularly in mobile manipulation, cannot rely on fixed sensors and require observations from varying viewpoints. In such scenarios, it is crucial for a world model to generalize to novel viewpoints when simulating planning trajectories. Figure 4 demonstrates our model’s robust ability to integrate diverse multi-view information and generalize to previously unseen viewpoints.

5.3 ROBOT PLANNING RESULTS

We evaluate our proposed 4D latent world model as a task planner, extracting actions at each step using a learned, goal-conditioned inverse dynamics model introduced in Section 4.2. We compare

432 Table 2: **Success rate for robot manipulation tasks.** Average success rate over 100 episodes, using four global
 433 cameras for observation. For PegInsertionSide-v1, the success clearance is relaxed to 0.01.

	StackCube-v1	PullCubeTool-v1	PegInsertionSide-v1*	Average
DP	56%	87%	24%	55.7%
DP3	47%	94%	7%	49.3%
UniPi	9%	5%	1%	5.0%
TesserAct	13%	1%	3%	5.7%
Ours	84%	84%	16%	61.3%

441 Table 3: **Zero-shot generalization with visual and viewpoint changes.** Success rates on the StackCube-v1
 442 task under unseen conditions at test-time. Perturbations include reduced lighting, additive Gaussian noise, a
 443 background color shift (R-channel change for table), and horizontal camera rotations ($5^\circ, 10^\circ$).
 444

	Lighting	Noise	Background color	Viewpoint (5%)	Viewpoint (10%)
DP	7%	5%	1%	43%	25%
DP3	47%	47%	47%	49%	45%
Ours	78%	80%	84%	85%	83%

450 our method’s manipulation performance against world modeling baselines UniPi and TesserAct,
 451 and state-of-the-art imitation learning policies DP and DP3. As shown in Table 2, our method
 452 significantly outperforms the video-based world models and achieves performance comparable to
 453 the specialized imitation learning policies. It is worth noting that the original DP3 implementation
 454 does not use color information for better generalization ability, which prevents it from distinguishing
 455 between colored objects in the StackCube-v1 task. [More robot planning results can be found in](#)
 456 [Appendix B.1](#).

457 **Zero-shot generalization to visual and viewpoint changes.** Zero-shot generalization to novel vi-
 458 sual conditions and camera views is critical for deploying robotic policies in real-world, unstructured
 459 environments. Some recent works (Zhu et al., 2024) have mentioned this point with some studies
 460 explicitly evaluating robustness to such changes. As demonstrated in Section 5.2, our model uses
 461 an explicit 3D latent representation, which naturally provides robustness to viewpoint changes. We
 462 now evaluate the policy’s zero-shot planning performance under various perturbations, including
 463 changes in lighting, background color, additive image noise, and camera viewpoint. The results in
 464 Table 3 show that our method maintains a high success rate across these visual changes, demon-
 465 strating strong zero-shot generalization ability.

467 5.4 ABLATION STUDY

468 **Inputs to the Inverse Dynamics Module.** To understand the design choices of the inverse dynamics
 469 model, we evaluate three input types: using (i) our default downsampled point cloud (ii) the full 3D
 470 latents, and (iii) the 3D voxels as input to the inverse dynamic module. Due to the heavy computation
 471 complexity for 3D latents encoding with large number of camera views, here we use 4 cameras for
 472 inverse dynamics module training. Table 4 shows the success rate for robot task, which demonstrates
 473 the downsampled point cloud achieves performance comparable to latent-based inputs, providing a
 474 strong and lightweight signal for predicting robot actions.

475 **Number of camera views.** We train world models with 4, 10, and 40 camera views while keeping
 476 inference to 4 views. Planning success and 3D consistency improve with additional training views
 477 (Table 5 and Table 6), but even the 4-view model substantially outperforms video-based baselines.
 478 This shows the method remains effective under limited multi-view supervision.

479 5.5 REAL WORLD EXPERIMENTS

480 To evaluate the real-world applicability of our model, we collected a dataset of 100 human demon-
 481 strations for a physical block-in-basket task using five RGB cameras. From each trajectory, we
 482 uniformly sampled five intermediate frames and encoded them into 3D latents representation using
 483 the pre-trained encoder to form the training set. Figure 5 (a) illustrates our data collection setup.

486 Table 4: **Ablation on inputs to the inverse dynamics module: success rate on the StackCube-v1 task.**

Point cloud (40 cams)	Point cloud (4 cams)	3D Latents (4 cams)	3D voxels (4 cams)
84 %	57 %	59%	40%

490 Table 5: **Ablation on the number of training-time camera views: visual consistency metrics on the StackCube-491 v1 task. All models use 4 cameras at inference time.**

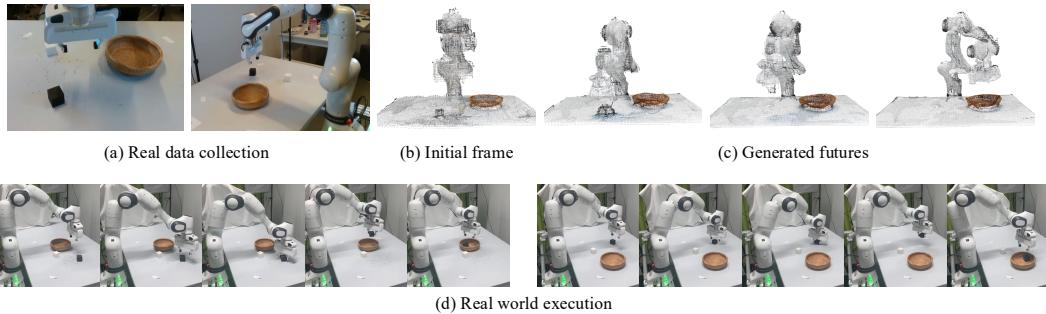
	PSNR \uparrow	SSIM \uparrow	LPIPS \downarrow	CD \downarrow	depth \downarrow	cPSNR \uparrow	cSSIM \uparrow	cLPIPS \downarrow
Wan-2.1	20.10	0.84	0.09	38.74	24.54	16.95	0.62	0.22
TesserAct	22.26	0.87	0.06	39.11	24.86	17.75	0.64	0.22
Ours (4 cams)	19.81	0.75	0.18	7.10	8.81	28.89	0.86	0.07
Ours (10 cams)	21.78	0.77	0.14	7.06	9.85	26.92	0.85	0.07
Ours (40 cams)	22.39	0.78	0.13	6.81	9.98	26.75	0.85	0.07

492 We trained our 4D latent world model and inverse dynamics module on the collected real-world
 493 dataset, using the same configuration as in our simulation experiments. Figure 5 (b) and (c) illustrate
 494 qualitative generation results for real-world scenarios, while Figure 5 (d) presents visualizations of
 495 two policy rollouts. The generated point cloud sequences exhibit temporal and physical consistency,
 496 and the successful demonstrations indicate that our model learns meaningful dynamics from real-
 497 world data.

498 To quantitatively compare our approach with baselines, we randomly initialized object positions
 499 and evaluated our method against the Diffusion Policy (DP) over 50 episodes. Our method achieved
 500 a success rate comparable to DP (Ours 52%, DP 50%), demonstrating that our proposed model
 501 performs effectively in real-world robotic manipulation settings.

502 Table 6: **Ablation on the number of training-time camera views: planning success rate on the StackCube-v1
 503 task. The number of camera views refers to the world-model training setup; inference always uses 4 cameras.**

Ours (40 cams)	Ours (10 cams)	Ours (4 cams)	DP	DP3	UniPi	TesserAct
84%	72%	57%	56%	47%	9%	13%

526 Figure 5: **Real world experiments.** We collect real robot data (a), reconstruct the initial input frame from these
 527 observations (b), predict future rollouts in real environment (c), and execute proposed policy at test time (d).

529 6 CONCLUSION

530 We have introduced a *4D latent world model* for robot planning, which predicts the evolution of 3D
 531 scene structure directly in a compact latent space. By moving beyond prevailing 2D video-based
 532 approaches, our model learns a dynamic model in 3D latent space that encodes holistic scene struc-
 533 ture to enforce 3D consistency, producing rollouts of future latents that can be decoded into explicit
 534 formats such as point clouds or rendered views. Integrated with a goal-conditioned inverse dyna-
 535 mics module, these latents serve as geometrically grounded subgoals that translate into executable
 536 actions. Our experiments demonstrate that this approach achieves state-of-the-art performance in
 537 3D-aware generative modeling, yielding significant improvements in downstream robotic planning
 538 tasks. While our current implementation assumes calibrated multi-view inputs to reconstruct the
 539 initial latent, extending to weaker input settings is a promising direction for broader applicability.

540
541
ETHICS STATEMENT542
543
544
545
546
The authors have considered the ethical implications of this research and have found no direct ethical
concerns. Our work is foundational, focusing on improving the planning capabilities of robotic
agents. The data used for training and evaluation is sourced from established public robotics benchmarks,
and our small-scale real-world data collection did not involve sensitive information or raise
privacy concerns. We believe our work adheres to the ICLR Code of Ethics.547
548
REPRODUCIBILITY STATEMENT
549550
551
552
553
554
We are committed to ensuring the reproducibility of our work. We plan to release our full imple-
mentation after a thorough code cleanup and documentation process. All simulated data used in our
experiments was generated using the official, publicly available APIs of the ManiSkill and LIBERO
benchmark suites. To ensure fair and robust comparisons, all reported metrics and success rates
were obtained using fixed random seeds and consistent evaluation environments.555
556
REFERENCES
557558
559
Anurag Ajay, Yilun Du, Abhi Gupta, Joshua Tenenbaum, Tommi Jaakkola, and Pulkit Agrawal.
Is conditional generative modeling all you need for decision-making? *arXiv preprint arXiv:2211.15657*, 2022. 3
560
561
Anurag Ajay, Seungwook Han, Yilun Du, Shuang Li, Abhi Gupta, Tommi Jaakkola, Josh Tenen-
baum, Leslie Kaelbling, Akash Srivastava, and Pulkit Agrawal. Compositional foundation models
for hierarchical planning. *Advances in Neural Information Processing Systems*, 36:22304–22325,
2023. 3
562
563
564
565
Eloi Alonso, Adam Jolley, Vincent Micheli, Anssi Kanervisto, Amos J Storkey, Tim Pearce, and
Fran ois Fleuret. Diffusion for world modeling: Visual details matter in atari. *Advances in Neural Information Processing Systems*, 37:58757–58791, 2024. 3
566
567
568
569
Amir Bar, Gaoyue Zhou, Danny Tran, Trevor Darrell, and Yann LeCun. Navigation world models.
In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp. 15791–15801,
2025. 3
570
571
572
573
574
575
576
Jose Barreiros, Andrew Beaulieu, Aditya Bhat, Rick Cory, Eric Cousineau, Hongkai Dai, Ching-
Hsin Fang, Kuniyatsu Hashimoto, Muhammad Zubair Irshad, Masha Itkina, et al. A care-
ful examination of large behavior models for multitask dexterous manipulation. *arXiv preprint arXiv:2507.05331*, 2025. 2
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
Kevin Black, Noah Brown, Danny Driess, Adnan Esmail, Michael Equi, Chelsea Finn, Niccolò
Fusai, Lachy Groom, Karol Hausman, Brian Ichter, et al. π_0 : A vision-language-action flow
model for general robot control. *arXiv preprint arXiv:2410.24164*, 2024. 2
594
595
596
597
598
599
Nicolas Carion, Laura Gustafson, Yuan-Ting Hu, Shoubhik Debnath, Ronghang Hu, Didac Suris,
Chaitanya Ryali, Kalyan Vasudev Alwala, Haitham Khedr, Andrew Huang, et al. Sam 3: Segment
anything with concepts. *arXiv preprint arXiv:2511.16719*, 2025. 16
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
70100
70101
70102
70103
70104
70105
70106
70107
70108
70109
70110
70111
70112
70113
70114
70115
70116
70117
70118
70119
70120
70121
70122
70123
70124
70125
70126
70127
70128
70129
70130
70131
70132
70133
70134
70135
70136
70137
70138
70139
70140
70141
70142
70143
70144
70145
70146
70147
70148
70149
70150
70151
70152
70153
70154
70155
70156
70157
70158
70159
70160
70161
70162
70163
70164
70165
70166
70167
70168
70169
70170
70171
70172
70173
70174
70175
70176
70177
70178
70179
70180
70181
70182
70183
70184
70185
70186
70187
70188
70189
70190
70191
70192
70193
70194
70195
70196
70197
70198
70199
70200
70201
70202
70203
70204
70205
70206
70207
70208
70209
70210
70211
70212
70213
70214
70215
70216
70217
70218
70219
70220
70221
70222
70223
70224
70225
70226
70227
70228
70229
70230
70231
70232
70233
70234
70235
70236
70237
70238
70239
70240
70241
70242
70243
70244
70245
70246
70247
70248
70249
70250
70251
70252
70253
70254
70255
70256
70257
70258
70259
70260
70261
70262
70263
70264
70265
70266
70267
70268
70269
70270
70271
70272
70273
70274
70275
70276
70277
70278
70279
70280
70281
70282
70283
70284
70285
70286
70287
70288
70289
70290
70291
70292
70293
70294
70295
70296
70297
70298
70299
702100
702101
702102
702103
702104
702105
702106
702107
702108
702109
702110
702111
702112
702113
702114
702115
702116
702117
702118
702119
702120
702121
702122
702123
702124
702125
702126
702127
702128
702129
702130
702131
702132
702133
702134
702135
702136
702137
702138
702139
702140
702141
702142
702143
702144
702145
702146
702147
702148
702149
702150
702151
702152
702153
702154
702155
702156
702157
702158
702159
702160
702161
702162
702163
702164
702165
702166
702167
702168
702169
702170
702171
702172
702173
702174
702175
702176
702177
702178
702179
702180
702181
702182
702183
702184
702185
702186
702187
702188
702189
702190
702191
702192
702193
702194
702195
702196
702197
702198
702199
702200
702201
702202
702203
702204
702205
702206
702207
702208
702209
702210
702211
702212
702213
702214
702215
702216
702217
702218
702219
702220
702221
702222
702223
702224
702225
702226
702227
702228
702229
702230
702231
702232
702233
702234
702235
702236
702237
702238
702239
702240
702241
702242
702243
702244
702245
702246
702247
702248
702249
702250
702251
702252
702253
702254
702255
702256
702257
702258
702259
702260
702261
702262
702263
702264
702265
702266
702267
702268
702269
702270
702271
702272
702273
702274
702275
702276
702277
702278
702279
702280
702281
702282
702283
702284
702285
702286
702287
702288
702289
702290
702291
702292
702293
702294
702295
702296
702297
702298
702299
702300
702301
702302
702303
702304
702305
702306
702307
702308
702309
702310
702311
702312
702313
702314
702315
702316
702317
702318
702319
702320
702321
702322
702323
702324
702325
702326
702327
702328
702329
702330
702331
702332
702333
702334
702335
702336
702337
702338
702339
702340
702341
702342
702343
702344
702345
702346
702347
702348
702349
702350
702351
702352
702353
702354
702355
702356
702357
702358
702359
702360
702361
702362
702363
702364
702365
702366
702367
702368
702369
702370
702371
702372
702373
702374
702375
702376
702377
702378
702379
702380
702381
702382
702383
702384
702385
702386
702387
702388
702389
702390
702391
702392
702393
702394
702395
702396
702397
702398
702399
702400
702401
702402
702403
702404
702405
702406
702407
702408
702409
702410
702411
702412
702413
702414
702415
702416
702417
702418
702419
702420
702421
702422
702423
702424
702425
702426
702427
702428
702429
702430
702431
702432
702433
702434
702435
702436
702437
702438
702439
702440
702441
702442
702443
702444
702445
702446
702447
702448
702449
702450
702451
702452
702453
702454
702455
702456
702457
702458
702459
702460
702461
702462
702463
702464
702465
702466
702467
702468
702469
702470
702471
702472
702473
702474
702475
702476
702477
702478
702479
702480
702481
702482
702483
702484
702485
702486
702487
702488
702489
702490
702491
702492
702493
702494
702495
702496
702497
702498
702499
702500
702501
702502
702503
702504
702505
702506
702507
702508
702509
702510
702511
702512
702513
702514
702515
702516
702517
702518
702519
702520
702521
702522
702523
702524
702525
702526
702527
702528
702529
702530
702531
702532
702533
702534
702535
702536
702537
702538
702539
702540
702541
702542
702543
702544
702545
702546
702547
702548
702549
702550
702551
702552
702553
702554
702555
702556
702557
702558
702559
702560
702561
702562
702563
702564
702565
702566
702567
702568
702569
702570
702571
702572
702573
702574
702575
702576
702577
702578
702579
702580
702581
702582
702583
702584
702585
702586
702587
702588
702589
702590
702591
702592
702593
702594
702595
702596
702597
702598
702599
702600
702601
702602
702603
702604
702605
702606
702607
702608
702609
702610
702611
702612
702613
702614
702615
702616
702617
702618
702619
702620
702621
702622
702623
702624
702625
702626
702627
702628
702629
702630
702631
702632
702633
702634
702635
702636
702637
702638
702639
702640
702641
702642
702643
702644
702645
702646
702647
702648
702649
702650
702651
702652
702653
702654
702655
702656
702657
702658
702659
702660
702661
702662
702663
702664
702665
702666
702667
702668
702669
702670
702671
702672
702673
702674
702675
702676
702677
702678
702679
702680
702681
702682
702683
702684
702685
702686
702687
702688
702689
702690
702691
702692
702693
702694
702695
702696
702697
702698
702699
702700
702701
702702
702703
702704
702705
702706
702707
702708
702709
702710
702711
702712
702713
702714
702715
702716
702717
702718
702719
702720
702721
702722
702723
702724
702725
702726
702727
702728
702729
7027230
7027231
7027232
7027233
7027234
7027235
7027236
7027237
7027238
7027239
70272310
70272311
70272312
70272313
70272314
70272315
70272316
70272317
70272318
70272319
70272320
70272321
70272322
70272323
70272324
70272325
70272326
70272327
70272328
70272329
70272330
70272331
70272332
70272333
70272334
70272335
70272336
70272337
70272338
70272339
70272340
70272341
70272342
70272343
70272344
70272345
70272346
70272347
70272348
70272349
70272350
70272351
70272352
70272353
70272354
70272355
70272356
70272357
70272358
70272359
70272360
70272361
70272362
70272363
70272364
70272365
70272366
70272367
70272368
70272369
70272370
70272371
70272372
70272373
70272374
70272375
70272376
70272377
70272378
70272379
70272380
70272381
70272382
70272383
70272384
70272385
70272386
70272387
70272388
70272389
70272390
70272391
70272392
70272393
70272394
70272395
70272396
70272397
70272398
70272399
702723100
702723101
702723102
702723103
702723104
702723105
702723106
702723107
702723108
702723109
702723110
702723111
702723112
702723113
702723114
702723115
702723116
702723117
702723118
702723119
702723120
702723121
702723122
702723123
702723124
702723125
702723126
702723127
702723128
702723129
702723130
702723131
702723132
702723133
702723134
702723135
702723136
702723137
702723138
702723139
702723140
702723141
702723142
702723143
702723144
702723145
702723146
702723147
702723148
702723149
702723150
702723151
702723152
702723153
702723154
702723155
702723156
702723157
702723158
702723159
702723160
702723161
702723162
702723163
702723164
702723165
702723166
702723167
702723168
702723169
702723170
702723171
702723172
702723173
702723174
702723175
702723176
702723177
702723178
702723179
702723180
702723181
702723182
702723183
702723184
702723185
702723186
702723187
702723188
702723189
702723190
702723191
702723192
702723193
702723194
702723195
702723196
702723197
702723198
702723199
702723200
702723201
702723202
702723203
702723204
702723205
702723206
702723207
702723208
702723209
702723210
702723211
702723212
702723213
702723214
702723215
702723216
702723217
702723218
702723219
702723220
702723221
702723222
702723223
702723224
702723225
702723226
702723227
702723228
702723229
702723230
702723231
7

594 Danny Driess, Zhiao Huang, Yunzhu Li, Russ Tedrake, and Marc Toussaint. Learning multi-object
 595 dynamics with compositional neural radiance fields. In *Conference on robot learning*, pp. 1755–
 596 1768. PMLR, 2023. 3

597

598 Yilun Du, Mengjiao Yang, Pete Florence, Fei Xia, Ayzaan Wahid, Brian Ichter, Pierre Sermanet,
 599 Tianhe Yu, Pieter Abbeel, Joshua B Tenenbaum, et al. Video language planning. *arXiv preprint*
 600 *arXiv:2310.10625*, 2023a. 3

601 Yilun Du, Sherry Yang, Bo Dai, Hanjun Dai, Ofir Nachum, Josh Tenenbaum, Dale Schuurmans, and
 602 Pieter Abbeel. Learning universal policies via text-guided video generation. *Advances in neural*
 603 *information processing systems*, 36:9156–9172, 2023b. 1, 3, 7, 15, 16

604

605 Carlos E Garcia, David M Prett, and Manfred Morari. Model predictive control: Theory and prac-
 606 tice—a survey. *Automatica*, 25(3):335–348, 1989. 1

607

608 Haoran He, Chenjia Bai, Kang Xu, Zhuoran Yang, Weinan Zhang, Dong Wang, Bin Zhao, and Xue-
 609 long Li. Diffusion model is an effective planner and data synthesizer for multi-task reinforcement
 610 learning. *Advances in neural information processing systems*, 36:64896–64917, 2023. 3

611

612 Zhi Hou, Tianyi Zhang, Yuwen Xiong, Haonan Duan, Hengjun Pu, Ronglei Tong, Chengyang Zhao,
 613 Xizhou Zhu, Yu Qiao, Jifeng Dai, and Yuntao Chen. Dita: Scaling diffusion transformer for
 614 generalist vision-language-action policy. *arXiv preprint arXiv:2503.19757*, 2025. 2

615

616 Jiangyong Huang, Silong Yong, Xiaojian Ma, Xiongkun Linghu, Puha Li, Yan Wang, Qing Li,
 617 Song-Chun Zhu, Baoxiong Jia, and Siyuan Huang. An embodied generalist agent in 3d world.
 618 *arXiv preprint arXiv:2311.12871*, 2023. 2

619

620 Yixuan Huang, Nichols Crawford Taylor, Adam Conkey, Weiyu Liu, and Tucker Hermans. Latent
 621 space planning for multiobject manipulation with environment-aware relational classifiers. *IEEE*
 622 *Transactions on Robotics*, 40:1724–1739, 2024. 3

623

624 Yixuan Huang, Christopher Agia, Jimmy Wu, Tucker Hermans, and Jeannette Bohg. Points2plans:
 625 From point clouds to long-horizon plans with composable relational dynamics. In *2025 IEEE*
 626 *International Conference on Robotics and Automation (ICRA)*, pp. 1208–1216. IEEE, 2025. 3

627

628 Michael Janner, Yilun Du, Joshua B Tenenbaum, and Sergey Levine. Planning with diffusion for
 629 flexible behavior synthesis. *arXiv preprint arXiv:2205.09991*, 2022. 3

630

631 Hanxiao Jiang, Hao-Yu Hsu, Kaifeng Zhang, Hsin-Ni Yu, Shenlong Wang, and Yunzhu Li. Physt-
 632 win: Physics-informed reconstruction and simulation of deformable objects from videos. *ICCV*,
 633 2025. 3

634

635 Tsung-Wei Ke, Nikolaos Gkanatsios, and Katerina Fragkiadaki. 3d diffuser actor: Policy diffusion
 636 with 3d scene representations. *arXiv preprint arXiv:2402.10885*, 2024. 1

637

638 Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 3d gaussian splat-
 639 tiling for real-time radiance field rendering. *ACM Transactions on Graphics*, 42(4), July 2023. 2,
 640 4

641

642 Moo Jin Kim, Karl Pertsch, Siddharth Karamcheti, Ted Xiao, Ashwin Balakrishna, Suraj Nair,
 643 Rafael Rafailov, Ethan Foster, Grace Lam, Pannag Sanketi, et al. Openvla: An open-source
 644 vision-language-action model. *arXiv preprint arXiv:2406.09246*, 2024. 2

645

646 Po-Chen Ko, Jiayuan Mao, Yilun Du, Shao-Hua Sun, and Joshua B Tenenbaum. Learning to Act
 647 from Actionless Videos through Dense Correspondences. *arXiv:2310.08576*, 2023. 3

648

649 Kuang-Huei Lee, Ofir Nachum, Mengjiao Yang, Lisa Lee, Daniel Freeman, Winnie Xu, Sergio
 650 Guadarrama, Ian Fischer, Eric Jang, Henryk Michalewski, et al. Multi-game decision transform-
 651 ers. *arXiv preprint arXiv:2205.15241*, 2022. 2

652

653 Wenhao Li. Efficient planning with latent diffusion. *arXiv preprint arXiv:2310.00311*, 2023. 3

654

655 Wenhao Li, Xiangfeng Wang, Bo Jin, and Hongyuan Zha. Hierarchical diffusion for offline decision
 656 making. In *International Conference on Machine Learning*, pp. 20035–20064. PMLR, 2023. 3

648 Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
 649 David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. *arXiv*
 650 *preprint arXiv:1509.02971*, 2015. 1

651 Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
 652 for generative modeling. *arXiv preprint arXiv:2210.02747*, 2022. 5

653 Bo Liu, Yifeng Zhu, Chongkai Gao, Yihao Feng, Qiang Liu, Yuke Zhu, and Peter Stone. Libero:
 654 Benchmarking knowledge transfer for lifelong robot learning. *arXiv preprint arXiv:2306.03310*,
 655 2023. 6

656 David Q Mayne, James B Rawlings, Christopher V Rao, and Pierre OM Scokaert. Constrained
 657 model predictive control: Stability and optimality. *Automatica*, 36(6):789–814, 2000. 1

658 Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and
 659 Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. *Communications*
 660 *of the ACM*, 65(1):99–106, 2021. 2, 4

661 NVIDIA, Nikita Cherniadev, Johan Bjorck, Fernando Castañeda, Xingye Da, Runyu Ding,
 662 Linxi "Jim" Fan, Yu Fang, Dieter Fox, Fengyuan Hu, Spencer Huang, Joel Jang, Zhenyu Jiang,
 663 Jan Kautz, Kaushil Kundalia, Lawrence Lao, Zhiqi Li, Zongyu Lin, Kevin Lin, Guilin Liu,
 664 Edith Llontop, Loic Magne, Ajay Mandlekar, Avnish Narayan, Soroush Nasiriany, Scott Reed,
 665 You Liang Tan, Guanzhi Wang, Zu Wang, Jing Wang, Qi Wang, Jiannan Xiang, Yuqi Xie, Yinzhen
 666 Xu, Zhenjia Xu, Seonghyeon Ye, Zhiding Yu, Ao Zhang, Hao Zhang, Yizhou Zhao, Ruijie Zheng,
 667 and Yuke Zhu. GR00T N1: An open foundation model for generalist humanoid robots. In *ArXiv*
 668 *Preprint*, March 2025. 2

669 Han Qi, Haocheng Yin, Aris Zhu, Yilun Du, and Heng Yang. Strengthening generative robot policies
 670 through predictive world modeling. *arXiv preprint arXiv:2502.00622*, 2025. 1, 3

671 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 672 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 673 models from natural language supervision. In *International conference on machine learning*, pp.
 674 8748–8763. PMLR, 2021. 5

675 Scott Reed, Konrad Zolna, Emilio Parisotto, Sergio Gomez Colmenarejo, Alexander Novikov,
 676 Gabriel Barth-Maron, Mai Gimenez, Yury Sulsky, Jackie Kay, Jost Tobias Springenberg, et al.
 677 A generalist agent. *arXiv preprint arXiv:2205.06175*, 2022. 2, 3

678 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 679 resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF confer-
 680 ence on computer vision and pattern recognition*, pp. 10684–10695, 2022. 2

681 Haochen Shi, Huazhe Xu, Zhiao Huang, Yunzhu Li, and Jiajun Wu. Robocraft: Learning to see,
 682 simulate, and shape elasto-plastic objects with graph networks. *arXiv preprint arXiv:2205.02909*,
 683 2022. 3

684 Haochen Shi, Huazhe Xu, Samuel Clarke, Yunzhu Li, and Jiajun Wu. Robocook: Long-horizon
 685 elasto-plastic object manipulation with diverse tools. *arXiv preprint arXiv:2306.14447*, 2023. 3

686 Stone Tao, Fanbo Xiang, Arth Shukla, Yuzhe Qin, Xander Hinrichsen, Xiaodi Yuan, Chen Bao,
 687 Xinsong Lin, Yulin Liu, Tse kai Chan, Yuan Gao, Xuanlin Li, Tongzhou Mu, Nan Xiao, Arnav
 688 Gurha, Viswesh Nagaswamy Rajesh, Yong Woo Choi, Yen-Ru Chen, Zhiao Huang, Roberto Ca-
 689 landra, Rui Chen, Shan Luo, and Hao Su. Maniskill3: Gpu parallelized robotics simulation and
 690 rendering for generalizable embodied ai. *Robotics: Science and Systems*, 2025. 6

691 Toshihide Ubukata, Jialong Li, and Kenji Tei. Diffusion model for planning: A systematic literature
 692 review. *arXiv preprint arXiv:2408.10266*, 2024. 3

693 Team Wan, Ang Wang, Baole Ai, Bin Wen, Chaojie Mao, Chen-Wei Xie, Di Chen, Feiwu Yu,
 694 Haiming Zhao, Jianxiao Yang, Jianyuan Zeng, Jiayu Wang, Jingfeng Zhang, Jingren Zhou, Jinkai
 695 Wang, Jixuan Chen, Kai Zhu, Kang Zhao, Keyu Yan, Lianghua Huang, Mengyang Feng, Ningyi
 696 Zhang, Pandeng Li, Pingyu Wu, Ruihang Chu, Ruili Feng, Shiwei Zhang, Siyang Sun, Tao Fang,
 697

702 Tianxing Wang, Tianyi Gui, Tingyu Weng, Tong Shen, Wei Lin, Wei Wang, Wei Wang, Wenmeng
 703 Zhou, Wente Wang, Wenting Shen, Wenyuan Yu, Xianzhong Shi, Xiaoming Huang, Xin Xu, Yan
 704 Kou, Yangyu Lv, Yifei Li, Yijing Liu, Yiming Wang, Yingya Zhang, Yitong Huang, Yong Li, You
 705 Wu, Yu Liu, Yulin Pan, Yun Zheng, Yuntao Hong, Yupeng Shi, Yutong Feng, Zeyinzi Jiang, Zhen
 706 Han, Zhi-Fan Wu, and Ziyu Liu. Wan: Open and advanced large-scale video generative models.
 707 *arXiv preprint arXiv:2503.20314*, 2025. 7, 15, 16

708 Jianfeng Xiang, Zelong Lv, Sicheng Xu, Yu Deng, Ruicheng Wang, Bowen Zhang, Dong Chen,
 709 Xin Tong, and Jiaolong Yang. Structured 3d latents for scalable and versatile 3d generation.
 710 In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp. 21469–21480,
 711 2025. 2, 4, 5, 15

712 Amber Xie, Oleh Rybkin, Dorsa Sadigh, and Chelsea Finn. Latent diffusion planning for imitation
 713 learning. *arXiv preprint arXiv:2504.16925*, 2025a. 3

714 Xianghui Xie, Chuhang Zou, Meher Gitika Karumuri, Jan Eric Lenssen, and Gerard Pons-Moll.
 715 Mvgbench: Comprehensive benchmark for multi-view generation models, 2025b. 8

716 Haoyu Xiong, Quanzhou Li, Yun-Chun Chen, Homanga Bharadhwaj, Samarth Sinha, and Animesh
 717 Garg. Learning by watching: Physical imitation of manipulation skills from human videos. In
 718 *2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)*, pp. 7827–
 719 7834, 2021. doi: 10.1109/IROS51168.2021.9636080. 1

720 Mengjiao Yang, Yilun Du, Kamyar Ghasemipour, Jonathan Tompson, Dale Schuurmans, and Pieter
 721 Abbeel. Learning interactive real-world simulators. *arXiv preprint arXiv:2310.06114*, 1(2):6,
 722 2023. 1, 3

723 Yanjie Ze, Zixuan Chen, Wenhao Wang, Tianyi Chen, Xialin He, Ying Yuan, Xue Bin Peng, and
 724 Jiajun Wu. Generalizable humanoid manipulation with 3d diffusion policies. *arXiv preprint
 725 arXiv:2410.10803*, 2024a. 6, 15

726 Yanjie Ze, Gu Zhang, Kangning Zhang, Chenyuan Hu, Muhan Wang, and Huazhe Xu. 3d diffusion
 727 policy: Generalizable visuomotor policy learning via simple 3d representations. In *Proceedings
 728 of Robotics: Science and Systems (RSS)*, 2024b. 7

729 Tony Z. Zhao, Vikash Kumar, Sergey Levine, and Chelsea Finn. Learning Fine-Grained Bimanual
 730 Manipulation with Low-Cost Hardware. In *Proceedings of Robotics: Science and Systems*,
 731 Daegu, Republic of Korea, July 2023. doi: 10.15607/RSS.2023.XIX.016. 1

732 Haoyu Zhen, Qiao Sun, Hongxin Zhang, Junyan Li, Siyuan Zhou, Yilun Du, and Chuang Gan.
 733 Tesseract: learning 4d embodied world models. *arXiv preprint arXiv:2504.20995*, 2025. 2, 3, 7,
 734 15, 16

735 Zangwei Zheng, Xiangyu Peng, Tianji Yang, Chenhui Shen, Shenggui Li, Hongxin Liu, Yukun
 736 Zhou, Tianyi Li, and Yang You. Open-sora: Democratizing efficient video production for all.
 737 *arXiv preprint arXiv:2412.20404*, 2024. 7, 16

738 Haoyi Zhu, Yating Wang, Di Huang, Weicai Ye, Wanli Ouyang, and Tong He. Point cloud matters:
 739 Rethinking the impact of different observation spaces on robot learning. *Advances in Neural
 740 Information Processing Systems*, 37:77799–77830, 2024. 1, 9

741 Brianna Zitkovich, Tianhe Yu, Sichun Xu, Peng Xu, Ted Xiao, Fei Xia, Jialin Wu, Paul Wohlhart,
 742 Stefan Welker, Ayzaan Wahid, et al. Rt-2: Vision-language-action models transfer web knowledge
 743 to robotic control. In *Conference on Robot Learning*, pp. 2165–2183. PMLR, 2023. 2

744

745

746

747

748

749

750

751

752

753

754

755

756 THE USE OF LARGE LANGUAGE MODELS
757758 Large Language Models (LLMs) were used to assist with manuscript language polishing and litera-
759 ture search. All substantive research content and scientific conclusions are the original work of the
760 authors.
761762 A IMPLEMENTATION DETAILS
763764 A.1 4D WORLD MODEL TRAINING
765766 Our framework consists of two main components: a single dynamics model and a latent generator,
767 which were trained independently. Both were implemented as conditioned flow matching models
768 following the architecture proposed by Xiang et al. (2025). Here, we extend the original conditions
769 to both text and 3D latent. The latent generator operates on a $64 \times 64 \times 64$ voxelized grid with
770 a feature dimension of $d = 8$, while the dynamics model uses a similar architecture on a coarser
771 $16 \times 16 \times 16$ grid. Both models consist of 24 transformer blocks, each with 16 attention heads
772 and a model dimension of 1024. For text conditioning, we utilized embeddings from a pre-trained
773 CLIP model. The dynamics model is also conditioned on the input 3D latent; we use sparse 3D
774 convolutional layers to match the latent’s resolution to the model’s internal dimension, after which
775 it is injected into the cross-attention blocks together with the text condition.
776777 Training for both models spanned 300,000 steps with a learning rate of 1×10^{-4} . We used a per-
778 GPU batch size of 8 with mixed-precision (FP16) computation. For the latent generator, we applied
779 4 gradient accumulation steps, and for the dynamics model, we used 2 steps. The optimizer used
780 was AdamW with no weight decay. To enable classifier-free guidance, we set the unconditional
781 dropout probability to 0.1 and applied an exponential moving average (EMA) with a decay rate of
782 0.9999 to stabilize the training. Each model was trained for approximately 3 days on four NVIDIA
783 H100 (80GB) GPUs.
784785 A.2 INVERSE DYNAMICS MODEL TRAINING
786787 Our goal-conditioned inverse dynamics model is trained on 1,000 expert demonstrations for each
788 task. The policy is formulated as a diffusion model that takes point clouds representing the current
789 and goal states as input. For observation encoding, we employ a point cloud encoder introduced by
790 Ze et al. (2024a), which comprises four 1D convolutional layers with a hidden dimension of 128.
791 The action decoder is a 1D conditional UNet with downsampling channel dimensions of [256, 512,
792 1024], a kernel size of 5, and 8 groups for normalization layers.
793794 The inverse dynamics model was trained for 20,000 epochs. At inference time, we use 100 denoising
795 steps to predict the action sequence. Training for each task took approximately 8 hours on a single
796 NVIDIA A100 GPU.
797798 A.3 VIDEO WORLD MODEL BASELINE FINE-TUNING
799800 To establish our baselines, we utilize Wan 2.1 (Wan et al., 2025) as the video generative backbone
801 of UniPi (Du et al., 2023b), and the TesserAct (Zhen et al., 2025) generative model. Both models
802 were fine-tuned on the same dataset. For the TesserAct model specifically, we generated depth
803 maps alongside the images from the simulator and used its official codebase to create normal maps.
804 For fine-tuning, Wan 2.1 was trained for 10,000 steps on two NVIDIA H100 GPUs, achieving
805 convergence in approximately 36 hours. TesserAct was also fine-tuned for 10,000 steps on four
806 NVIDIA H100 GPUs, taking around two days to converge.
807808 B ADDITIONAL EXPERIMENT RESULTS
809810 B.1 ROBOT PLANNING RESULTS
811812 In Section 5.3, we compare our proposed methods with baselines TesserAct and UniPi. However, the
813 success rate of both methods in ManiSkill3 tasks are very low. To provide a more rigorous evalua-
814

810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 tion of robot planning capabilities, we extended our experiments to the RLBench benchmark, where TesserAct (Zhen et al., 2025) and UniPi (Du et al., 2023b) have established performance records. We evaluated our method on three RLBench tasks: *CloseBox*, *SweepToDustpan*, and *WaterPlants*, collecting 1,000 demonstrations for each. We utilized 20 cameras for model training and 4 cameras for inference, maintaining the same 4D world model and inverse dynamics architecture described in Section 5.3. For the baselines, we cite the success rates reported in the official TesserAct publication (Zhen et al., 2025). For our method, we report the success rate averaged over 100 random episodes per task. Table 7 shows the success rate comparison in 3 RLBench tasks.

Table 7: **Success rate on RLBench.** Average success rate over 100 episodes for our model. For Image-BC, UniPi, and TesserAct baselines, the success rate is from Zhen et al. (2025).

	Close Box	Sweep To Dustpan	Water Plants	Average
Image-BC	53%	0%	0%	17.7%
UniPi	81%	49%	35%	55.0%
TesserAct	88%	56%	41%	61.7%
Ours	93%	69%	64%	75.3%

B.2 4D GENERATION RESULTS

In Section 5.2, we compare the performance of 4D generation results with video generation based baselines. We have shown that our proposed model performs a strong ability in multiview consistency and viewpoint generalization, while maintaining the comparable visual quality at the same time. In order to further evaluate the connection of world modeling quality and robot policy performance more directly, we use Segment Anything Model 3 (SAM3) (Carion et al., 2025) to segment the robot shape in each generated image, and compare the IoU score of robot mask between generation and ground truth. Table 8 shows the IoU score comparison with OpenSora-1.3 (Zheng et al., 2024), Wan-2.1 (Wan et al., 2025), and TesserAct (Zhen et al., 2025), which shows that our proposed model can provide a stable and accurate generation for robot planning.

Table 8: **IoU score of robot mask.** We collect 5 key frames per trajectory and 40 camera views per frame, and evaluate the IoU between ground truth robot mask and generated robot mask.

	StackCube-v1 \uparrow	PullCubeTool-v1 \uparrow	PegInsertionSide-v1 \uparrow	Average \uparrow
Wan-2.1	0.7423	0.7189	0.7148	0.7253
TesserAct	0.8302	0.7704	0.7741	0.7915
OpenSora-1.3	0.7789	0.6956	0.6945	0.7229
Ours	0.9091	0.9334	0.8970	0.9132