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ABSTRACT

Unsupervised Contrastive learning has gained prominence in fields such as vision,
natural language processing, and biology, leveraging predefined positive and neg-
ative samples for representation learning. Data augmentation, categorized into
hand-designed and model-based methods, has been identified as a crucial compo-
nent for enhancing contrastive learning. However, hand-designed methods require
human expertise in domain-specific data while sometimes distorting the mean-
ing of the data. In contrast, model-based methods, such as generative models,
usually require supervision or large-scale external data. To address the prob-
lems presented above, this paper proposes DiffAug, a novel unsupervised con-
trastive learning technique with diffusion mode-based positive data generation.
DiffAug consists of a semantic encoder and a conditional diffusion model; the
conditional diffusion model generates new positive samples conditioned on the
semantic encoding to serve the training of unsupervised contrast learning. With
the help of iterative training of the semantic encoder and diffusion model, Dif-
fAug improves the representation ability in an uninterrupted and unsupervised
manner. Experimental evaluations show that DiffAug outperforms hand-designed
augmentation and classical representation learning methods in classification and
clustering tasks on visual and biological datasets, highlighting its potential for
generalizing unsupervised learning techniques. The code for review is released at
https://anonymous.4open.science/r/diffaug_review-804E.

1 INTRODUCTION

Contrastive learning, as shown by many studies (He et al., 2020; Chen et al., 2020; Cui et al.,
2021; Wang & Qi, 2022; Assran et al., 2022; Zang et al., 2023), has become important in areas like
vision (He et al., 2021; Zang et al., 2022b), natural language processing (Rethmeier & Augenstein,
2023), and biology (Yu et al., 2023; Krishnan et al., 2022). It learns representations using predefined
positive and negative samples. Many studies (Tian et al., 2020; Zhang & Ma, 2022; Peng et al., 2022;
Zhang et al., 2023b) have found that data augmentation helps contrastive learning by making it more
robust and preventing model problems.

Data augmentation falls into two main types: hand-designed methods and model-based methods (Xu
et al., 2023). Hand-designed methods require humans to understand the meaning of the data and then
change the input features while maintaining or extending that meaning. In visual tasks, methods such
as color change (Yan et al., 2022), random cropping (Cubuk et al., 2020), and rotation (Maharana
et al., 2022) are used to aid in contrastive learning. However, the problem is that the above techniques
must be more data-specific. For some data (genes or proteins or others), it isn’t easy to visualize the
data due to the complexity of its meaning. Consequently, it isn’t easy to design a good augmentation
strategy. Semantics-independent augmentation methods such as adding noise (Huang et al., 2022)
and random hiding (Theodoris et al., 2023) are used, but only sometimes with significant results.
Another problem with hand-designed methods is that they do not smoothly change the semantics
of the data, e.g., a slight change in the magnitude of the magnification in a random cropping of an
image may imply the risk of a semantic mutation (in Fig. 1). As a result, many positive and negative
samples are needed to distribute these risks to obtain a stable representation. At the same time, it is
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Figure 1: Comparison of DiffAug with other methods. (a) Hand-designed augmentation methods
are based on human a priori design strategies that produce new data that differ in input features and
are semantically similar. (b) Model-based augmentation methods are mainly based on generative
models that produce new data with the same labels with the help of a large amount of data, labels,
or pre-trained models. Such methods tend to be specific to the data domain. (c) DiffAug attempts to
reduce the dependence on external data and prior knowledge through iterative training with encoders
and diffusion. Expanding the application areas of unsupervised contrastive learning.

also challenging to train contrastive learning models with fewer samples for certain domains where
data acquisition is costly, such as biology.

Given the challenges mentioned earlier, model-based methods (generative models) based on deep
learning are used to create better data. In the vision domain, techniques using VAE (Kingma &
Welling, 2014), GAN (Goodfellow et al., 2014), and diffusion models (Ho et al., 2020; Nichol &
Dhariwal, 2021; Saharia et al., 2022; Nichol et al., 2022; Ramesh et al., 2022) have been devel-
oped to improve model training. For supervised learning, several studies have received attention.
Du et al. (2023) proposed the DREAM-OOD framework, which uses diffusion models to gen-
erate photo-realistic outliers from in-distribution data for improved OOD detection. Zhang et al.
(2023a) developed the Guided Imagination Framework (GIF) using generative models like DALL-
E2 and Stable Diffusion for dataset expansion, enhancing accuracy in both natural and medical
image datasets. However, there are concerns about these methods, especially about their diversity
and how well they generalize. The detailed related works are in Appendix.A. Moreover, most of
these generative models are trained with supervision or need much external data. This makes them
less suitable for areas like gene and protein data (in Fig. 1). This leads to an important question:
Is it possible to design a data augmentation framework to enhance unsupervised contrastive
learning in different domains without requiring expert knowledge or additional data?

We introduce DiffAug, a novel unsupervised contrastive learning technique with diffusion mode-
based positive data generation to address the posed question. Explicitly designed for unsupervised
contrastive learning, DiffAug eliminates the need for training labels. Instead, we employ a semantic
estimator to gauge the semantics of the input data, subsequently guiding the augmentation process.
At its core, DiffAug operates through two synergistic modules: a semantic encoder and a diffusion
generator. Utilizing a soft contrastive loss, the semantic encoder crafts latent representations that act
as guiding vectors for the diffusion generator. This generator then methodically produces augmented
data in the input space, ensuring varying levels of semantic consistency based on the guiding vectors
and specific adjustable hyperparameters.

In our experiments, we thoroughly evaluated our method on both visual and biological datasets. Our
findings indicate that the proposed method can produce sensible data augmentations, subsequently
enhancing the performance of unsupervised contrastive learning that utilizes these augmentations.
Notably, DiffAug performs superior classification and clustering tasks compared to all benchmark
methods. The primary contributions of this paper are: (a) We introduce DiffAug, a novel unsuper-
vised contrastive learning technique with diffusion mode-based positive data generation. DiffAug’s
data augmentation replaces traditional domain-specific hand-designed data augmentation strategy.
(b) DiffAug operates independently of external data or manually designed rules. Its versatility al-
lows for integration with various models, encompassing domains like vision or biology studies. (b)
The experimental results show the efficacy of DiffAug in enhancing the performance of contrastive
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learning in different tasks. This suggests that DiffAug can generate positive sample data unsuper-
vised, which in turn promotes the development of unsupervised learning techniques.

2 HOW TO BUILD UNSUPERVISED CONDITIONAL GENERATIVE MODELS

In the context of unsupervised data augmentation, the training dataset providing potential semantic
categories is denoted as Dt = {xi}Ni=1, where N is the size of the training set. To boost the training
efficiency of unsupervised contrastive learning with positive samples generated by the diffusion
model, a novel framework called DiffAug is proposed.

2.1 PRELIMINARIES OF CONTRASTIVE LEARNING AND SOFT CONTRASTIVE LEARNING

Contrastive Learning. Contrastive learning learns visual representation via enforcing the similar-
ity of the positive pairs and enlarging distance of negative pairs. Formally, loss is defined as,

Lcl = − logQ
(
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+
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)
+ log
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(
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where zi is the low dimensional embedding zi = Enccl(xi), Q
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)
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between positive pairs while Q
(
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−
i

)
is the similarity between negative pairs. For the tradi-

tional scheme, in the computer vision domain, data augmentation methods such as random crop-
ping (Cubuk et al., 2020) or data mixup (Zhang et al., 2017) are used to generate new positive data.
The negative samples v−i are sampled from negative distribution V −.

Soft Contrastive Learning. To address the performance degradation due to view noise in con-
trastive learning and to accomplish unsupervised learning on smaller scale datasets, Zang et al.
(2023) designed soft contrastive learning, which smoothes sharp positive and negative sample pair
labels by evaluating the credibility of the sample pairs. Consider the loss form for multiple positive
samples and multiple negative samples as,

Lscl(yc,yj , zc, zj) =−
B∑

j=1

{P(yc,yj)︸ ︷︷ ︸
soft positive aim

log (Q(zc, zj))+ (1−P(yc,yj))︸ ︷︷ ︸
soft negative aim

log (1−Q(zc, zj))},

P(a,b) =
(
1 +Hij

(
eβ − 1

))
Q(a,b),

(2)
where the yi, zi are the high dimensional embedding and low dimensional embedding yi, zi =
Enc(xi). The P(a,b) is soft learning weight and calculated by the positive/negative pair indicator
Hcj . The hyper-parameter β ∈ [0, 1] introduces prior knowledge of data augmentation relationship
Hcj into the model training. Details of contrastive and soft contrastive learning are in Appendix. B.

2.2 DIFFAUG DESIGN DETAILS AND TRAINING STRATEGIES

DiffAug Framework. DiffAug accomplishes the tasks of positive sample generation and data rep-
resentation by iterating the two modules over each other (in Fig. 2). DiffAug consists of two main
modules, a semantic encoder Enc(·|θ) and a diffusion generator Gen(·|ϕ), where θ and ϕ are model
parameters. The Enc(·|θ) maps the input data xi to the discriminative latent space vi, and the gener-
ator Gen(·|ϕ) generates new data with a semantic vector vi. Similar to the Expectation maximization
algorithm (Gupta et al., 2011), the semantic encoder Enc(·|θ) and the diffusion generator Gen(·|ϕ)
are trained in turn by two different loss functions (see Fig. 2(a) and Fig. 2(b)).

Semanticity Modeling (E-Step). In the semanticity modeling step, given a central data xc, we
generate a background set Bc,

Bc = {x1, · · · ,xj , · · · ,xNb
},
{
xj ∼ Dt if Hcj = 0

xj ∼ Aug(xc) if Hcj = 1
(3)

where Nb is the number of background data points. The Hcj = 0 indicates xj is sampled from the
dataset Dt, and xc and xj are negative pair. Meanwhile, Hcj = 1 indicates xc and xj are positive
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Figure 2: The DiffAug framework and training strategy. DiffAug includes a semantic encoder
Enc(·|θ) and a diffusion generator Gen(·|ϕ). (a) shows how Enc(·|θ) and Gen(·|ϕ) are interative
trained. (b) and (c) show how to calculate the loss functions. (d) shows how to generate new
augmentation data with the trained model. The snowflake (`) indicates that the module is frozen.

pair and xj is sampled from data augmentation. For details, new positive data are generated by the
diffusion model according to DDMP (Ho et al., 2020),

xj = Gen(δ, zc|ϕ∗),yc, zc = Enc(xc|θ∗), (4)

where Gen(δ, zc|ϕ∗) is the generation process of the diffusion model, and the generating details are
in Eq. (7). The δ ∼ N (0,1) is the random initialized data, and zc is a conditional vector. The
∗ in ϕ∗ and θ∗ means the parameter is frozen. To avoid unstable positive samples from untrained
generative models, training starts exclusively with traditional data augmentation tools, and then,
the data generated by DiffAug is replaced with data generated by DiffAug, with a replacement
probability of the hyperparameter λ, an oversized λ introduce toxicity, which we will discuss in
Sec. 3.5. We update the parameter of the semantic encoder with the soft contrastive learning loss,

θ = θ − η
∑

xj∈Bc

{Lscl(yc, zc,yj , zj)} , where yj , zj = Enc(xj |θ), (5)

where the η is the learning rate, and the Lscl(yc, zc,yj , zj) is in Eq. (2).

Generative Modeling (M-Step). In the generative modeling step, the conditional diffusion genera-
tor Gen(·|ϕ) is trained by the vanilla diffusion loss Ldf(xc, zc|ϕ) (Ho et al., 2020),

ϕ = ϕ− η

T∑
t=1

{∥∥δ − gϕ
(√

ᾱtx̃
t
c +
√
1− ᾱt, t, zc

)∥∥2
2

}
, (6)

where the conditional vector zc is generated from the semantic encoder in Eq.(4). The gϕ(·) is the
conditional diffusion neural network. The αt is the noise parameter in the diffusion process, and
ᾱt = 1 − αt. The x̃t

c is the intermediate data in the diffusion process, and the x̃0
c = xc. T is the

time step of the generation process. When gϕ(·) is trained, the detailed generating process is,

Gen(δ, zc|ϕ∗)=

{̃
x0 | x̃t−1=

1
√
αt

(
x̃t− 1− αt√

1−ᾱt
gϕ(x̃

t, t, z∗c)

)
+σtN (0, 1), t ∈ {T,· · ·,1}

}
, (7)

The gϕ(·) is a neural network approximator intended to predict δ with x̃ and the condition vector z∗c .

Augmentation Generation Given the trained semantic encoder Enc(·|θ) and diffusion generator
D(·), and DiffAug generate new augmented data x+

i from any input data xi.

x+
i = Gen(δ|zi), yi, zi = Enc(xi). (8)

Meanwhile, DiffAug’s semantic encoder can be seen as a feature extractor. It is considered to have
good discriminative performance because it is trained simultaneously as the diffusion generator.

3 RESULTS

We completed experiments on both the vision dataset and the biological dataset. We want to prove
that Diffaug can work effectively and bring enhancement in different domains.
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Algorithm 1 The DiffAug Training Algorithm:
Input: Data: Dt = {xc}Ni=1, Learning rate: η, E or M State: S, Batch size: B, Network parameters:
θ, ϕ,
Output: Updateed Parameters: θ, ϕ.

1: while b = 0; b < [|X |/B]; b++ do
2: xc ∼ Dt; # Sample the centering data
3: yc, zc←Enc(xc|θ); # Generate frozen condition vector
4: if S==M-step then
5: L1←Ldf(xc,SG(zc)|ϕ) by Eq. (6); ϕ←ϕ− η ∂L1

∂ϕ , # Calculate diffusion loss
6: else
7: Bc = {x1, · · · ,xB|xj∼Dt if Hij = 0;xj∼Aug(xc) else }; # Generate/sample data
8: Y = {y1, · · · , zj , · · · ,yB}, Z = {z1, · · · , zj , · · · , zB},yj , zj = Enc(xj |θ)
9: L2←Lscl(Y,Z) by Eq. (2); θ←θ − η ∂L2

∂θ # Calculate scl loss
10: end if
11: end while

Table 1: Comparison of Linear-test and KMeans clustering performance on computer vision
dataset. The contrastive learning methods, including SimCLR (Chen et al., 2020), MOCO v2 (He
et al., 2020), BYOL (Grill et al., 2020), SimSiam (Chen & He, 2021), and DLME (Zang et al.,
2022b) are chosen for comparison. The SimC.+Mix. and MoCo.+Mix. are SimCLR and Mo-
CoV2 with Mixup data augmentation which processed by Zhang et al. (2022). The SimC.+Dif. and
MoCo.+Mix. are SimCLR and MoCoV2 with DiffAug data augmentation. Improvements over the
best baseline are shown in parentheses. The ‘AVE’ represents the average of the performance on all
datasets. The best results are marked in bold. Performance gains of more than 1.0 are underlined.

Linear-test Performance Clustering Performance
CF10 CF100 STL10 TINet CF10 CF100 STL10 TINet AVE

SimCLR 89.8 57.4 86.9 38.4 78.2 38.6 77.2 12.9 58.6
MoCoV2 90.1 64.2 85.6 39.4 79.9 36.4 75.4 14.4 59.3

BYOL 91.0 62.7 88.7 43.8 82.6 45.6 78.5 18.8 62.6
SimSiam 90.6 63.5 84.8 44.9 79.5 42.1 82.8 18.9 62.5
DLME 91.3 66.1 90.1 44.9 83.1 44.1 88.3 18.2 64.9

SimC.+Mix. 90.9 62.9 89.6 — 83.4 43.5 87.3 — —
MoCo.+Mix. 91.5 62.7 90.1 — 83.2 43.2 88.4 — —
SimC.+Dif. 91.3 62.8 90.6 46.3 84.2 46.3 80.1 19.7 63.8
MoCo.+Dif. 91.4 64.1 90.5 46.2 84.1 47.9 83.6 19.9 65.3

DiffAug 93.4(+1.9) 69.9(+3.8) 92.5(+1.9) 49.7(+3.4) 86.2(+2.0) 48.6(+0.7) 89.4(+1.0) 19.9(+0.0) 67.8(+2.5)

3.1 DIFFAUG OUTPERFORMS HAND DESIGNED AUGMENTATIONS ON VISION DATASETS

We showcase DiffAug’s versatility across multiple test protocols, emphasizing its potential to en-
hance vision data. We focus on data augmentation techniques that can be used for unsupervised
contrastive learning in the unsupervised case. Therefore, the comparison does not include some
labeling-based methods (Nichol et al., 2021; He et al., 2023; Trabucco et al., 2023; Zhang et al.,
2023a). Comparative outcomes based on linear-test performance and clustering are detailed in Ta-
ble 1, and the data of CF10 and CF100 is from Huang et al. (2023). Different baseline methods use
different hand-designed data augmentations (in Appendix C.3).

Test Protocols. Experiments are performed on CIFAR-10 [CF10] and CIFAR-
100 [CF100] (Krizhevsky et al., 2009), STL10 (Coates et al., 2011), TinyImageNet [TINet] (Le
& Yang, 2015) dataset. We followed a procedure similar to SimCLR (Chen et al., 2020) for the
Linear-test performance assessment. We evaluated the model’s representations linearly on top of
the frozen features. This ensures that the quality of the representations is attributed only to the
pre-training task, without any influence from potential fine-tuning. We used the ResNet (He et al.,
2015) backbone from the baseline. In contrast, for DiffAug, its semantic encoder served as the
contrastive learning backbone, trained using DiffAug-augmented images. We extracted feature
vectors from the models for the K-means clustering evaluation, leaving out the top classification
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Table 2: Comparison of the classification performance on biological dataset. Unsupervised
representation learning methods that have been widely used on biological analyze are compared,
including kPCA (Halko et al., 2010), Ivis (Szubert et al., 2019), PHATE (Moon & van Dijk, 2019),
PUMAP (Sainburg et al., 2021), PaCMAP (Wang et al., 2022), EVNet (Zang et al., 2022a) and
hNNE (Sarfraz et al., 2022). The improvement over the best baseline is shown in parentheses.

kPCA PUMAP Ivis PHATE Topo-AE PaCMAP EVNet hNNE DiffAug

GA1457 40.2 66.0 36.9 72.2 74.6 85.3 85.7 77.4 92.7(+7.0)

SAM561 34.6 59.9 45.6 71.5 72.4 83.7 83.6 83.8 89.3(+4.5)

MC1374 45.6 62.2 45.8 61.3 61.3 61.3 71.4 62.3 71.8(+0.4)

HCL500 26.5 36.3 24.4 33.8 56.0 36.2 62.3 62.2 64.7(+2.4)

AVE 36.7 56.1 38.2 59.1 66.1 74.8 75.8 71.4 79.6(+3.8)

layer. We then applied K-means clustering to these features. The primary metric for evaluation was
clustering accuracy. Details of the experimental setup are in Appendix C. The training strategy of
DiffAug is E-step: 200 epochs → M-step: 400 epoch → E-step: 800 epoch. The data of training
time consumption is in the Table A.3.

Analysis. From Table 1, it’s evident that DiffAug consistently outperforms state-of-the-art (SOTA)
methods across all datasets. It surpasses other techniques by at least 1.0% in five out of the eight
projects, raising the average metrics by a minimum of 2.5% compared to other evaluated methods.
This showcases the effectiveness of DiffAug’s data augmentation. (a) Beyond hand-designed aug-
mentation methods. DiffAug’s versatility indicates that its approach is on par with, or even better
than, traditional hand-crafted methods. The encoder in DiffAug produces robust features. (b) Be-
yond Mixup improved contrastive learning methods. DiffAug outperforms the Mixup improved con-
trastive learning method of typical contrast learning methods, and additionally, models trained using
DiffAug-generated data and contrast learning methods bring some improvement. (c) For datasets
with many classes, like CF100 and TINet, DiffAug’s encoder might only sometimes capture every
detail. Still, augmented data is crucial in guiding contrastive learning to produce better results.

3.2 DIFFAUG DELIVERS A BOOST IN UNSUPERVISED REPRESENTATION LEARNING FOR
HIGH-COST BIOLOGICAL DATA

Next, we benchmark DiffAug against SOTA unsupervised representation learning methods in bio-
logical datasets. We present the comparative outcomes of SVC classification performance (Platt,
1999) in Table 2. The data of training time consumption is in the Table A.5.

Test protocols. Experiments are performed on biological datasets, including GA1457 (Rouillard
et al., 2016), SAM (Weber & Robinson, 2016), MC1374 (Han et al., 2018), and HCL500 (Han
et al., 2020) datasets. To assess the efficacy of the proposed methods, following Wang et al. (2022);
Sarfraz et al. (2022), we utilized linear SVM performance to evaluate the performance of different
methods. In the linear SVM evaluation, embeddings are partitioned with 90% designated for training
and 10% for testing. Detailed specifics of this configuration are elaborated in the Appendix D. The
training strategy of DiffAug is E-step: 330 epochs→M-step: 330 epoch→ E-step: 340 epoch. The
training details and the correctness change curve are in Fig. A.2.

Analysis. DiffAug consistently surpasses all other methods across eight evaluations spanning four
datasets, registering a performance enhancement between 0.4% and 7.0% over its counterparts. Sev-
eral key advantages of DiffAug emerge, especially when considering classification metrics: (a) No-
tably, the strengths of DiffAug aren’t confined to vision data. It also excels in areas such as biology,
where data is difficult to visualize and understand by humans and where it is challenging to man-
ually design appropriate data augmentation methods. (b) Data processed through DiffAug exhibits
reduced overlap among distinct groups, facilitating enhanced classification and clustering. This sug-
gests that DiffAug delineates more explicit boundaries between data categories, culminating in more
precise outcomes. (c) The approach underpinning DiffAug is versatile, making it a valuable addi-
tion to other unsupervised learning techniques. Historically, the quest for potent data augmentation
strategies in biology has been arduous. We posit that DiffAug paves new avenues in this domain.
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Figure 3: The display of original and generated images illustrates that DiffAug generates se-
mantically similar augmented images. Ori means original image and Aug1, Aug2 and Aug3 are
augmentated images. More detailed results are in the appendix.
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Figure 4: The violin plot of original and generated samples illustrates that the DiffAug gener-
ated samples have a similar distribution to the original samples. Ori1 and Ori2 are two original
sample and Aug1, Aug2 and Aug3 are augmentated data. Due to the large number of zero values in
the biological data, we chose the genes with the highest 100 expression to plot violin plots to show
the data distribution. Class: label 3 and Class: label 5 indicate two different classes in the dataset.

3.3 DIFFAUG EFFECTIVENESS ANALYSIS
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Figure 5: Hist plot of the cosine similarity be-
tween original data and the augmentation data
in latent space indicate that DiffAug generates
semantically smooth augmentations. For the
image data, we compared similar mixups with
random cropping. For biological datasets, we
compared same-label Mixup and random dimen-
sion swapping.

Next, we verify the tasks and roles of each
module by showing the details of how DiffAug
works.

Effectiveness analysis of diffusion generator.
The diffusion module generates new positive
data by inputting the provided condition vector.
To demonstrate that the diffusion module works
appropriately, we show the generation results
for both the image and biological datasets (in
Fig. 3 and Fig. 4). A more detailed implementa-
tion and more results are in the Appendix C and
Appendix D. We can observe that the generated
data retains semantic similarity to the original
data. For example, the objects described in the
image data are consistent, while the distribution
of the gene is also consistent. At the same time,
the generated data is not simply copied but var-
ied without changing the semantic information.

In addition, to further explore the semantic dif-
ferences between the newly generated and orig-
inal data, we computed the cos-similarity of the
original augmented sample in latent space. As
depicted in Fig. 5, DiffAug’s similarity distri-
bution is smoother and broader. In comparison,
Mixup tends to produce augmentations that are
very similar semantically, while methods like
cropping might introduce data with semantically distinct noise samples.

Effectiveness analysis of semantic encoder. Next, we confirm that the semantic encoder of Dif-
fAug works well by visualizing the representation of DiffAug and baseline methods (in Fig. 6). The
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Table 3: Ablation study of the semantic encoder includes DiffAug’s encoder is necessary and
can efficiently generate conditional vectors. Linear-tests performance of different ablation setups
on on vision dataset and biological dataset.

Datasets Vision Datasets Biological Datasets
CF10 CF100 STL10 TINet GA1457 SAM561 MC1374 HCL500

A1. Gen(·) + Sup. Condition 93.4 70.9 92.9 45.9 92.5 89.6 71.1 63.9
A2. Gen(·) + Rand. Condition 34.2 10.4 30.1 7.3 10.5 16.9 13.9 10.0
A3. Gen(·) + Enc(·|θ) (DiffAug) 93.4 69.9 92.5 49.7 92.7 88.3 71.8 64.7
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Figure 6: The scatter visualization of representation indicates DiffAug’s encoder learns cleaner
embedding. The colors represent different categories; there are 100 categories in CF100; we used
the superclasses label provided by Deng et al. (2021). DiffAug E means only using the soft con-
trastive loss to train the encoder.

t-SNE (Van der Maaten & Hinton, 2008) is used to analyze the BYOL, DLME, and DiffAug em-
bedding on CF10, CF100, MC1374, and HCL500 datasets. The results show that DiffAug’s encoder
learns cleaner embedding than baseline methods. In Fig. 6, DiffAug E means the first E-step’s re-
sults of the DiffAug. By comparing DiffAug E and DiffAug, we observe that the augmented data
further improves the embedding quality, significantly enhancing the depiction of local structures.
The same conclusion is shown in Fig. A.2.

3.4 ABLATION STUDY AND EFFECTIVENESS OF EACH COMPONENT

Ablation study of the semantic encoder. In the ablation study presented in Table. 3, we consider
three configurations: A1 and A2 confirm the significance of DiffAug’s semantic encoder by ablating
it in two ways. A1 directly uses supervised one hot label as the conditional, bypassing the condition
vectors generated by the unsupervised neural network. A2 employs random conditional vectors
instead of those the encoder produces. A3 means the proposed DiffAug method. The results from
these experiments can be found in Table 3. We observe that the average performance of A1 is highest
due to the access to the label. And not accessing the label at all brings a huge performance drop. The
results in A3 illustrate that DiffAug’s performance is comparable to the fully supervised condition,
demonstrating its ability to model supervised annotation within an unsupervised framework.

Ablation study of training strategy and scl loss function. For Ablation in Table. 4, B1 means
that the model is trained by SimCLR (Chen et al., 2020). B2 omits the diffusion loss and trains
the encoder with only the soft contrastive learning loss. B3 omits the soft contrastive learning loss
and trains the encoder with InfoNCE loss. B4 and B5 talk about the training strategy of DiffAug.
B4 denotes training the model by integrating two loss functions, i.e., mixing E-Step and M-Step
to update the parameters of both networks simultaneously through a single forward propagation.B5
denotes the default training strategy, which trains the model by alternating the two loss functions.
The results from these experiments can be found in Table 4. First, we observe that either replacing
the scl loss or replacing the diff model (B2 or B3) brings about performance degradation, which
implies that the two modules of DiffAug work in conjunction with each other. Second, we observe
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Table 4: Ablation study of scl loss function and training strategy. The classifier accuracy of each
setting is displayed in this table. Soft contrastive learning is improved with typical contrast learning,
and EM training is more stable.

Datasets Vision Datasets Biological Datasets
CF10 CF100 STL10 TINet GA1457 SAM561 MC1374 HCL500

B1. SimCLR 89.8 57.4 86.9 38.4 9.4 16.8 14.3 16.8
B2. DiffAug w/o Ldf 91.3 66.1 90.1 44.9 89.1 82.1 59.3 62.3
B3. DiffAug w/o Lscl 92.7 68.4 90.9 45.1 89.2 82.4 69.2 61.3

B4. DiffAug Syn. Training 92.9 69.7 92.7 45.3 90.1 89.6 68.1 62.3
B5. DiffAug EM Training 93.4 69.9 92.5 49.7 92.7 88.3 71.8 64.7

(a) MC1374 (b) HCL500
Ori1 Ori2 Aug1 Aug2 Aug3 Ori1 Ori2 Aug1 Aug2 Aug3 Ori1 Ori2 Aug1 Aug2 Aug3 Ori1 Ori2 Aug1 Aug2 Aug3

Class: label 3 Class: label 5 Class: label 6 Class: label 7

0
1.0
2.0

-1.0
-2.0

0
1.0
2.0

-1.0
-2.0

Figure 7: Hypter-parametric λ analysis. The Box plots of augmentation strength hyperparameters
λ and model Linear-tests performance. For each parameter, statistical results of experiments based
on grid search were performed.

that on some datasets, the performance of the two training strategies (B4 and B5) is comparable, but
on others, the EM method demonstrates higher stability. We attribute this to the fact that the difficulty
of diffusion model training varies from data to data, and simultaneous training may result in the two
modules being unable to match at all times, bringing about instability in training. However, the E-M
training approach avoids this problem.

3.5 HYPERPARAMETRIC ANALYSIS AND THE TOXICITY OF GENERATED DATA

Finally, we investigate the performance improvement and potential toxicity of the DiffAug method
through hyperparametric analysis. The hyperparameter λ determines how often the model generated
by DiffAug affects the training of the semantic encoder. Introducing the least amount of augmen-
tation data (λ = 0) brings the method back to traditional contrastive learning methods, while too
much (λ = 1) will lead to encoder to crash. To demonstrate this, we tested the model perfor-
mance of different λ counterparts on two visual datasets (CF10, CF100) and two biological datasets
(SAM561 and MC1374). As shown in Fig. 7, the change in performance brought about by λ is
consistent across datasets. Specifically, setting λ = 0.1 or λ = 0.15 provides the most significant
gain. We believe that λ = 0.1 may be a suitable default setting for most datasets.

4 CONCLUSION

In summary, we presented DiffAug, an innovative contrastive learning framework that leverages
diffusion-based augmentation to enhance the robustness and generalization of unsupervised learn-
ing. Unlike many existing methods, DiffAug operates independently of prior knowledge or external
labels, positioning it as a versatile augmentation tool with notable performance in vision and life sci-
ences. Our tests reveal that DiffAug consistently boosts classification and clustering accuracy across
multiple datasets, such as CF10, CF100, STL10, TINet, HCL500, GA1457, SAM561, and MC1374.
Given its capabilities, we see DiffAug evolving into a benchmark data augmentation method in un-
supervised contrastive learning. We suggest fellow researchers delve into DiffAug and harness its
potential for diverse applications.
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A APPENDIX: RELATED WORKS

Generative Models Generative models have been the subject of growing interest and rapid ad-
vancement. Earlier methods, including VAEs (Kingma & Welling, 2014) and GANs (Goodfellow
et al., 2014), showed initial promise generating realistic images, and were scaled up in terms of
resolution and sample quality (Brock et al., 2019; Razavi et al., 2019). Despite the power of these
methods, many recent successes in photorealistic image generation were the result of diffusion mod-
els (Ho et al., 2020; Nichol & Dhariwal, 2021; Saharia et al., 2022; Nichol et al., 2022; Ramesh
et al., 2022). Diffusion models have been shown to generate higher-quality samples compared to
their GAN counterparts (Dhariwal & Nichol, 2021), and developments like classifier free guidance
(Ho & Salimans, 2022) have made text-to-image generation possible. Recent emphasis has been on
training these models with internet-scale datasets like LAION-5B (Schuhmann et al., 2022). Gen-
erative models trained at internet-scale (Rombach et al., 2022; Saharia et al., 2022; Nichol et al.,
2022; Ramesh et al., 2022) have unlocked several application areas where photorealistic generation
is crucial.

Synthetic Image Data Generation Training neural networks on synthetic data from generative
models was popularized using GANs (Antoniou et al., 2017; Tran et al., 2017; Zheng et al., 2017).
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Various applications for synthetic data generated from GANs have been studied, including represen-
tation learning (Jahanian et al., 2022), inverse graphics (Zhang et al., 2021a), semantic segmentation
(Zhang et al., 2021b), and training classifiers (Tanaka & Aranha, 2019; Dat et al., 2019; Yamaguchi
et al., 2020; Besnier et al., 2020; Xiong et al., 2020; Wickramaratne & Mahmud, 2021; Haque,
2021). More recently, synthetic data from diffusion models has also been studied in a few-shot
setting (He et al., 2022). These works use generative models that have likely seen images of tar-
get classes and, to the best of our knowledge, we present the first analysis for synthetic data on
previously unseen concepts. Du et al. (2023) proposed the DREAM-OOD framework, which uses
diffusion models to generate photo-realistic outliers from in-distribution data for improved OOD
detection. By learning a text-conditioned latent space, it visualizes imagined outliers directly in
pixel space, showing promising results in empirical studies. Zhang et al. (2023a) developed the
Guided Imagination Framework (GIF) using generative models like DALL-E2 and Stable Diffusion
for dataset expansion, enhancing accuracy in both natural and medical image datasets.

Synthetic Biology Data Generation The realm of synthetic biology has witnessed a surge in the
utilization of data-driven approaches, particularly with the advent of advanced computational mod-
els. The generation of synthetic biological data has been instrumental in predicting protein structures
(McGibbon et al., 2023). The use of Generative Adversarial Networks (GANs) has also found its
way into this domain, aiding in the c reation of synthetic DNA sequences (Zheng et al., 2023; Li &
Zhang, 2022; Han et al., 2019) and simulating cell behaviors (Botton et al., 2022). Furthermore, the
integration of machine learning with synthetic biology has paved the way for innovative solutions
in drug discovery (Blanco-Gonzalez et al., 2023; McGibbon et al., 2023). Unlike the synthetic im-
age data generation, where models have often seen images of target classes, synthetic biology data
generation often grapples with the challenge of generating data for entirely novel biological entities.
This presents a unique set of challenges and opportunities, pushing the boundaries of what synthetic
data can achieve in the realm of biology.

B APPENDIX: DETAILS OF CONTRASTIVE LEARNING AND SOFT
CONTRASTIVE LEARNING

B.1 THE T-KERNEL SIMILARITY IN SOFT CONTRASTIVE LEARNING

To map the high-dimensional embedding vector to a probability value, a kernel function S(·) is
used. In this paper, we use the t-distribution kernel function Sν(·) because it exposes the degrees
of freedom and allows us to adjust the closeness of the distribution in the dimensionality reduction
mapping (Li et al., 2021). The t-distribution kernel function is defined as follows,

S(zi, zj) = Γ ((ν + 1)/2)
(
1 + ∥zi − zj∥22/ν

)− ν+1
2 /
√
νπΓ (ν/2), (9)

where Γ(·) is the Gamma function. The degrees of freedom ν control the shape of the kernel func-
tion. The different degrees of freedom (νy, νz) is used in Ry and Rz for the dimensional reduction
mapping.

B.2 WHY SOFT CONTRASTIVE LEARNING IS A SOFTENED VERSION OF CONTRASTIVE
LEARNING

Lemma 1. Let Lcl = − logQ
(
zi, z

+
i

)
+ log

[
Q
(
zi, z

+
i

)
+
∑

z−
i ∈V − Q

(
zi, z

−
i

)]
and Lp

cl =

−
∑NK+1

j=1

{
Hij logQij + (1−Hij) log Q̇ij

}
Then limx→∞ Lcl − Lp

cl = 0 .

Proof. We start with LCL = − log
exp(S(zi,zj))∑NK

k=1 exp(S(zi,zk))
(Eq. (3)), then

LCL = logNK − log
exp(S(zi, zj))

1
NK

∑NK

k=1 exp(S(zi, zk))
.
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We are only concerned with the second term that has the gradient. Let (i, j) are positive pair and
(i, k1), · · · , (i, kN ) are negative pairs. The overall loss associated with point i is:

− log
exp(S(zi, zj))

1
NK

∑NK

k=1 exp(S(zi, zk))

=−

[
log exp(S(zi, zj))− log

1

NK

NK∑
k=1

exp(S(zi, zk))

]

=−

[
log exp(S(zi, zj))−

NK∑
k=1

log exp(S(zi, zk)) +

NK∑
k=1

log exp(S(zi, zk))− log
1

NK

NK∑
k=1

exp(S(zi, zk))

]

=−

[
log exp(S(zi, zj))−

NK∑
k=1

log exp(S(zi, zk)) + logΠNK

k=1 exp(S(zi, zk))− log
1

NK

NK∑
k=1

exp(S(zi, zk))

]

=−

[
log exp(S(zi, zj))−

NK∑
k=1

log exp(S(zi, zk)) + log
ΠNK

k=1 exp(S(zi, zk))
1

NK

∑NK

k=1 exp(S(zi, zk))

]

We focus on the case where the similarity is normalized, S(zi, zk) ∈ [0, 1]. The data i and
data k is the negative samples, then S(zi, zk) is near to 0, exp(S(zi, zk)) is near to 1, thus the

Π
NK
k=1 exp(S(zi,zk))

1
N

∑NK
k=1 exp(S(zi,zk))

is near to 1, and log
Π

NK
k=1 exp(S(zi,zk))

1
N

∑NK
k=1 exp(S(zi,zk))

near to 0. We have

LCL ≈ −

[
log exp(S(zi, zj))−

NK∑
k=1

log exp(S(zi, zk))

]

We denote ij and ik by a uniform index and useHij to denote the homology relation of ij.

LCL ≈ −

[
log exp(S(zi, zj))−

NK∑
k=1

log exp(S(zi, zk))

]

≈ −

Hij log exp(S(zi, zj))−
NK∑
j=1

(1−Hij) log exp(S(zi, zj))


≈ −

NK+1∑
j=1

{Hij log exp(S(zi, zj)) + (1−Hij) log{exp(−S(zi, zj))}}


we define the similarity of data i and data j as Qij = exp(S(zi, zj)) and the dissimilarity of data i

and data j as Q̇ij = exp(−S(zi, zj)).

LCL ≈ −

NK+1∑
j=1

{
Hij logQij + (1−Hij) log Q̇ij

}

The proposed SCL loss is a smoother CL loss:

This proof tries to indicate that the proposed SCL loss is a smoother CL loss. We discuss the
differences by comparing the two losses to prove this point. the forward propagation of the network
is, zi = H(ẑi), ẑi = F (xi), zj = H(ẑj), ẑj = F (xj). We found that we mix y and ẑ in the
main text, and we will correct this in the new version. So, in this section zi = H(yi), yi = F (xi),
zj = H(yj), yj = F (xj) is also correct.
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Let H(·) satisfy K-Lipschitz continuity, then dzij = k∗dyij , k
∗ ∈ [1/K,K], where k∗ is a Lipschitz

constant. The difference between LSCL loss and LCL loss is,

LCL − LSCL ≈
∑
j

[(
Hij − [1 + (eα − 1)Hij ]κ

(
dyij
))

log

(
1

κ
(
dzij
) − 1

)]
. (10)

Because the α > 0, the proposed SCL loss is the soft version of the CL loss. ifHij = 1, we have:

(LCL − LSCL)|Hij=1 =
∑[(

(1− eα)κ
(
k∗dzij

))
log

(
1

κ
(
dzij
) − 1

)]
(11)

then:

lim
α→0

(LCL − LSCL)|Hij=1 = lim
α→0

∑[(
(1− eα)κ

(
k∗dzij

))
log

(
1

κ
(
dzij
) − 1

)]
= 0 (12)

Based on Eq.(12), we find that if i, j is neighbor (Hij = 1) and α → 0, there is no difference
between the CL loss LCL and SCL loss LSCL. When if Hij = 0, the difference between the loss
functions will be the function of dzij . The CL loss LCL only minimizes the distance between adja-
cent nodes and does not maintain any structural information. The proposed SCL loss considers the
knowledge both comes from the output of the current bottleneck and data augmentation, thus less
affected by view noise.

Details of Eq. (10). Due to the very similar gradient direction, we assume Q̇ij = 1 − Qij . The
contrastive learning loss is written as,

LCL ≈−
∑
{Hij logQij + (1−Hij) log (1−Qij)} (13)

whereHij indicates whether i and j are augmented from the same original data.

The SCL loss is written as:

LSCL = −
∑
{Pij logQij + (1− Pij) log (1−Qij)} (14)

According to Eq. (4) and Eq. (5), we have

Pij = Rijκ(d
y
ij) = Rijκ(yi, yj), Rij =

{
eα if H(xi, xj) = 1
1 otherwise ,

Qij = κ(dzij) = κ(zi, zj),

(15)

For ease of writing, we use distance as the independent variable, dyij = ∥yi−yj∥2, dzij = ∥zi−zj∥2.

The difference between the two loss functions is:
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LCL − LSCL

=−
∑[
Hij log κ

(
dzij
)
+ (1−Hij) log
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1− κ

(
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))
−Rijκ
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dyij
)
log κ

(
dzij
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(
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(
1− κ

(
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(
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)) (

log κ
(
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)
− log

(
1− κ

(
dzij
))) ]

=
∑[(

Hij −Rijκ
(
dyij
))

log

(
1

κ
(
dzij
) − 1

)]
(16)

Substituting the relationship betweenHij and Rij , Rij = 1 + (eα − 1)Hij , we have

LCL − LSCL =
∑[(

Hij − [1 + (eα − 1)Hij ]κ
(
dyij
))

log

(
1

κ
(
dzij
) − 1

)]
(17)

We assume that network H(·) to be a Lipschitz continuity function, then

1

K
H(dzij) ≤ dyij ≤ KH(dzij) ∀i, j ∈ {1, 2, · · · , N} (18)

We construct the inverse mapping of H(·) to H−1(·),

1

K
dzij ≤ dyij ≤ Kdzij ∀i, j ∈ {1, 2, · · · , N} (19)

and then there exists k∗:

dyij = k∗dzij k∗ ∈ [1/K,K] ∀i, j ∈ {1, 2, · · · , N} (20)

Substituting the Eq.(20) into Eq.(17).

LCL − LSCL =
∑[(

Hij − [1 + (eα − 1)Hij ]κ
(
k∗dzij

))
log

(
1

κ
(
dzij
) − 1

)]
(21)

C APPENDIX: DETAILS OF VISION EXPERIMENTS

C.1 DATASET SETUPS

Experiments are performed on CIFAR-10 [CF10]1 and CIFAR-1002 [CF100] (Krizhevsky et al.,
2009), STL103 (Coates et al., 2011), TinyImageNet4 [TINet] (Le & Yang, 2015) dataset.

To compare with the two different baseline methods, the setting of the dataset is shown in Table. A.1.

1https://www.cs.toronto.edu/ kriz/cifar.html
2https://www.cs.toronto.edu/ kriz/cifar.html
3https://cs.stanford.edu/ acoates/stl10/
4https://www.kaggle.com/c/tiny-imagenet

20



Under review as a conference paper at ICLR 2024

Table A.1: Dataset setting of linear-test Performance.

Dataset Train Split Test Split Train Samples Test Samples Classes
CF10 Train Test 50,000 10,000 10

CF100 Train Test 50,000 10,000 100
STL10 Train + Unlabeled Test 5,000+100,000 8,000 10
TINet Train Test 100,000 100,000 200

Table A.2: Dataset setting of clustering test.

Dataset Train & Test Split Train & Test Samples Classes
CF10 Train+Test 60,000 10

CF100 Train+Test 60,000 20
STL10 Train+Test 13,000 10

TIN Train 100,000 200

C.2 BASELINE METHODS AND IMPLEMENTATION DETAILS

The contrastive learning methods, including SimCLR (Chen et al., 2020), MOCO v2 (He et al.,
2020), BYOL (Grill et al., 2020), SimSiam (Chen & He, 2021), and DLME (Zang et al., 2022b) are
chosen for comparison. The SimC.+Mix. and MoCo.+Mix. are SimCLR and MoCoV2 with Mixup
data augmentation which processed by Zhang et al. (2022). The SimC.+Dif. and MoCo.+Mix. are
SimCLR and MoCoV2 with DiffAug data augmentation. Improvements over the best baseline are
shown in parentheses.

For the Linear-test performance assessment, we followed a procedure similar to SimCLR (Chen
et al., 2020). We evaluated the model’s representations linearly on top of the frozen features. This
ensures that the quality of the representations is attributed only to the pre-training task, without
any influence from potential fine-tuning. We used the ResNet-50 (He et al., 2015) backbone as
the encoder and a standard diffusion backbone as diffusion model (in code below). In contrast, for
DiffAug, its semantic encoder served as the contrastive learning backbone, trained using DiffAug-
augmented images. For the kMeans clustering evaluation, we extracted feature vectors from the
models, leaving out the top classification layer. We then applied kMeans clustering to these features.
The primary metric for evaluation was clustering accuracy.

Listing 1: DiffusionModel for Vision Task
1 class DiffusionModelVision(nn.Module):
2 def __init__(self, c_in=3, c_out=3, time_dim=256):
3 super().__init__()
4 self.time_dim = time_dim
5 self.remove_deep_conv = remove_deep_conv
6 self.inc = DoubleConv(c_in, 16)
7 self.down1 = Down(16, 32)
8 self.sa1 = SelfAttention(32)
9 self.down2 = Down(32, 64)

10 self.sa2 = SelfAttention(64)
11 self.down3 = Down(64, 64)
12 self.sa3 = SelfAttention(64)
13 self.up1 = Up(128, 32)
14 self.sa4 = SelfAttention(32)
15 self.up2 = Up(64, 16)
16 self.sa5 = SelfAttention(16)
17 self.up3 = Up(32, 16)
18 self.sa6 = SelfAttention(16)
19 self.outc = nn.Conv2d(16, c_out, kernel_size=1)
20 def pos_encoding(self, t, channels):
21 inv_freq = 1.0 / (10000 ** (torch.arange(0, channels, 2,

device=one_param(self).device).float() / channels))
22 pos_enc_a = torch.sin(t.repeat(1, channels // 2) * inv_freq)
23 pos_enc_b = torch.cos(t.repeat(1, channels // 2) * inv_freq)
24 pos_enc = torch.cat([pos_enc_a, pos_enc_b], dim=-1)
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STL10 (96*96*3) CF10 (32*32*3)

Figure A.1: The display of original and generated images illustrates that DiffAug generates
semantically similar augmented images. Ori means original image and Aug1, Aug2 and Aug3 are
augmentated images. More detailed results are in the appendix.

25 return pos_enc
26

27 def forward(self, x, t):
28 t = t.unsqueeze(-1)
29 t = self.pos_encoding(t, self.time_dim)
30 return self.unet_forwad(x, t)

Our training strategy is as follows: E-step: 200 epochs → M-step: 400 epoch → E-step: 800
epoch. Continued training will further improve performance, but we did not increase the amount of
computation due to computational resource constraints. The time loss of the method does improve
due to the use of the diffusion model. However, on small datasets, this boost is acceptable. In this
way at the same time DiffAug gives the possibility to accomplish unsupervised comparison learning
training on small datasets.

Table A.3: Details of the training process in vision dataset.

CF10 ν Learning Rate Weight Decay Batch Size GPU Training Time
CF10 1 0.001 1e-6 256 1*V100 7.1 hours
CF100 2 0.001 1e-6 256 1*V100 7.2 hours
STL10 5 0.001 1e-6 256 1*V100 15.1 hours
TINet 3 0.001 1e-6 256 1*V100 20.6 hours

C.3 DATA AUGMENTATION OF THE COMPARED METHODS

BYOL augmentation. The BYOL augmentation method is a hand-designed method. It is com-
posed of four parts: random cropping, left-right flip, color ji

• Random cropping: A random patch of the image is selected, with an area uniformly sam-
pled between 8% and 100% of that of the original image, and an aspect ratio logarithmically
sampled between 3/4 and 4/3. This patch is then resized to the target size of 224 × 224
using bicubic interpolation.

• Optional left-right flip.
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• Color jittering: The brightness, contrast, saturation, and hue of the image are shifted by a
uniformly random offset applied to all the pixels of the same image. The order in which
these shifts are performed is randomly selected for each patch.

• Color dropping: An optional conversion to grayscale. When applied, the output intensity
for a pixel (r, g, b) corresponds to its luma component, computed as 0.2989r + 0.5870g +
0.1140b1.

SimCLR augmentation.

• Random Cropping: This involves taking a random crop of the image and then resizing it
back to the original size. This can be seen as a combination of zooming and spatial location
changes.

• Random Flipping: Randomly flip the image horizontally.

• Color Distortion: Apply a random color distortion. In the SimCLR paper, they use a combi-
nation of random brightness, random contrast, random saturation, and random hue changes.
The strength of these distortions is controlled by a factor.

• Gaussian Blur: Apply a random Gaussian blur to the image. The extent of blurring is
controlled by a factor.

MoCo v2 augmentation. For MoCo v2, the data augmentations are similar to those used in Sim-
CLR, but there might be slight differences in implementation details. Here are the main augmenta-
tions used in MoCo v2:

• Random Cropping: This involves taking a random crop of the image and then resizing it
back to the original size. Random Flipping: Randomly flip the image horizontally.

• Color Jitter: Randomly change the brightness, contrast, saturation, and hue of the image.

• Gaussian Blur: Apply Gaussian blur to the image with a certain probability.

• Solarization: This is an augmentation introduced in MoCo v2. It inverts pixel values above
a threshold, which can create a unique visual effect.

MAE augmentation. The core idea behind MAE is to mask out parts of an image and then train an
autoencoder to reconstruct the original image from the masked version. This is somewhat analogous
to the masked language modeling task used in models like BERT for NLP, where parts of the text
are masked out and the model is trained to predict the masked words.

D APPENDIX: DETAILS OF BIOLOGY EXPERIMENTS

D.1 DATASET SETUPS

Experiments are performed on biological datasets, including MC13745 (Han et al., 2018),
GA14576 (Rouillard et al., 2016), SAM7 (Weber & Robinson, 2016), , and HCL5008 (Han et al.,
2020) datasets.

To ensure a fair comparison, we first embed the data into a 2D space using the method under eval-
uation. We then assess the method’s performance through 10-fold cross-validation. Classification
accuracy is determined by applying a linear SVM classifier in the latent space, while clustering ac-
curacy is gauged using k-means clustering in the same space. Further details about the datasets,
baseline methods, and evaluation metrics can be found in Table A.4.

5https://bis.zju.edu.cn/MCA/
6https://maayanlab.cloud/Harmonizome/gene/GAST
7https://github.com/abbioinfo/CyAnno
8https://db.cngb.org/HCL/
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Table A.4: Datasets information of simple manifold embedding task

Dataset Train Samples Test Samples Input Dimension Class Number in label

MC1374 24,000 6,000 1,374 98
GA1457 8,510 2,127 1,457 49
SAM561 69,491 17,373 561 52
HCL500 48,000 12,000 500 45

D.2 BASELINE METHODS AND IMPLEMENTATION DETAILS

Dimension reduction methods that have been widely used on biological analyze are compared, in-
cluding kPCA (Halko et al., 2010), Ivis (Szubert et al., 2019), PHATE (Moon & van Dijk, 2019),
PUMAP (Sainburg et al., 2021), PaCMAP (Wang et al., 2022), DMTEV (Zang et al., 2022a) and
hNNE (Sarfraz et al., 2022).

For DiffAug, both the semantic encoder Enc(·), and the diffusion generator Gen(·), are implemented
using a Multi-Layer Perceptron (MLP). Their respective architectures are defined as: Enc(·): [-1,
500, 300, 80]. The Gen(·): is defined below,

Listing 2: DiffusionModel for Biology Task
1 class AE(nn.Module):
2 def __init__( self,in_dim, mid_dim=2000, time_step=1000,):
3 super().__init__()
4 self.enc1 = self.diff_block(in_dim, mid_dim)
5 self.enc2 = self.diff_block(in_dim, mid_dim)
6 self.enc3 = self.diff_block(in_dim, mid_dim)
7 self.enc4 = self.diff_block(in_dim, mid_dim)
8

9 self.dec1 = self.diff_block(in_dim, mid_dim)
10 self.dec2 = self.diff_block(in_dim, mid_dim)
11 self.dec3 = self.diff_block(in_dim, mid_dim)
12 self.dec4 = self.diff_block(in_dim, mid_dim)
13 self.time_encode = nn.Embedding(time_step, in_dim)
14

15 def diff_block(in_dim, mid_dim):
16 return nn.Sequential(
17 nn.LeakyReLU(), nn.InstanceNorm1d(in_dim),
18 nn.Linear(in_dim, mid_dim), nn.LeakyReLU(),
19 nn.InstanceNorm1d(mid_dim), nn.Linear(mid_dim, in_dim),)
20

21 def forward(self, input, time, cond=None):
22 input_shape = input.shape
23 if len(input.size()) > 2:
24 input = input.view(input.size(0), -1)
25 ti = self.time_encode(time)
26 cd = self.cond_model(cond).reshape(input.shape[0], -1)
27 ee1 = self.enc1(input + ti + cd)
28 ee2 = self.enc2(ee1 + ti+ cd) + ee1
29 ee3 = self.enc3(ee2 + ti+ cd) + ee1 + ee2
30 ee4 = self.enc4(ee3 + ti+ cd) + ee1 + ee2 + ee3
31

32 ed1 = self.dec1(ee4 + ti+ cd)
33 ed2 = self.dec2(ed1 + ti+ cd) + ee3 + ed1
34 ed3 = self.dec3(ed2 + ti+ cd) + ee2 + ed1 + ed2
35 ed4 = self.dec4(ed3 + ti+ cd) + ee1 + ed1 + ed2 + ed3
36 return ed4.reshape(input_shape)

To assess the efficacy of the proposed methods, following Wang et al. (2022); Sarfraz et al. (2022),
we utilized linear SVM performance to evaluate the performance of differences methods. For the
linear SVM evaluation, embeddings were partitioned with 90% designated for training and 10% for
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Figure A.2: Training curves on the GA1457 dataset, including two Esteps and one Mstep. We can
observe that the new generated data improves the correctness of E step.

testing; the training set facilitated the linear SVM training, while the test set yielded the performance
metrics. Detailed specifics of this configuration are elaborated in the Table A.5.

Table A.5: Details of the training process in biological dataset.

CF10 ν Learning Rate Weight Decay Batch Size GPU Training Time
MC1374 1 0.0001 1e-6 300 1*V100 4.2 hours
GA1457 1 0.0001 1e-6 300 1*V100 4.6 hours
SAM561 1 0.0001 1e-6 300 1*V100 12.1 hours
HCL500 0.1 0.0001 1e-6 300 1*V100 20.1 hours
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