
Training Compute-Optimal Large Language Models

Jordan Hoffmann∗ Sebastian Borgeaud∗ Arthur Mensch∗ Elena Buchatskaya

Trevor Cai Eliza Rutherford Diego de Las Casas Lisa Anne Hendricks

Johannes Welbl Aidan Clark Tom Hennigan Eric Noland Katie Millican

George van den Driessche Bogdan Damoc Aurelia Guy Simon Osindero

Karen Simonyan Erich Elsen Oriol Vinyals Jack W. Rae Laurent Sifre∗

∗ Equal contributions

DeepMind
(sborgeaud|amensch|sifre)@deepmind.com

Abstract

We investigate the optimal model size and number of tokens for training a Trans-
former language model under a given compute budget. We find that current large
language models are significantly undertrained, a consequence of the recent focus
on scaling language models whilst keeping the amount of training data constant.
By training over 400 language models ranging from 70 million to over 16 billion
parameters on 5 to 500 billion tokens, we find that for compute-optimal training, the
model size and the number of training tokens should be scaled equally: for every
doubling of model size the number of training tokens should also be doubled. We
test this hypothesis by training a predicted compute-optimal model, Chinchilla, that
uses the same compute budget as Gopher but with 70B parameters and 4× more
more data. Chinchilla uniformly and significantly outperforms Gopher (280B),
GPT-3 (175B), Jurassic-1 (178B), and Megatron-Turing NLG (530B) on a large
range of downstream evaluation tasks. This also means that Chinchilla uses substan-
tially less compute for fine-tuning and inference, greatly facilitating downstream
usage. As a highlight, Chinchilla reaches a state-of-the-art average accuracy of
67.5% on the MMLU benchmark, greater than a 7% improvement over Gopher.

1 Introduction

A series of Large Language Models (LLMs) have recently been introduced [6, 30, 38, 48, 52], with the
largest dense language models now having over 500 billion parameters. These large autoregressive
transformers [53] have demonstrated impressive performance on many tasks using a variety of
evaluation protocols: zero-shot generalization, few-shot training, and as a basis for fine-tuning. The
compute and energy cost for training large language models is substantial [38, 52] and rises with
increasing model size. In practice, the allocated training compute budget is often known in advance:
practitioners have access to a certain number of accelerators for a given period of time. Since it

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

1017 1019 1021 1023 1025

FLOPs
10M

100M

1.0B

10B

100B

1T

Pa
ra

m
et

er
s

Approach 1
Approach 2
Approach 3
Kaplan et al (2020)

Chinchilla (70B)
Gopher (280B)
GPT-3 (175B)
Megatron-Turing NLG (530B)

Figure 1: Overlaid predictions. We overlay the predictions from our three different approaches, along
with projections from [23]. We find that all three methods predict that current large models should be
substantially smaller and therefore trained much longer than is currently done. In Figure A3, we show
the results with the predicted optimal tokens plotted against the optimal number of parameters for
fixed FLOP budgets. Chinchilla outperforms Gopher and the other large models (see Section 4.2).

Table 1: Current LLMs. We show five of the current largest dense transformer models, their size, and
the number of training tokens. Other than LaMDA [52], most models are trained for approximately
300 billion tokens. We introduce Chinchilla, a substantially smaller model, trained for much longer
than 300B tokens. Table A3 shows our projected optimal relation between model size and tokens.

Model Size (# Parameters) Training Tokens

LaMDA [52] 137 Billion 768 Billion
GPT-3 [6] 175 Billion 300 Billion
Jurassic [30] 178 Billion 300 Billion
Gopher [38] 280 Billion 300 Billion
MT-NLG 530B [48] 530 Billion 270 Billion

Chinchilla 70 Billion 1.4 Trillion

is typically only feasible to train these large models once, accurately estimating the best model
hyperparameters for a given compute budget is critical [51].

Kaplan et al. [23] showed that there is a power law relationship between the number of parameters
in an autoregressive language model (LM) and its performance (measured in evaluation perplexity).
One notable conclusion in [23] is that large models should not be trained to their lowest possible loss
to be compute optimal; they argue that model size should grow faster than the size of the training
set for a given increase of computational budget. As a result, the field has been training larger and
larger models while keeping the size of the training set to approximately 300 billion tokens, expecting
performance improvements (Table 1). While we find that there is effectively a trade-off between
model size and training set size, we estimate that large models should be trained for many more
training tokens than recommended by [23]. Specifically, given a 10× increase computational budget
we find that model size and the number of training tokens should be scaled in equal proportions.

In this work, we revisit the question: Given a fixed FLOPs budget,1 how should one trade-off model
size and the number of training tokens? To answer this question, we model the final pre-training
loss2 L(N,D) as a function of the number of model parameters N , and the number of training
tokens, D. Since the computational budget C is a deterministic function FLOPs(N,D) of the number
of seen training tokens and model parameters, we are interested in minimizing L under the constraint

1For example, knowing the number of accelerators and a target training duration.
2For simplicity, we perform our analysis on the smoothed training loss which is an unbiased estimate of the

test loss, as the number of training tokens is less than the number of tokens in the entire corpus.

2

FLOPs(N,D) = C:

Nopt(C), Dopt(C) = argmin
N,D s.t. FLOPs(N,D)=C

L(N,D). (1)

The functions Nopt(C), and Dopt(C) describe the optimal allocation of a computational budget C.
We empirically estimate these functions based on the losses of over 400 models, ranging from under
70M to over 16B parameters, and trained on 5B to over 400B tokens – with each model configuration
trained for several different training horizons. Our approach leads to considerably different results
than that of [23]. We highlight our results in Figure 1 and how our approaches differ in Section 2.

Based on our estimated compute-optimal frontier, we predict that for the compute budget used to
train Gopher, an optimal model should be 4 times smaller, while being training on 4 times more
tokens. We verify this by training a more compute-optimal 70B model, called Chinchilla, on 1.4
trillion tokens. Not only does Chinchilla outperform its much larger counterpart, Gopher, but its
reduced model size reduces inference cost considerably and greatly facilitates downstream uses on
smaller hardware. The energy cost of a large language model is amortized through its usage for
inference and fine-tuning. The benefits of a more optimally trained smaller model, therefore, extend
beyond the immediate benefits of its improved performance.

2 Related Work

Large language models. A variety of large language models have been introduced in the last few
years. These include both dense transformer models [6, 30, 48, 38, 52] and mixture-of-expert (MoE)
models [11, 12, 60]. The largest dense transformers have passed 500 billion parameters [48, 8]. The
drive to train larger and larger models is clear—so far increasing the size of language models has been
responsible for improving the state-of-the-art in many language modelling tasks. Nonetheless, large
language models face several challenges, including their overwhelming computational requirements
(the cost of training and inference increase with model size) [38, 52] and the need for acquiring more
high-quality training data. In fact, in this work we find that larger, high quality datasets will play a key
role in any further scaling of language models. Concurrent to our work, a 540 billion parameter model
trained on 768 billion tokens was released– PaLM [8]. While this model outperforms Chinchilla, it
uses approximately 5× the compute and is nearly 8× larger, making it more difficult to use.

Modelling the scaling behavior. Understanding the scaling behaviour of language models and their
transfer properties has been important in the development of recent large models [23, 18]. Kaplan
et al. [23] first showed a predictable relationship between model size and loss over many orders of
magnitude. The authors investigate the question of choosing the optimal model size to train for a
given compute budget. Similar to us, they address this question by training various models. Our
work differs from Kaplan et al. [23] in several important ways. First, the authors use a fixed number
of training tokens and learning rate schedule for all models; this prevents them from modelling the
impact of these hyperparameters on the loss. In contrast, we find that setting the learning rate schedule
to approximately match the number of training tokens results in the best final loss regardless of model
size—see Figure A1. For a fixed learning rate cosine schedule to 130B tokens, the intermediate loss
estimates (for D′ << 130B) are therefore overestimates of the loss of a model trained with a schedule
length matching D′. Using these intermediate losses results in underestimating the effectiveness
of training models on less data than 130B tokens, and eventually contributes to the conclusion that
model size should increase faster than training data size as compute budget increases. In contrast, our
analysis predicts that both quantities should scale at roughly the same rate. Secondly, we include
models with up to 16B parameters, as we observe that there is slight curvature in the FLOP-loss
frontier (see Appendix E)—in fact, the majority of the models used in our analysis have more than
500 million parameters, in contrast the majority of runs in [23] are significantly smaller—many being
less than 100M parameters. Clark et al. [9] specifically looked in to the scaling properties of Mixture
of Expert language models, showing that the scaling with number of experts diminishes as the model
size increases—their approach models the loss as a function of two variables: the model size and
the number of experts. However, the analysis is done with a fixed number of tokens, potentially
underestimating the improvements of branching.

Estimating hyperparameters for large models. The model size and the number of training tokens
are not the only two parameters to chose when selecting a language model and a procedure to train

3

1017 1018 1019 1020 1021 1022

FLOPS

2.0

2.5

3.0

3.5
4.0
4.5
5.0
5.5
6.0

Tr
ai

ni
ng

 lo
ss

75M

250M
500M
1B

2.5B
5B
10B

1017 1019 1021 1023 1025

FLOPs

109

1010

1011

1012

To
ke

ns

1.5T

1017 1019 1021 1023 1025

FLOPs

100M

1.0B

10B

100B

1T

Pa
ra

m
et

er
s

67B

Figure 2: Training curve envelope. On the left we show all of our different runs. We launched a
range of model sizes going from 70M to 10B, each for four different cosine cycle lengths. From these
curves, we extracted the envelope of minimal loss per FLOP, and we used these points to estimate the
optimal model size (center) for a given compute budget and the optimal number of training tokens
(right). In green, we show projections of optimal model size and training token count based on the
number of FLOPs used to train Gopher (5.76× 1023).

it. Other important factors include learning rate, learning rate schedule, batch size, optimiser, and
width-to-depth ratio. In this work, we focus on model size and the number of training steps, and
we rely on existing work and provided experimental heuristics to determine the other necessary
hyperparameters. Yang et al. [57] investigates how to choose a variety of these parameters for training
an autoregressive transformer, including the learning rate and batch size. McCandlish et al. [33] finds
only a weak dependence between optimal batch size and model size. Shallue et al. [46], Zhang et al.
[59] suggest that using larger batch-sizes than those we use is possible. Levine et al. [28] investigates
the optimal depth-to-width ratio for a variety of standard model sizes. We use slightly less deep
models than proposed as this translates to better wall-clock performance on our hardware.

Improved model architectures. Recently, various promising alternatives to traditional dense
transformers have been proposed. For example, through the use of conditional computation large
MoE models like the 1.7 trillion parameter Switch transformer [12], the 1.2 Trillion parameter GLaM
model [11], and others [1, 60] are able to provide a large effective model size despite using relatively
fewer training and inference FLOPs. However, for very large models the computational benefits
of routed models seems to diminish [9]. An orthogonal approach to improving language models is
to augment transformers with explicit retrieval mechanisms, as done by [4, 15, 29]. This approach
effectively increases the number of data tokens seen during training (by a factor of ∼ 10 in [4]). This
suggests that the performance of language models may be more dependant on the size of the training
data than previously thought.

3 Estimating the optimal parameter/training tokens allocation

We present three different approaches to answer the question driving our research: Given a fixed
FLOPs budget, how should one trade-off model size and the number of training tokens? In all three
cases we start by training a range of models varying both model size and the number of training
tokens and use the resulting training curves to fit an empirical estimator of how they should scale. We
assume a power-law relationship between compute and model size as done in [9, 23], though future
work may want to include potential curvature in this relationship for large model sizes. The resulting
predictions are similar for all three methods and suggest that parameter count and number of training
tokens should be increased equally with more compute —with proportions reported in Table 2. This
is in clear contrast to previous work on this topic and warrants further investigation.

3.1 Approach 1: Fix model sizes and vary number of training tokens

In our first approach we vary the number of training steps for a fixed family of models (ranging
from 70M to over 10B parameters), training each model for 4 different number of training sequences.
From these runs, we are able to directly extract an estimate of the minimum loss achieved for a given
number of training FLOPs. Training details for this approach can be found in Appendix D.

4

100M 300M 1B 3B 6B 30B
Parameters

2.0

2.2

2.4

2.6

2.8

3.0

3.2

Tr
ai

ni
ng

 L
os

s 6e18
1e19
3e19
6e19
1e20
3e20
6e20
1e21
3e21

1017 1019 1021 1023 1025

FLOPs

100M

1B

10B

100B

1T

Pa
ra

m
et

er
s

63B

1017 1019 1021 1023 1025

FLOPs
100M

1B

10B

100B

1T

10T

To
ke

ns

1.4T

Figure 3: IsoFLOP curves. For various model sizes, we choose the number of training tokens such
that the final FLOPs is a constant. The cosine cycle length is set to match the target FLOP count. We
find a clear valley in loss, meaning that for a given FLOP budget there is an optimal model to train
(left). Using the location of these valleys, we project optimal model size and number of tokens for
larger models (center and right). In green, we show the estimated number of parameters and tokens
for an optimal model trained with the compute budget of Gopher.

For each parameter count N we train 4 different models: each uses a different horizon (measured in
number of training tokens) over which we decay the learning rate by a factor of 10×; the range of
horizons varies by a factor of 16× for each parameter count. We smooth and linearly interpolate each
training loss curve. From this, we obtain a continuous mapping from FLOP count to training loss for
each run. We then determine which run achieves the lowest loss for each FLOP count. Using these
interpolants, we obtain a mapping from FLOP count C to the most efficient choice of model size Nopt

and number of training tokens Dopt such that FLOPs(Nopt, Dopt) = C.3 We apply this mapping onto
logarithmically spaced values of C and obtain many empirical triplets (Ci, Nopt,i, Dopt,i)i. Finally,
we fit power laws to these empirical data, estimating a and b such that Nopt ∝ Ca and Dopt ∝ Cb.
We find that a = 0.50 and b = 0.50—as summarized in Table 2. We perform a simple experiment for
early validating our analysis: given a budget of 1021 FLOPs, we compare the performance of training
a model with a size recommended by our analysis to training a model with a size suggested by the
analysis of [23]—using the model size we predict has a clear advantage (Section D.4).

3.2 Approach 2: IsoFLOP profiles

In our second approach we vary the model size for a fixed set of 9 different training FLOP counts
(ranging from 6× 1018 to 3× 1021 FLOPs), and consider the final training loss for each point. This
differs from the first approach that considers points (Ni, Di, Li)i along the entire training runs; the
data points are here scarcer but more representative of the performance of a fully trained model.

For each FLOP budget, we plot the final loss (after smoothing) against the parameter count in Figure 3
(left). In all cases, we ensure that we have trained a diverse enough set of model sizes to see a clear
minimum in the loss. We fit a parabola to each IsoFLOPs curve to directly estimate at what model
size the minimum loss is achieved (Figure 3 (left)). As with the previous approach, we then fit a
power law between FLOPs and loss-optimal model size and number of training tokens, shown in
Figure 3 (center, right). Again, we fit exponents of the form Nopt ∝ Ca and Dopt ∝ Cb and we find
that a = 0.49 and b = 0.51—as summarized in Table 2.

3.3 Approach 3: Fitting a parametric loss function

Lastly, we model all final losses from experiments in Approach 1 & 2 as a parametric function of
model parameter count and the number of seen tokens. Following a classical risk decomposition (see
Section D.2), we propose the following functional form

L̂(N,D) ≜ E +
A

Nα
+

B

Dβ
. (2)

The first term captures the loss for an ideal generative process on the data distribution, and should
correspond to the entropy of natural text. The second term captures the fact that a perfectly trained

3Note that all selected points are within the last 15% of training. Thus, when training a model over D tokens,
we should pick a cosine cycle length that decays 10× over approximately D tokens—see Appendix B.

5

1018 1019 1020 1021 1022 1023 Gopher
budget

Training FLOPs

100M

1B

10B

40B

100B

M
od

el
 si

ze

IsoLoss contours

Efficient frontier
Empirical data
IsoFLOPs slice

2.00

3.00

4.00

5.00

Lo
ss

100M 1B 10B 40B

Model size

IsoFLOPs slices

Train. FLOPs
6e+18
1e+19
3e+19
6e+19
1e+20
3e+20
6e+20
1e+21
3e+21
Gopher

Figure 4: Parametric fit. We fit a parametric modelling of the loss L̂(N,D) and display contour
(left) and isoFLOP slices (right). For each isoFLOP slice, we include a corresponding dashed line in
the left plot. In the left plot, we show the efficient frontier in blue, which is a line in log-log space.
Specifically, the curve goes through each iso-loss contour at the point with the fewest FLOPs. We
project the optimal model size given the Gopher FLOP budget to be 40B parameters.

transformer with N parameters underperforms the ideal generative process. The final term captures
the fact that the transformer is not trained to convergence, as we only make a finite number of
optimisation steps, on a sample of the dataset distribution.

Model fitting. To estimate (A,B,E, α, β), we minimize the Huber loss [19] between the predicted
and observed log loss using the L-BFGS algorithm [36]:

min
A,B,E,α,β

∑
Runs i

Huberδ
(
log L̂(Ni, Di)− logLi

)
(3)

We account for possible local minima by selecting the best fit from a grid of initialisations. The
Huber loss (δ = 10−3) is robust to outliers, which we find important for good predictive performance
over held-out data points. Section D.2 details the fitting procedure and the loss decomposition.

Efficient frontier. We approximate the functions Nopt and Dopt by minimizing the parametric
loss L̂ under the constraint FLOPs(N,D) ≈ 6ND [23]. The resulting Nopt and Dopt balance
the two terms in Equation (3) that depend on model size and data. By construction, they have a
power-law form. We show contours of the fitted function L̂ in Figure 4 (left), and the closed-form
efficient computational frontier in blue. From this approach, we find that a = 0.46 and b = 0.54—as
summarized in Table 2.

3.4 Optimal model scaling

We find that the three approaches, despite using different fitting methodologies and different trained
models, yield comparable predictions for the optimal scaling in parameters and tokens with FLOPs
(shown in Table 2). All three approaches suggest that as compute budget increases, model size and
the amount of training data should be increased in approximately equal proportions. The first and
second approaches yield very similar predictions for optimal model sizes, as shown in Figure 1 and
Figure A3. The third approach predicts even smaller models being optimal at larger compute budgets.
We note that the observed points (L,N,D) for low training FLOPs (C ≤ 1e21) have larger residuals
∥L− L̂(N,D)∥

2

2 than points with higher computational budgets. The fitted model places increased
weight on the points with more FLOPs—automatically considering the low-computational budget
points as outliers due to the Huber loss. As a consequence of the empirically observed negative
curvature in the frontier C → Nopt (see Appendix E), this results in predicting a lower Nopt than the
two other approaches.

6

Table 2: Estimated parameter and data scaling with increased training compute. The listed
values are the exponents, a and b, on the relationship Nopt ∝ Ca and Dopt ∝ Cb. Our analysis
suggests a near equal scaling in parameters and data with increasing compute which is in clear
contrast to previous work on the scaling of large models. The 10th and 90th percentiles are estimated
via bootstrapping data (80% of the dataset is sampled 100 times) and are shown in parenthesis.

Approach Coeff. a where Nopt ∝ Ca Coeff. b where Dopt ∝ Cb

1. Minimum over training curves 0.50 (0.488, 0.502) 0.50 (0.501, 0.512)
2. IsoFLOP profiles 0.49 (0.462, 0.534) 0.51 (0.483, 0.529)
3. Parametric modelling of the loss 0.46 (0.454, 0.455) 0.54 (0.542, 0.543)

Kaplan et al. (2020) [23] 0.73 0.27

In Table A3 we show the estimated number of FLOPs and tokens that would ensure that a model of a
given size lies on the compute-optimal frontier. Our findings suggests that the current generation of
large language models are considerably over-sized, given their respective compute budgets, as shown
in Figure 1. Furthermore, the amount of training data that is projected to be needed is far beyond
what is currently used to train large models, and underscores the importance of dataset collection
in addition to engineering improvements that allow for model scale. While there is significant
uncertainty extrapolating out many orders of magnitude, our analysis clearly suggests that given the
training compute budget for many current LLMs, smaller models should have been trained on more
tokens to achieve the most performant model. In Appendix C, we reproduce the IsoFLOP analysis on
two additional datasets: C4 [40] and GitHub code [38]. In both cases we reach the similar conclusion
that model size and number of training tokens should be scaled in equal proportions.

4 Chinchilla

Based on our analysis in Section 3, the optimal model size for the Gopher compute budget is
somewhere between 40 and 70 billion parameters. We test this hypothesis by training a model on the
larger end of this range—70B parameters—for 1.4T tokens, due to both dataset and computational
efficiency considerations. In this section we compare this model, which we call Chinchilla, to Gopher
and other LLMs. Both Chinchilla and Gopher have been trained for the same number of FLOPs
but differ in the size of the model and the number of training tokens. While pre-training a large
language model has a considerable compute cost, downstream fine-tuning and inference also make
up substantial compute usage [38]. Due to being 4× smaller than Gopher, both the memory footprint
and inference cost of Chinchilla are also smaller.

4.1 Model and training details

The full set of hyperparameters used to train Chinchilla are given in Table 3. Chinchilla uses the same
model architecture and training setup as Gopher with the exception of the differences listed below.

• We train Chinchilla on MassiveText (the same dataset as Gopher) but use a slightly different
subset distribution (Table A1) to account for the increased number of training tokens.

• We use AdamW [32] for Chinchilla rather than Adam [24] as this improves the language
modelling loss and the downstream task performance after finetuning.4

• We train Chinchilla with a slightly modified SentencePiece [25] tokenizer that does not
apply NFKC normalisation. The vocabulary is very similar– 94.15% of tokens are the same
as those used for training Gopher. We find that this particularly helps with the representation
of mathematics and chemistry, for example.

• Whilst the forward and backward pass are computed in bfloat16, we store a float32
copy of the weights in the distributed optimiser state [41]. See Lessons Learned from [38]
for additional details.

4A model trained with AdamW only passes the training performance of a model trained with Adam around
80% of the way through the cosine cycle, though the ending performance is notably better– see Figure A7

7

In Appendix G we show the impact of the various optimiser related changes between Chinchilla
and Gopher. All models in this analysis have been trained on TPUv3/TPUv4 [22] with JAX [5] and
Haiku [17]. We include a Chinchilla model card [35] in Table A13.

4.2 Results

We perform an extensive evaluation of Chinchilla, comparing against various large language models.
We evaluate on a large subset of the tasks presented in [38], shown in Table A6. As the focus of this
work is on optimal model scaling, we included a large representative subset, and introduce a few new
evaluations to allow for better comparison to other existing large models. The evaluation details for
all tasks are the same as described in [38].

Language modelling. Chinchilla significantly outperforms Gopher on all evaluation subsets of The
Pile [13], as shown in Figure A8. Compared to Jurassic-1 (178B) [30], Chinchilla is more performant
on all but two subsets– dm_mathematics and ubuntu_irc– see Table A7 for a raw bits-per-byte
comparison. On Wikitext103 [34], Chinchilla reaches 7.16 perplexity compared to 7.75 for Gopher.

MMLU. The Massive Multitask Language Understanding (MMLU) benchmark [16] consists of a
range of exam-like questions on academic subjects. In Table A8, we report Chinchilla’s average 5-
shot performance on MMLU (the full breakdown of results is shown in Table A9). On this benchmark,
Chinchilla significantly outperforms Gopher despite being much smaller, with an average accuracy
of 67.6% (improving upon Gopher by 7.6%). Remarkably, Chinchilla even outperforms the expert
forecast for June 2023 of 63.4% accuracy (see Table A8) [50]. Furthermore, Chinchilla achieves
greater than 90% accuracy on 4 different individual tasks– high_school_gov_and_politics,
international_law, sociology, and us_foreign_policy. To our knowledge, no other model
has achieved greater than 90% accuracy on a subset. In Figure A9, we show a comparison to Gopher
broken down by task.

Reading comprehension. On the final word prediction dataset LAMBADA [37], Chinchilla achieves
77.4% accuracy, compared to 74.5% accuracy from Gopher and 76.6% from MT-NLG 530B (see
Table 4). On RACE-h and RACE-m [27], Chinchilla greatly outperforms Gopher, improving accuracy
by more than 10% in both cases—see Table 4.

BIG-bench. We analysed Chinchilla on the same set of BIG-bench tasks [49] reported in [38].
Similar to what we observed in MMLU, Chinchilla outperforms Gopher on the vast majority of tasks
(see Figure A10). We find that Chinchilla improves the average performance by 10.7%, reaching an
accuracy of 65.1% versus 54.4% for Gopher. Full accuracy results can be found in Table A10.

Common sense. We evaluate Chinchilla on various common sense benchmarks: PIQA [3], SIQA
[45], Winogrande [44], HellaSwag [58], and BoolQ [10]. We find that Chinchilla outperforms both
Gopher and GPT-3 on all tasks and outperforms MT-NLG 530B on all but one task—see Table 5.
On TruthfulQA [31], Chinchilla reaches 43.6%, 58.5%, and 66.7% accuracy with 0-shot, 5-shot,
and 10-shot respectively. In comparison, Gopher achieved only 29.5% 0-shot and 43.7% 10-shot
accuracy. In stark contrast with the findings of [31], the large improvements (14.1% in 0-shot
accuracy) achieved by Chinchilla suggest that better modelling of the pre-training data alone can lead
to substantial improvements on this benchmark.

Closed-book question answering. Results on closed-book question answering benchmarks are
reported in Table A11. On the Natural Questions dataset [26], Chinchilla achieves new closed-book
SOTA accuracies: 31.5% 5-shot and 35.5% 64-shot, compared to 21% and 28% respectively, for
Gopher. On TriviaQA [21] we show results for both the filtered (previously used in retrieval and open-

Table 3: Chinchilla architecture details. We list the number of layers, the key/value size, the
bottleneck activation size dmodel, the maximum learning rate, and the training batch size (# tokens).
The feed-forward size is always set to 4× dmodel. Note that we double the batch size midway through
training for both Chinchilla and Gopher.

Model Layers Number Heads Key/Value Size dmodel Max LR Batch Size

Gopher 280B 80 128 128 16,384 4× 10−5 3M → 6M
Chinchilla 70B 80 64 128 8,192 1× 10−4 1.5M → 3M

8

Table 4: Reading comprehension. On RACE-h and RACE-m [27], Chinchilla considerably improves
performance over Gopher. Note that GPT-3 and MT-NLG 530B use a different prompt format than
we do on RACE-h/m, so results are not comparable to Gopher and Chinchilla. On LAMBADA [37],
Chinchilla outperforms both Gopher and MT-NLG 530B.

Chinchilla Gopher GPT-3 MT-NLG 530B

LAMBADA Zero-Shot 77.4 74.5 76.2 76.6
RACE-m Few-Shot 86.8 75.1 58.1 -
RACE-h Few-Shot 82.3 71.6 46.8 47.9

Table 5: Zero-shot comparison on Common Sense benchmarks. We show a comparison between
Chinchilla, Gopher, and MT-NLG 530B on various Common Sense benchmarks. We see that
Chinchilla matches or outperforms Gopher and GPT-3 on all tasks. On all but one Chinchilla
outperforms the much larger MT-NLG 530B model.

Chinchilla Gopher GPT-3 MT-NLG 530B Supervised SOTA

HellaSWAG 80.8% 79.2% 78.9% 80.2% 93.9%
PIQA 81.8% 81.8% 81.0% 82.0% 90.1%

Winogrande 74.9% 70.1% 70.2% 73.0% 91.3%
SIQA 51.3% 50.6% - - 83.2%
BoolQ 83.7% 79.3% 60.5% 78.2% 91.4%

book work) and unfiltered set (previously used in large language model evaluations). In both cases,
Chinchilla substantially out performs Gopher. On the filtered version, Chinchilla lags behind the
open book SOTA [20] by 7.9%. On the unfiltered set, Chinchilla outperforms GPT-3 (see Table A11).

5 Discussion & Conclusion

The trend so far in large language model training has been to increase the model size, often without
increasing the number of training tokens. The largest dense transformer, MT-NLG 530B, is now
over 3× larger than GPT-3’s 170 billion parameters from just two years ago. However, this model,
as well as the majority of existing large models, have all been trained for a comparable number
of tokens—around 300 billion. While the desire to train these mega-models has led to substantial
engineering innovation, we hypothesize that the race to train larger and larger models is resulting in
models that are substantially underperforming compared to what could be achieved with the same
compute budget.

We propose three predictive approaches towards optimally setting model size and training duration,
based on the outcome of over 400 training runs. All three approaches predict that Gopher is
substantially over-sized and estimate that for the same compute budget a smaller model trained on
more data will perform better. We directly test this hypothesis by training Chinchilla, a 70B parameter
model, and show that it outperforms Gopher and even larger models on nearly every measured
evaluation task.

Whilst our method allows us to make predictions on how to scale large models when given additional
compute, there are several limitations. Due to the cost of training large models, we only have two
comparable training runs at large scale (Chinchilla and Gopher), and we do not have additional
tests at intermediate scales. Furthermore, we assume that the efficient computational frontier can
be described by a power-law relationship between the compute budget, model size, and number of
training tokens. However, we observe some concavity in log (Nopt) at high compute budgets (see
Appendix E). This suggests that we may still be overestimating the optimal size of large models.
Finally, the training runs for our analysis have all been trained on less than an epoch of data; future
work may consider the multiple epoch regime. Despite these limitations, the comparison of Chinchilla
to Gopher validates our performance predictions, that have thus enabled training a better (and more
lightweight) model at the same compute budget.

9

Though there has been significant recent work allowing larger and larger models to be trained, our
analysis suggests an increased focus on dataset scaling is needed. Speculatively, we expect that
scaling to larger and larger datasets is only beneficial when the data is high-quality. This calls for
responsibly collecting larger datasets with a high focus on dataset quality. Larger datasets will require
extra care to ensure train-test set overlap is properly accounted for, both in the language modelling
loss but also with downstream tasks. Finally, training for trillions of tokens introduces many ethical
and privacy concerns. Large datasets scraped from the web will contain toxic language, biases, and
private information. With even larger datasets being used, the quantity (if not the frequency) of such
information increases, which makes dataset introspection all the more important. Chinchilla does
suffer from bias and toxicity but interestingly it seems less affected than Gopher (see Appendix I)..
Better understanding how performance of large language models and toxicity interact is an important
future research question.

While we have applied our methodology towards the training of auto-regressive language models, we
expect that there is a similar trade-off between model size and the amount of data in other modalities.
As training large models is very expensive, choosing the optimal model size and training steps
beforehand is essential. The methods we propose are easy to reproduce in new settings.

Acknowledgments and Disclosure of Funding

We’d like to thank Jean-baptiste Alayrac, Kareem Ayoub, Chris Dyer, Nando de Freitas, Demis
Hassabis, Geoffrey Irving, Koray Kavukcuoglu, Nate Kushman and Angeliki Lazaridou for useful
comments on the manuscript. We’d like to thank Andy Brock, Irina Higgins, Michela Paganini,
Francis Song, and other colleagues at DeepMind for helpful discussions. We are also very grateful to
the JAX and XLA team for their support and assistance.

References
[1] M. Artetxe, S. Bhosale, N. Goyal, T. Mihaylov, M. Ott, S. Shleifer, X. V. Lin, J. Du, S. Iyer,

R. Pasunuru, G. Anantharaman, X. Li, S. Chen, H. Akin, M. Baines, L. Martin, X. Zhou, P. S.
Koura, B. O’Horo, J. Wang, L. Zettlemoyer, M. Diab, Z. Kozareva, and V. Stoyanov. Efficient
Large Scale Language Modeling with Mixtures of Experts. arXiv:2112.10684, 2021.

[2] E. M. Bender, T. Gebru, A. McMillan-Major, and S. Shmitchell. On the dangers of stochastic
parrots: Can language models be too big? In Proceedings of the ACM Conference on Fairness,
Accountability, and Transparency, 2021.

[3] Y. Bisk, R. Zellers, J. Gao, Y. Choi, et al. PIQA: Reasoning about physical commonsense in
natural language. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34,
2020.

[4] S. Borgeaud, A. Mensch, J. Hoffmann, T. Cai, E. Rutherford, K. Millican, G. van den Driessche,
J.-B. Lespiau, B. Damoc, A. Clark, D. de Las Casas, A. Guy, J. Menick, R. Ring, T. Hennigan,
S. Huang, L. Maggiore, C. Jones, A. Cassirer, A. Brock, M. Paganini, G. Irving, O. Vinyals,
S. Osindero, K. Simonyan, J. W. Rae, E. Elsen, and L. Sifre. Improving language models by
retrieving from trillions of tokens. In Proceedings of the International Conference on Machine
Learning, 2021.

[5] J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson, C. Leary, D. Maclaurin, G. Necula, A. Paszke,
J. VanderPlas, S. Wanderman-Milne, and Q. Zhang. JAX: composable transformations of
Python+NumPy programs. 2018. URL http://github.com/google/jax.

[6] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan,
P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan, R. Child,
A. Ramesh, D. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray,
B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever, and D. Amodei. Lan-
guage models are few-shot learners. In Advances in Neural Information Processing Systems,
2020.

[7] S. Bubeck. Convex Optimization: Algorithms and Complexity. Foundations and Trends in
Machine Learning, 8(3-4):231–357, 2015.

10

[8] A. Chowdhery, S. Narang, J. Devlin, M. Bosma, G. Mishra, A. Roberts, P. Barham, H. W.
Chung, C. Sutton, S. Gehrmann, et al. PaLM: Scaling language modeling with pathways.
arXiv:2204.02311, 2022.

[9] A. Clark, D. d. l. Casas, A. Guy, A. Mensch, M. Paganini, J. Hoffmann, B. Damoc, B. Hechtman,
T. Cai, S. Borgeaud, G. v. d. Driessche, E. Rutherford, T. Hennigan, M. Johnson, K. Millican,
A. Cassirer, C. Jones, E. Buchatskaya, D. Budden, L. Sifre, S. Osindero, O. Vinyals, J. Rae,
E. Elsen, K. Kavukcuoglu, and K. Simonyan. Unified scaling laws for routed language models.
In Proceedings of the International Conference on Machine Learning, 2022.

[10] C. Clark, K. Lee, M.-W. Chang, T. Kwiatkowski, M. Collins, and K. Toutanova. BoolQ:
Exploring the surprising difficulty of natural yes/no questions. In Proceedings of the Conference
on Empirical Methods in Natural Language Processing, pages 2924–2936, 2019.

[11] N. Du, Y. Huang, A. M. Dai, S. Tong, D. Lepikhin, Y. Xu, M. Krikun, Y. Zhou, A. W. Yu,
O. Firat, B. Zoph, L. Fedus, M. Bosma, Z. Zhou, T. Wang, Y. E. Wang, K. Webster, M. Pellat,
K. Robinson, K. Meier-Hellstern, T. Duke, L. Dixon, K. Zhang, Q. V. Le, Y. Wu, Z. Chen, and
C. Cui. GLaM: Efficient scaling of language models with mixture-of-experts. arXiv:2112.06905,
2021.

[12] W. Fedus, B. Zoph, and N. Shazeer. Switch transformers: Scaling to trillion parameter models
with simple and efficient sparsity. arXiv:2101.03961, 2021.

[13] L. Gao, S. Biderman, S. Black, L. Golding, T. Hoppe, C. Foster, J. Phang, H. He, A. Thite,
N. Nabeshima, S. Presser, and C. Leahy. The Pile: An 800GB dataset of diverse text for
language modeling. arXiv:2101.00027, 2020.

[14] S. Gehman, S. Gururangan, M. Sap, Y. Choi, and N. A. Smith. RealToxicityPrompts: Evaluating
neural toxic degeneration in language models. In Proceedings of the Conference on Empirical
Methods in Natural Language Processing, 2020.

[15] K. Guu, K. Lee, Z. Tung, P. Pasupat, and M.-W. Chang. REALM: retrieval-augmented language
model pre-training. In Proceedings of the International Conference on Machine Learning, pages
3929–3938, July 2020.

[16] D. Hendrycks, C. Burns, S. Basart, A. Zou, M. Mazeika, D. Song, and J. Steinhardt. Measuring
massive multitask language understanding. arXiv:2009.03300, 2020.

[17] T. Hennigan, T. Cai, T. Norman, and I. Babuschkin. Haiku: Sonnet for JAX. 2020. URL
http://github.com/deepmind/dm-haiku.

[18] D. Hernandez, J. Kaplan, T. Henighan, and S. McCandlish. Scaling laws for transfer.
arXiv:2102.01293, 2021.

[19] P. J. Huber. Robust Estimation of a Location Parameter. The Annals of Mathematical Statistics,
35(1):73–101, 1964.

[20] G. Izacard and E. Grave. Distilling knowledge from reader to retriever for question answering.
In International Conference on Learning Representations, 2020.

[21] M. Joshi, E. Choi, D. Weld, and L. Zettlemoyer. TriviaQA: A Large Scale Distantly Supervised
Challenge Dataset for Reading Comprehension. arXiv:1705.03551, 2017.

[22] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa, S. Bates, S. Bhatia,
N. Boden, A. Borchers, R. Boyle, P.-l. Cantin, C. Chao, C. Clark, J. Coriell, M. Daley, M. Dau,
J. Dean, B. Gelb, T. V. Ghaemmaghami, R. Gottipati, W. Gulland, R. Hagmann, C. R. Ho,
D. Hogberg, J. Hu, R. Hundt, D. Hurt, J. Ibarz, A. Jaffey, A. Jaworski, A. Kaplan, H. Khaitan,
D. Killebrew, A. Koch, N. Kumar, S. Lacy, J. Laudon, J. Law, D. Le, C. Leary, Z. Liu, K. Lucke,
A. Lundin, G. MacKean, A. Maggiore, M. Mahony, K. Miller, R. Nagarajan, R. Narayanaswami,
R. Ni, K. Nix, T. Norrie, M. Omernick, N. Penukonda, A. Phelps, J. Ross, M. Ross, A. Salek,
E. Samadiani, C. Severn, G. Sizikov, M. Snelham, J. Souter, D. Steinberg, A. Swing, M. Tan,
G. Thorson, B. Tian, H. Toma, E. Tuttle, V. Vasudevan, R. Walter, W. Wang, E. Wilcox, and
D. H. Yoon. In-datacenter performance analysis of a tensor processing unit. In Proceedings of
the Annual International Symposium on Computer Architecture, page 1–12, 2017.

11

[23] J. Kaplan, S. McCandlish, T. Henighan, T. B. Brown, B. Chess, R. Child, S. Gray, A. Radford,
J. Wu, and D. Amodei. Scaling laws for neural language models. arXiv:2001.08361, 2020.

[24] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv:1412.6980, 2014.

[25] T. Kudo and J. Richardson. SentencePiece: A simple and language independent subword
tokenizer and detokenizer for neural text processing. arXiv:1808.06226, 2018.

[26] T. Kwiatkowski, J. Palomaki, O. Redfield, M. Collins, A. Parikh, C. Alberti, D. Epstein,
I. Polosukhin, M. Kelcey, J. Devlin, K. Lee, K. N. Toutanova, L. Jones, M.-W. Chang, A. Dai,
J. Uszkoreit, Q. Le, and S. Petrov. Natural questions: a benchmark for question answering
research. Transactions of the Association of Computational Linguistics, 2019.

[27] G. Lai, Q. Xie, H. Liu, Y. Yang, and E. Hovy. RACE: Large-scale ReAding comprehension
dataset from examinations. In Proceedings of the Conference on Empirical Methods in Natural
Language Processing, 2017.

[28] Y. Levine, N. Wies, O. Sharir, H. Bata, and A. Shashua. The depth-to-width interplay in
self-attention. arXiv:2006.12467, 2020.

[29] P. Lewis, E. Perez, A. Piktus, F. Petroni, V. Karpukhin, N. Goyal, H. Küttler, M. Lewis, W.-t.
Yih, T. Rocktäschel, S. Riedel, and D. Kiela. Retrieval-augmented generation for knowledge-
intensive nlp tasks. In Advances in Neural Information Processing Systems, 2020.

[30] O. Lieber, O. Sharir, B. Lenz, and Y. Shoham. Jurassic-1: Technical details and evaluation.
White Paper. AI21 Labs, 2021.

[31] S. Lin, J. Hilton, and O. Evans. TruthfulQA: Measuring how models mimic human falsehoods.
arXiv:2109.07958, 2021.

[32] I. Loshchilov and F. Hutter. Decoupled weight decay regularization. In International Conference
on Learning Representations, 2019.

[33] S. McCandlish, J. Kaplan, D. Amodei, and O. D. Team. An empirical model of large-batch
training. arXiv:1812.06162, 2018.

[34] S. Merity, C. Xiong, J. Bradbury, and R. Socher. Pointer sentinel mixture models. In Interna-
tional Conference on Learning Representations, 2017.

[35] M. Mitchell, S. Wu, A. Zaldivar, P. Barnes, L. Vasserman, B. Hutchinson, E. Spitzer, I. D. Raji,
and T. Gebru. Model cards for model reporting. In Proceedings of the Conference on Fairness,
Accountability, and Transparency, 2019.

[36] J. Nocedal. Updating Quasi-Newton Matrices with Limited Storage. Mathematics of Computa-
tion, 35(151):773–782, 1980.

[37] D. Paperno, G. Kruszewski, A. Lazaridou, Q. N. Pham, R. Bernardi, S. Pezzelle, M. Baroni,
G. Boleda, and R. Fernández. The LAMBADA dataset: Word prediction requiring a broad
discourse context. arXiv:1606.06031, 2016.

[38] J. Rae, S. Borgeaud, T. Cai, K. Millican, J. Hoffmann, F. Song, J. Aslanides, S. Henderson,
R. Ring, S. Young, E. Rutherford, T. Hennigan, J. Menick, A. Cassirer, R. Powell, G. van den
Driessche, L. A. Hendricks, M. Rauh, P.-S. Huang, A. Glaese, J. Welbl, S. Dathathri, S. Huang,
J. Uesato, J. Mellor, I. Higgins, A. Creswell, N. McAleese, A. Wu, E. Elsen, S. Jayakumar,
E. Buchatskaya, D. Budden, E. Sutherland, K. Simonyan, M. Paganini, L. Sifre, L. Martens, X. L.
Li, A. Kuncoro, A. Nematzadeh, E. Gribovskaya, D. Donato, A. Lazaridou, A. Mensch, J.-B.
Lespiau, M. Tsimpoukelli, N. Grigorev, D. Fritz, T. Sottiaux, M. Pajarskas, T. Pohlen, Z. Gong,
D. Toyama, C. de Masson d’Autume, Y. Li, T. Terzi, I. Babuschkin, A. Clark, D. de Las Casas,
A. Guy, J. Bradbury, M. Johnson, L. Weidinger, I. Gabriel, W. Isaac, E. Lockhart, S. Osindero,
L. Rimell, C. Dyer, O. Vinyals, K. Ayoub, J. Stanway, L. Bennett, D. Hassabis, K. Kavukcuoglu,
and G. Irving. Scaling language models: Methods, analysis & insights from training Gopher.
arXiv:2112.11446, 2021.

12

[39] J. W. Rae, A. Potapenko, S. M. Jayakumar, T. P. Lillicrap, K. Choromanski, V. Likhosherstov,
D. Dohan, X. Song, A. Gane, T. Sarlos, et al. Compressive transformers for long-range sequence
modelling. Advances in Neural Information Processing Systems, 2020.

[40] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li, and P. J.
Liu. Exploring the limits of transfer learning with a unified text-to-text transformer. Journal of
Machine Learning Research, 21(140):1–67, 2020.

[41] S. Rajbhandari, J. Rasley, O. Ruwase, and Y. He. Zero: Memory optimizations toward training
trillion parameter models. In International Conference for High Performance Computing,
Networking, Storage and Analysis, 2020.

[42] H. Robbins and S. Monro. A Stochastic Approximation Method. The Annals of Mathematical
Statistics, 22(3):400–407, Sept. 1951.

[43] R. Rudinger, J. Naradowsky, B. Leonard, and B. Van Durme. Gender bias in coreference
resolution. In Proceedings of the Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, 2018.

[44] K. Sakaguchi, R. Le Bras, C. Bhagavatula, and Y. Choi. Winogrande: An adversarial winograd
schema challenge at scale. In Proceedings of the AAAI Conference on Artificial Intelligence,
2020.

[45] M. Sap, H. Rashkin, D. Chen, R. LeBras, and Y. Choi. SocialIQA: Commonsense reasoning
about social interactions. Proceedings of the Conference on Empirical Methods in Natural
Language Processing, 2019.

[46] C. J. Shallue, J. Lee, J. Antognini, J. Sohl-Dickstein, R. Frostig, and G. E. Dahl. Measuring the
effects of data parallelism on neural network training. arXiv:1811.03600, 2018.

[47] J. W. Siegel and J. Xu. Approximation rates for neural networks with general activation
functions. Neural Networks, 128:313–321, 2020.

[48] S. Smith, M. Patwary, B. Norick, P. LeGresley, S. Rajbhandari, J. Casper, Z. Liu, S. Prab-
humoye, G. Zerveas, V. Korthikanti, E. Zhang, R. Child, R. Y. Aminabadi, J. Bernauer,
X. Song, M. Shoeybi, Y. He, M. Houston, S. Tiwary, and B. Catanzaro. Using Deepspeed and
Megatron to Train Megatron-turing NLG 530b, A Large-Scale Generative Language Model.
arXiv:2201.11990, 2022.

[49] A. Srivastava et al. Beyond the Imitation Game: Quantifying and extrapolating the capabilities
of language models. arXiv:2206.04615, 2022.

[50] J. Steinhardt. Updates and lessons from AI forecasting, 2021. URL https://
bounded-regret.ghost.io/ai-forecasting/.

[51] Y. Tay, M. Dehghani, J. Rao, W. Fedus, S. Abnar, H. W. Chung, S. Narang, D. Yogatama,
A. Vaswani, and D. Metzler. Scale efficiently: Insights from pre-training and fine-tuning
transformers. arXiv:2109.10686, 2021.

[52] R. Thoppilan, D. D. Freitas, J. Hall, N. Shazeer, A. Kulshreshtha, H.-T. Cheng, A. Jin, T. Bos,
L. Baker, Y. Du, Y. Li, H. Lee, H. S. Zheng, A. Ghafouri, M. Menegali, Y. Huang, M. Krikun,
D. Lepikhin, J. Qin, D. Chen, Y. Xu, Z. Chen, A. Roberts, M. Bosma, Y. Zhou, C.-C. Chang,
I. Krivokon, W. Rusch, M. Pickett, K. Meier-Hellstern, M. R. Morris, T. Doshi, R. D. San-
tos, T. Duke, J. Soraker, B. Zevenbergen, V. Prabhakaran, M. Diaz, B. Hutchinson, K. Ol-
son, A. Molina, E. Hoffman-John, J. Lee, L. Aroyo, R. Rajakumar, A. Butryna, M. Lamm,
V. Kuzmina, J. Fenton, A. Cohen, R. Bernstein, R. Kurzweil, B. Aguera-Arcas, C. Cui, M. Croak,
E. Chi, and Q. Le. LaMDA: Language models for dialog applications. arXiv:2201.08239, 2022.

[53] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and
I. Polosukhin. Attention is all you need. In Advances in Neural Information Processing Systems,
2017.

13

[54] L. Weidinger, J. Mellor, M. Rauh, C. Griffin, J. Uesato, P.-S. Huang, M. Cheng, M. Glaese,
B. Balle, A. Kasirzadeh, Z. Kenton, S. Brown, W. Hawkins, T. Stepleton, C. Biles, A. Birhane,
J. Haas, L. Rimell, L. A. Hendricks, W. Isaac, S. Legassick, G. Irving, and I. Gabriel. Ethical
and social risks of harm from language models. arXiv:arXiv:2112.04359, 2021.

[55] J. Welbl, A. Glaese, J. Uesato, S. Dathathri, J. Mellor, L. A. Hendricks, K. Anderson, P. Kohli,
B. Coppin, and P.-S. Huang. Challenges in detoxifying language models. In Findings of the
Association for Computational Linguistics: EMNLP, 2021.

[56] A. Xu, E. Pathak, E. Wallace, S. Gururangan, M. Sap, and D. Klein. Detoxifying language mod-
els risks marginalizing minority voices. In Proceedings of the Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies,
2021.

[57] G. Yang, E. J. Hu, I. Babuschkin, S. Sidor, X. Liu, D. Farhi, N. Ryder, J. Pachocki, W. Chen,
and J. Gao. Tuning large neural networks via zero-shot hyperparameter transfer. In Advances in
Neural Information Processing Systems, 2021.

[58] R. Zellers, A. Holtzman, Y. Bisk, A. Farhadi, and Y. Choi. HellaSwag: Can a machine
really finish your sentence? In Proceedings of the Annual Meeting of the Association for
Computational Linguistics, 2019.

[59] G. Zhang, L. Li, Z. Nado, J. Martens, S. Sachdeva, G. Dahl, C. Shallue, and R. B. Grosse.
Which algorithmic choices matter at which batch sizes? insights from a noisy quadratic model.
In Advances in Neural Information Processing Systems, 2019.

[60] B. Zoph, I. Bello, S. Kumar, N. Du, Y. Huang, J. Dean, N. Shazeer, and W. Fedus. Designing
effective sparse expert models. arXiv:2202.08906, 2022.

Checklist
1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes] The claims in the abstract describe the work clearly.

(b) Did you describe the limitations of your work? [Yes] We address limitations of our
work.

(c) Did you discuss any potential negative societal impacts of your work? [Yes] We have a
discussion both in a model card and in Appendix I.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [N/A] Results are

not theoretical.
(b) Did you include complete proofs of all theoretical results? [N/A] Results are not

theoretical/no proofs.
3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main ex-
perimental results (either in the supplemental material or as a URL)? [No] The code
and the data are proprietary. However, for the scaling methodology we provide clear
instructions on how to reproduce the results.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] We provided all training details and hyperparameters.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [No] Due to the cost of training large models, we do not have
multiple runs. However, the clear & predictable trends suggest the noise is very small.

(d) Did you include the total amount of compute and the type of resources used (e.g.,
type of GPUs, internal cluster, or cloud provider)? [Yes] All experiments are ran on
TPUv3/TPUv4 and this is stated in the text.

14

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] We cite the preexisting

work for all data/models that we use.
(b) Did you mention the license of the assets? [Yes] We use the same data as in Rae et al.

[38] which uses a proprietary dataset. We also show results with an open source dataset–
C4 ?].

(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]
We do not introduce new assets.

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [Yes]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [Yes] We include a model card which includes this
information.

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A] There was no human subjects or crowd sourcing in this work.
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A] There was no human subjects or crowd
sourcing in this work.

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A] There was no human subjects or crowd
sourcing in this work.

15

