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ABSTRACT

We study the alternating gradient descent-ascent (AItGDA) algorithm in two-
player zero-sum games. Alternating methods, where players take turns to update
their strategies, have long been recognized as simple and practical approaches for
learning in games, exhibiting much better numerical performance than their si-
multaneous counterparts. However, our theoretical understanding of alternating
algorithms remains limited, and results are mostly restricted to the unconstrained
setting. We show that for two-player zero-sum games that admit an interior Nash
equilibrium, AItGDA converges at an O(1/T') ergodic convergence rate when em-
ploying a small constant stepsize. This is the first result showing that alternation
improves over the simultaneous counterpart of GDA in the constrained setting.
For games without an interior equilibrium, we show an O(1/T) local convergence
rate with a constant stepsize that is independent of any game-specific constants. In
a more general setting, we develop a performance estimation programming (PEP)
framework to jointly optimize the AItGDA stepsize along with its worst-case con-
vergence rate. The PEP results indicate that AItGDA may achieve an O(1/T")
convergence rate for a finite horizon 7', whereas its simultaneous counterpart ap-

pears limited to an O(1/+/T) rate.

1 INTRODUCTION

No-regret learning is one of the premier approaches for computing game-theoretic equilibria in
multi-agent games. It is the primary method employed for solving extremely large-scale games,
and was used for computing superhuman poker Als (Bowling et al., 2015 [Morav¢ik et al.l [2017;
Brown & Sandholm, [2018};|2019), as well as human-level Als for Stratego (Perolat et al.,[2022) and
Diplomacy (FAIR et al.| [2022).

In theory it is known that no-regret learning dynamics can converge to a Nash equilibrium at a rate
of O(1/T) through the use of optimistic learning dynamics, such as optimistic gradient descent-
ascent or optimistic multiplicative weights (Rakhlin & Sridharan, |2013agb; Syrgkanis et al., [2015).
Nonetheless, the practice of solving large games has mostly focused on theoretically slower meth-
ods that guarantee only an O(1/ V/T) convergence rate in the worst case, notably the CFR regret
decomposition framework (Zinkevich et al., 2007) combined with variants of the regret matching
algorithm (Hart & Mas-Colell, [2000; |Tammelin} 2014; [Farina et al., [2021). A critical “trick” for
achieving fast practical performance with these methods is the idea of alternation, whereby the re-
gret minimizers for the two players take turns updating their strategies and observing performance,
rather than the simultaneous strategy updates traditionally employed in the classical folk-theorem
that reduces Nash equilibrium computation in a two-player zero-sum game to a regret minimization
problem in repeated play.

Initially, alternation was employed as a numerical trick that greatly improved performance (e.g.,
in [Tammelin et al.| (2015)), and was eventually shown not to hurt performance in theory (Farina
et all 2019; Burch et al.|, |2019). Yet its great practical performance begs the question of whether
alternation provably helps performance. The first such result in a game context (and more generally
for constrained bilinear saddle-point problems), was given by |Wibisono et al.| (2022), where they
show that alternating mirror descent with a Legendre regularizer guarantees O(Tl/ 3) regret, and
thus O(1/T2/3) convergence to equilibrium. This bound was later tightened by Katona et al.| (2024).
A Legendre regularizer is, loosely speaking, one that guarantees that the updates in mirror descent
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never touch the boundary. This is satisfied by the entropy regularizer, which leads to the multiplica-
tive weights algorithm, but not by the Euclidean regularizer in the constrained setting, and thus not
for alternating gradient descent-ascent (AltGDA). In practice, AItGDA often achieves better perfor-
mance than Legendre-based methods (Kroer, [2020), and the practically-successful regret-matching
methods are also more akin to GDA than multiplicative weights (Farina et al., 2021).

In spite of recent progress on alternation, it remains an open question whether AItGDA achieves a
speedup over simultaneous GDA for game solving, which is known to achieve O(1/+/T) conver-
gence. More generally, it is unknown whether any of the standard learning methods that touch the
boundary during play benefit from alternation. Empirically, there is evidence suggesting this may be
the case. For instance, [Kroer (2020) observed that the empirical performance of AItGDA exhibits
O(1/T) behavior on random matrix games. In this paper, we demonstrate that an O(1/7’) conver-
gence rate can be achieved in various settings, thereby providing the first set of theoretical results
supporting the success of AItGDA in solving games and constrained minimax problems.

Contributions. The contribution of this paper is three-fold.

* We show that AItGDA achieves a O(1/T) rate of convergence in bilinear games with an
interior Nash equilibrium. Our result shows that alternation is enough to achieve a O(1/T)
rate of convergence, whereas every prior result achieving a O(1/T) rate of convergence for
two-player zero-sum games required some form of optimism.

» We prove that AItGDA converges locally at an O(1/T) rate in any bilinear game. More-
over, in this case, we can set a constant stepsize that is independent of any game-specific
constant.

* By leveraging the techniques of performance estimation programming (PEP) framework,
we numerically compute worst-case convergence bounds for AItGDA by formulating the
problem as SDPs. We present the numerically optimal fixed stepsizes for each 7', and
the corresponding optimal worst-case convergence bounds. Our methodology is the first
instance of stepsize optimization of such performance estimation problems for primal-dual
algorithms involving linear operators.

2 RELATED WORK

AItGDA in unconstrained minimax problems. Bailey et al.| (2020) studied AItGDA in uncon-
strained bilinear problems, and showed an O(1/T') convergence rate. They also proposed a useful
energy function that is a constant along the AltGDA trajectory. Proving a O(1/T') convergence rate
is easier in the unconstrained setting, where the pair of strategies (0, 0) is guaranteed to be a Nash
equilibrium no matter the payoff matrix. More discussion is given in Section 5]

Zhang et al.|(2022) established local linear convergence rates for both unconstrained strongly-convex
strongly-concave (SCSC) minimax problems. [Lee et al.| (2024) studied AItGDA for unconstrained
smooth SCSC minimax problems. More recently, Feng et al.| (2025) studied AItGDA with momen-
tum in unconstrained smooth minimax problems.

AItGDA in constrained bilinear games. From the game theory context, the constrained setting is
more important, because it is the one capturing standard solution concepts such as Nash equilibrium.
Prior to our work, we are not aware of any theoretical results showing that alternation improves GDA
compared to the simultaneous algorithm in constrained minimax problems. See also|Orabonal(2019)
for an extended discussion of the history of alternation in game solving and optimization.

As a common technique in game-solving, alternation has been investigated in settings related to ours.
Mertikopoulos et al.|(2018)) showed that the continuous-time dynamics (in their Section A.2) achieve
an O(1/T) average regret bound. (Cevher et al. (2023)) study a novel no-regret learning setting that
captures the type of regret sequences observed in alternating self play in two-player zero-sum games.
They show a O(T'/3) no-regret learning result for a somewhat complicated learning algorithm for
the simplex, and show that O(log T') regret is possible when the simplex has two actions, through
a reduction to learning on the Euclidean ball, where they show the same bound. Hait et al.| (2025
generalize this result to any convex-concave zero-sum games. Recently, [Lazarsfeld et al.| (2025)

prove a lower bound of (1/+/T') for alternation in the context of fictitious play.
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Optimistic methods in constrained bilinear games. As mentioned earlier, it is well known that
an O(1/T) convergence rate can be achieved by certain variants of extragraidient methods (Kor-
pelevich, [1976) and optimistic GDA (Popovl |1980) (here simply called optimistic methods). For
constrained bilinear games, the O(1/7") convergence rate has been established by a long line of
work for various optimistic methods, including Mirror-Prox (Nemirovski, 2004), Dual Extrapo-
lation (Nesterov, 2007), Primal-Dual Hybrid Gradient (Chambolle & Pockl 2011), Accelerated
Primal-Dual (Chen et al. |2014), and Adaptive Mirror-Prox (Antonakopoulos et al., 2019), among
others. We emphasize that AItGDA is not theoretically superior to optimistic methods in general;
rather, it is an appealing algorithmic choice that is widely used in practice.

PEP for primal-dual algorithms. There has been prior work using the SDP-based PEP framework
to evaluate the performance of primal-dual algorithms involving a linear operator with known step-
size (Bousselmi et al., 2024} |Zamani et al.,|2024; Krivchenko et al.,[2024), but they do not investigate
optimizing the stepsize to get the best convergence bound. [Das Gupta et al.|(2024); Jang et al.|(2023)
proposed for optimizing stepsizes of first-order methods for minimizing a single function or sum of
two functions, by using spatial branch-and-bound based frameworks. Unfortunately such frame-
works can become prohibitively slow when it comes to optimizing primal-dual algorithms because
of additional nonconvex coupling between the variables in the presence of the linear operator.

Notation. For vectors a,b € R? we write a'b or (a, b) for the standard inner product and

lall = vaTa for the Euclidean norm. The spectral norm of a matrix A is denoted by || A2 =
Omax(A), where omax(A) represents the largest singular value of A. We use ||a||; and ||a||2 to
denote ¢; and /5 vector norms, respectively. Projection onto a compact convex set A" is denoted by
Ix(z) = argmin, ¢ y ||z — z||3. We write [d] = {1,...,d} for any positive integer d.

3 PRELIMINARIES

We consider bilinear saddle point problems (SPPs) of the form

. T
min max Az 1
TzEX ye)y 4 ’ M

where X C R™ and ) C R are compact convex sets and A is an n X m matrix. We are especially
interested in bilinear two-player zero-sum games (or matrix games), where X = A,, = {x € R’} |
diciri=1}andY = Ay, = {y € RT | 377", y; = 1} are the probability simplexes. In the
game context, Eq. (I)) corresponds to a game in which two players (called the z-player and y-player)
choose their strategies from decision sets A,, and A,,,, and the matrix A encodes the payoff of the y
player (which the x player wants to minimize).

We say (z*,y*) € A, x A,, is a Nash equilibrium (NE) or saddle point of the game if it satisfies
y Ax* < (y")TAzx* < (y") Az Ve A,ycA,,. )

By von Neumann’s min-max theorem (v. Neumann, [1928), in every bilinear two-player
zero-sum game, there always exists a Nash equilibrium, and a unique value v* :=
Migea, MaXyea,, Y AT = maxyea,, Mingea, y' Az which is called the value of the game.
Furthermore, the set of NE is convex, and v* = min;(A"y*); = max;(Az*);. We call an NE
(z*,y*) an interior NE if 7 > 0 for all i € [n] and y} > 0 for all j € [m)].

For a strategy pair (Z,9) € A, X A,,, we use the duality gap (or saddle-point residual) to measure
the proximity to NE:

DualityGap(Z,y) := (supyeAm y Az — QTA:E) + ('gTA:E — miEnAf QTAw)
= SUDgen, yea,, (¥ AZ— 7' Ax). (Duality Gap)

By definition, DualityGap(&,y) > O forany (&,y) € A, X A,,. Moreover, DualityGap(&,y) =
0 if and only if (&, g) is a Nash equilibrium.

For general bilinear SPPs as in Eq. , DualityGap(Z,y) = SUDgecx yecy (yTAd': — ngAa:). A
point (£,y) € X x Y is called an e-saddle point if DualityGap(Z,y) < €.
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Algorithm 1 Alternating Gradient Descent-Ascent (AItGDA)

input: Number of iterations 7', step size 7 > 0
initialize: (z°,y%) € X x Y
fort=0,...,7—1do

ot = Iy (x! — nATyt)

Yt =TIy(y" +nAzt)
end for
output: (37 2!, LS y)ex xY

AItGDA and SimGDA. For solving Eq. (I, the alternating and simultaneous GDA (AItGDA and
SimGDA) algorithms are simple and commonly used in practice. In AItGDA, the players take turns
updating their strategies by performing a single projected gradient descent update based on their
expected payoff for the current state. We state the AItGDA algorithm in Algorithm (1| In contrast,
SimGDA updates both players’ strategies simultaneously, using the expected payoff evaluated at the
previous state. Compared to Algorithm[I] the inner projected gradient descent takes the form

=Ty (z' —nATyY), o' =1y (y' + nAxh). (SimGDA Updates)

4 PERFORMANCE ESTIMATION PROGRAMMING FOR ALTGDA

In this section, we present a computer-assisted methodology based on the PEP framework (Drori &
Teboulle, |2014; Taylor et al.,|2017bja)) along with results on PEP with linear operators (Bousselmi
et al.| 2024) to compute the tightest convergence rate of AItGDA numerically.

Computing the worst-case performance with a known 7. We consider bilinear SPPs over com-
pact convex sets as described by (I). The worst-case performance (or complexity) of AltGDA
corresponds to the number of oracle calls the algorithm needs to find an e-saddle point. Equiva-
lently, we can measure AItGDA’s worst-case performance by looking at the duality gap of the aver-

aged iterates, i.e., DualityGap(4 > p_, @', = 3} y") = maxgexyey (¥ AL _ 2!) —
(+ Zle y') " Az), where {(z',y")}1<i<7 are generated by AItGDA with stepsize 7).

To keep the worst-case performance bounded, we need to bound the norm of A and the radii of the
compact convex sets X, ). In particular, without loss of generality, we assume o, (A) < 1. Let
R, and Ry be the radii of the sets X and ), respectively. Then, without loss of generality, we can
set R := max{R,, R,} = 1. This is due to a scaling argument: for any other finite value of R, the
new performance measure will be R? x (worst-case performances for R = 1).

Let A1tGDA(n, z°, y°) denote the sequence of iterates generated by Algorithm [1| with stepsize 1
starting from initial point (z°,y"). Then, we can compute the worst-case performance of AItGDA
with stepsize 1 > 0 and total iteration 7" by the following infinite-dimensional nonconvex optimiza-
tion problem:

- 1, T

maximize = Azt — (yh) T Az
{(@' y")}o<i<TCR"XR™, T ; (v ") A=)

XXYCR™ xR™ AER™*™ m,n€N.

Pr(n) = subjectto X is a convex compact set in R” with radius 1, (INNER)

Y is a convex compact set in R with radius 1,

CTmax(fq) S 1,

{(wta yt)}lgtST = AltGDA(U, a./.(]’ y0)7

(2°,9), (x,y) € X x V.

Problem is intractable because it contains infinite-dimensional objects such as X', Y, and
A where dimensions n, m are also variables. Nevertheless, for our setup, all possible iterates and
their associated gradients up to 7" can be captured by a finite collection of interpolation inequalities.
These inequalities fully encode the entire class of admissible instances, thereby allowing (INNER) to
be reduced to a finite-dimensional SDP, as elaborated in Appendix [E] This SDP is also free from the
dimensions n and m under a large-scale assumption. In other words, computing Pr(n) numerically
provides us a tight dimension-independent convergence bound for AItGDA for a given n and T'.
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Figure 1: Optimized stepsizes and corresponding optimized objective values for T' = 5,6, ...,50

via PEP. The left plot shows the optimized stepsizes. The optimized objective value in the right plot
denotes the worst-case performance measure (i.e., duality gap of the averaged iterates) correspond-
ing to the optimized stepsizes on log scale.

Best convergence rate with optimized 7. For a fixed T', the best convergence rate of AItGDA can
be found by solving P} = minimize, Pr(n). To solve this problem, we perform a grid-like search
on the stepsize 7 and solve the corresponding SDP for each of the finitely-many 7 choice:

* Step 1: Set an initial search range [Nmin, 7max);
» Step 2: Pick n points within this range such that their rec1procal is equally spaced ie.,n
T

1 _
candidate stepsizes S.t. Mmin =71 < -+ < P = Nmax and L T T = m T

 Step 3: Compute the worst-case performance corresponding to each candidate stepsize, and
denote the best stepsize as n*;

* Step 4: Set an updated search range: [min, Nmax| < [1)* — qlmex—ilmin p* 4 o dmex—imin |,

* Step 5: Repeat Step 2 and Step 4 until Jmax — Mmin < €p-

Here, Nmin, Mmax, 1, &, €, are hyperparameters to be fine-tuned. In our numerical experiments, we
setn = 20, = land g, = 1073; and fine-tuned 7pmin, Nmax based on different algorithms and
time horizon T'. Because the precision of the grid search ¢,, is not equal to exactly zero, we call our
computed stepsize to be optimized rather than optimal.

Results and discussion. See Fig. |l| for the optimized stepsizes and corresponding worst-case per-
formance. We also provide the data values to generate Fig. [I]in Appendix [E.]

From Fig. [Ta] we observe a structured sequence of optimized stepsizes for AItGDA. The origin of
this periodic optimized stepsize pattern is interesting in itself and worth exploring. Moreover, this
phenomenon indicates the possibility of improving the convergence rate by employing iteration-
dependent structured stepsize schedules in the minimax problems. Beyond this, we observe that the
decay rate of the stepsizes scales as O(1/(log T)%) for some @ > 0, which indicates that the optimal
convergence rate may hold with “nearly-constant” stepsizes. Fig.[Ib|shows that the optimized duality
gap approaches a O(1/T) convergence rate as T increases. This suggests that AItGDA obtains
a O(1/T) convergence rate after a short transient phase. This finding also raises an interesting
question about the origin of the initial convergence phase. In contrast, SimGDA exhibits a O(1/ \/T)
convergence rate, even with an optimized stepsize schedule.

The PEP literature provides us a potential solution to theoretically prove the tightest convergence
rate for a given algorithm (Drori & Teboulle, 2014; [Taylor et al.l [2017bga). A proof in this frame-
work requires discovering analytical solutions to the optimal dual variables of the underlying SDPs,
including proving semi-definiteness of the SDP matrices (Goujaud et al., 2023). For AltGDA, our
attempts at a proof via this route lead to us observing rather intricate optimal dual variable structures
that appear to make the proof difficult. As an alternative, we will show in the following sections
that more classical proof approaches, with some interesting variations, can be used to show O(1/T)
convergence in several settings.

'By taking non-equally spaced points, we place greater emphasis on exploring the range of smaller step
sizes.
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Figure 2: Numerical results on the rock-paper-scissor game. From left to right, we show the trajec-
tories of the AItGDA iterates (in ternary plots), the changes in duality gaps, and the evolution of the
energy functions.

5 O(1/T) CONVERGENCE RATE WITH AN INTERIOR NASH EQUILIBRIUM

In this section, we establish an O(1/T") convergence rate of AItGDA for bilinear two-player zero-
sum games that admit an interior NE. We begin by presenting the motivation and interpretation of
the proof, followed by a sketch of the formal proof.

5.1 MOTIVATION AND INTERPRETATION

We will start by presenting some new observations about the trajectory generated by AltGDA, which
is the inspiration for our proof. In contrast to the unconstrained setting (Bailey et al., 2020), the
iterates of AItGDA do not necessarily cycle from the beginning, even in the presence of an interior
NE. Fig. 2| shows the numerical behavior of AItGDA in the rock-paper-scissors game, which is
a bilinear game admitting an interior NE. The left plot shows that the trajectories of the players’
strategies exhibit two distinct phases. In the first phase, the orbit hits the boundary of the simplex
and is “pushed back” into its interior. In the second phase, the orbit settles into a state where it cycles
within the relative interior of the simplex and no longer touches the boundary.

We observe that this two-phase behavior can be captured by the following energy function with
respect to any interior NE (a*, y*) E]

E@',y') =" — "3+ ly' — y*[5 —n(y") " Az’. (Energy)

We plot the evolution of £(x?, y?) on the right of Fig. 2| Interestingly, we find a correspondence
between the “collision and friction” of the trajectory and the “energy decay” of £(x!,y*). In par-
ticular, the energy function admits a meaningful physical interpretation—it decays whenever the
trajectory collides with and rubs against the boundary of the simplex.

Moreover, in the middle of Fig. 2] we see the duality gap decreases slowly when the energy de-
creases, and shrinks at an O(1/7) rate after the energy function remains constant. This indicates
the connection between the energy function and the convergence rate of the averaged iterate, which
forms the foundation of our proof.

5.2 CONVERGENCE ANALYSIS

In classical optimization analysis, convergence guarantees are often established using some potential
function: one first establishes an inequality showing that the duality gap at an arbitrary iteration
is bounded by the change of a potential function plus some summable term, then telescopes this
inequality to obtain the convergence rate. In contrast, our proof works with an inequality involving
the duality gap at two successive iterates, as shown in the following lemma. The complete proofs in
this section are deferred to Appendix

*While the energy function is dependent on the stepsize 1, we write £(*, y) rather than £(n, =*, y*) to
reduce the notational burden.



Under review as a conference paper at ICLR 2026

Lemma 1. Let {(x',y")}1—0.1,... be a sequence of iterates generated by Algorithm withn > 0.

Then, for any (z,y) € A, X A, we have

n (yTAwt - (yt)TAiE) <@, y) — Yra(x,y) + 77<—ATyt , 't — ')

g2 fort > 1, 3)

1 1
et a2 Ly

n(y" Az — (y") T Az) < ¢u(@,y) — draa (@, y) + n( Az y' T —yf)

-5l

2 1
ettt — et -

Slly

. o, fort >0, @)

t+1 _yt‘

2 2 2
et — |3 + tly' —ylls + n(y) T Az and Py(z,y) = Lz’ —x|; +
ly* — v 5
2

where ¢i(x,y) :

1| t—1 2 _ 1
sl = -yl -3
The main challenge in the proof is determining whether the sum of the residual terms on the right-
hand sides of Eqgs. and are summable, i.e., Z:io r < 00 Where

- ::n<_ATyt’ 2t $t> +n<Awt+1 7 yt+1 . yt> . th—i-l . thz . Hyt+1 . ytuz
:<—77ATyt _ xt+1 + .’Bt, $t+1 _ .’Bt> 4 <,’7Axt+1 _ yt+1 4 yt’ yt+1 _ yt> (5)

In the unconstrained case, we have 7 = 0 for all ¢ > 0, and hence the O(1/T') convergence rate
follows directly. In contrast, in the constrained case, the first-order optimality conditions of the
projection operators imply that v, > 0. Therefore, it is not immediate whether 7; is summable. To
handle this, we exploit the connection between energy decay and the convergence rate of the duality
gap, as shown in Fig.[2] In particular, when an interior NE exists, we show that the residual r; can
be bounded by the decay of the energy function, as established in the following lemma.

Lemma 2. Assume that the bilinear game admits an interior NE. Let {(:Bt7 yt)}tzo’l,m be a se-

quence of iterates generated by Algorithm|l|\with n < ﬁ min{min;ep,) 27, min;ep, y;‘} Then,
2

we have 0 < ry < E(xt, y') — (2T, y' ™) forall t > 0.

By combining Lemmas [T] and [2] telescoping over ¢t = 0,1,...,T, and using the boundedness of
o,1, &, we obtain the O(1/T) convergence rate.

Theorem 1. Assume that the bilinear game admits an interior NE. Let {(:Bt7 yt)}tzoyl,m be a se-
quence of iterates generated by Algorithm|l|\with n < m min{min;ep,) 27, min;eg y;‘} Then,
2

we have DualityGap (% Zthl x!, £ Ethl yt) < 9-’_42#.

Theorem 1| provides the first finite regret and O(1/7") convergence rate result for AItGDA in con-
strained minimax problems. Although such a result has been known for several years in the uncon-
strained setting (Bailey et al.,[2020), no better than O(1/ VT ) convergence rate has been established
in the constrained case. Even for the broader class of alternating mirror descent algorithms, no in-
stantiations of the algorithm were known to achieve a O(1/T") convergence rate—despite having
been observed numerically (Wibisono et al., [2022} |Katona et al., |2024} Kroer, [2025)).

Although our primary goal is to develop the theoretical foundations for AltGDA, we also include
additional results relevant for practice in Appendix |C] For instance, we present an adaptive step-size
rule that does not require knowledge of the interior NE yet still achieves an O(1/T") convergence
rate in Appendix [C.2]

The trajectory of AItGDA exhibits more intricate behavior when the game does not have an interior
NE. As shown in Fig. [3] the trajectory tends to approach the face of the simplex spanned by the
NE with maximal support, which we refer to as the essential face. However, the trajectory does
not converge to the essential face monotonically—it can leave the face after touching it. This non-
monotonicity persists even after many iterations in our experiments, and, accordingly, the energy
may increase on some iterations. In this case, the difference of the energy no longer yields an upper
bound for r; as in Lemma[2]
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Figure 3: Numerical results on a 3 x 3 random matrix instance without an interior NE. The experi-
mental setup is the same as in Fig.

6 LocAL O(1/T) CONVERGENCE RATE

As previously discussed, our O(1/T') convergence rate only applies to games with an interior NE
due to non-monotonicity of the energy function in the general case. Nevertheless, even without an
interior NE, we show that in a local neighborhood of an NE, we can prove an O(1/T") convergence
rate with a constant stepsize. Notably, this stepsize is independent of any game-specific parameters.

Let (x*,y*) be a NE with maximal support. Then we first partition each player’s action set into
two subsets: [* = {i € [n] | #7 > 0} and [n] \ I"; J* = {j € [m] | y; > 0} and [m] \ J*, and
introduce the following parameter measuring the gap between the suboptimal payoffs to the optimal
payoff for both player
AT * i — * * _ (Ax*
¢ := min {Inin w, min w minz}, min y; } (6)

g Al aer (Al e T e

If the equilibrium has full support, then § > 0 is the minimum probability of any action played
in the full-support equilibrium. If there is no full-support equilibrium, then Mertikopoulos et al.
(2018, Lemma C.3) show that for a maximum-support equilibrium we have that 6 > 0. Define

Ty = mln{n ‘I*‘,n} Ty = mln{ ‘J I,m} and a local regio
nllAl nll Al
TQ'rz(s7 Jﬂé%{gyﬂ < 5 QTyé}.

The following lemma establishes a separation between the entries in I* and [n]\ I'*; J* and [m]\ J*.
The complete proofs in this section are deferred to Appendix

* * 5
5= {@v)le -2l < 5. Iy~ vl < 5. maxa <

Lemma 3. If the current iterate (x,y) € S, and the next iterate (x+,y™") is generated by Algo-
rithmwith the stepsize n < Q\Ii\\l , then we have (i) 3: > 2for allv € I* and yj VY 2> 2f()r

all j € J*; (ii) x] < x; foralli ¢ I* andyj < yjforall] ¢ J*
Next, we define an initial region'
1)
Sp 1= {(w,y)’”w —z*||, < 8 ly —y*|, < 3’ r%%xxl < grmé, r%%§yj < gryé} cS, (N

where ¢ = min{n|| 4|2, 192| T 192| 7 }. Also, for ease of presentation, we define a variant of the

energy function: V(z,y) = ||z — z*[3 + |y — y*[3 — n(y — y*) T A(z — =*)[| In the following
lemma, we prove that if we initialize AItGDA within Sy, then the sequence of iterates stays within
S. With this in hand, we can derive an upper bound for the cumulative increase of the energy V.

Lemma 4. Let {(x',y")}+>0 be a sequence of iterates generated by Algorithm |I| with stepsize
n < ﬁ and an initial point (x°,y°) € So. Then, the iterates {(x',y") }:>0 stay within the local
) >

region S. Furthermore, for any T > 0, we have ZtT:o V(@' gyt ) — V(xh, yh)) < 3502

3Note that the parameter § is invariant under scaling of the payoff matrix A.
*The last two constraints are redundant when |I*| = n or |J*| = m
> Again, we pick any NE with the maximum support if there are multiple.
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Figure 4: Numerical performances of AItGDA and SimGDA on 10 x 20 synthesized matrix games.

Combining this results with analogous inequalities as in Lemma [I} we obtain the local O(1/T)
convergence rate.

Theorem 2. Let {(x',y")}+>0 be a sequence of iterates generated by Algorithm |I| with stepsize
n < ﬁ and an initial point (z°,y°) € Sy, where S is defined in Eq. . Then, we have that
2

2
DualityGap (% Zthl x!, - Zthl yt) < 9+7"HA“$;(6 /128) ' \ohere § is defined in Eq. (El)

7 NUMERICAL EXPERIMENTS

We conduct numerical experiments to compare the performance of AItGDA and SimGDA on bilin-
ear matrix games, under a constant stepsize over a large time horizon.

We evaluate AltGDA and SimGDA on random matrix game instances. The payoff matrices are
generated from six distributions: uniform over [0, 1], uniform over integers in [—10, 10], binary
{0,1} with P(0) = 0.8, standard normal, standard lognormal, and exponential with location 0 and
scale 1. For each distribution, we generate instances of sizes 10 x 20, 30 x 60, and 60 x 120. All
algorithms are implemented with stepsize 7 = 0.01 and run for 7' = 10° iterations. We repeat
each experiment ten times, and we initialize the starting point randomly. We report the mean and
standard deviation across repeats at every iteration. Results on the 10 x 20 instances are shown
in Fig. 4] while the remaining figures are provided in Appendix [

The experimental results show that AItGDA achieves an O(1/T") convergence rate numerically, and
this rate is robust to the choice of the initial point. As consistently observed, the convergence is
slow in the early phase, which can be explained by the “energy decay” introduced in Section [3
In contrast, SImGDA fails to converge under a constant stepsize that is independent of the time
horizon. In Appendix[F.2] we test AItGDA with different stepsizes, demonstrating that the empirical
convergence rate scales linearly with 1 /7, which is roughly in agreement with Theorems|l|and

8 CONCLUSION

We establish the first result demonstrating AItGDA achieves faster convergence than its simultane-
ous counterpart in constrained minimax problems. In particular, we prove an O(1/T") convergence
rate of AItGDA in bilinear games with an interior NE, along with a local O(1/T") convergence rate
for arbitrary bilinear games. Moreover, we develop a PEP framework that simultaneously optimizes
the performance measure(s) and stepsizes, and we show that AItGDA achieves an O(1/T') conver-
gence rate for any bilinear minimax problem over convex compact sets when the total number of
iterations is moderately small.
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APPENDIX

A ADDITIONAL DETAILS ON FI1G.[21 AND Fi1G.[3

Since the behavior of AItGDA can differ depending on whether an interior NE exists, we examine the
behavior of AItGDA on two instances. In the rock-paper-scissors game which admits an interior NE,
we show the trajectory of AItGDA starting from the initial points zo = (1,0, 0) and yo = (0,1, 0).
For the game without interior NE, we generate a 3 X 3 matrix game whose payoff matrix is sampled
from the standard normal distribution with random seed 1. This matrix has a non-interior NE:
= (0,0.56,0.44), y* = (0.37,0.63,0). We initialize AtGDA from xo = yo = (1/3,1/3,1/3).

In both instances, we use a stepsize of n = 0.01, and we plot the evolution of the duality gap and
the energy function as defined in Eqs. (Duality Gap) and (Energy).

B OMITTED PROOFS IN SECTION[3]
We start by summarizing the notations used in Appendices [B|and |D|in Table

Table 1: Notation table

NOTATION EXPRESSION
0, n-dimensional all-zero vector
1, n-dimensional all-one vector
Ap, Ay ‘ Probab|il;%/nsimplices }fog z-player |a%(:i g—player \
AnyAm x e R" i:]_.l‘izl s yERm j:lyjzl
(z,y) An arbitrary pair of strategies in A,, x A,
(x*,y*) An arbitrary NE of the maximum support
xzt yt), Vt >0 A pair of iterates at the ¢-th iteration
P
i(x,y), ¥t >0 st = ally + 3y’ — vz + n(y )TAtﬂfl ,
i@, y), V> 1 glla’ —al3 + 5y — gl - 3l 112
I* {ze[n]|xf>0}
J* {je[m}|y§>0}
I Vt>0 {i € [n] | =} > 0}
JLVE>0 {jE[ ]ij>0}
& (z,y) lz — (I3 + [y — y*[I5 — nyTTAwt
V(z,y) le — 213+ lly — y*ll2 —n(y —y*) Az —z*)
Vi, V>0 V(wﬁy )
,Ut7 Vi>0 ATyt+Zz 1(A y)ll
ul, Yt >0 At — TiUatey
"}’t V>0 Oz, (wt—nAT t) —z' ! _ al4nui—gtt!
) = n - 7
t Oa,, (' +nAc™h) -yt gy gttty
)\t, Vt>0 7 = 7
7 Vt>0 MaX;en] Vi
AL VE>0 mMax;cm] Aj

Before the proof, we first show the following elementary inequalities that will be used later.
Lemma 5. Forany x, @’ € A,,y,y’ € A, we have

||93—w’\1g<2 ly =yll2<2
2 (y—y) ') < [|Allz]lz — ="[l2ly —y'll2 <
3 y' Az < ||AH

4 14T yllz < |A]l2 and || Az]l> < || All>

13
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Proof. The first item can be shown by [z —&'||2 < ||zll2 + ||Z']|2 < ||z|]1 + ||Z'||1 = 2, where the
last equality follows by @, ' € A,,; the y part can be done in the same way.

The second item follows from Cauchy-Schwarz inequality and the fact that because the vector
norm ||-||o is compatible with the matrix norm ||-||2 (Horn & Johnson, 2012, Theorem 5.6.2):
(y—y) Az —2') < |ly — ¥'ll2llA(@ — 2')[l2 < [[A]l2]= — «"[[[ly — ']|2. Then, the first
item implies the second one.

For the third item, for any © € A,,,y € A,,, we have

y' Az < 2 ATyll2 < [l ] A" yll2 = HATsz < HAH lylla < [[All2llyllx = 1 All2,

where (a) follows from Cauchy-Schwarz inequality, (b) follows because the vector norm ||-||2 is
compatible with the matrix norm ||-||» (Horn & Johnsonl 2012, Theorem 5.6.2), and the two in-
equalities hold because © € A, andy € A,,

The proof of the forth item is analogous to that of the second one: for any y € A,,, we have
AT yll2 < [[Allzllyllz < [|All2]lylli = || A2, where the first inequality follows by|Horn & Johnson
(2012}, Theorem 5.6.2) and the last inequality holds because y € A,,. Similarly, for any € A,,,
we have [|[Az(|y < [|Allzfl@]ls < [|All2]lz]l = [|A]l2- O

We start with the proof of LemmalT}

Lemma 1. Let {(z',y")}+—0.1,... be a sequence of iterates generated by Algorithm with > 0.
Then, for any (x,y) € A,, X A,,, we have

n(y'Az' — (y")T Az)

1 1
< el y) (@ y) Fn(-ATy' @ —at) — Sflet = at|; - Sy - o
Vi>1 (8
. (yTAxt—H B (yt+1)TAw)
1 1
< du(@.y) — duar(@,y) +n(AxtT YT -yt — Sl =t - Sy -y

Vi>0 (9

2 2
3llz’ — w||2 sy’ —ylz + n(y") " Az and i (z,y) = 5llz’ — | +

where ¢t(:c,yQ) =
sy = wlls — sy~ v

Proof of Lemmall] Consider any € X and y € ). By the property of the projection operators,
we have
<a:t —nATyt — !t gt - :c> >0,vVt>0

10)
<yt + Azt — gyttt y> >0, Vi =>0. (

Thus, we have
<wt gt gt w> > 77<ATyt7 it $>

_ 77<ATyt+1, $t+1 _ ZB> +7]<ATyt _ ATyt+1, mt+1 _ $>, (11)

(Y =y Yt —y) > —n(Az't Yt — ). (12)
Note that
2z’ —a'*!, & —2) = |’ — 2|, - ' — ', — [ ~ 2
20y =y oy =y =y =yl =y -y - v -l

and
<ATyt+1 , 2t :c> o <Awt+1 7 yt+1 - y> _ yTAthrl _ (yHl)TAm.
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Denote ¢ (z,y) = 1|’ — x|+ 1yt — yll> + n(ATy", ). Combining the above inequalities
and identities, we obtain Eq. ().

Similar to Eq. (I0), we have
<wt ATyt — @t gt $>

(y" ' +nAz' —y', y' —y)

Thus, we have

,r]<ATyt’mt+1_x>:n<ATyt’xt_m>+n<ATyt’mt+l_xt>’

Denote 1 (z,y) = 1|z’ — a:H; + 4yt - y||§ — 3|yt - yt’lﬂz. Combining the above two
inequalities, we obtain Eq. (3). O

Next, we proceed with proving Lemma[2] Before that, we present a few lemmas.

For any positive integer d, we denote Ay = {z € R? | 3¢ &; = 1}, which is the affine hull of
the probability simplex Ay. The following lemma connects the projection onto a simplex Ay with
the projection onto its affine hull.

Lemma 6. For any y € R, we have Ia, (y) = Ila, (I, (y)). Furthermore, for any x € Ay,
we have (v, la, (y) — x) > 0 where v :=1l5, (y) — Ila, (y).

Proof. Using the properties of projection onto a closed affine set (Bauschke & Combettes, 2017,

Corollary 3.22), we have ||x — y||§ = ||z -5, (y)HZ—I—HHAd (y) — sz forany € A,. Hence,
using the definition of projection,

Ma, (y) = argmin||@ — y|3 = argmin|j@ — 114, (y)||2 = [a, (T4, (¥)) .
xEAy xrEAY

Then, using the properties of projection onto a closed convex set again, we have

<H5d(y)—HAd(y),HAd(y)—w>20forany:c6Ad. O
Denote
I t_ pATyt) — g+l
ot e B (@ 7777 y) @ (13)

and
5 (yt + nAth) oyt

A= = ; (14)

The following lemma provides two useful inequalities involving v and ‘.

Lemma 7. Assume that the bilinear game admits an interior NE. Let {(x",y")}1—0,1,.. be a se-

quence of iterates generated by Algorithm|l|with n < m min{minie[n] T7, Minjig ] y;‘} Then,
2

the iterates of AltGDA satisfy

L (', & —x) >0, Ve € Ay and (', y'™ —y) >0, Vy € A,
2. (vt @t —x*) > 0and (N, y* —y*) > 0.

Proof. The first item directly follows from Lemma 6]

For the second item, we have

"t = atlly = |[Ta, (=" = nATy") = Ta, (@")]|2 < [l —nATy" — 2|2 <l A]2, (15
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where the first inequality is by the nonexpansiveness of the projection operator IIa, and the last
inequality follows by Lemma|5| As a result, z'™* — x* € B(0,,, n||A||2). Then, we have

<,7t’ SEt _ w*>
—(~', st _ 2+ (v, at — wt+1>
> (4", 2] —w*>+< 77||AH2|| — > by 21 — @' € B0, 1]l All2))

where the last inequality follows from the first item and

At
¥ +n||Alla—-— € B (w*,min{mlnxl, mln }) ﬂA CA,.

o] tHz i€l " jelm
Here, * + 17||A||2”77t|‘2 € A, is because >icin) v¢ = 0. Similarly, we can prove that

(At yt —y*) > 0. O

Recall that the energy function £ : A, XX A,,, — R is defined as

(‘: (wt7 yt) -

where (x*,y*) is any Nash equilibrium with full support. We now show this energy function is
non-increasing in ¢ in the following lemma.

§+ H t . n(yt)TAwt,

Lemma 8. Assume that the bilinear game admits an interior NE. Let {(x*,y")}+—0.1,... be a se-
quence of iterates generated by Algorithm|l|with n < m min{min;ep,) 27, minje yj} Then,
we have & (x'1,y'*1) < € (x',y") for all t > 0. In particular, we have for all t > 0

s (wt’yt) _ (wt+17yt+1> _ n<,7t, 2t gt 2w*> _’_n<>\t7 yt-i—l Tyt 2y*> >0. (17)

Proof. Because II5, (u+g) = u+g — é (lgg) 1, forany u € Ay and g € R? (Beck, 2017,
Lemma 6.26), we have

2 — T]ATyt 4+ 1 n Z AT t —
(18)
Y+l = gyt Azttt - % Z t+1 1, — nAL
j=1
Hence, we have
<$t+1_wt+77AT t_ﬂZé (ATyt)i'1n+777t, mt+1+mt_2w*> —0
(19)

(v =y —nAx £ LY (A LAy 4y 2y7) =0

Because (1, , '™ + xf — 22*) = (1,,, ¥ +y' —2y*) =0,and (a — b, a + b) = ||a|} —
||b]|3 for any vectors a, b, the above inequalities are equivalent to

2 t
2 H
_y*Hz_ ||yt_y*H§_,’7<Awt+l’yt+1+yt_2y*>+n<At’ yt+1+yt_2y*> —0.

(20)
Summing up the above two inequalities and plugging in the definition of energy function &£, we have

& (wt-i-l,yt-i-l) _£ (wtjyt) _ 277<A:B* 7 yt> + 277<ATy* 7 wt+1>
+a(y 2T et —22t) (N YTy - 2yT) =00 @D

t+1 §+n<ATyt’wt+1+wt_2$*>+n<,7t’wt+1+mt_2w*>:()

Ha: —x*

I
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Equivalently,
E(a"h y ) =& (2, y") + 21, — Ax*, ') + 2p(ATy" — 0L, 2T
+n(y', 2t 4+ at =22ty + (A YTyt —2y%) = 0. (22)

Note that y " Ax* < v* = (y*)TAz* < (y*) Az V x € A,,y € A, implies that Az* < v*1,,
and ATy* > v*1,,. Therefore, we have

g (wt+17yt+1) _ g (wt’yt) +77<7t7 wt-ﬁ-l +(Et _ 2w*> +7]<At, yt+1 +yt _ 2y*> S 0
That is,
g (ﬂ.’?t,yt) _ g ($t+1,yt+1) Z 77<,7t’ ZCt+1 +$t _ 2$*> —‘1-7’]<At , yt+1 +yt _ 2y*>

If additionally the game admits an interior NE, we have Az* = v*1,, and ATy* = v*1,,. There-
fore,

P (:Bt,yt) _< (wt+l,yt+l) _ n<,)/t7 ot gt 2:13*} _’_77<>‘t7 Yyt Lyt — 2y*>. (23)

Combining Eq. with Lemma [7] (whose second item requires the presence of an interior NE)
completes this lemma. O

Now, we are ready to prove Lemma[2] Recall that
ry :7;<—ATyt, 2t wt> +7)<A93t+1 Lyttt - yt> _ Hthrl _ th; _ Hyt+1 _ ytH;
:<_nATyt _ 33t+1 + mt7 33t+1 _ $t> + <7’]A(Et+1 _ yt+1 + yt7 yt+1 _ yt>

Lemma 2. Assume that the bilinear game admits an interior NE. Let {(x’, y*)}:—0,1,... be a se-
quence of iterates generated by Algorithmwith n < m min{min, e, 7, Min e 5 }- Then,
2

we have
0<r <&y — &y, vi>o.

Proof of Lemma[2] By Eq. and (1, , 2t — ') = (1,,,, y"™' — y') = 0, we have
WAy @ = o) — [0t — o2 = G, o)
7]<A$t+1,yt+1—yt>— Hyt—s-l_y H2:<77)\t7y _yt>7

On the other hand, we have

(it 2 ot — 22 — iyt 2t —at) = 20yt 2t —a*) > 0
(nAE, g™yt — 2y*) — (gAY, Yt — gyt = 2(nAt, Yt —y*) > 0,

where the inequalities follow from the second item in Lemma[7] Combining the above equalities
and inequalities yields

n<_ATyt’ 2t mt> _ thﬂ _ xt” <Tl’)’ ottt 2:1:*>
77<Aact+1, Yt yt> _ Hyt—H —y Hz < <,,7)\t’ Yt 4yt — 2y*>.

Summing up the two inequalities in Eq. (24), by Lemma(§] we obtain Lemma 2] O

(24)

Then, we arrive at the O(1/T) convergence rate.

Theorem 1. Assume that the bilinear game admits an interior NE. Let {(xf, y")}1—0,1,... be a se-
quence of iterates generated by Algorithmwith n < m min{min;ep,) 7, min; gy, y;‘} Then,
2

T
1 4n||A
DualltyGap< E Y E ) w (25)
t=1 t=1

we have
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Proof of Theorem[I} Summing up Eqgs. (3) and @), we have
n (yTAxt+1 . (ytJrl)TAm) + n (yTACCt . (yt)TA:L‘)
<éi(@,y) — dri1(x,y) + (@, y) — ey (T, y)
2 2
+p(Aettt gyt gty —p(ATyt, 2 — gt — et - et — [yt — v
By Lemma[2] we obtain that
n(y" Ae' T — (g T Az) + 1 (y " Aa' — (y") T Ax) <
Oe(,Y) — e (2, y) + Ye(w,y) — Ve (w,y) + & (2, 9") — € (a1, y") . (26)

Summing up Eq. 6) over t = 1,..., T plus Eq. (@) for ¢t = 0, we have
T

2772 TA:B )TA:I:) +7 (y—'—AwT'*'1 (yTtH T Ax)
t=1

<¢1(@,y) — dr1(®,y) + (2, y) — ra(@,y) + € (2 y') — € (=", y")
1 1
+oo(@.y) — dr(@,y) +nlAxt y' —y) St 20l - Syt -0
§¢0("B7y) - ¢)T+1(ma y) + 1/’1(“%2/) - ¢T+1($7y) +& (wlayl) =& (wT+17yT+1)
+n{Az, yt —y°).
This inequality gives the following upper bound:

T

T 1 ¢ t 1 ¢ t | T T Clz,y)
y A T;m - ?;y Ax = — Z Azt — )Am)§ T 27)

where

C(z,y) = ¢o(x, y) — dr+1(®,y) + Y1(x,y) — Yria(z,y) + € (°,9°) — € (2", 9" )
o 77<A€131 , yl o y0> - (yTA:BTJrl o (yTJrl)TA:B)
Ve, y € A, X Ay,

Forany € A,,,y € A,,, we can bound each term in C(x, y) as follows:

1 1
do(@,y) = 5[la" - z|2 + sl - yll2+n(y°) T Az < 4+ nl|Al2,

1 1
—pri1(T,y) = —§H$T“ —al, = 3l = yll, — n™ ) T Az < g4,
2 1 2
i (2, y) *Hw ||+ *Hyo—sz—*Hyl—yonS4v (28)
—ria(z,y) = || T ng *Hy +yH2 IIy“1 |5 <2,
€ (z%y") = )TA-’BO < 8+ 1A,
_£ (:BT+1,yT+1) — _H:BT+1 —2*|° = HyT+1 _ S + n(yT"'l)TAa:T"‘l < 77||A||2,

and —n(Az', y' —y°) —n(y Az — (yT )T Az) < 4n||Al|2, where all the inequalities
follow by Lemma [5| Therefore, we can bound C(x, y) by 18 + 8n||A||,. By taking the maximum
on the both sides of Eq. (Z7)), we complete the proof. O

C ADDITIONAL RESULTS IN SECTION [3]

In this section, we provide several additional results implied by our main results in Section[5]

First, we notice that in harmonic games (Candogan et al., 201 1)), the uniformly mixed strategy profile
is always a Nash equilibrium (Candogan et al.| 2011, Theorem 5.5.). Therefore, as a corollary
of Theorem [T} we have
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Corollary 1. In harmonic games, let {(x',y")}1—0.1, .. be a sequence of iterates generated by Al-

gorithmwith n < W min{%, %}, starting from any initial point within A,, X A,,. Then, the
2

duality gap of the averaged iterate converges with a rate of O(1/T).

C.1 “INTERIOR CYCLIC TRAJECTORIES” INDICATE INTERIOR NE

As an additional result, we show that we can detect the presence of interior NE via observing the
trajectories of AItGDA. In particular, the presence of “interior cyclic trajectories” indicates that the
game cannot admit non-degenerate non-interior NE.

Here, we adopt a strict definition of “interior cyclic trajectories.” Specifically, we call a trajectory
an interior cyclic trajectory if (1) it evolves along a periodic orbit, and (2) it remains strictly in the
interior of the simplices. Formally, we say AltGDA eventually exhibits an interior cyclic trajectory
if there exist 7', s > 1 such that

o (zt,y) = (x5, y!te) forall t > T,

e vt =0,and X! =0,, forall t > T}

« for any i € [n], there exists t; > T such that z'* > 0, and for any j € [m], there exists
t; > T such that y;J > 0.

A Nash equilibrium is non-degenerate if (Az*); < v* whenever y; = 0 and (ATy*); > v*
whenever &} = 0. With these notions, we present the following lemma.

Lemma 9. If AltGDA eventually exhibits an interior cyclic trajectory in a bilinear game, then there
cannot be any non-degenerate non-interior NE in the game.

Proof. We prove this lemma by contradiction. Suppose that there exists a non-degenerate non-
interior NE (z/,y'). Let £’ (x!, y') be the energy function defined w.r.t. (z’,y’) as in Eq. (Energy).
Recall that, without assuming an interior NE, we have Eq. (22)), i.e.,
&' ($t+17yt+1) g ((I)t,yt) + 277<V*1m . A:D/, yt> + 27]<ATy/ o V*ln, wt+1>
+n(y', 2t 2t —22') + (A, Yyt 4yt —2y) = 0. (29)
Given that v* = 0,,, A\t = 0,,, forall ¢t > T, and Az’ < v*1,, and ATy’ > v*1,,, we have
E ('t ytt) <& (2 y") VE>T.
Further, with a non-degenerate non-interior NE there has to be at least an 7’ or j' such that

(ATy")ir > v* or (Az');; < v*. Because of the third items in the definition of “interior cyclic
trajectory”, there has to be at least one iteration per period in which

n(w*l, — Az’ y") +n(ATy — 1, , ') > 0.
Then, by the second item in the definition of interior cyclic trajectory, we obtain that
& (:ct,yt) <& (mt“,y”s) Vi>T,
which contradicts the first item in the definition of interior cyclic trajectory. O

C.2 AN ADAPTIVE STEPSIZE RULE WITHOUT KNOWING THE NE

In this subsection, we design an adaptive stepsize rule that searches for an admissible stepsize. With
this rule, even without knowing any interior NE, we can still set up the AItGDA algorithm and
achieves O(1/T') convergence rate. Additionally, this rule allows us to start with an initial stepsize
that is potentially much larger than the theoretical one, therefore might lead to better performances in
practice. We present the AItGDA algorithm equipped with this adaptive stepsize rule in Algorithm[2}

Theorem 3. Assume that the bilinear game admits an interior NE. Let {(x',y")}1—0.1.... be a se-
quence of iterates generated by Algorithmwith an initial stepsize n° < m. Then, we have

I, 1w c
DualityG = b= < — 30
ualYaP(th_;fL’,T;y>_n*Ta (30)
where n* = mmin {minie[n] T}, mine ) y]*} (x*,y*) is any interior NE, and C =

[logy (n°/n*)] (9 + 51°[| All2) + (18 + 8n°||A][,).
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Algorithm 2 AltGDA with an adaptive stepsize rule

input: number of iterations 7', initial step size n° > 0
initialize: (z°,9%) € X x Y, nt =10 < m, rsum = 0
fort=0,...,T—1do

2! = My (z! — gt ATyt

Yt =TIy (y' + ' Az't)

Compute ; via Eq. (§)

Tsum = Tsum + 7't

if rsum > 8 + 21°|| A||2 then

ntJrl — nt/2
rsum = 0
else
77t+1 =t
end if
end for

T T
output: (>, @', +>, Yy )eX xY

Proof. First, note that the stepsizes are monotonically non-increasing, thereby n* < 7" for all ¢ >
0. Second, if we are using an admissible stepsize, i.e., a stepsize 7 satisfying n < n*. Then,
by Lemma [2] the residual terms r, (defined in Eq. (5)) is summable and (by the same bounds as
in Eq. (28))
T
>, <€ y”) —E@TyTH) <8 4+ 20| Al

Next, we denote t;, as the k-th time point at which the stepsize shrinks (by 1/2). We call the iterations
from 0 to ¢; — 1 (inclusively) as the O-th epoch, and the iterations from ¢, to ¢54; — 1 (inclusively) as
the k-th epoch for k = 1,2, . ... Let n* denote the stepsize across the k-th epoch. Let K denote the
total number of stepsize shrinkage before we find an admissible stepsize, i.e., n’* = 7 < n*. It then
follows that K < [log, (n°/n*)] and the final stepsize /) > n* /2. Then, we consider the following
two cases:

(the first case) For all k < K — 1, i.e., for all k such that 77’f > n*, we have

thy1—1

2 Y nf(y" Az - (y') Ax)

t=ty
_ ,]714: (,yTAwtk _ (ytk)TAw) +77k (yTAwt]H,l _ (ytk+1)TAw)
:Ztk+1—1 T}k (yTAwt o (yt)TA:I:) + nk (yTAwt+1 o (,ytJrl)TAw)

t=t
thr1—1
§7/1tk (:Bv y) - wtkﬂ (mv y) + d)tk (w7 y) - ¢tk+1 (w? y) + Zt:tk Tt (by Lemma@
SQ/% (:B, y) - wtk,+1 (:E, y) + (btk ((L’7 y) - ¢tk+1 (iL‘, y) + (8 + 2770||AH2) + 2(770)2”14”%
<10+ 20" All2 + (8 +20°[| All2) +2(1°)? (| Al13, 31)

where the last inequality follows by the similar bounds as in Eq. (28). To show the second to last
inequality, first by the stepsize shrinkage condition, we have the accumulated residual terms are at
most 8 + 21°|| A||2 + 7 where r; < 7 for all ¢. Then, we obtain 7 as follows:

Ty :nt<7ATyt7 2t mt> + nt<Amt+1 7 yt+1 . yt> . ||mt+1 . th; o ||yt+1 . ytHz
< ATy 2l = @+t AT ]ly" T — ol
< |AT Y 2]zt — ' ATy — @t [lo + 0t A fo]lyt + nf Az — Yt
<2(n')|| A3
<2(n°)?[| A3,
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where the last three inequalities follow by non-expansiveness, the forth item in Lemma and n* <
n° for all t > 0. It then follows by Eq. and the third item in Lemmathat

thy1—1
C C
Z (yTA:Bt - (yt)TA:c) < 7’2 <k
20~ T 2
t=ty,
where Cy = 10 + 20| All2 + (8 + 21°[| All2) + 2(n°)?[A[|5 + 4" || A2

(the second case) For k = K, ie., forall t > tx and ¢ = # < n*, the regret will remain finitely
bounded by the same proof as in the proof of Theorem|[I} Specifically, we have

T 0
> (y Azt — (") Ax) < Clay)  Cley) 18+ 804l

= 20— o n*

Let C = maxg—o.1,.. x Cr < 18+ 10n°||A]|2. Combining the two cases, we have

T 0 0 0
18 +1 A 18 +8n"||A
pat n 2n i

We completes the proof by dividing 7" and taking maximum over (x,y) € A, X A,, on the both
sides of Eq. (32). O

D OMITTED PROOFS IN SECTION [6]

In this section, we introduce some additional notations to facilitate the proof. We already define
I"={ie[n |2 >0}and J* = {j € [m] [ y; > 0} in Section Analogously, we denote
I'={ic[n] |z} >0}and J* = {j € [m] | y} > 0} forall t > 0. For conciseness, for any ¢ > 0,
we introduce the following vectors to denote the “projected” gradients for a pair of (z*, y*):

n Tt
vt = _ATyt + Ml
n

ut = At — 2= ATy
m

mny

(33)

Note that 3=, r,, vf = 3y v = 0. Recall that Iz, (u+g) = u +g — 3 (1;g) 14 for any
u € Agand g € R? (Beckl 2017, Lemma 6.26), thereby we have Iz (' — nATy') = ' + no'
and Iz, (y" +nAz'™) = y' + nu'*!. With v and u', we can also write the nonsmooth parts of
the iterate updates v and \! defined in Egs. and as follows:

. xt + m)t _ pttl
Ui
(34
N yt + 77,th+1 _ yt—&-l.
n
Additionally, we define B
7' = max~! and \' = max )\3 (35)
i€[n] J€[m]
In this convention, the update rule of Algorithm|l|can be expressed as
t+1 _ ot t t
x =z +nv —
n nmy (36)

Yt =yt £ quttl — At

We start the proof of the O(1/T") local convergence rate with the following lemma. This lemma
captures useful properties of v and A’.

Lemma 10. For any t > 0, we have v} = ' > 0 for all i € I'*! and N = X' > 0 for all
j € JUL. Furthermore, if vt < 0 for some i then |y} < |v!
L] < Juftl.

, similarly, zf)\§ < 0 for some j then
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Proof. Note that ny! = ' 4+nv' —1Ia, (z'+nv'). By the first-order optimality of the minimization
problem corresponding to IIa , there exists a unique 7 such that act“ = max{z! + nv! — 7,0} for
all ¢ € [n] (See, e.g., Page 77 in|Held et al.|(1974))). Note that 7 > 0 because

1= Z aitt = Z max{z! + nv! — 7,0} > Z (zf+nvf —7) =1—nr,
1€[n] 1€[n] i€[n]

where we have used Z jvi = 0. It follows that 1y; = x + nv; — max{z} + nv; — 7,0} <

1€[n]
xt + ot — (2t + ot — 1) = 7 forall i € [n]. Moreover, if /™' > 0 (i.e., i € I'T"), we have
it = gt —l—nv —rthusmy! = 7. Asmy! < 7 foralli € [n]and ny! = 7 foralli € I'™1, we

have 7 = n5'. Symmetrically, we can show Af = X for all j € J*1.

To show the second part of this lemma, we consider two cases: 7' > 0 and 4% = 0. We first
assume 7* > 0. If 4/ < 0 for some i, then we have that x!t1 = 2t + no! — nyf > 2t + ot
On the other hand, because =/t = max{z! + v} — 17!, O} and z! + nul —nyt < 2t + nol, we
have it = 0 = ! + r]vl — 1y} and therefore xt + nol < 0. Since ! > 0, we have v! < 0.
Also, it holds that i = :c + nut > nol. This implies vt < |vf] as vf < 0 and v! < 0. For
the other case m which 7' = 0, by the definition of 4 we have 7/ < 0 for all 4. Then, we have
xt + ol —nyt > 2t + no! for each i € [n] and

1—2,@”1 Zx + not —1771>Zx+7711—1

i€[n] i€[n]

which implies 3, 7; = 0. Because 7; < 0 forall i € [n] when ' = 0, we must have 7; = 0

for every i € [n]. Therefore, || < [v}| holds trivially. Symmetrically, we can show |\5| < |ut+1|

if Xt < 0. O

Recall that, the value of the game is denoted as v* = min; (A"

specific parameter is defined as

y*); = max;(Ax*); and the game-

AT *) . * _ (Ax*
0 = min {min #, min w min z}, min yf} . 37
AL, aer Al Cierer

This parameter measures the gap between the suboptimal payoffs to the optimal payoff for the both
players. In particular,

ATy )z v 40, Vil )

(Az™); < v* = [ Al VigJ"

Now, we present the proof of Lemma In words, this lemma says that if the current iterate (x, y)
is in .S, then the components z; and y; corresponding to I* and J* are kept bounded away from
zero; and other components monotonically decrease and approach zero. In a high level, this lemma
provides the monotonicity we need to finish the proof.

Lemma 3. If the current iterate (x,y) € S, and the next iterate (xz+,y™) is generated by Algo-

rithmwith the stepsize n < ﬁ, then we have
2

1. x;r,xi > %forallie[* andyjﬁyj Z%forallj e J
2. xf <a;foralli¢ I* andy;' <yj;forall j ¢ J*.

54 2 99

Proof of Lemma[3] To keep the presentation con01se we only prove the “x” part; the “y” part can

be done symmetrically. Because ||y — y*||, < 9, forall i € [n], we have
* * 5
[=(ATy)i + (ATy")| < [ATy" = ATy, < JlIA]2. (39)
As aresult, for any 4,7’ € I*, we have v* = (ATy*); = (AT y*);, therefore

|—(ATy)i + (ATy)

(ATy)i + (ATy")i| + |- (AT + (ATy)w

)
< Sl @0)

22



Under review as a conference paper at ICLR 2026

This further implies that

]
Moreover, for all ¢ € I* and ¢ ¢ I*,
@

(ATy): < (AT )i+ *HAHQ (ATy" )i = dl|All2 + ||A||2

1)
< (ATy)y oAl + 214l

)
— ATy~ Al
Equivalently, —(A"Ty)i < —(ATy); — 5||A|| and therefore

0
Vit §v1—5||A||2§vZ VZEI*,ZI¢I* (42)

Next, we show that v; —y; > —% | A||, forall i € I* by contradiction. Suppose otherwise, we have
v; —% < v — v < —3||Al|, for some i € I*. Fix this i € I*. Then, for all £ € [n] such that
x> 0, we have

+ 5 J 5
@ = e+ v =0y < 2t v+ ol Alla =0y <z,

where the first equality follows by Lemma [I0] and the first inequality is implied by Egs. (41)
and li This leads t0 3¢, zf = Ze:zj>0 zf < Z&zj>0 T < Y pepy @e = 1 and thus a
contradiction.

Then, we can prove the first part of the lemma. For each i € I*, since v; —v; > —3[| 4], and
0<n< m, we have nv; — ny; > —g. On the other hand, since |z; — z}| < ||z — x*||, < 4
= %5 where the second inequality follows by the definition of 4.

we have z; > xf—g >0 —
> 0Oforalle € I*. ByLemma v; =~ foralli € I*.

SIS ST

Thus, z] = z; +nv; — 0y >

To show the second part, we first provide a lower bound for 7. Observe that

_ N A I*
0= (ef —wi)+ Y (& —2) =) (i —1) —(n— |1 |)7]|22n|—||l*|5’ (43)

iel* g1 iel*
where the inequality follows by ™ > 0 and max;¢ - x; < 77”;‘”2 nllu‘* J. By rearranging terms,
Eq. @3) yields
A
| Z ||26 >m IGI* v; — || 2H26 > vy VZ/ ¢ T*

iel*

Then, x"‘ < x; for each ¢ ¢ I* can be shown by contradiction: suppose that x > z; > 0, then
by Lemma.we have v; = 7 and therefore z;7 = x; +1v; —ny < x;, whichis a contradlctlon. O

Recall that, for ease of presentation, we define a variant of the energy function, V : A, X A,,, = R,
as follows:

V(e y) = [lz—a* |3+ ly —y*[3 —n(y —y*) " Alx — ).
For simplicity, we also use a shorthand notation

Vi = V(x! yh). (44)

Then, we derive an upper bound for the difference of this variant of the energy function.

Lemma 11. Let V; be defined as in Eq. (44), where {(x',y")}:>0 be a sequence of iterates gener-
ated by Algorithm[I|with stepsize 1 > 0, then the change of the energy function per iteration satisfies
that

AV =V =V < —nly', 2T+ 2t = 22%) — (A, y' T+ oyt - 2y7)
< -yt @t — ) — (A", yt —y"). (45)
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Proof. By Eq. (36), we have

(' —a' — o' oyt 2T 2t —22%) =0 46)
(Y — gt —nuttl Al gyt oyt — 2" = 0.

By Eq. (33) and the fact that z!t! zt =* <€ A, and y'T'y',y* € A, we have
(1,, "+ 2 —x*) = (1,,, y'™' + y' — 2y*) = 0, which leads to

<vt,wt+1+wt_2w*>:_<ATyt7wt+1+wt_2w*> w
<ut+1 Lyttt — 2y*> _ <A£Bt+1, Yt oyt - 2y*>.

By using Eq. @) and (a — b, a + b) = ||a||3 — ||b||3 for any vectors a, b, one can see that Eq.
is equivalent to

||93t+1—.’B*Hg—Hwt—w*H%-i-MATyt, $t+1+wt—2$*>+77<’7t7 £L‘t+1 +£Bt—2{1,'*> =0 (48)

Iy =y 3=y —y 3 —n(Az"™, ¢+ yt =2y ) (A" y Ty - 2y%) = 0. 49)
To derive the energy change between two consecutive iterates, we notice that
77<ATyt7 ot gt — 2m*> . 17<Awt+1 7 yt+1 + yt . 2y*>
=n(y", Az') - 2n(y", Az*) — 9y, Ac'™) + 2;m(y*, Ac'T)
=n(y' —y") A" —a") +ly*, Az') —n(y*, Az*) —n(y", Az")
—ny't —y)TA@@T —a*) =yt AzT) +(y”, AzT) + n(y*, AT
=n(y' —y") A’ —z*) -9y —y") T AT - z¥)
+(ATy" &t 42t (A, Yt +yt) (50)
and
ATy 2 Fatth) — (A, y' +y)

=n(ATy* —v*1,, ' + ') L (v, — Ax*, Yyt > 0.
61V

Summing up Egs. (50) and (5I), we have
77<ATyt, 2t gt — 2w*> _ 77<A:12t+1 Lyt Lyt — 2y*>
>y —y") A’ —2) —n(y™ —y) TA@ T —2"). (52)
Combining Egs. [#8), #9) and (52)), and the definition of energy function V;, V;, 1, we have
Vier < Vi — niyt, 1 + 2t — 22%) — p(AL, yttl 4yt — 247,

Additionally, by Lemma([7] we further have Eq. (3). O

By leveraging Lemma [I0] we can derive the following identities regarding the right-hand side

of Eq. (@3).

Lemma 12. Let v, \, 7, A defined as in Egs. and . Then, we have
et —at) =3, 6= ) - )

_ (53)
Ay -y =D (N5 = A (W5 —u))-

JgI
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Proof.

<’th x' — x") :<’7t7 xt — :13“'1) + ('yt, ot — x*)

=D e WD e i =T =2

- Zi¢1t+1 71 i + gl Z e[t+1 f f+1) + <7t ) mt+1 - -'B*> (by Lemma@])

- Zi¢1t+1 ’)/ll‘z h :Y (1 - Zie]t+1 3?5) + <7t ) $t+1 - SC*>

(by the definition of I**1)
~ t t t+1 *
_Zl¢]t+1 iti = Z¢1t+1xi+<7 , L _33>
B Z §Elt+1 ) <7t - thnv z' ! — x*) (by (1,, it — z*) =0)
K3
")z}

B SHCTEE SU TR

(by Lemma([10|and the definition of I**')
 SPRNCEE I 54

Symmetrically, we have (A’ , y* —y*) =37 i1 (A] — A (yE —y). O

If the game does not have an interior NE, then the right-hand side of Eq. (@3] can be positive for
some iterations. That said, the energy function is not monotonically decreasing. Even though, as
shown below, by exploiting the local property we can derive that the sum of the energy increase has
an upper bound, and hence we still obtains an O(1/T) convergence rate.

In the rest of the proof, we provides the proof of Lemmalto formalize this idea, and then conclude
the O(1/T') convergence rate by an analogous argument as in the proof of Theoreml

Recall that
S {( )‘II *||<5|| *||<6 < Srs << 6}c5
=< (x r—x — — —, maxx; < =10, maxy; < —r
0 Y 2_87 Y-y 2_87i¢1* 2 ng*y] 2 y

where ¢ = min{n||4]|2, 192‘1*‘ , 192“*'} always stay in S.

Lemma 4. Let {(a',y")}+>0 be a sequence of iterates generated by Algorithm 1| with stepsize
n < 2HAH and an initial point (z°, y°) € Sp. Then, the iterates {(x’, y')};>0 stay within the local
region S. Furthermore, for any 7" > 0, we have

_WZZ;O (<7t, zt _$*> n <)\t7 Y _y*>) < 51852.

Proof of Lemmald] We prove the first part of this lemma by contradiction. Since (°,y°) € Sy C S,
by Lemmal aslong as (2!, y'') € S forall # < t, we have that
A
<ot <al <AL 5 vig
nl[Al -
vy <yy Sl < Tom s, Vi

Suppose, to the contrary, that there exists a time point £ > 0 such that (!, y?) leaves the region
S for the first time. Then, the above observation implies that at least one of ||z* — z*||, > ¢ and
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lyt —y* ||, > g happens. Therefore, the energy at the ¢-th iteration has the following lower bound:
V=2t -2t + ot — v s - nly — v) T A - 2)
> ||t — 2|3 + [l = v°[l; ~ nllAlL o’ — ]y~ v,

2 nllA] 2 2
I3 =752 (e =13 + 1w~ v[17)

IV

2
= = 27|, + [ly* —

v

3 L2 3 |2
et =2+ Ml — vl

3/6\° 3
=) = =62 55
~ 4 <4> 64 (55)
On the other hand, the initial energy is guaranteed to be sufficiently small. Let V), be the initial
energy corresponding to (z°, y"). By definition, we have

Vo = [l2° —2*|s + |[4° — v |3 — n(y’ — y") T A’ - z¥)
< [la® = 2|2 + [|u° — w7 ||2 + nllAlla [ 5° — y* [l2]|2° — 2|2

S\ [6)\? S\ 2414 5
<= - Al (=) = 212 52 2
<(3) +(3) +man(3) - 2mts < 2 (56)

By Lemma [II} we know the change of the energy function AV is upper bounded by
777<'yk , h — w*) — 77<)\k Yk — y*> for all £ > 0. As t denotes the first time at which the it-

erate leaves the local region S, for each k = 0, ..., ¢t — 1, we can further bound AV, as
AVp < —n(¥", &b —a) (A, y* —y7) (by Lemmal[TT)
:_n2¢1k+1 ’71 _,y )ZE —SE nz g]k+1 J )( _y;) (byLemma@)
= Ak
_—nzuélku g I (% _7 T; _nzueﬂﬂ ¢ ( J ) (byLemma@)

= _ kY, k
= Zi:i$1k+1,i¢1* (’y ’yl xi + an:ngk+17j¢J* ()\ — A ) Yj (57)
The first term in the right-hand side of Eq. can be bounded as follows:
“k kY k
" Zi:i¢1k+l,i¢1* (7 7 )%
_ ke _ kY k ke _ kY k
=1 Zi:i¢1k+1,i§é1*,yf>0 (7" = i)ai Zi:iglwl)igp,ﬁgo (V" =)=

< Sk ST Ty
<n Zi:iglkﬂyiepmgov ! +nzi:i¢1k+1,iel*,'yf§0 (7" + [l =} (58)

To derive an upper bound for fy we observe that (z*,y*) € S for all & € [0,t — 1].
Thereby, Lemmallmplles that 2% > 0 forall i € I*. Then, we have z¥ 1 = 2k 4k — 3% Vi €
I*. Summing up this equation over ¢ € I*, we have

“l =k ko k+l k
[yt =)= ey
k_ o k+1 k

= Zie[* o7 =2 nziel* [vi'

< Il = 2l + 1|02
< 217 |n|| All2,

where the last inequality holds because
(a)
l2* =2, < [la" —nATy" — 2", < nllAll;

—(ATy*) + 1 Zz 1(ATyk)Z

<[ ATy |l2 < [|All2,
2

[v¥]|2 =
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where (a) follows from nonexpansiveness of projection onto a closed convex set. Therefore, we
obtain 7% < 2||A||2. On the other hand, by Lemma. |vE| < [vF| < ||vF]]2 < ||A]|2 for each i
such that v/ < 0. Combining the above results, we have

> (P -af)ar <Al >, af =3]Al > zy.
g I+ g I g I+ g I ielk ig Ik+1 ;g I+

Notice that, by Lemma zkH < zFforalli ¢ I*and k € [0,t — 1] Hence, there is at most one

ke [0,t —1] sat1sfy1ngz eIk §é I for each i ¢ I*. Also, zF < $r,6 < A 5 for all
i ¢ I*and k € [0,¢ — 1]. This translate to
t—1 t—1
ny, >, (G -a)ebsa)] Y. 3| Alaf
k=0 i IF+1 it I k=0 eI ig Ik+1,ig I*
< s = 1P D3 Al 8 = =
= 2| Al 2\1*\ 384" 256

A symmetrical analysis gives us that
1Y (Nt < o (o T3 Al 8 = s
e T773 = 20| All2 |J*|384 256
k=0 j:j¢ Jk+1 j& J*

Therefore, the change of energy up to ¢ is at most

Vi — VO—ZAVk<nZ< D G A Y O\ /\k)y]>—15228

k=0 qigIk+1 i¢T* JiggJrtl j¢ T
(39
This contradicts Egs. (53) and (56).

Because (¢, y?) for all ¢ > 0, i.e., the condition in Lemma is satisfied by all iterates generated
by Algorithm [1| with stepsize n < ﬁ and an initial point (°,y") € Sy, one can then verify that
the upper bound in Eq. (39) still holds for an arbitrary ¢ > 0 by the same derivation as above. In this
way, the second part of this lemma follows. O

Theorem 2. Let {(z*,y")}+>0 be a sequence of iterates generated by Algorithm |I| with stepsize

N < STaT; AH and an initial point (%, y°) € Sy, where Sy is defined in Eq. ll Then, we have that
9+ 7n||A 62/128
DualityGap ( Zm . Z > + Tl II;T 0%/ )’ 60)

where 6 is defined in Eq. (6).

Proof of Theorem[2] By Eq. (36), we have
n(—ATy! @l — gty |zt - th; = ATy — gt gt gt
= 77<7t 5 mtJrl - wt>
=y, &' 2t —22%) —2p(yt, 2t —x*) (61)

77<Awt+l gt yt> B ||yt+1 -~ ytH; _ <nAwt+1 Yt byt gt yt>
= (A", ¥ =)
=", Yyt —2y") — 2Ny — ). (62)
By Lemma([I]and Egs. (61)) and (62)), we have
n (yTAthrl _ (yt+1)TAm) + n (yTAmt _ (yt)TAa;)
—bri1(x,Y) + 1(T,y) — Y1 (z, y) + (2, y)
4 ’I7<’Yt7 iL‘t—H + ZBt _ 2w*> _ 277<,7t’ wt _ :B*> + ’I7<At , yt+1 + yt _ 2y*> _ 277()\157 yt _ y*>
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By Lemmal[IT] for any x,y € A, x A, and t > 0, we have:

n (yTA$t+1 _ (yt+1)TAIL’) + n (yTAwt _ (yt)TAw)

<=1, y) + oe(2,y) — V(@ y) + Yu(x,y) + Ve — Vit
=y, &' —at) - 2N,y - ). (63)
2 2 2

Recall that ¢y (x, y) == 3|z’ — |5 + 3lly" — yll5 + n(y") " Az and ¥y (x, y) == 3|z’ — x|, +
Slly' = = wll; = 3lly v
2 272 2°
Summing up Eq. (63) overt = 1,...,T plus Eq. (@) for ¢ = 0, we have

T
2nz (yTA.’Bt _ (yt)TA:E) + n (yTALUT—H _ (yT—i-l)TAm)
t=1
1
<p1(z,y) — dr1(x.y) + Y1z, y) — Yria(x,y) + Vi — Vrgr + —06°

64
1 1
+do(@,y) — é1(@,y) + n{Az!, y' —y") - Sz’ - 2|2 - sly' - ¥

1
<¢o(x,y) — dr1(z,y) + V1(x,y) — Yoy (@, y) + Vi — Vrgr +n(Az' y' —y°) + afsz-

This inequality gives the following upper bound:

T 1T . lT tT 1T T oAt T Clz,y)
y' A TZ:I: — T;y Ax:TZ(y Az’ — (y') Aw)ST7 (64)

t=1

1
Clz,y) = do(x,y) — dr41(x,y) + V1(x,y) — Yrpa(x,y) + Vi — Vg1 + 67462
+ T]<A:l?1 , yl o y0> —n (yTA:l:T+1 o (yTJrl)TAw)
Ve, y € A, X Ay,

Forany € A,,,y € A,,, we can bound each term in C(z, y) as follows:

1 1
do(w.y) = 5[l — | + S|[v” — wll; + 0" Az < 4+ Al
1

1
~bral@y) = —5l2" " —all; - Sy wll; -0 Az <)l Al

1 2 1 2 1 2
U@ y) = 3ll=" —ell, + 5’ —ul, - Flly' —9°l <4,

1 1 1
“ra(@y) = 5" —al, — S ly" Fyl 5y -t <2
Vo = Hazo —x* ; + Hyo —y* ; —n(y® — y*)TA(ac0 — ") < 8+ 4| A2,
—Vry = 7HmT+1 . m*H; . HyT+1 . y*H; Jrn(yTﬂ o y*)TA(a:O —z¥)
< 4dn||All2,

and —n(Az', y' —y°) — n(y" AT — (yT+) T Az) < 4n||Al|2, where all the inequalities
follow by Lemma Therefore, we can bound C(z,y) by 18 + 14| A|, + §%/64. By taking the
maximum on the both sides of Eq. (64), we complete the proof. O

E SDP FORMULATION OF (INNER))

In this section, we reformulate the inner problem as a convex SDP by using results from
(Taylor et al., 2017a; Bousselmi et al., |2024). We use the following notation: write O(z,y) =
(xy" + yx")/2 to denote the symmetric outer product between the vectors ¢,y € RY. For a
symmetric matrix M = 0 means that M is positive semidefinite.
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Span based form of AItGDA. First, we present an equivalent form of AItGDA, which we will use
in our transformation to keep the resultant formulation in a compact form by decoupling the iterates
and their interaction with A. To that goal, we first recall the following definition.

Definition 1 (Indicator function and normal cone of a set.). For any set S C R", its indicator
Sunction ds(x) is0if x € Sandis oo if & ¢ S. For a closed convex set C C R", the subdifferential
of its indicator function (also called normal cone), denoted by O¢, satisfies:

0 ifzx¢cC
06 =
c(@) {{y |y"(z —x) <O0forallzcC} ifxcC.
Define an arbitrary element of ¢ (x) by 6/ ().
Lemma 13 (Equivalent representation of AItGDA). Algorithm[I|can be written equivalently as:

t t—1
x! :a:O—ZdQ((a:j)—anj, te{1,2,...,T}
j=1 =0

t t
Y =y"=> ) +nd p, te{l2,... T} (65)
j=1 i=1

p'=Ax', te{1,2,...,T}
¢ =ATy', te{1,2,..., T

Proof. Recall that for any closed convex set C, we have p = Il¢(x) if and only if & —p = 0/ (p) for
some 0, (p) € 0dc(p) (Bauschke & Combettes, [2017, Proposition 6.47). Using this, we can write
the x-iterates of AItGDA as

et = 10, (wt _ nATyt)

st =zt — (! — ATy for some &y (2'T1) € DSy (xTT)

which can be expanded to

¢ t—1
wt:wo—Z(VX(:cj)—nZATyj, te{l,2,...,T}. (66)
j=1 =0

Similarly, we can write the y-iterates of AItGDA as

yt+1 — Hy (yt _|_ T]AmtJrl)
syt =y =8,y + nAz'tt, where 85, (y"T) € 95y (y')

leading to:
ytzyO—Z(SS,(y])—&—nZij te{l,2,...,T}. (67)
j=1 j=1
Finally, setting
p' =Ax', te{1,2,...,T}
¢ =A"y', te{0,1,2,...,T}
in (66) and (67), we arrive at (63). O

Infinite-dimensional inner maximization problem. For notational convenience of indexing the
variables, first we write « := 2, y := y° and merely rewrite (INNER) as follows:
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.. T
o msme LT () et ) e0)
{;t}te{o_,o,L...,T} CR™,

{yt}te{o,ﬂ,l‘...,T}gRWLv
m,neN.

subject to

Pr(n) = | X isaconvex compact set in R”™ with radius 1, (INNER)

Y is convex compact set in R™ with radius 1,

A € R™*™ has maximum singular value 1,

{(z',y") }req1,2,...,7) are generated by AItGDA with stepsize 7
from initial point (z°,y%) € X x ),

(x,y?) € X x V.

Using Lemma [13| and by denoting p® = Azx® and ¢° = ATy, we can write (INNER) in the
following infinite-dimensional form:

.. T
XCR"I;I?EQILHXSRWLM 7 21 (@) 72" = (y") 'p%)
{ﬂ’?}ze{oio,L...,T}QR",

{yt}te{o,o.l,...,T}nga
m,neN.

subject to

X is a convex compact set in R” with radius 1,
Pr(n) = Y is convex cotmpact set in R™ wtlEh1 radlus 1, (68)
et =a® =37 S (xd) —nd _oqd, te{l,2,....T}
yt:yO_ijlési(yJ)+an:1pj) t€{17277T}
A € R™*"™ has maximum singular value 1,

pt=Az', te{0,1,2,...,T}

gt =ATy, te{0,1,2,....T}.

(x0,y9) € X x Y.

Interpolation argument. We next convert the infinite-dimensional inner maximization problem
(68) into a finite-dimensional (albeit still intractable) one with the following interpolation results.
The core intuition behind these results is that a first-order algorithm such as AItGDA interacts with
the infinite-dimensional objects X, ), or A only through the first-order information it observes at the
iterates. Hence, under suitable conditions, it may be possible to reconstruct these objects from the
iterates and their associated first-order information in such a way that, based solely on the first-order
information, the algorithm cannot distinguish between the original infinite-dimensional object and
the reconstructed one. The following lemmas show that such reconstruction is possible in our setup.

Lemma 14 (Interpolation of a convex compact set with bounded radius.(Taylor et al.,[2017a, Theo-
rem 3.6)). Let T be an index set and let {:L_’Z, gz}i'ez C R4 x R Then there exists a compact convex
set C C R with radius R satisfying 5/.(z*) = g° for all i € T if and only if

(¢") (' —a’) <0, VijeT
|l&']|5 < R?, Viel.

Lemma 15 (Interpolation of a matrix 4wit4h bounded singular value.(Bousselmi etal.,[2024, Theorem
3.1)). Consider the sets of pairs {(x',p") }ic(1,2,... 7,y S R" x R™ and {(y?, ¢’ ) }jeq1,2,... 101 €
R™ x R", and define the following matrices:

X=[z'|2?]|...| 2] e R™*T
P=p'p*|...|p"] e R™T,
Y=['ly’ | [y"] eR™P,
Q=1[q"q¢*|...|q"] e R"*"2,
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Then there exists a matrix A € R™*™ with maximum singular value o (A) < L such that p* =
Az’ foralli € {1,2,..., Ty} and ¢’ = ATy forall j € {1,2,...,Ts} if and only if
X'Q=r'y,
L*’X"X-P'P =0,
LYy —Q'Q = 0.

In order to apply Lemma[I4]and Lemma [I3]to (68), define the following for notational convenience:

index ¢ is denoted by — 1,
IT = {_17071a"'7T}a

i):.f’i) ieITa

& (x

8 (y') = hy, i€Ir,
X=[z'|2?|...|2"] e R™*T,
P=[p'|p*|...|p"] e R,
Y=[y'|y*]...|y"] e R™T,
Q:[q1|q2|...|qT}€R"XT.

Finite-dimensional inner maximization problem. Using Lemma[l4Jand Lemma[I5]and the new
notation above, we can reformulate as:

.. T _ . . _
e Paximize LS (e - () Te)
Ji@ jiery CRT,
{y".hi,p'}iez, CR™,
m,neN.
subject to

fl (@ —x) <0, i,je€Tr,
lzi||2 <1, i€y,
Prn)=| hl(y'—y)) <0, ijeTr, (69)
HyZ”% <1, Z € IAT7 )

@ =a® =Y fi-n)X e ie{l2....T}
y=y' > hi+nXip ie{l,2,..,T}
(x)'g’ =)'y, i,jelr

XTX-PTP=o,

YTY —QTQ = 0.

Note that the problem does not contain any infinite-dimensional variable anymore, however, it still

is nonconvex and intractable due to terms such as f]T (x — 27) and iz;r (y* — y7) and presence of
dimensions m and n as variables. Next, we show how can be transformed into a semidefinite
programming problem that is dimension-free without any loss.

Grammian formulation. Next we formulate (INNER)) into a finite-dimensional convex SDP in
maximization form. Let

Hyg=[x " 2| falfolfil- .| fria "1 |q"|...|q"] e R CTHO),
Gaq = Hy gHaq € ST,

Hyp=1[y " [y° | hy|ho|ha|...|he|p " |p°|p"|...|p"] € R™*ETHO),
Gyp = Hy ,Hyp € ST,
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where rank G 4 < n and rank G, , < m, that becomes void when maximizing over m,n as we
do in (69). Next define the following notation to select the columns of Hy 4 and Hy -

)~(_1 =e] € R2T+6,)A€0 =eg € R2T+6,

fi=eiyqa € R2T+6 for j € Ir,
ai = €i4+T46 € R2T+6 fori € Ip,
i i—1
X =% — Y f;—nY q R Cforie{l,2,... T}
j=1 §=0
X = [)FE,]_ | Xo | X1 | . | ;CT} S R(2T+6)X(T+2)
Y1 =e €RTHO g5 = ey e RPTHE,
by — es0a € RZTH for i € Ty,
= e,+T+6 e R?T+6 for i € I,

Yi yo—Zh +7)Zp e R* S foric {1,2,...,T},
J=1 Jj=1
Y =[y_1]¥0 Y] |¥r] € R
Note that X; and y; depend linearly on the stepsize n for i € {1,2,...,T}. The notation above is
defined so that for all © € Z7 we have

2T+6)x (T+2)

x' = Haz,q;(iv fz = H:c,qfi7 qi = Ha:,qaia

yi = Hy p¥yi, fli = Hy ph,, pi = Hy,ppia
leading to the identities:

%Z((q‘l)Twi—(y Tp ) =

fl@—a))=trGaq© (?j,ii ~%;), hJ (¥ —y)) =tr Gy, © (b, §: - 5;),
[2°]]3 = tr Gp g © (X, %), [[Y']13 = tr Gy p © (3, 54),

(@) 'q —(p) Y =trGagq© (X ©q;) —trGyp © (Pi,¥5)

XX -P'P=X"GpoX-P'G,y,P,

Y'Y -Q'Q=Y"Gy,Y - Q'G.,Q.

Using these identities, we can formulate as the following semidefinite optimization problem in
maximization form:

M:

(rCaq® @1,%) ~ trGyyp ® (F5,5-1))

z=1

maximize = Z i1 (trGw ¢ ©(Q-1,X;) —trGyp © (?i,f)_l))

G q€S2TH6

Gy p€S2THO

subject to

trG;mq@ Ejy%i_N )§O7 iajEIT7
tl‘Gmg ® Xi,Xi) —-1<0, ©€Zp,

( j
(~ 1<0 (70)
trGyp© (hj,y; —y;) <0, i,j€Ir,

trGyp,Q (¥i,y:) —1<0, i€y,

ter,QQ(Xlaq]) *trGy,pG(f’ivyj) =0, 4,5€r,
XTGpqX —PTGy P =0,

YTGZI»PY - QTGm,qQ =0,

Gaq = 0,Gyp=0.

Note that this formulation does not contain dimensions m, n anymore and is a tractable convex prob-
lem that can solved to global optimality to compute the convergence bound of AItGDA numerically
for a given 7 and finite 7.
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E.1 DETAILED NUMERICAL RESULTS

See Tables [2 and [3] for the detailed data values for Fig. [1]

Table 2: Optimized stepsizes and duality gaps given a time horizon of T for AItGDA

T Optimized » Optimized Duality Gap

5 1.527 0.614
6 1.389 0.555
7 1.632 0.488
8 1.574 0.411
9 1.467 0.371
10 1.370 0.345
11 1.304 0.327
12 1.517 0.302
13 1.454 0.274
14 1.377 0.256
15 1.314 0.243
16 1.262 0.233
17 1.438 0.220
18 1.387 0.207
19 1.333 0.196
20 1.283 0.188
21 1.239 0.181
22 1.389 0.174
23 1.347 0.166
24 1.302 0.159
25 1.263 0.153
26 1.229 0.149
27 1.355 0.144
28 1.319 0.139
29 1.283 0.134
30 1.249 0.130
31 1.220 0.126
32 1.332 0.123
33 1.301 0.119
34 1.269 0.116
35 1.240 0.112
36 1.214 0.110
37 1.314 0.107
38 1.286 0.104
39 1.258 0.102
40 1.232 0.099
41 1.209 0.097
42 1.300 0.095
43 1.275 0.093
44 1.250 0.091
45 1.226 0.089
46 1.206 0.087
47 1.288 0.086
48 1.266 0.084
49 1.243 0.082
50 1.221 0.080
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Table 3: Optimized stepsizes and duality gaps given a time horizon of 7' for SimGDA

T Optimized » Optimized Duality Gap

5 1.989 1.238
6 1.450 1.150
7 1.165 1.072
8 1.018 1.009
9 0.877 0.958
10 0.769 0.916
11 0.684 0.880
12 0.616 0.850
13 0.567 0.823
14 0.527 0.801
15 0.492 0.781
16 0.466 0.763
17 0.440 0.747
18 0.417 0.733
19 0.398 0.721
20 0.379 0.710
21 0.362 0.699
22 0.347 0.690
23 0.333 0.681
24 0.320 0.673
25 0.308 0.665
26 0.298 0.658
27 0.487 0.654
28 0.472 0.643
29 0.456 0.633
30 0.443 0.623
31 0.431 0.613
32 0.416 0.604
33 0.406 0.596
34 0.394 0.588
35 0.384 0.580
36 0.373 0.573
37 0.363 0.565
38 0.353 0.559
39 0.345 0.552
40 0.335 0.546
41 0.326 0.539
42 0.318 0.533
43 0.310 0.528
44 0.303 0.522
45 0.296 0.517
46 0.289 0.511
47 0.284 0.506
48 0.278 0.501
49 0.272 0.497
50 0.266 0.492
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F ADDITIONAL NUMERICAL EXPERIMENTS

F.1 NUMERICAL PERFORMANCES: ALTGDA VERSUS SIMGDA

UNIFORM . RANDINT BINARY
2
7
) ° -
2 E} 5
af a’ Q.
o 3 © S @
O (U] o2
> > >
£ = £
© 5 ® R T o
=1 =1 S5
a a, as
7
. SimGDA 2 SimGDA SimGDA
S Error Range (+ Std Dev) - Error Range (+ Std Dev) L Error Range (+ Std Dev)
—— AItGDA & | = AItGDA ~ | —— AItGDA
. Error Range (+ Std Dev) - Error Range (% Std Dev) Error Range (+ Std Dev)
1
S 100 10! 102 103 104 10° 108 100 10! 102 103 104 10° 10° 10° 10! 102 10° 104 10° 10°
NORMAL LOGNORMAL EXPONENTIAL
Ef SimGDA 3
2 Error Range (+ Std Dev)
- —— AItGDA
j: Error Range (# Std Dev) 1;
E o 2
=% Qg [=%
© @~ ©
Q7 ] O :Ta
) ~
29 e 22
© © ©
S =1 Sq
(SN a7 Qo
E B 2
SImGDA SimGDA
1 Error Range (+ Std Dev) b T Error Range (+ Std Dev)
S| — AtGpa 2 21— Arcpa
Error Range (+ Std Dev) Error Range (+ Std Dev)
il
10° 10t 102 10° 104 10° 10° S 100 10t 10? 10% 104 10° 10° 10° 10! 102 10° 10% 10° 10°

Figure 5: Numerical performances of AItGDA and SimGDA on 30 x 60 synthesized matrix games.
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Figure 6: Numerical performances of AItGDA and SimGDA on 60 x 120 synthesized matrix games.
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F.2 NUMERICAL PERFORMANCES: ALTGDA WITH DIFFERENT STEPSIZES

We conduct the numerical experiments for AItGDA in the same setup as in the preceding subsection.
For each instance, we run AItGDA with three different stepsizes: n = 0.001, 0.01, and 0.1.
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Figure 7: Numerical performances of AItGDA with different stepsizes on 10 x 20 synthesized matrix
games.
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Figure 8: Numerical performances of AItGDA with different stepsizes on 30 x 60 synthesized matrix
games.
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Figure 9: Numerical performances of AltGDA with different stepsizes on 60 x 120 synthesized
matrix games.
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