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ABSTRACT

Protein representation learning has emerged as a powerful tool for various biolog-
ical tasks. Language models derived from protein sequences represent the pre-
dominant trend in many current approaches. However, recent advances reveal that
protein sequences alone cannot fully encapsulate the abundant information con-
tained within protein structures, critical for understanding protein function and
aiding innovative protein design. In this study, we present ProteiNexus, an inno-
vative approach, effectively integrating protein structure learning with numerous
downstream tasks. We propose a structural encoding mechanism adept at captur-
ing fine-grained distance details and spatial positioning. By implementing a robust
pre-training strategy and fine-tuning with lightweight decoders designed for spe-
cific downstream tasks, our model exhibits outstanding performance, establishing
new benchmarks across a range of tasks. The code and models could be found at
github repos 1.

1 INTRODUCTION

Figure 1: Comparison of results between Pro-
teiNexus and state-of-the-art methods.

Proteins fulfill a myriad of biological roles within
organisms, spanning from enzyme catalysis and sig-
nal transduction to gene regulation. These biologi-
cal functions are crucially correlated with the three-
dimensional architecture of proteins (Pazos & Stern-
berg, 2004; Pal & Eisenberg, 2005). For instance,
antibodies (such as SARS-CoV-2 (Zhu et al., 2022)),
which are integral components of the immune sys-
tem, initiate a precise immune response against for-
eign incursions by interacting with antigens present
on pathogen surfaces. The specificity and affinity of
these interactions hinge on the structure and binding
mode of both antibodies and antigens. A deep un-
derstanding of protein structures, the interpretation
of protein-protein interactions, and the illumination
of their respective functions and regulatory mecha-
nisms are fundamental for achieving accurate pro-
tein design and precise understanding (Huang et al., 2016).

Enhancing our understanding of proteins through effective representation learning is paramount for
in-depth research. The recent surge in deep learning advancements, especially those related to self-
supervised learning, instigates the advent of supremely effective algorithms across myriad tasks
within bioinformatics. The advent of high-throughput sequencing leads to an exponential augmen-
tation in protein sequences (Consortium, 2019), motivating the transfer of techniques from large
language models (LLMs) such as Transformers (Vaswani et al., 2017) and BERT (Devlin et al.,
2018) to protein sequence representation learning, otherwise known as protein language models
(pLMs). These sequence-based approaches for protein representation learning triumph in various
tasks including function prediction (Nallapareddy et al., 2023; Littmann et al., 2021), protein struc-
ture prediction (Rao et al., 2020; Weißenow et al., 2022; Lin et al., 2023), and protein design (Verkuil

1Upon acceptance of this paper, our codes and models will be made publicly available
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et al., 2022; Hie et al., 2022; Ferruz et al., 2022). In parallel, researchers gradually recognize the sig-
nificance of protein structure and introduce graph-based representations of protein structures (Jing
et al., 2021; Somnath et al., 2021; Aykent & Xia, 2022; Li et al., 2022). While this propels the field
of protein representation learning forward, it bears its restrictions. Predominantly, graph-based rep-
resentations struggle to preserve fine-grained atom information effectively. Moreover, they tend to
accentuate interactions among neighboring residues while often disregarding the influence of long-
range interactions. This limitation becomes particularly pronounced when modeling protein-protein
interactions in practical applications. For instance, some specific protein families, like G-protein-
coupled receptors (GPCRs), exhibit varying structures when interacting with different ligands, de-
spite sharing identical amino acid sequence (Hilger et al., 2018). Consequently, relying solely on
local structural information often results in modeling failures.

Furthermore, most researches focuses on devising robust protein structure encoders, these encoders
are tailor-made for particular tasks, thus encountering challenges in maintaining consistently supe-
rior performance across a comprehensive array of tasks. To surmount these obstacles, one promising
strategy involves the enhancement of performance through pre-training on extensive datasets, contin-
gent upon obtaining effective structural representations (Hermosilla & Ropinski, 2022; Zhou et al.,
2023). However, self-supervised learning of three-dimensional protein structures posits inherent
complexities. Among prevalent pre-training frameworks, contrastive learning garners notable atten-
tion (Hermosilla & Ropinski, 2022; Zhang et al., 2023b). Additionally, other effective strategies
include denoising corrupted distance matrices (Zhou et al., 2023) and predicting residual dihedral
angles (Chen et al., 2023).

To address these challenges, we present ProteiNexus, a pre-trained model centered on protein struc-
ture. ProteiNexus initiates its training regimen with self-supervised learning on extant protein struc-
ture data, followed by fine-tuning on an array of downstream tasks including model quality assess-
ment, binding affinity prediction, folding classification, enzyme-catalyzed reaction classification,
protein design, and antibody design. We utilize a robust encoder to capture protein distance informa-
tion and the spatial relative positions of residues, enabling the model to understand representations
of interactions learned from pair relationships – affording a more exhaustive understanding of pro-
tein complex. Additionally, we amalgamate structural information at both the atom and residue
levels, thereby bolstering the model’s performance. For added robustness and diversity, we integrate
a hybrid masking strategy and mixed-noise strategy. Working in tandem, these strategies empower
the model to learn the diversity of protein information more effectively, culminating in exemplary
performance across varied tasks.

Our primary contributions can be summarized as follows:

• We present a groundbreaking universal protein pre-training model, adept at seamlessly in-
corporating both protein sequence and structural information.

• We implement a simple, yet potent, architecture to capture structural information compre-
hensively. Our model is substantiated through numerous experiments, demonstrating its
effectiveness and setting new standards across a diverse range of downstream tasks.

2 RELATED WORKS

Protein representation learning is a fundamental challenge in the fields of bioinformatics, aiming to
find an effective way to describe the structure and function of proteins. This field can be divided into
two major approaches: sequence-based and structure-based methods.

Protein Sequence Representation Learning. Sequence-based protein representation learning is
primarily inspired by methods uesd for modeling natural language sequences. Typical pre-training
objectives explored in existing methods include next residue prediction, masked language modeling
(MLM) and contrastive predictive coding (CPC). There are different masking strategies in masked
language modeling (MLM) such as random residue masking (Rao et al., 2021; Rives et al., 2021),
pair residue masking (He et al., 2021a), motif or subsequence mask (Wu et al., 2022).

Protein Structure Representation Learning. Protein structure provides direct and valuable in-
formation, some approaches (Zheng et al., 2023a) attempt to enhance their performance by fine-
tuning parameters of sequence-based pre-trained models and introducing structure-aware modules.
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Figure 2: Method Overview. (a) Pre-training stage - About 200k proteins from RCSB protein struc-
ture database are used to learn protein representation. (b) Fine-tuning stage - Extracting effective
representations from pre-training for predictions using lightweight task layers. (c) The objective of
pre-training.

Contrastive learning (Hermosilla & Ropinski, 2022; Zhang et al., 2023b) is a highly popular pre-
training method designed to learn structural representations by maximizing distance metrics between
different protein structures as the training objective. Additionally, there are methods that transfer pro-
tein structures into distance matrices and attempt to denoise noisy distance matrices while simulta-
neously predicting the types of corresponding residue types. These approaches undergo pre-training
on large-scale datasets to improve the quality and generalizability of the representations.

3 METHODS

3.1 PROTEIN REPRESENTATION

Given a protein P as input, we employ a transformer based model to learn its sequential representa-
tion (s ∈ Rn×ds , where n is the number of residues and ds is single feature dimension) and structural
representation (z ∈ Rn×n×dz , where dz is the pair feature dimension). Our objective is to capture
effective representations of protein sequence and structure through a trainable parameterized model.
These representations can be fine-tuned for accurate predictions across a wide range of downstream
tasks.

3.1.1 ENCODER

Our pretrained model requires two types of inputs: residue type and residue coordinates. Similar
to natural language, we represent protein sequence as a sequence of discrete tokens and learn the
initial representation s(0) through a linear layer. To more effectively encode protein structure infor-
mation and maintain rotation and translation invariance, we employ three distinct encoding methods:
Spatial Position Encoding (SPE), Distance Encoding, and Relative Position Encoding (RPE). These
methods together constitute the initial pair representation z(0) = zspe + zdistance + zrpe. These
approaches are simpler in nature yet highly effective, allowing for the better preservation of three-
dimensional structural information.
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Spatial Position Encoding. SPE is a method of encoding that is employed to capture the spatial
relationships between residues. This encoding technique remains invariant under global rotation
and translation. Using the Cα atom as the coordinate origin, we establish a local Cartesian coordi-
nate system for each residue through the Schmidt orthogonalization, denoted as the local frame Oi.
Subsequently, we project the Cα atom of the j-th residue onto the local frame Oi, and employ the
resulting 3D local coordinates as the spatial position representation. Lastly, we partition the contin-
uous coordinates into bins of equal width and transform each bin into an embedding, which is then
utilized as the spatial position encoding, referred to as zspe.

Distance Encoding. To capture finer-grained structural information, we introduce atom-level
distance in this stage, employing the "distance tokenizer" method to efficiently encode protein struc-
tural data. Additionally, we establish an alignment mechanism from the atom-level to the residue-
level, initializing the distance information as zdistance. For further details, please refer to the Ap-
pendix B.1.

Relative Position Encoding. To enrich the network with information about the positional context
of residues within the sequence, we introduce relative positional encoding (referred as zrpe) into
the initial pair representations. Specifically, we employ a one-hot encoding scheme to represent
the relative distance between position i and position j in the sequence as a vector. This encoding
strategy is restricted to distances less than a predefined threshold, ensuring the effective capture of
significant relative positional relationships.

3.1.2 BACKBONE NETWORK

Recently, numerous research endeavors in the field of protein structure representation have embraced
network architectures based on Graph Neural Networks (GNNs). GNN-based methods have demon-
strated remarkable performance in capturing local structural patterns, but challenges persist when
dealing with protein complexes. For protein complexes, long-range relationships between residues
continue to influence folding configurations and interaction modes to a certain extent. To better
capture the global features and interactions of protein structures, we have opted for the transformer
architecture as the backbone of our network. This decision is grounded in the inherent self-attention
mechanism of the transformer, which enables computations across the entire protein sequence. This
capability effectively captures associations between distant residues, thus elevating the precision of
structural analysis and prediction. Furthermore, we have introduced a communication mechanism
between sequence and structural information, enhancing the model’s ability to integrate and exploit
insights from both dimensions, resulting in improved prediction outcomes.

The transformer architecture is constructed with stacked layers of transformers, taking initialized
single representations as input. Each individual transformer layer is comprised of two primary ele-
ments: a self-attention module and a feed-forward network. Updating the single representation in
the l-th layer is achieved as follows:

Attention(Ql,h
i ,Kl,h

i ,V l,h
i ) =

∑
j

softmax

(
Ql,h
i (Kl,h

j )T
√
dk

+ zl−1,h
ij

)
V l,h
j (1)

where Ql,h
i , Kl,h

i , and V l,h
i correspond to the Query, Key, and Value for the i-th residue, in the l-th

layer and the h-th head, h ∈ {1, 2, . . . , H}, H is the number of attention heads, dk represents the
dimension of the Key, and zl−1,h

ij denotes the pair representation for the ij-th pair in the l−1-th layer
and the h-th head. Furthermore, we utilize the attention weights obtained from the self-attention
mechanism to update the pair representations as follow:

zl,hij = zl−1,h
ij +Concath

(
Ql,h
i (Kl,h

j )T
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)
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3.2 PRE-TRAINING

Our training data is derived from the Protein Data Bank (PDB) database, encompassing all protein
structure data released up until May 1st, 2023. We employ two self-supervised tasks aimed at
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learning universal representations from vast protein structure data. Similar to the field of natural
language processing, we adopt a masking strategy, wherein the prediction of masked residues is
employed to establish the single representation of proteins. We randomly select a portion of residues
along the entire sequence length with varying probabilities for masking and prediction. Due to the
interplay between single and pair representations, masked residues can be efficiently reconstructed
through structural cues. Consequently, we introduce Gaussian noise into the corresponding pair
representations aligned with masked residues to enhance the model’s robustness. Moreover, we
encourage the model to recover authentic atom-level coordinate from noise-induced residue-level
pair representations.

3.3 FINE-TUNING ON DOWNSTREAM TASKS

To enhance the model’s adaptability to specific tasks, we incorporate lightweight task heads upon
the pre-trained model and fine-tune the parameters for downstream tasks. For specific model archi-
tectures, please refer to the Appendix C.

4 EXPERIMENTS

In order to verify the effectiveness of our proposed pre-training model, we conduct experiments
on several downstream tasks. The implementation details and ablation experiments are provided in
Appendix D and E, respectively.

4.1 MODEL QUALITY ASSESSMENT

Datasets. Our training dataset includes decoys derived from 7992 unique native protein structures,
obtained from DeepAccNet. In the end, we have a collection of 39057 structures in our training
dataset, with a fraction representing native structures. This dataset is divided into training and
validation sets at a 9:1 ratio. To ensure a fair evaluation of the model’s capability in identifying
native structures, our test set is meticulously curated. It includes targets with experimentally resolved
structures from CASP14 and CASP15, paired with their corresponding predicted structures. To
ensure diversity and representativeness, we perform a redundancy reduction process on the test set,
limiting sequence identity between targets to within 70%. Notably, due to the division of CASP14
target H1044 into multiple domains (e.g., T1031, T1033), our test set does not include H1044 and
its corresponding decoys.

Baselines. We compare method with 3 recent or established state-of-the-art baselines. DeepAcc-
Net (Hiranuma et al., 2021) is an excellent method for assessing the quality of protein structures. It
employs features like distance maps and residue properties, which are processed through 3D convo-
lution to predict the LDDT score for each residue. Furthermore, it refines the decoy’s structure based
on error estimation. DeepUMQA (Guo et al., 2022) utilizes Ultrafast Shape Recognition (USR) for
efficient feature extraction. These features are then fed into a residual neural network to predict the
LDDT score. QATEN (Zhang et al., 2023a) incorporates a self-attention mechanism, representing
the decoy structure as a graph, allowing it to predict both LDDT and GDT-TS scores simultaneously.

Results & discussion. The results are summarized in Table 1, showcasing our method’s supe-
rior performance across diverse metrics on the CASP14 and CASP15 test datasets in comparison
to other methods. Using the released model parameters, we successfully reproduce the results of
the three methods listed in the Table 1 on test datasets. Our approach, which focuses on optimizing
both local and global structural quality predictions, continues to achieve optimal results even when
compared to DeepAccNet and DeepUMQA, which solely emphasize local structural quality assess-
ment. Furthermore, we observe that despite the larger number of decoys in the DeepAccNet dataset,
augmenting our training data with decoys of varying degrees of distortion does not significantly
enhance the model’s capacity to discern structural quality.

4.2 BINDING AFFINITY

Datasets. We validate our pre-training model on five datasets, namely S1131 (Xiong et al., 2017),
S4169 (Rodrigues et al., 2019), S8338, M1101 (Sirin et al., 2016), M1707 (Zhang et al., 2020).
These datasets are mainly derived from SKEMPI (Moal & Fernández-Recio*, 2012), SKEMPI 2.0

5



Under review as a conference paper at ICLR 2024

Table 1: Comparison of Model Quality Assessment on CASP14 and CASP15 datasets.

Method
CASP14 CASP15

GDT-TS LDDT GDT-TS LDDT
RMSE ↓ P S K RMSE ↓ P S K RMSE ↓ P S K RMSE ↓ P S K

DeepAccNet (Hiranuma et al., 2021) - - - - 0.10 0.78 0.78 0.59 - - - - 0.16 0.68 0.68 0.50
DeepUMQA (Guo et al., 2022) - - - - 0.11 0.78 0.76 0.57 - - - - 0.16 0.64 0.63 0.45
QATEN (Zhang et al., 2023a) 0.20 0.61 0.61 0.44 0.14 0.59 0.62 0.47 0.21 0.67 0.59 0.50 0.22 0.54 0.59 0.42

ProteiNexus 0.16 0.77 0.78 0.58 0.09 0.82 0.81 0.62 0.15 0.84 0.83 0.63 0.13 0.79 0.72 0.53

Jankauskaite et al. (2018) and AB-Bind (Sirin et al., 2016), three datasets widely uesd for pro-
tein interaction prediction collated from experimental data. S1131 is an interface non-redundant
single-point mutation from the SKEMPI dataset. S4169 filters all single-point mutation from the
SKEMPI 2.0 dataset. S8338 contains all mutations in S4169 and their corresponding reverse mu-
tations. M1101, also known as the AB-Bind dataset, consists of all antibody-antigen complexes.
The data in M1707 consists exclusively of multi-point mutations. The original protein structure is
referred to as the wild type, and the protein structure with partial residue mutation is referred to as
the mutant. Due to the lack of the native three-dimensional structure of the mutant, we hypothesize
that the mutation effect does not change the backbone structure of the protein.

Baselines. We compare method with 6 recent or established state-of-the-art baselines.
FoldX (Schymkowitz et al., 2005) employs an empirical force field to predict the impact of mu-
tations on the binding energy of protein complexes. MutaBind2 (Zhang et al., 2020) utilizes a
scoring function composed of seven terms to predict changes in binding affinity. TopGBT and Top-
NetTree (Wang et al., 2020) combine topology-based approaches with machine learning techniques.
GeoPPI (Liu et al., 2020) employs a geometric representation that learns encoded topological fea-
tures of protein structures to predict protein-protein interaction effects. The ddg predictor (Shan
et al., 2022) utilizes an attention-based geometric neural network. By learning the geometric infor-
mation of mutation pairs within protein structures and using an attention mechanism, it captures
crucial interaction features to predict the effects of mutations.

Results & discussion. The results are summarized in Table 2. Our model has demonstrates supe-
rior performance on datasets involving single-point mutations and antibody-antigen complexes, sur-
passing the current state-of-the-art benchmarks. This highlights the model’s exceptional capability
in accurately capturing inter-chain interactions when characterizing complex structures. Our perfor-
mance on the multi-point mutation dataset M1707 is less than satisfactory. This may be attributed
to the gradual accumulation of mutation effects, which could lead to certain structural changes in
the mutant type. However, due to the lack of structural data for mutant types, we use wild-type
structures as substitutes, resulting in some bias in the data. In the absence of sufficient data on mu-
tant structures, accurately predicting changes in binding affinity will be a key focus of our future
improvement efforts.

Table 2: Results of various binding affinity prediction methods on the mutation dataset. [†] and [♭]
denotes results taken from Liu et al. (2020) and Shan et al. (2022), respectively. The top two results
are highlighted in bold and underlined, respectively.

Method S1131 S4169 S8338 M1101 M1707

Rp ↑ RMSE ↓ Rp ↑ RMSE ↓ Rp ↑ RMSE ↓ Rp ↑ RMSE ↓ Rp ↑ RMSE ↓

FoldX (Schymkowitz et al., 2005)† 0.46 2.18 0.27 2.73 0.44 2.73 0.34 2.39 0.49 3.02
MutaBind2 (Zhang et al., 2020)† - - - - - - - - 0.72 2.25

TopGBT (Wang et al., 2020)† 0.32 2.31 0.41 1.60 0.61 1.61 - - - -
TopNetTree (Wang et al., 2020)† 0.29 2.4 0.39 1.65 0.59 1.65 - - - -

GeoPPI (Liu et al., 2020)† 0.58 2.01 0.52 1.48 0.68 1.49 0.53 1.81 0.74 2.21
ddg predictor (Shan et al., 2022)♭ 0.65 - - - - - - - 0.59 -

ProteiNexus 0.81 1.57 0.83 0.98 0.84 1.23 0.76 2.04 0.41 3.01

4.3 FOLD AND ENZYME-CATALYZED REACTION CLASSIFICATION

Datasets. The folding classification of proteins reveals the relationship between protein structure
and evolution based on the similarity of protein three-dimensional structures. Following prior works,
we collect all protein structure data from the SCOP v1.75 database (Murzin et al., 1995) after clus-
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Table 3: Results of classification. [‡] denotes results taken from Jie et al. (2017), [♭] denotes results
taken from Hermosilla & Ropinski (2022), [†] denotes results taken from Hermosilla et al. (2021),
[♮] denotes results taken from Zhang et al. (2023b) and [∗] denotes results taken from Li et al.
(2022). Bold and underline indicate the top two results obtained under settings w/o pretraining and
w/ pretraining, respectively.

Method Fold React
Fold Sup Family

w
/o

pr
et

ra
in

in
g

TMalign (Zhang & Skolnick, 2005)♭ 34.0 65.7 97.5 -
HHSuite (Steinegger et al., 2019)♭ 17.5 69.2 98.6 82.6

PSI-BLAST (Madeira et al., 2022)‡ 5.60 42.20 96.80 -

DeepSF (Jie et al., 2017)‡ 40.95 50.71 76.18 -
LSTM (Rao et al., 2019)† 26.0 43.0 92.0 79.9

mLSTM (Alley et al., 2019)† 23.0 38.0 87.0 72.9
CNN Shanehsazzadeh et al. (2020)♮ 11.3 13.4 53.4 51.7

GCN (Kipf & Welling, 2017)† 16.8 21.3 82.8 67.3
3DCNN (Derevyanko et al., 2018)† 31.6 45.4 92.5 78.8

GAT (Veličković et al., 2018)♮ 12.4 16.5 72.7 55.6
EdgePool (Diehl, 2019)† 12.9 16.3 72.5 57.9

GraphQA (Baldassarre et al., 2021)† 23.7 32.5 84.4 60.8
GVP (Jing et al., 2021)♮ 16.0 22.5 83.8 65.5

DW-GIN (Li et al., 2022)∗ 31.8 37.3 85.2 76.7
IEConv (Hermosilla et al., 2021)† 45.0 69.7 98.9 87.2

GearNet-Edge-IEConv (Zhang et al., 2023b)♮ 48.3 70.3 99.5 85.3

w
/p

re
tr

ai
ni

ng

DeepFRI (Gligorijević et al., 2021)† 15.3 20.6 73.2 63.3
ESM-1b (Rives et al., 2021)♮ 26.8 60.1 97.8 83.1

ProtBERT-BFD (Elnaggar et al., 2021)† 26.6 55.8 97.6 72.2

New IEConv (Hermosilla & Ropinski, 2022)♭ 50.3 80.6 99.7 88.1
Multiview Contrast (Zhang et al., 2023b)♮ 54.1 80.5 99.9 87.5

ProteiNexus 47.6 79.7 98.0 88.4

tering with 95% sequence identity. We then follow the data processing method of Jie et al. (2017),
remove the redundancy between the training set, validation set, and test set, and demonstrate the
performance of our method on three different levels of test sets. Enzymes with catalytic properties
are an important component of proteins, and the Enzyme Commission specifies a set of numbering
and naming methods for different categories of enzymes, consisting of four digits. We collect pro-
teins annotated with EC numbers from the SIFTS database (Jose et al., 2018) and divide the dataset
following Hermosilla et al. (2021).

Baselines. In comparison with the classification task, we examine a range of baseline methods
with the aim of comprehensively assessing the performance of our model and providing reference
for further investigation. Firstly, we employ traditional methods such as TMalign (Zhang & Skol-
nick, 2005), HHSuite (Steinegger et al., 2019) and PSI-BLAST (Madeira et al., 2022) as baselines,
which have widespread applications in protein structure and sequence similarity analysis. Secondly,
our focus turns to sequence-based methods, which primarily utilize the amino acid sequence in-
formation of proteins for classification: DeepSF (Jie et al., 2017), LSTM (Rao et al., 2019), mL-
STM (Alley et al., 2019) and CNN Shanehsazzadeh et al. (2020). Additionally, we also delve into
structure-based methods, which center on the three-dimensional structural information of proteins,
encompassing factors such as inter-amino acid distances and secondary structures: GCN (Kipf &
Welling, 2017), 3DCNN (Derevyanko et al., 2018), GAT (Veličković et al., 2018), EdgePool (Diehl,
2019), GraphQA (Baldassarre et al., 2021), GVP (Jing et al., 2021), DW-GIN (Li et al., 2022),
IEConv (Hermosilla et al., 2021), GearNet (Zhang et al., 2023b). Moreover, some methods employ
extensive unlabeled data in their model training through pretraining strategies, aiming to enhance the
model’s feature representation capabilities. For instance, DeepFRI (Gligorijević et al., 2021) lever-
ages information from the protein sequence database Pfam for pretraining, ESM-1b (Rives et al.,
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2021) utilizes the UniRef50 dataset, and ProtBERT-BFD (Elnaggar et al., 2021) integrates the BFD
database. Additionally, we also consider approaches that incorporate protein structural information,
where New IEConv (Hermosilla & Ropinski, 2022) utilizes the PDB database, and Multiview Con-
trast (Zhang et al., 2023b) combines data from AlphaFoldDB.

Results & discussion. As depicted in Table 3, our model’s performance aligns comparably with
that of other established baselines. In the realm of fold classification, our model demonstrates ro-
bust classification accuracy, accurately assigning protein structures to their respective fold categories.
This suggests that our approach effectively captures structural patterns and features crucial for fold
discrimination. Furthermore, the close proximity of our results to the baseline tasks indicates the
competitiveness of our model in this specific task. Moving on to EC classification, our model ex-
hibits a commendable ability to predict EC number accurately. The obtained results substantiate the
efficacy of our approach in capturing functional relationships within protein sequences. The perfor-
mance achieved surpasses current baselines, highlighting the potential of our model to contribute to
enzyme-catalyzed reaction classification tasks.

4.4 PROTEIN DESIGN

Datasets. We collect data from the protein structure classification database CATH. In the CATH
v4.2 40% non-redundant dataset, 18024 chains are collected as the training set, 608 chains as the
validation set, and 1120 chains as the test set according to the way Ingraham et al. (2019) divides
the datasets. In addition, we also demonstrate the model’s performance on TS50 (Li et al., 2014),
a universal benchmark dataset for protein design tasks. Due to the lack of a canonical training set
specifically for the TS50 test dataset, we follow the approach of (Jing et al., 2021; Qi & Zhang, 2020;
Li et al., 2022) and remove 435 protein structure data similar to TS50 from the training dataset of
CATH v4.2 as a new training set.

Baselines. We conduct a comparative analysis of our pre-trained model with various baseline
approaches, encompassing specialized generative models tailored for protein design and methods
focusing on protein representation learning. Structured Transformer Ingraham et al. (2019), ESM-IF
Hsu et al. (2022), ProteinMPNN Dauparas et al. (2022), PiFold Gao et al. (2023) and LM-DESIGN
Zheng et al. (2023b) are state-of-the-art methods for protein design, while GVP-GNN Jing et al.
(2021), GBPNet Aykent & Xia (2022), DW-GCN, DW-GIN and DW-GAT Li et al. (2022) aim to
construct general protein representation methods, achieving advanced performance in protein design
tasks as well. With method ESM-IF utilizing CATH v4.3 for training, the remaining methods are
trained using CATH v4.2. All protein representation methods employ a canonical training set for
the TS50, while the training sets used by the other methods are not explicitly specified.

Results & discussion. According to the results shown in the Table 4, we successfully achieve
the highest AAR to date on the TS50 test set, while also obtaining favorable results on the CATH
v4.2 test set. In comparison to methods specifically designed for protein design, although we do
not directly learn how to map structural information to sequence during the pre-training stage, the
communication between the single representation and the pair representation still captures this asso-
ciation during fine-tuning. By comparing the TS50 test results on two different training sets, we can
clearly see the significant impact of data leakage on this task. To provide a more detailed explanation
of the influence of pre-training data on protein design tasks, we conduct an in-depth discussion in
the appendix.

4.5 ANTIBODY DESIGN

Datasets. We collect training data from the Structural Antibody Database (SAbDab) (Dunbar
et al., 2014), which contains structural data of antibody-antigen protein complexes. For the antibody
sequence-structure co-design task, we partition the data according to the RefineGNN (Jin et al.,
2022b) and perform sequence design and structure prediction separately for the three CDR regions
of the heavy chain. For antigen-specific antibody design, we filter out protein structure data that
does not contain antibody light chains or antigens. To evaluate our approach, we conduct tests on
a curated benchmark dataset (Adolf-Bryfogle et al., 2018) comprising diverse CDR lengths and
clusters. To prevent data leakage, any CDR sequence in the training set with over 70% identity to
a CDR sequence in the test set is removed. Following preprocessing, we divide the training and
validation sets based on the HSRN (Jin et al., 2022a) approach.

8



Under review as a conference paper at ICLR 2024

Table 4: Results of different Protein Design methods. [†] denotes results taken from Gao et al.
(2023), [♮] denotes results taken from Li et al. (2022), and [‡] represents the results as reported in
their respective papers. Bold and underline indicate the top two results, respectively.

Method CATH TS50

Perplexity ↓ Recovery % ↑ Perplexity ↓ Recovery % ↑
Structured Transformer (Ingraham et al., 2019)† 6.63 35.82 5.60 42.20

ESM-IF (Hsu et al., 2022)† 6.44 38.3 - -
ProteinMPNN (Dauparas et al., 2022)♮ 4.61 45.96 3.93 54.43

PiFold (Gao et al., 2023)† 4.55 51.66 3.86 58.72
LM-DESIGN(PiFold) (Zheng et al., 2023b)‡ 4.52 55.65 3.50 57.89

GVP-GNN (Jing et al., 2021)♮ 5.29 40.2 - 44.9
GBPNet (Aykent & Xia, 2022)‡ 5.03 42.70 - -

DW-GCN (Li et al., 2022)♮ 3.94 47.5 - 53.8
DW-GIN (Li et al., 2022)♮ 3.85 47.8 - 52.7
DW-GAT (Li et al., 2022)♮ 4.13 46.7 - 54.5

ProteiNexus(canonical) - - 4.78 59.81
ProteiNexus 5.27 53.45 4.07 62.15

Baselines. In the experiments involving co-design of antibody sequence and structure, we initiate
our investigation by considering a sequence-based LSTM model (Saka et al., 2021; Akbar et al.,
2022). This approach primarily focuses on modeling sequence information. Subsequently, we intro-
duce RefineGNN (Jin et al., 2022b), which incorporates three-dimensional structural information
and employs an iterative optimization strategy for autoregressive co-design of antibody sequence
and structure. AbBERT-HMPN (Gao et al., 2022) capitalizes on an antibody pre-trained language
model, enabling one-shot generation of antibody sequences. Additionally, we employ a multi-round
3D equivariant model MEAN (Kong et al., 2023a).

Results & discussion. In the context of framework region conditioned design, our approach
demonstrates a clear superiority over existing baselines, showcasing our model’s ability to extract
information from contextual cues. With the incorporation of antigen and light chain information, we
successfully achieve precise generation of antibody sequences and structures for both CDR-H3 and
all six CDRs (as shown in Table 8 and 9 in the appendix). This achievement highlights our model’s
significant advancement in comprehensively considering information from various levels.

Table 5: Results of Antibody Design: Sequence-Structure Co-design. The best and the runner-up
results are highlighted in bolded and underlined, respectively.

Method CDR-H1 CDR-H2 CDR-H3
AAR % ↑ RMSD ↓ AAR % ↑ RMSD ↓ AAR % ↑ RMSD ↓

LSTM (Saka et al., 2021; Akbar et al., 2022) 28.02 - 24.39 - 18.92 -
AR-GNN (Jin et al., 2020) 41.88 2.87 41.18 2.34 18.93 3.19

RefineGNN (Jin et al., 2022b) 30.07 0.97 27.70 0.73 27.60 2.12
AbBERT-HMPN (Gao et al., 2022) 55.56 0.91 51.46 0.67 31.08 2.38

MEAN (Kong et al., 2023a) 62.78 0.94 52.04 0.89 39.87 2.20

ProteiNexus 64.18 1.57 58.05 1.62 41.01 3.06

5 CONCLUSION

In this work, we introduce an efficient pre-training model named ProteiNexus, capable of parallelly
capturing both protein sequence and structural information. We integrate a hybrid structural encod-
ing and self-supervised prediction strategy to obtain meaningful representations, and successfully
apply them to various downstream tasks. Experimental results confirm the outstanding performance
of our approach across a range of tasks, particularly in the understanding of protein complexes. In
the future, we intend to extend ProteiNexus to a broader range of applications, addressing more
practical problems.
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A MORE RELATED WORK

A.1 PROTEIN STRUCTURE MATTERS

Protein structure is essential to tackle most downstream tasks. This is underscored by the complex-
ity of the protein folding problem in the field of biology. This signifies that even when two proteins
share similar amino acid sequences, they can fold into entirely distinct three-dimensional structures.
This discrepancy becomes particularly apparent during post-translational modifications following
protein translation, such as glycosylation, phosphorylation, methylation, acetylation, which pro-
foundly alter the protein’s structure and function. Anomalies in these modifications can even lead to
serious diseases like leukemia, pancreatic dysfunction, and Alzheimer’s disease (Mehboob & Lang,
2021). In the context of Alzheimer’s disease, for instance, a portion of beta-amyloid protein may
form toxic plaques due to misfolding, exerting detrimental effects on neural cells (Hamley, 2012;
Wang et al., 2022). Furthermore, G-protein-coupled receptors (GPCRs) in proteins undergo confor-
mational changes in their extracellular regions upon binding with excitatory signaling molecules like
odors, hormones, neurotransmitters, and chemokines (Che et al., 2020; He et al., 2021b). Figure 3
presents a specific example illustrating the conformational changes that occur in the Gα subunit
(comprising two subdomains, the Ras domain and the AHD domain) during receptor-mediated G
protein nucleotide exchange. This further accentuates the critical role of protein structure in regulat-
ing biological functions.

Figure 3: Interaction-mediated conformational changes. The figure depicts structural changes
between receptor-bound and nucleotide-freeGαs (Turquoise, PDBID 3SN6) and Gαs(Burnt Sienna,
PDBID 1AZT) bound to GTPγS (Indigo). Research has revealed that the receptor for Gs induces
a movement of the α-helical domain (GαsAHD) of Gαs, causing it to shift outward relative to its
position in the GTPγS-bound state, thereby triggering conformational changes (the receptor of Gs is
not shown in the figure). This example is derived from Hilger et al. (2018).

A.2 PROTEIN STRUCTURE REPRESENTATION LEARNING

Given the critical role of protein structure in determining function, structure-based representation
methods emerge as a superior solution. In the past, these methods often rely on manually de-
signed feature extraction techniques, such as using Voronoi tessellation to describe protein contact
areas (Olechnovič & Venclovas, 2017) or employing 3D Zernike descriptors to characterize pro-
tein surface properties (Sael et al., 2008; Venkatraman et al., 2009; Daberdaku & Ferrari, 2018).
Although these methods are effective to some extent, they struggle to capture complex protein struc-
tural information. With the advancement of deep learning, a new generation of methods continu-
ously emerges. In the early stages, 3D Convolutional Neural Networks (3D CNNs) are employed
to voxelate protein structures (Amidi et al., 2018; Derevyanko et al., 2018). Subsequently, Graph
Neural Networks (GNNs) gain prominence by abstracting protein structures into graphs. Some
methods even integrate multiple general GNN frameworks to introduce geometric information Jing
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et al. (2021) or maintain SO(3)-equivariance properties (Li et al., 2022), aiming for a more pre-
cise representation of protein structures. Furthermore, the representation of local protein structures
also garners significant attention. For instance, some methods concentrate on extracting information
from the protein surface, as seen in MaSIF (Gainza et al., 2020) and dMaSIF (Sverrisson et al., 2021).
This is crucial for identifying potential protein-protein interaction interfaces. Uni-Mol (Zhou et al.,
2023), on the other hand, focuses on learning universal representations, with particular emphasis on
pseudo protein pockets that could form interfaces.

B MODEL DETAILS

B.1 ENCODER

Spatial Position Encoding. In this section, we delve into the further details of Spatial Position
Encoding. Here, x⃗i,1, x⃗i,2, and x⃗i,3 represent the coordinates of N, Cα, and C atoms in the i-th
residue, while x⃗j,2 denotes the Cα atom in the j-th residue. As illustrated in Figure 4, we establish a
local Cartesian coordinate system Oi based on x⃗i,1, x⃗i,2, and x⃗i,3. d⃗ij corresponds to the coordinates
of x⃗j,2 in Oi, encapsulating the relative positional relationship between two residues. Algorithm 1
elucidates the specific operations of SPE, with ⌊ ⌋ denoting the binning process, which categorizes
r⃗ij into vbins. Considering that intermolecular forces significantly decrease as distances exceed a
certain threshold, we set a cutoff for this purpose.

Figure 4: The sketch map of Spatial Position Encoding(SPE), with N, Cα, C, and O colored in teal,
burnt orange, periwinkle, and magenta, respectively.

Algorithm 1 Spatial Position Encoding (SPE)

Require: vbins = [0, ..., 128], x⃗i,1, x⃗i,2, x⃗i,3, x⃗j,2 ∈ R3

1: v⃗i,1 = x⃗i,1 − x⃗i,2; v⃗i,2 = x⃗i,3 − x⃗i,2

2: e⃗i,1, e⃗i,2 = Gram-Schmidt(v⃗i,1, v⃗i,2) ▷ Compute an orthogonal basis
3: e⃗i,3 = e⃗i,1 × e⃗i,2

4: Oi = concat(e⃗i,1, e⃗i,2, e⃗i,3) ▷ Local frame constructed by the i-th residue
5: d⃗ij = x⃗i,2 − x⃗j,2

6: r⃗ij = concat(∥d⃗ij∥, d⃗ij ◦ Oi) ▷ ◦ represent the projection of d⃗ij in the local frame Oi

7: pij = Linear(one_hot(⌊r⃗ij⌋, vbins)
8: return pij

Distance Encoding. This method involves converting the coordinates of backbone atoms into
a distance matrix and discretizes continuous distance values into distinct bins using fixed distance
thresholds. As atom distances increase significantly, the intermolecular forces between them dimin-
ish. In such instances, all distances exceeding a certain threshold are categorized within the maxi-
mum distance bin. To facilitate hierarchical learning at various precision levels for distance represen-
tation, we discretize distances into different-sized distance bins, where |V| = {16, 64, ..., 16384},
and V = {0, 1, ..., |V| − 1} represents the distance vocabulary. Subsequently, linear layers are em-
ployed to embed the distance intervals at each level, followed by an aggregation step to obtain the
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initial distance representation. This hierarchical learning approach allows for the extraction of more
nuanced and fine-grained distance representations, enhancing the model’s ability to capture subtle
structural features and relationships within residues.

Our atom-level distance representations obtained through distance encoding encompass the relative
orientations of backbone atoms. Similarly, the residue-level pair representations acquired via rel-
ative spatial encoding consider both residue orientation and inter-residue spatial relationships. To
amalgamate these representations across two levels, we devise a purposeful projection that accu-
rately aligns atom-level representations with their corresponding residue-level counterparts. This
alignment mechanism facilitates the transmission and matching of information, thereby ensuring
comprehensive structural modeling across multiple hierarchical levels.

C FINE-TUNING ON DOWNSTREAM TASKS

C.1 MODEL QUALITY ASSESSMENT

Model architecture We utilize the pre-trained model as the backbone and employ a layer con-
sisting of a two-layer MLP as the predictor. Our objective is to predict the quality of both global
and local structures. Initially, we conduct column-wise and row-wise aggregation on pair repre-
sentations, then concatenate these aggregated representations with single representations and use a
MLP along with the sigmoid function to map them into the (0,1) range, signifying scores for each
residue. For assessing global structural quality, we follow the same procedure, ultimately averaging
the scores at the residue level to derive the global score.

Datasets. We constructed a training dataset comprising 39,922 decoys (corresponding to 7,992 na-
tive structures). While generating a significant number of decoys to expand the dataset was feasible,
we observed that the diversity inherent in native structures proved more effective during training.
As depicted in Table 6, we selected two datasets of equal size, where one encompassed decoys cor-
responding to 7,992 native structures, and the other contained decoys corresponding to 270 native
structures (with more decoys per native structure). Although both training datasets are of compa-
rable scale, models trained with the diversity of native structures exhibit superior generalization
capabilities. This underscores the critical importance of accurately representing native structures in
the learning process. Furthermore, even scaling up the dataset, including training with and with-
out pretraining using the entire DeepAccNet dataset, doesn’t yield substantial improvements. This
further underscores the robust representation capabilities of our model, which only requires simple
fine-tuning on a small dataset to achieve optimal performance.

Table 6: Comparison of Model Quality Assessment on different training sets.

DATASETS
CASP14 CASP15

GDT-TS LDDT GDT-TS LDDT
RMSE ↓ P S K RMSE ↓ P S K RMSE ↓ P S K RMSE ↓ P S K

Diversity test 0.17 0.70 0.70 0.52 0.12 0.75 0.77 0.58 0.25 0.74 0.74 0.55 0.25 0.60 0.58 0.41
DeepAccNet w/o pretraining 0.16 0.74 0.75 0.56 0.10 0.77 0.79 0.60 0.20 0.74 0.67 0.48 0.20 0.56 0.56 0.40

DeepAccNet 0.17 0.72 0.72 0.53 0.11 0.75 0.76 0.57 0.17 0.78 0.75 0.55 0.13 0.72 0.68 0.49

ProteiNexus 0.14 0.79 0.78 0.59 0.10 0.83 0.82 0.63 0.15 0.84 0.83 0.63 0.13 0.79 0.72 0.53

To ensure impartial model performance evaluation, we selected targets from the most recent
two rounds of The Critical Assessment of protein Structure Prediction(CASP) for our test
set. Our evaluation focuses on monomer structures, although our approach can easily be ex-
tended to assess the quality of multimer structures. To obtain GDT-TS and LDDT scores
for predicted structures, we clipped the targets based on experimentally resolved native struc-
tures, discarding predicted structures with sequence lengths inconsistent with the native struc-
tures. Due to the excessive length of the sequence for target T1169 in CASP15, baseline
methods encountered inference difficulties, prompting us to exclude it from the test set. The
remaining target IDs included in the test set are summarized in Table 7. The original pre-
dicted structures for each target can be accessed through publicly available links: https:
//predictioncenter.org/download_area/CASP14/predictions and https://
predictioncenter.org/download_area/CASP15/predictions. We calculated
GDT-TS and LDDT scores using publicly available tools, which can be downloaded and installed
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from https://zhanggroup.org/TM-score/ and conda install -c bioconda
lddt, respectively.

Table 7: Target IDs in the Model Quality Assessment Test Set.

DATASETS Target ID List Total

CASP14

T1024, T1025, T1026, T1027, T1028, T1029, T1030, T1031, T1033,
T1035, T1036s1, T1037, T1039, T1040, T1041, T1042, T1043,
T1045s1, T1045s2, T1046s1, T1046s2, T1047s1, T1047s2, T1049,
T1051, T1053, T1055, T1056, T1057, T1058, T1059, T1060s2,
T1060s3, T1064, T1065s1, T1065s2, T1072s1, T1072s2, T1074,
T1076, T1082, T1089, T1090, T1091, T1092, T1093, T1094, T1095,
T1096, T1099

50

CASP15

T1104, T1120, T1133, T1159, T1169, T1119, T1121, T1123,
T1124, T1152, T1170, T1187, T1106s1, T1106s2, T1114s1, T1114s2,
T1114s3, T1129s2, T1134s1, T1134s2, T1137s1, T1137s2, T1137s3,
T1137s4, T1137s5, T1137s6, T1137s7, T1137s8, T1137s9

29

Evaluation metrics. When the native structure is known, there are multiple evaluation methods
that can measure the degree of similarity between the predicted structure and the native structure,
that is, the quality of the predicted structure. We predicted the GDT-TS score to evaluate the overall
quality of the model and the LDDT score to evaluate the quality of each residue in the absence of
the native structure. Root Mean Square Error and three statistical correlation coefficients, Pearsons
correlation r, Spearmans ρ, and Kendalls τ were used to evaluate the accuracy of the predicted score.

C.2 BINDING AFFINITY

Model architecture The change in binding affinity is calculated by the formula ∆∆G =
∆Gwild_type − ∆Gmutant. Given the assumption that the structure of wild-type and mutant struc-
tures does not undergo significant changes, we exclusively consider the single representations to
compute the change in binding affinity values, as shown below:

∆∆g = avg(Iψ(Linear(MLP(f iwm)−MLP(f imw))))) (3)

where I is the indicator function that equals 1 when i ∈ ψ, the set ψ represents the indices of mutant
residues. f iwm = concat(sLw,i, s

L
m,i), f

i
mw = concat(sLm,i, s

L
w,i), where sLm,i and sLw,i respectively

denote the single representations of the i-th wild-type and mutant residues in the final layer output.

Evaluation metrics. We utilize Pearson correlation coefficient (Rp) and Root Mean Square Error
(RMSE) as evaluation metrics to quantify the disparity between predicted binding affinity values and
ground-truth. The Pearson correlation coefficient assesses the degree of linear relationship between
prediction and ground-truth, with a value closer to 1 indicating a stronger linear relationship. On
the other hand, RMSE measures the average magnitude of deviations between predicted and ground-
truth, with a smaller value indicating higher prediction accuracy.

C.3 FOLD AND ENZYME-CATALYZED REACTION CLASSIFICATION

Model architecture We employ a straightforward linear layer as the classifier for our classification
task. we obtain the representation hL

i by processing the final single representation sLi through a fully
connected layer and an activation function, followed by normalization. The probability for each
individual category is computed using softmax(avg({hL

i }ni=1Wc + bc)), where {hL
i } signifies the

final single representation of the i-th residues, c represents the number of classes Wc denotes the
learnable parameter matrix, and bc stands for the bias term. In the fold classification task, c = 1195,
indicating 1195 identified folds. In the Enzyme-Catalyzed Reaction Classification task, c = 384,
representing 384 different Enzyme Commission numbers.
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Evaluation metrics. We assess the model’s classification performance using classification accu-
racy, which indicates the proportion of all predictions that are successfully classified into the correct
category.

C.4 PROTEIN DESIGN

Model architecture We utilize [MASK] to denote the residue types at each position. Leveraging
the structural encoder, we transmit the backbone structural information to the single representation.
Subsequently, we apply a task layer, similar to the one used in classification tasks, to predict the
residue types, with c indicating the size of the residue type dictionary.

Evaluation metrics. For evaluating protein sequence generation tasks, we employ perplexity and
Amino Acid Recovery(AAR) as evaluation metrics. Perplexity quantifies the model’s uncertainty
during sequence generation, where lower perplexity values signify closer alignment between the
model’s predictions and the native sequence. Amino Acid Recovery measures the proportion of
amino acids in the generated sequence that match the target sequence. A higher Amino Acid Recov-
ery indicates a higher similarity between the model’s generated sequence and the target sequence,
which reflects better performance of the model.

C.5 ANTIBODY DESIGN

Model architecture Apart from generating sequences for the Complementarity-Determining Re-
gions(CDRs), we introduce the structure module to predict the structure of regions with unknown
sequences. We undertake work in two primary areas: sequence-structure co-design and antigen-
specific antibody design.

• Sequence-Structure Co-design Task. Our primary focus is on the antibody’s heavy chain. As
an example, for the design of CDR-H3, we renumber the antibody heavy chain using the IMGT
to precisely locate CDR-H3 within the sequence. We mask the residues belonging to CDR-H3
and assign coordinates to these residues by taking the average of the Cα coordinates of the two
nearest residues outside this region. This process results in initial pair representations with noise.
Subsequently, we employ the pre-trained model to predict the residue types of CDR-H3. These
predictions, along with the updated pair representations, are fed into the structure module. We
use a combination of cross-entropy loss, smooth l1 loss and frame-aligned point error as the loss
functions for sequence generation and structure generation, with equal weighting 1:1:1.

• Antigen-Specific Antibody Design Task. We initially assess our capability to generate CDR-
H3 on the well-established Benchmark RAbD dataset. In this process, we introduce both the
antigen’s sequence and structural information while retaining the sequence and structural infor-
mation of the antibody heavy chain framework region. Notably, we assume that the relative
positions of the antigen and the antibody heavy chain are unknown, implying a lack of inter-
chain information. To construct the initial representations of the antibody-antigen complex, we
separately obtain single and pair representations for the antigen and the antibody heavy chain
using the pre-trained model. The single representations are concatenated to obtain the com-
plex’s single representation. For the complex’s pair representation, the positions along the di-
agonal (representing intra-chain information) are replaced with the pair representations of the
antigen and the antibody heavy chain. However, the positions along the anti-diagonal (represent-
ing inter-chain information) remain empty. Subsequently, we introduce a model identical to the
pre-training model to update the complex’s representation, thereby completing the inter-chain in-
formation. The updated complex representation is then input into the structure module to predict
the unknown structure of CDR-H3.

In fact, our approach can be straightforwardly extended to simultaneously predict all six CDRs
regions of antibody-antigen complexes, as demonstrated in Table 9, once the sequence and structural
information of the light chain variable region is introduced.

Baselines. Expanding our scope to encompass the design of antigen-specific binding antibodies,
we introduce an additional set of methodologies. Among these, we incorporate the physics-based
traditional approach RAbD (Adolf-Bryfogle et al., 2018). Furthermore, we integrate the hierarchical
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Table 8: Results of Antibody Design: Antigen Specific Design. The best and the runner-up results
are highlighted in bolded and underlined respectively.

Model AAR % ↑ RMSD ↓
RAbD (Adolf-Bryfogle et al., 2018) 28.6 -

LSTM (Saka et al., 2021; Akbar et al., 2022) 22.36 -
CondRefineGNN (Jin et al., 2022b) 33.2 -

HSRN (Jin et al., 2022a) 34.1 -
MEAN (Kong et al., 2023a) 36.77 1.81

dyMEAN (Kong et al., 2023b) 43.65 -

ProteiNexus 42.33 2.25

Table 9: One-shot generates results for the antibody design of six CDRs simultaneously.

Model CDR-L1 CDR-L2 CDR-L3 CDR-H1 CDR-H2 CDR-H3

dyMEAN 73.55 83.10 52.12 75.72 68.48 37.51
ProteiNexus 78.19 84.86 72.21 77.33 68.34 39.58

model HSRN (Jin et al., 2022a), tailor-made for antibody-antigen interface design. To enhance
the design of antibody heavy chains, MEAN, the end-to-end 3D equivariant model dyMEAN, and
diffusion-based model DiffAB not only consider antigen but also incorporate antibody light chain
information into the known conditions.

Evaluation metrics. We employ Amino Acid Recovery (AAR) and Root Mean Square Deviation
(RMSD) as key evaluation metrics to assess the quality of generated complementarity-determining
regions (CDRs). The AAR reflects the similarity between the generated CDR sequence and the
target sequence, quantifying the proportion of successfully recovered target amino acids within the
generated CDR, thereby capturing sequence-level quality. On the other hand, RMSD focus on the
spatial configuration of CDR structures. RMSD measures the average atomic coordinate deviation
between the generated CDR structure and the target structure.

D EXPERIMENTS DETAIL & REPRODUCE

D.1 DATASETS

Table 10 showcases the dataset statistics for both pre-training and downstream tasks, with data split-
ting principles primarily drawn from well-established benchmarks in the field. Further details are
provided below.

Pre-training. Our pre-training dataset is sourced from the Protein Data Bank (PDB) database,
encompassing all protein structure data released up until May 1st, 2023. We conduct rigorous data
filtering and cleaning, excluding elements such as RNA, DNA, small molecules, water molecules,
and heterogeneous residues from the PDB files. Additionally, we complete residues with missing
backbone atom coordinates. Subsequently, we randomly split the data into training and validation
sets in a 9:1 ratio. Although the objective of pre-training slightly differs from that of protein design,
we take extra measures to prevent potential data leakage. Specifically, we perform additional data
processing by creating a pre-training validation dataset composed of the CATH v4.2 test set and the
TS50 test set, while the remaining data is included in the training set. This supplementary processing
is intended for ablation experiments to confirm the absence of data leakage.

D.2 PRE-TRAINING IMPLEMENTATION DETAILS

For the two self-supervised tasks corresponding to pre-training, namely ’masked residue type predic-
tion’ and ’pair representation denoising’, we employ two distinct loss functions, specifically cross-
entropy loss and Smooth L1 loss. To facilitate effective model training, we combine these two loss
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Table 10: Dataset statistics for pre-train and downstream tasks.

DATASETS # TRAIN # VALID # TEST TASK

Pre-training 176401 19600 - -
Pre-training - Data Leakage 175395 19476 - -

Model Quality Assessment - CASP14 35,176 3,881 24,313 Regression
Model Quality Assessment - CASP15 35,176 3,881 13,260 Regression

Binding Affinity - S1131 907 111 111 Regression
Binding Affinity - S4169 3,341 414 414 Regression
Binding Affinity - S8338 6,680 829 829 Regression
Binding Affinity - M1101 824 102 102 Regression
Binding Affinity - M1707 1,150 143 143 Regression
Fold Classification - Fold 12,312 736 718 Classification

Fold Classification - Superfamily 12,312 736 1,254 Classification
Fold Classification - Famliy 12,312 736 1,272 Classification

Enzyme-Catalyzed Reaction Classification 29,215 2,562 5,651 Classification
Protein Design - CATH v4.2 18,024 608 1,120 Generation

Protein Design - TS50 18,024 608 50 Generation
Protein Design - TS50(canonical) 17,669 577 50 Generation

Antibody Design - CDR-H1 4,050 359 326 Generation
Antibody Design - CDR-H2 3,876 483 376 Generation
Antibody Design - CDR-H3 3,896 403 437 Generation

Antibody Design - RAbD 2,237 155 56 Generation

functions with equal weights of 1:1, constituting the overall loss function during the pre-training
phase. All models are trained on 8 NVIDIA A100 40GB GPUs. Additionally, further hyperparame-
ter configurations related to pre-training can be found in Table 11.

Table 11: Hyperparameters setup during pre-training

Hyperparameters Base Size

Layers 15
Hidden size 512
FFN hidden size 2048
Attention heads 4
Attention head size 128

Training epochs 500
Batch size 32
Adam ϵ 1e-12
Adam β (0.9, 0.82)
Peak learning rate 1e-4
Learning rate schedule polynomial
Warmup steps 5000

Gradient clip norm 1.0
Dropout 0.1
Weight decay 1e-4
Activation function GELU

Sequence crop size 256
Spatial crop ratio 0.5
Mask ratio (0.15, 0.5, 1.0)
Mask ratio probability (0.6, 0.2, 0.2)
Noise type N (0, 0.1), N (0, 1)
Noise probability (0.2, 0.8)
Vocabulary size (residue types) 24
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D.3 DOWNSTREAM TASK IMPLEMENTATION DETAILS

We previously mention an overview of the task layer and datasets used during the fine-tuning of
downstream tasks. Due to space constraints, we provide a more detailed exposition in this section.
Throughout the fine-tuning process for various downstream tasks, we train our models with a dropout
rate of 0.2 and a warm-up ratio of 0.06. All training is conducted on 8 NVIDIA V100 32GB GPUs.
Additionally, we summarize the differences among settings for different downstream tasks, as shown
in Table 12. Further details are presented below.

Table 12: Hyperparameters setup during fine-tuning.

Task Epoch Batch Size Learning Rate Loss
Model Quality Assessment 1 64 5e-4 MSE
Binding Affinity 100 16 3e-4 MSE
Fold Classification 100 32 5e-4 Cross entropy
Enzyme-Catalyzed Reaction Classification 100 32 5e-4 Cross entropy
Protein Design 20 64 1e-4 Cross entropy
Antibody Design 40 8 3e-4 Cross entropy & Smooth L1 loss & FAPE

E ABLATION STUDY

We conduct comprehensive ablation experiments to verify the effectiveness of each component of
the pre-trained model. Our primary focus lies in validating the results of these ablation experiments
through classification tasks and protein design. Initially, we scrutinize the most critical encoder
ablation to assess its effectiveness in structural representation. We delve into the effectiveness of pre-
training, exploring the influence of pre-training data and strategies. Lastly, we analyze the potential
existence of data leakage.

Table 13: The results of the ablation study. The first segment pertains to encoder ablation, while
the second segment corresponds to pre-training ablation. ✓signifies that the respective component
is enabled, while 7 indicates its deactivation. Metrics for the classification task are represented by
mean accuracy, whereas for protein design, validation is solely conduct on the CATH v4.2 test set
with metrics measured as AAR.

Modifications Results
Encoder Data Level Noise Type Pre-training Fold EC CATH

SPE Distance RPE Fold Sup Family

Experiment 1 7 ✓ ✓ backbone atoms mix ✓ 46.8 80.5 98.0 86.4 52.2
Experiment 2 ✓ 7 ✓ backbone atoms mix ✓ 51.9 81.7 98.0 86.1 40.8
Experiment 3 ✓ ✓ 7 backbone atoms mix ✓ 43.9 77.8 97.8 88.9 49.0
Experiment 4 7 7 ✓ backbone atoms mix ✓ 15.5 25.5 86.6 68.8 -

Experiment 5 7 ✓ ✓ Cα mix ✓ 48.5 79.7 98.1 88.2 43.7
Experiment 6 ✓ ✓ ✓ backbone atoms mix 7 17.1 25.7 85.1 46.9 32.1
Experiment 7 ✓ ✓ ✓ backbone atoms single ✓ 38.7 73.6 97.9 87.0 40.5

ProteiNexus ✓ ✓ ✓ backbone atoms mix ✓ 47.6 79.7 98.0 88.4 53.5

E.1 ENCODER ABLATION

While we consider spatial position encoding (SPE), distance encoding, and relative position en-
coding (RPE) for protein structure as an integrated whole, with each component playing a crucial
role, we conduct experiments 1-4 to assess their individual contributions, as presented in Table 13.
Initially, we disable each component separately for validation. Subsequently, we simultaneously
deactivate SPE and distance encoding, essentially depriving the model of its structural awareness
module. Therefore, we opt not to validate this configuration for protein design tasks. Experimental
results demonstrate that, despite the relatively low reliance on protein structure information in clas-
sification tasks, the removal of a robust structural representation encoder still significantly impacts
the results. This impact becomes more pronounced in tasks such as protein design that rely entirely
on structural representations.
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E.2 PRE-TRAINING ABLATION

Backbone atoms v.s Cα. We aim to validate the necessity of incorporating coordinates for back-
bone atoms. In experiment 5, we employ Cα atom coordinates to represent the positions of residues
and conduct the corresponding pre-training. It’s important to note that, given our sole reliance on
Cα atom coordinates, we cannot establish a local frame for each residue, so Spatial Position Encod-
ing is no longer utilized in these experiments to enhance structural information. The experimental
results underscore that the inclusion of backbone atom coordinates enriches the representation of
protein structures, providing crucial support for residue orientation and spatial positional informa-
tion, thereby enhancing the model’s performance in downstream tasks.

w pre-training v.s w/o pre-training. In Experiment 6, we conduct an assessment of the effects of
pre-training models on large-scale datasets. Acquiring labeled data can be a costly endeavor in many
tasks, and often there isn’t a sufficient amount of data available to support effective model training.
This limitation can hinder the model’s ability to generalize effectively. However, by pre-training on
extensive datasets, the model can learn more accurate representations, leading to improvements in its
performance. Comparative results between experiments with and without pre-training demonstrate
that this pre-training approach enables the model to better adapt to various tasks, thereby enhancing
its generalization capability and practicality.

Pre-training strategy. Furthermore, we delve into different pre-training strategies. We explore
two strategies: a single masking strategy and a mix noise strategy. Specifically, we randomly mask
15% of sequence residues and introduce noise uniformly distributed within the range of (-1,1) to
atom coordinates. Results demonstrate that the mixed training strategy was more conducive to fos-
tering interactions between one-dimensional sequence and three-dimensional structural information,
as well as enhancing the model’s capability to infer correct structural representations from contextual
information. In comparison to the single strategy, it exhibits superior performance.

E.3 DATA LEAKAGE

Pre-trained self-supervised tasks and downstream tasks in protein design are analogous. In com-
parison to tasks with additional data labels, concerns arise regarding potential data leakage. To
address this concern, we conduct a series of ablation studies to elucidate the situation. It’s worth
emphasizing that due to the fact that the binding of antibody-antigen complexes typically relies on
electrostatic interactions and has not undergone extended evolutionary processes, the impact of our
pre-trained model on antibody design tasks is relatively modest when trained on generic protein data.
In other words, even if we start training from scratch, we can achieve performance on par with what
we describe in the main text.

To investigate the impact of data leakage on protein design, we reprocess the pre-trained data, fol-
lowing the methodology outlined in section D.1. Our experimental results are presented in Table 14.
Notably, the removal of a small fraction of the pre-trained data has a substantial impact on the results,
suggesting the potential presence of data leakage in protein design. However, it is important to em-
phasize that during the fine-tuning stage, we incorporate a new prediction layer rather than utilizing
the layer responsible for predicting residue types from the pre-training, despite the fact that these
two layers share the same architecture. This implies that during the fine-tuning phase, we reacquire
the capability to map a single representation to residue types. Furthermore, judging by the extent of
the impact of data leakage on the CATH test set and TS50 test set, the deterioration in results is more
likely attributable to the removal of data that influenced the distribution of pre-training data. We will
conduct a comprehensive range of experiments to mitigate the effects arising from data distribution
imbalances.

Table 14: The results of ablation study on data leakage in protein design tasks.

Setting CATH TS50

Perplexity ↓ Recovery % ↑ Perplexity ↓ Recovery % ↑
Pre-training - Data Leakage 7.81 43.49 4.99 60.30

ProteiNexus 5.27 53.45 4.07 62.15
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