
How Two-Layer Neural Networks Learn,
One (Giant) Step at a Time

Yatin Dandi
Information, Learning and Physics (IdePHICS) Lab

École Polytechnique Fédérale de Lausanne
Route Cantonale, 1015 Lausanne, Switzerland

yatin.dandi@epfl.ch

Florent Krzakala
Information, Learning and Physics (IdePHICS) Lab

École Polytechnique Fédérale de Lausanne
Route Cantonale, 1015 Lausanne, Switzerland

florent.krzakala@epfl.ch

Bruno Loureiro
Département d’Informatique

École Normale Supérieure - PSL & CNRS
45 rue d’Ulm, F-75230 Paris cedex 05, France

bruno.loureiro@di.ens.fr

Luca Pesce
Information, Learning and Physics (IdePHICS) Lab

École Polytechnique Fédérale de Lausanne
Route Cantonale, 1015 Lausanne, Switzerland

luca.pesce@epfl.ch

Ludovic Stephan
Information, Learning and Physics (IdePHICS) Lab

École Polytechnique Fédérale de Lausanne
Route Cantonale, 1015 Lausanne, Switzerland

ludovic.stephan@epfl.ch

Mathematics of Modern Machine Learning Workshop at NeurIPS 2023.



Abstract

We investigate theoretically how the features of a two-layer neural network adapt
to the structure of the target function through a few large batch gradient descent
steps, leading to improvement in the approximation capacity with respect to
the initialization. We compare the influence of batch size and that of multiple
(but finitely many) steps. For a single gradient step, a batch of size n = O(d) is
both necessary and sufficient to align with the target function, although only a
single direction can be learned. In contrast, n = O(d2) is essential for neurons
to specialize to multiple relevant directions of the target with a single gradient
step. Even in this case, we show there might exist “hard” directions requiring
n = O(dℓ) samples to be learned, where ℓ is known as the leap index of the
target. The picture drastically improves over multiple gradient steps: we show
that a batch-size of n = O(d) is indeed enough to learn multiple target directions
satisfying a staircase property, where more and more directions can be learned
over time. Finally, we discuss how these directions allows to drastically improve
the approximation capacity and generalization error over the initialization, il-
lustrating a separation of scale between the random features/lazy regime, and
the feature learning regime. Our technical analysis leverages a combination of
techniques related to concentration, projection-based conditioning, and Gaussian
equivalence which we believe are of independent interest. By pinning down the
conditions necessary for specialization and learning, our results highlight the
interaction between batch size and number of iterations, and lead to a hierarchical
depiction where learning performance exhibits a stairway to accuracy over time
and batch size, shedding new light on how neural networks adapt to features of
the data.

A central property behind the success of neural networks is their capacity to adapt to the features
in the training data. Indeed, many of the classical machine learning methods, e.g. linear or
logistic regression, are specifically designed to a restricted class of functions (e.g. generalized
linear functions). Others, such as kernel methods, can adapt to larger function classes (e.g. square-
integrable functions), but sometimes at prohibitively many samples. Despite the limitations, these
methods enjoy well-understood theoretical guarantees: they are convex (hence easy to train) and
given a target function, it is well-understood how many samples are needed to achieve a target
accuracy. The situation is dramatically different for neural networks: despite being universal
approximators, little is known on how to optimally train them or how many hidden units and/or
samples are required to learn a given class of functions. Nevertheless, they have proven to be
flexible, efficient and easy to optimize in practice, properties which are often attributed to their
capacity to adapt to features in the data. Curiously, most of our current theoretical understanding
of neural networks stems from the investigation of their lazy regime where features are not learned
during training. In this work, we take some (giant) steps forward from the lazy regime.
Our central goal is to paint a complete picture of how two-layer neural networks adapt to the
features of training data (zν , yν)nν=1 ∈ Rd+1 in the early phase of training after the first few steps
of gradient descent. We recall the reader that for data is supported in a high-dimensional space, the
curse of dimensionality prevents efficient learning even under standard regularity assumptions on
the target function such as Lipschitzness Devroye et al. [2013]. Hence, understanding the efficient
learning performance of neural networks observed in practice requires additional assumptions on
the data distribution. In this work, we focus on a popular synthetic data model consisting of: a)
independently drawn standard Gaussian covariates zν ∼ N(0, Id); b) a target function yν = f⋆(zν)
depending only on a finite number of relevant directions, also known as a multi-index model. In
other words, there exists a low-dimensional subspace V ⋆ ⊂ Rd with fixed dimension k and a
function g⋆ : V ⋆ → R such that:

y = f⋆(z) := g⋆(Π⋆z) = g⋆(⟨w⋆
1, z⟩, · · · , ⟨w⋆

r, z⟩). (1)

where Π⋆ is the orthogonal projection on V ⋆. Note that in this model the features are isotropic,
with all the structure in the data being in the target. In contrast to other popular models for
structured data , such as low-dimensional support of the inputs or smoothness of the target function,
kernel methods do not adapt to target functions depending on low-dimensional projections Bach
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[2017]. This makes it an ideal playground for quantifying the adaptativity of neural networks in
the feature-learning regime. Given this class of structured targets, we consider supervised learning
with the simplest universal approximator neural network: a fully-connected two-layer network
with first and second layer weightsW ∈ Rp×d and a ∈ Rp and activation function σ : R→ R:

f̂(z;W,a) =
1
√
p

p∑
i=1

aiσ(⟨wi, z⟩). (2)

Figure 1: Learning with a single gradient step.
Illustration of the relationship between batch size
and target function complexity for learning multi-
index functions with a single giant step in the
n = Θ(dk) regime (Thms. 1 & 2).

The central question in this work is to uncover how
this two-layer neural network adapts to the low-
dimensional target structure during training. In par-
ticular, we will be interested in quantifying how
much data is required for the relevant directions of
the target to be learned, and how this feature learn-
ing translates into the approximation capacity of the
network with respect to kernel methods. We shall
provide an informal presentation of our results and
theorems, and refer the reader to Appendix A for
the formal and precise presentation.

Informal summary of main results

To outperform the network at initialization (which
can be regarded as a kernel method) the network
must adapt to the data distribution. Mathematically,
this translates to developing correlation in the first
layer weights with the target subspace

V ⋆ := span(w⋆
1 , . . . ,w

⋆
r) .

First we focus on feature learning, i.e. how the subspace V ⋆ ⊂ Rd is learned during training.

First GD step — First, we discuss a single gradient step of full-batch gradient descent, which
turns out to be already non-trivial [Ba et al., 2022, Damian et al., 2022], with the update:

w1
i = w0

i −
η

2n

n∑
ν=1

∇wi

(
yν − f̂(zν ;W 0,a0)

)2
. (3)

Theorems 1 and 2 identify a fundamental interplay between batch size and the complexity of the
underlying target function. They are summarized in Fig. 1 (and a particular numerical example is
shown in Fig. 4 in appendix). More precisely:

• We show that developing meaningful correlation with the target function requires a large batch
size n = O(d) and learning rate η = Θ(p)when p, d, n are large. However, feature learning remains
limited in this regime since we prove only a single direction can be learned. Thus, if the target
depends on several relevant directions, only a "single neuron" approximation can be learned.
• Surpassing the single direction approximation with a single step requires a larger batch size with
at least n = O(d2) samples. This allows for the network weights to specialize to multiple target
directions.
• Nonetheless, we show that there might be hard directions in the target which cannot be learned
with n = O(d2). Learning these directions necessitates a batch size of at least n = O(dℓ), as
well as suppressing the directions learned at n = O(dℓ−1), where ℓ is the leap index of the target
(precisely defined in Def. 3) that thoroughly speaking corresponds to the lowest non-zero degree of
the Hermite polynomials in the expansion of the target in this directions.
• Finally we note that the complexity of learning a low-dimensional target function is a topic that
recently saw a surge of interest. For a single-index function with leap index ℓ, one-pass SGD has a
sample complexity of O(dℓ−1) Ben Arous et al. [2021], and it has been recently shown Damian et al.
[2023] that a smoothed version of SGD achieves a sample complexity of O(dℓ/2). This matches a
lower bound from the correlation statistical query family, which encompasses all SGD-like methods.
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Figure 2: Learning with multiple gradient steps. An illustration of how neural networks trained using
n = O(d) batches learn relevant directions after multiple GD training steps, allowing to learn more complex
functions over time (see Thm. 3). Here we represent the space V ⋆ of the relevant direction of the target
function, and the (normalized) projection of learned directionW t by the networks for different task f⋆(·) -
the function g(·) and h(·) are assumed to have zero first two Hermite coefficients. During the early stage of
training, neural networks first learn first a single direction associated to the linear part of the target, and then
can learn over time other directions that are linear conditioned on the previous learned ones. Let {ei}i∈[d] be
the standard basis of Rd, the four examples show cases where: Top left: No directions is learned at all. Top
right: The network can only learn a single direction e1 (single index regime). Bottom left: The network
learns a new direction each time, e1, then e2 and finally e3. Bottom right: The network learns e1 at the first
step and both e2 and e3 at the second steps.

In our single step setting, the sample complexity for large batch learning is O(dℓ), which is worse
than both the above methods. However, the time complexity of each algorithm paints a different
picture. Both SGD algorithms are sequential, and require O(d) operations per step, which leads to a
total time complexity of O(dℓ/2+1) at minimum. On the other hand, the computation of the update
in eq. (1) is simply an average of independent terms, which is very easy to parallelize. Including the
time to compute the average of each term e.g. using a Gossip algorithm Boyd et al. [2006], this sums
up to a time complexity of O(d + log(n)). Such an algorithm is also amenable to decentralized
learning schemes, where each agent only has access to a fraction of the overall data.

Learning over many GD iterations — The situation drastically improves when taking for
multiple gradient steps. In this case, focusing on the linear batch size n = O(d) regime, and
using a fresh batch of data at each GD iteration:

wt+1
i = wt

i −
η

2n

n∑
ν=1

∇wi

(
yν − f̂(zν ;W t,a0)

)2
, (4)

Note that splitting the training of the first and second layers and using a fresh batch of data at each
iteration is a common approximation [Damian et al., 2022, Ba et al., 2022, Bietti et al., 2022]. In
contrast to the recent works considering the population limit, we stress that here we take the batch
size n to scale with the dimension d. In the realm of distributed and federated learning, scenarios
with large batches, a single pass, and few iterations are often the norm Goyal et al. [2017], Li et al.
[2020] (for instance this is the case when training large language models), further underlining the
relevance of this scenario. In this case, Theorem 3 shows that more complex subspaces of the target
directions may be progressively learned at each iteration, as we illustrate in Fig. 2. More precisely:

• Each additional gradient step allows for learning new perpendicular directions upon the impor-
tant condition that they are linearly connected to the previously learned directions (see
Sec .A.4 for precise definitions of this staircase property). Therefore, in contrast with a single step,
taking multiple steps allows to learn a multiple-index target with only n = O(d) samples.
• Nonetheless, directions that are not coupled through the staircase property and with zero first
Hermite coefficient cannot be learned in any finite number of steps. In fact, as discussed previ-
ously, they require a batch size of at least n = O(d2). In other words, while multiple steps help
specialization, it cannot help learning “hard” target directions.
• Similar to the saddle-to-saddle dynamics under gradient flow [Jacot et al., 2021, Abbe et al., 2023],
the dynamics described through Thm.3 involves sequential learning of directions. However, in
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the one-sample SGD regime [Ben Arous et al., 2021, Abbe et al., 2023] the gradient has vanishing
correlation with new directions, thus requiring a polynomial number of updates to escape saddles.
In contrast, the large-batch gradient updates contain a finite fraction of components along the new
directions, allowing their learning through a single step. Moreover, we show that each update leads
to a O(1) change in the components along direction in V ⋆, obviating the need for coordinate-wise
projections in Abbe et al. [2023].

The set of results described above provide a mathematical theory on how neural networks learn
representations of the data over training. They corroborate, among others, the findings of Kalimeris
et al. [2019], who observed that neural networks first fits the best linear classifier and subsequently
learns functions of increasing complexity.

From features to generalization — Our last set of results connects feature learning with the
approximation capacity of the network and illustrates that feature learning improves the learning
of the target function f⋆ over random initialization.

• We show that a two-layer network with a finite second layer can only learn the part of the target
function in the learned subspace (see Proposition 1). In fact, we conjecture that with p large enough
(but still finite), it should be possible to approximate this part of f⋆ up to arbitrary precision (Conj.
1).
• As (possibly) universal kernels, large width two-layer networks at initialization enjoy of better
approximation capacity. Indeed, Mei and Montanari [2022] proved that at initialization W t=0,
with n = Θ(dk) only a degree k approximation of the target function can be learned. Our results
characterize how feature learning allows us to improve over this sample complexity. In particular,
we show that in the directions learned by the first layer, the target function f⋆ can be learned with
less samples, while the component of f⋆ orthogonal to the learned features still requires n = O(dk).
While a complete mathematical control of the generalization error rates remains a difficult problem
(see Conjecture 2), our results provide a clear separation on scales between two-layer networks and
NTK-like methods, improving over the state-of-the art in the literature.
• In particular, in Corollary 1 we prove that with a single gradient step and n, p = O(d), one can
only learn features in this one-dimensional subspace, doing no better than kernels in the orthogonal
direction. This is illustrated in Fig.6 where we give an example where one step of gradient drastically
improves generalization, and one where it does not. To prove these results, we provide a stronger
conditional version of the Gaussian equivalence theorem [Mei and Montanari, 2022, Goldt et al.,
2022, Hu and Lu, 2022], which is the backbone of Theorem 4, and we believe is of independent
interest.

A more general overwiew of this broad field of research along with the formal statement of our
main results is given in App. A. The code to reproduce our figures is available on GitHub, and we
refer to App. B for details on the numerical implementations. Proofs are detailed in App. C and
App. D.
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— Appendices —
A Statement of main theoretical results

In this section we present the formal statements of our main results. Before doing that we present
an additional overview on relevant related works, and needed mathematical preliminaries.

Other related works — The analysis of high-dimensional asymptotics of kernel regression has
provided valuable insights into the advantages and limitations of kernel methods [Dietrich et al.,
1999, Opper and Urbanczik, 2001, Ghorbani et al., 2019, 2020, Donhauser et al., 2021, Mei et al., 2022,
Spigler et al., 2020, Bordelon et al., 2020, Canatar et al., 2021, Simon et al., 2022, Cui et al., 2021,
2022, Xiao et al., 2022]. In particular, a similar stairway picture as in Fig. 2 emerged from these
works Xiao et al. [2022]. The key difference, however, is that at each regime n = O(dk), kernels can
only learn the k-th Hermite polynomial of the target. This should be contrasted with our feature
learning regime where, once a direction is learned, all its Hermite coefficients are learned. Feature
learning corrections to kernel methods have been investigated in Dudeja and Hsu [2018], Naveh
and Ringel [2021], Seroussi et al. [2023], Atanasov et al. [2022], Bietti et al. [2022], Bordelon and
Pehlevan [2023], Petrini et al. [2022]. On a complementary line of work, exact asymptotic results
for the the random features models have been derived in the literature [Mei and Montanari, 2022,
Gerace et al., 2020, Dhifallah and Lu, 2020, Loureiro et al., 2021, 2022, Schröder et al., 2023, Bosch
et al., 2023]. A large part of these results are enabled by the Gaussian equivalence property [Goldt
et al., 2022, Hu and Lu, 2022, Montanari and Saeed, 2022, Dandi et al., 2023].
Closer to us are [Ba et al., 2022, Damian et al., 2022]. Ba et al. [2022] showed that a sufficiently large
single gradient step allows to beat kernel methods. Ba et al. [2022] showed that a single gradient step
yields an approximately rank-one change on the weights which is enough to beat kernel methods,
but did not characterize the impact on the generalization error. In our work, we prove that with a
single gradient step and n, p = O(d), one can only learn features in this one-dimensional subspace,
doing no better than kernels in the orthogonal direction. Additionally, their results are limited
to single-index target and to a single gradient step. In contrast, Damian et al. [2022] showed that
with n = ω(d2) samples, two-layer neural networks can specialize to more than one direction of a
multi-index target function with zero first Hermite coefficient (ℓ=2), and were again limited to a
single step. Our work extends their sufficient conditions on the sample complexity to general ℓ ≥ 1.
We also show they are also necessary, i.e. ∀ϵ > 0, with less data n = Θ(dℓ−ϵ) one cannot do better
than random features. Thus, our results prove a clear separation between the class of functions
learned within the Θ(d) batch-size setting of Ba et al. [2022] and the Θ(d2) batch-size setting of
Damian et al. [2023] and establish a general hierarchy of functions requiring increasing batch-size
to be learned with a gradient step. Additionally, we characterize which class of multi-index targets
can be instead learned with n = O(d) with multiple steps.
In a related but different vein, Abbe et al. [2022], building upon the earlier work of Abbe et al.
[2021] show how a “staircase" property of target functions characterizes the sample complexity for
infinite width two-layer networks trained by SGD, a.k.a. the mean-field regime Mei et al. [2018],
Chizat and Bach [2018], Rotskoff and Vanden-Eijnden [2022], Sirignano and Spiliopoulos [2020]).
Their focus, however, was on the peculiar case of sparse boolean functions depending solely on
linear coefficients, without considering direction-specific specialization. More recently, Abbe et al.
[2023] provided partial results for the case of isotropic Gaussian data, always in the regime of
one-pass SGD, involving basis-dependent projections. Here we consider the more generic case
of multi-index target functions with Gaussian data with large-batch SGD, without the use of a
knowledge of the basis, and show that a “directional staircase" behavior arises when iterating a
few giant gradient steps, while a related, but definitely different, picture arises with single steps
depending on the batch size. We also provide a sharp characterization of when this phenomenon
appears for multi-index targets and networks trained under large batch SGD, and provide a bound
on the resulting generalization error.
Similar to the “summary statistics" approach in Saad and Solla [1995], Ben Arous et al. [2021],
Ben Arous et al. [2022], our analysis is based upon the concentration of the overlaps of the neu-
rons with the target subspace and their norms, instead of the concentration of the full gradient
vector considered in recent works such as Abbe et al. [2022], Damian et al. [2022], removing any
requirements on the constants in the sample complexity for alignment along the target subspace.
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A.1 Preliminaries

Before stating our main results, we recall a few definition and useful facts.

Hermite expansion — Given the Gaussian measure γm on Rm, we can build a scalar product on
ℓ2(Rm, γm) as

⟨f, g⟩γ =

∫
Rm

fg dγm = Ez∼N(0,Im)[f(z)g(z)]. (5)

It turns out that there is a specific orthonormal basis of interest for this scalar product, that we
present in tensor form:
Definition 1 (Hermite decomposition). Let f : Rm → R be a function that is square integrable w.r.t
the Gaussian measure. There exists a family of tensors (Cj(f))k∈N such that Cj(f) is of order j and
for all x ∈ Rm,

f(x) =
∑
j∈N
⟨Cj(f),Hj(x)⟩ (6)

whereHj(x) is the j-th order Hermite tensor [Grad, 1949].

Higher-order singular value decomposition — The higher-order singular value decomposition
(HOSVD) of a tensor is defined as follows:

Definition 2 (Higher-order SVD). Let C ∈ Rmk

be a symmetric tensor of order k. A higher-order
SVD of C is an orthonormal set (u1, . . . ,ur) of r ≤ k vectors, as well as a tensor S ∈ Rrk such that

C =

r∑
j1,...,jk=1

Sj1,...,jkuj1 ⊗ · · · ⊗ ujk (7)

The singular values tensor S, as well as the rank r, are unique, but just as the regular SVD, the
vectors (u1, . . . ,ur) are only unique up to rotations.

A.2 Setting and assumptions

Before stating our main results, we introduce the setting and main assumptions required. The first
concerns the class of target functions we consider.
Assumption 1 (Data model). The training inputs zν ∈ Rd are independently drawn from the
Gaussian distribution N(0, Id). Further, we assume that the target function yν = f⋆(z) depends
only on a few relevant directions. In other words, there exists a fixed number of orthonormal vectors
(w1, . . . ,wr) and a fixed function g⋆ : Rr → R such that

y = f⋆(z) := g⋆(⟨w⋆
1, z⟩, . . . , ⟨w⋆

r, z⟩). (8)

As we will show later, learning with GD can be seen as a hierarchical process, where depending
on the batch size different directions of the target are progressively learned. Next, we define the
leap index, a fundamental quantity which precisely parametrizes what are the first directions to be
learned.
Definition 3 (Leap index). Since the input data is Gaussian z ∼ N(0, Id), the target function admits
a decomposition in terms of the Hermite decomposition (see Definition 1). We define the leap index of
the target function f⋆ as the first integer ℓ > 0 such that C⋆ℓ ̸= 0:

ℓ = min{j ∈ N : ⟨f⋆,Hj⟩γ ̸= 0} (9)

Given a batch of training data (zν , yν)nν=1 ∈ Rd+1 drawn from the model (1) defined above, we
now define how the network weights (W,a) are initialized and updated.
Assumption 2 (Training procedure). Consider the following random initialization for the weights:

√
p · a0i

i.i.d∼ Unif([−1, 1]) and w0
i
i.i.d∼ Unif(Sd−1). (10)
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The distribution of the ai can be replaced by any other continuous distribution with positive variance.
Note that for p = O(1), we have f̂(z;W 0,a0) ̸= 0. To further simplify the analysis, we assume p to
be even and further impose the following symmetrization at initialization:

a0i = −a0p−i+1 and w0
i = w0

p−i+1 for all i ∈ [p/2], (11)

which ensures f̂(z;W 0,a0) = 0. Note that this simplification is common in the related literature, e.g.
Chizat et al. [2019], Damian et al. [2022], and is mainly necessary when p is small. Given the initial
conditions, the weights are trained with the following two-step full-batch gradient descent:

(i) First layer training: for every gradient step t ≤ T , a fresh batch of training data {(zν , yν)}nν=1 is
drawn from the model in Assumption 1, and the first layer weights are updated according to:

wt+1
i = wt

i −
η

2n

n∑
ν=1

∇wi

(
yν − f̂(zν ;W t,a0)

)2
, (12)

Hence, the total sample complexity for this step is Tn.
(ii) Second layer training: once the first layer is trained for T steps, the second layer weights a are
trained to optimality by performing ridge regression with the features learned in the first step:

â = argmin
a∈Rp

1

2n

n∑
ν=1

(
yν − f̂(zν ;WT ,a)

)2
+ λ∥a∥2. (13)

Such a separation of the training between the first and second layer is a common setup for the theoretical
study of training [Damian et al., 2022, Abbe et al., 2023, Berthier et al., 2023], and allows for a more
tractable study of convergence.

We are now ready to state our main technical results.

A.3 Single gradient step

Our starting point is a single giant gradient step, and the phenomenology described in Fig. 1. The
main goal is to determine under which conditions the relevant directions Π⋆z of the target function
f⋆ can be learned with the training procedure introduced in Assumption 2. Hence, a crucial object
in our analysis is given by the projection of the network weights in the space spanned by the target
relevant directions:

πti = Π⋆wt
i ; (14)

where Π⋆ is the orthogonal projection on V ⋆.
Our first result is of a negative nature, showing the impossibility of learning in the data-scarce
regime:
Theorem 1. Let ℓ be the leap index of f⋆ (3), and assume that n = O(dℓ−δ) for some δ > 0. Then,
with probability at least 1 − cpe−c(δ) log(d)2 , there exists a universal constant c such that for any
i ∈ [p],

∥π1
i ∥2

∥w1
i ∥2
≤ c polylog(d)

d(1∧δ)/2
. (15)

In other words, for every neuron i, only a vanishing fraction of the weight w1
i lies in the target

subspace V ⋆. In particular, if δ > 1, this large gradient step does not improve over the initial
random feature weights.
On the other hand, when n = Ω(dℓ), we are able to characterize exactly what is being learned in
one gradient step.
Theorem 2. Assume that the ℓ-th Hermite coefficient µℓ of σ is nonzero, and set the learning rate

η = pd
ℓ−1
2 . (16)

Then, with probability at least 1 − ce−c log(d)2 , there exists a random variable X independent of d
with positive expectation such that

∥π1
i ∥2

∥w1
i ∥2
≥ Xi, (17)
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n
= 𝒪

(d3 )
n

= 𝒪
(d2 )

σ(z) = He1(z) σ(z) = He2(z) σ(z) = He3(z) σ(z) = He4(z)

Figure 3: Feature learning after a single step. Specialization of hidden units in the n = O(dk) regime
(k = 2, 3). The plots show the cosine similarity of the gradient with respect to the target vectors (w⋆

1 ,w
⋆
2)

for p = 40 different neurons, identified by different markers. The bisectrix of the first quadrant is shown as a
continuous black line, the circle of unitary radius in black, and the circle of radius 2/

√
d in blue. In the upper

panel, (n, d) = (218, 29), and (n, d) = (221, 27) in the lower one.
We use a 2-index target f⋆(z) = σ⋆(⟨w⋆

1,z⟩) + σ⋆(⟨w⋆
2,z⟩), with matching student: σ(z) = σ⋆(z). Left:

σ(z) = He1(z). Center-Left: σ(z) = He2(z). Center-Right: σ(z) = He3(z). Right: σ(z) = He4(z). We
observe that if the leap index ℓ = 1, we only learn a single direction, no matter the data quantity, while for
ℓ > 1 we learn every direction as soon as we reach n = O(dℓ). The small spread observed for σ(z) = He4(z)
and n = O(d3) is due to the small value of d used for the experiments. See details in App. B.

where X1, . . . , Xp are i.i.d copies of X . Further, let u⋆1, . . . ,u
⋆
rℓ

be the higher-order singular vectors
of C⋆ℓ , and define

V ⋆ℓ = span(u⋆1, . . . ,u
⋆
rℓ
). (18)

Then, the projections π1
i asymptotically belong to V ⋆ℓ , in the sense that there exists a constant c such

that

∥(I −ΠV ⋆
ℓ
)π1

i ∥ ≤ c
polylog(d)√

d
, (19)

and they span the space V ⋆ℓ .

Note that in the case ℓ = 1 the learned subspace V ⋆ℓ is one dimensional and is identified by the
first Hermite coefficient of the target C1(f

⋆): this corresponds to the “linear subspace learning”
regime exemplified in Fig. 1. Some aspects of the results above were already present in previous
works, with key differences: Ba et al. [2022] shows the existence of a rank-one property of the
gradient at initialization for n = Θ(d), and Damian et al. [2022] implies the positive part of our
result for n = Θ(d2), provided that V ⋆2 = V ⋆ (which corresponds to their Assumption 2). Our
theorem allows us to obtain the matching lower bounds, demonstrating their tightness, and provides
the generic picture for any higher powers of d. In particular, our results prove a clear separation
between the class of functions learned within the Θ(d) batch-size setting of Ba et al. [2022] and
the Θ(d2) batch-size setting of Damian et al. [2022] and establish a general hierarchy of functions
requiring increasing batch-size to be learned with a single gradient step. We refer to Appendix C
for the proofs of the theorems and a more detailed technical discussion.

A.4 Learning with many steps

We nowmove to the effect of multiple gradient steps, as described in Fig. 2. As we shall see, while the
effect of multiple steps is limited to a subclass of functions, it allows to learn themmeaningfully with
few iterations. For simplicity, we restrict ourselves to the case n = O(d), although we expect the
findings to hold in the other regimes. We unveil the intertwined dependence between representation
learning efficiency and a “directional staircase” condition. Informally: once a direction is learned
by the first-layer weights, the next gradient step uses it as a ladder to learn the next ones, upon
the assumption that they are linearly connected (as we will make precise next). The resulting
hierarchical learning picture extends to the large batch case the observations of Abbe et al. [2023]
specialized in batch one single-pass SGD, using basis-dependent projections, and supressing the
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interactions between neurons. Furthermore, unlike Abbe et al. [2023], both our definition 4 and the
training algorithm are basis-independent. Lastly, our analysis incorporates the effect of the learned
output f̂(z;W t,a) on the gradient updates, which leads to interaction between neurons.
We formalize the hierarchical learning by introducing the notion of subspace conditioning:
Definition 4 (Subspace conditioning). Let V be a vector space, and U ⊆ V a subspace. For any
function f : V → R, and x ∈ U , we define the conditional function fU,x : U⊥ → R as

fU,x(x
⊥) = f(x+ x⊥) (20)

In short, the function fU,x corresponds to f “conditioned” on the projection of its argument in U .
Its first Hermite coefficient will be denoted as

µU,x(f) = Ex⊥∼N(0,I) [∇x⊥fU,x] (21)

We are now equipped to state our main result describing sequential learning of directions under
multiple gradient steps with batch size n = Θ(d). We denote byW ⋆ ∈ Rr×d the matrix with rows
w⋆

1, · · · ,w⋆
r . To avoid degeneracy issues, we restrict ourselves to polynomial activations and target

functions.
Assumption 3. Both the student activation σ : R→ R and the teacher function g⋆ : Rr → R are
fixed polynomials with degrees independent of d, n. Furthermore, deg(σ) ≥ deg(g⋆).

Theorem 3. Assume that n = Θ(d), and η > 0, p ∈ N are fixed. Define a sequence of nested
subspaces U⋆0 ⊆ U⋆1 ⊆ · · · ⊆ U⋆t ⊆ . . . as

• U⋆0 = {0},

• for any t ≥ 0, U⋆t+1 = U⋆t ⊕ span
(
{µU⋆

t ,x
(f⋆) : x ∈ U⋆t }

)
.

Then, under assumptions 2 and 3, after t gradient steps of the form (4),W t satisfies the following with
high-probability, for all i ∈ [p]:

(i) Let v ∈ U⋆t , with ∥v∥ = 1 be arbitrary. Let vm = W ⋆v denote the components of v
along the target basis. Then there exists an almost surely positive random variable Xt,vm,a,
independent of d, n such that |⟨wi,v⟩| ≥ Xt,v,a +O(polylog(d)√

d
).

(ii) For any v ∈ U⊥⋆
t ∩ V ⋆, |⟨wi,v⟩| = O(polylog(d)√

d
).

Informally, the above statements imply that almost surely over a, the first layer learns exactly U⋆t .

It is easy to check that the above Theorem is consistent with Theorems 1 and 2 since f{0},0 = f ,
and v⋆ is exactly the first hermite of f⋆.

Examples — As an illustration, we work out the subspaces U⋆t for simplified versions of the
examples in Figure 5. For simplicity, we will takew⋆

k = ek , the k-th vector of the standard basis, so
that ⟨w⋆

k, z⟩ = zk .

• f⋆(z) = z1 + z2 + z21 − z22 : the normalized first Hermite coefficient of f⋆ is v⋆ = (e2 + e2)/
√
2,

so U⋆1 = span(e1 + e2). Then, we can rewrite f⋆ in the new basis (v⋆,v⊥), to get

f⋆(z) =
√
2⟨v⋆, z⟩+ 2⟨v⋆, z⟩⟨v⊥, z⟩.

Hence, if x = λv⋆, we have µU⋆
t ,x

(f⋆) = 2λv⊥, and hence U⋆2 = V ⋆.

• f⋆(z) = z1 + z2 + z21 + z22 : just as the above example, U⋆1 = span(e1 + e2), and hence we
perform the same change of basis. However, this time,

f⋆(z) =
√
2⟨v⋆, z⟩+ ⟨v⋆, z⟩2 + ⟨v⊥, z⟩2.

This implies that for any x ∈ U⋆1 , µU⋆
t ,x

(f⋆) = 0, and the direction of v⊥ is never learned.
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We provide a proof of Theorem 3 in Appendix C. The notion of subspace conditioning (Definition
4) arises through an inductive decomposition of the projections of the gradient along the target
subspace. Furthemore, our theory leads to a precise prediction of the orientation of the gradient
in the target subspace after a finite number of steps. This is illustrated in Figure 5. Note that the
non-linearity of the activation function allows different neurons to simultaneously specialize along
different directions in contrast to the rank-one increase at each saddle in deep linear networks Jacot
et al. [2021] under vanishing initialization. We refer to Appendix B for additional discussion.
To conclude this section, we provide an overview of our present understanding of the effect of
batch-size (sample complexity), number of gradient-steps (iteration complexity), and the number of
neurons (overparameterization) on learning different multi-index target functions in table 1. For
simplicity, when discussing the leap index ℓ, we restrict to functions where all the directions in the
target subspace have the same leap i.e when V ∗

ℓ = V ∗. We define “staircase functions" as target
functions such that the sequence of subspaces defined through subspace conditioning in Theorem 3
eventually span V ∗.

Complexity SGD One-step GD Multi-pass GD
of f∗ with n = 1 with n = Θ(dℓ) with n = Θ(d)

Single-index, ℓ=1 τ=nT=d τ=1, nT=n=Θ(d) τ=1, nT=Θ(d)
Single-index, ℓ=2 τ=nT=d log d τ=1, nT=n=Θ(d2) τ=Θ(log d), nT=Θ(d log d)
Single-index, ℓ > 2 τ = nT = dℓ−1 τ = 1, nT=n=Θ(dℓ) τ=Θ(dℓ−2), nT=Θ(dℓ−1)

Staircase τ = nT = d τ=1, nT=n=Ω(d2) τ=Θ(1), nT=Θ(d)

Table 1: Number of iterations τ and sample complexity nT needed to learn the features/directions
of the function f∗ with SGD one-sample at a time, using a single step-gradient descent, or using
one-pass GD with large n = O(d) batches. Results in (blue) are from Ben Arous et al. [2021], Abbe
et al. [2023]. The upper bounds on the sample complexity are known to hold from (brown) Ba et al.
[2022] and (orange) Damian et al. [2022], while the corresponding lower bound, as well as the results
in black, are proven in the present paper. (red) are educated guesses, which are out of the scope of
the paper since we only focus on a finite number of iterations τ . For staircase functions, one-step
GD may require more than Θ(d2) samples depending on the maximum leap across directions in
the target subspace.

A.5 From feature learning to generalization bounds

We now investigate the consequence of Theorem 2 in the actual performance of the neural network.
At a high-level, one expects that learning a subspace U by the first-layer effectively reduces the
input-dimensionality to that of U , allowing the network to learn a function dependent on U using
a significantly fewer number of examples and neurons. However, for learning functions dependent
on directions not yet learned byW , we expect a requirement of a large number of neurons as well
as samples, analogous to the setting of random features. In the following, we make this intuition
precise by proving that the generalization error of training the second layer on the top of the learned
features is lower bounded precisely by the directions which were not learned by the first-layer. Our
results and conjectures incorporate the dependence on both the number of samples and the number
of hidden neurons.

Finite p regime — This is the simplest case: in this setting, there is simply no way to fit anything
beyond the learned directions, even with an infinite amount of data. This is formalized by the
following proposition:
Proposition 1. Assume that p is bounded as n, d → ∞, and that the first layerW only learns a
subspace U ⊆ V ⋆. For any choice of second layer a such that ∥a∥∞ ≤ O(1), we have

E
[(
f⋆(z)− f̂(z;W,a)

)2]
≥ E [Var (f⋆(z) | PUz)]− o(1) (22)

where PU is the orthogonal projection on U .
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We refer to Appendix D for the proof of the proposition. Intuitevely, the right-hand side of the
above inequality corresponds to the predictor f̂(z) = E [f⋆(z) | PUz], which is the best predictor
that depends only on PUz. Conversely, we expect that with enough neurons, it is possible to
approximate this predictor:
Conjecture 1. For any δ > 0, there exists a p0 ∈ N such that if p ≥ p0, there exists a choice of second
layer a satisfying ∥a∥∞ ≤ O(1), such that as n, p→∞

E
[(
f⋆(z)− f̂(z;W,a)

)2]
≤ E [Var (f⋆(z) | PUz)] + δ + o(1) (23)

Proving the above conjecture for generic target and activation functions requires proving a suf-
ficient spread of W along the learned subspace U together with an approximation result for
finite-dimensional neural networks having activation function σ. Such a conjecture is proven in
Damian et al. [2022] for the specific case of U = V ⋆ (in which case the first term in the RHS is
zero) and σ = relu, with an additional bias term. For generic σ, such approximation results are
scarcer. In particular, since the projection of the weightsW along U cannot be chosen arbitrarily,
one cannot directly invoke classical approximation results such as the ones based on Barron spaces.
However, the components ofW along U are still randomly distributed across neurons. Therefore,
one possible approach could be to use results on the generalization of random feature models on
finite-dimensional inputs such as Rudi and Rosasco [2017]. We leave such an analysis for future
work.
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Figure 4: Learning with training of the second
layer. Simulation illustrating the different regimes
in Fig. 1, using d = 512, p = 1024, a symmetric
two-index target function f⋆(z) = σ⋆(⟨w⋆

1,z⟩) +
σ⋆(⟨w⋆

2,z⟩) with activation σ⋆(z) = He1(x) +
He2(x)/2! + He4(x)/4!, and a relu student. (a)
The first algorithm (green) applies a giant step and
then learns the second layer. When n ≫ d, its
performance goes beyond the linear predictor that
would be obtained with a kernel method and reach
the “linear subspace learning” regime in Fig. 1. (b)
To go beyond this regime, the second algorithm
(blue) preprocesses the data to remove a plug-in
estimate of the first Hermite coefficient. It reaches a
lower plateau as n≈d2, now beating the quadratic
kernel. We contrast this behavior with the one of
the random feature model (red). Details can be
found in App. B.

Beyond the fixed width regime — When the
number of neurons is allowed to diverge, it is no
longer impossible to learn funtions along the direc-
tions that are not present in U . Indeed, Mei et al.
[2022] shows that even in the absence of feature
learning (i.e. when the first layer is random), it
is possible to learn a polynomial approximation
of f⋆ of degree k as long as n, p = Ω(dk+δ) for
some δ > 0. The exact performance of the network
may heavily depend on the training process for the
second layer. Intuitively, we expect the following
behavior:

(i) On the directions present in W , with enough
variety in the neurons, the model behaves similarly
as a random feature one in this finite-dimensional
space, and are thus able to learn “everything”.
(ii) On the orthogonal directions, however, the
models still behave as a random feature model in
high dimension, and thus the polynomial limita-
tions of Mei et al. [2022] still apply.

To formalize this conjecture, we introduce the fol-
lowing definition:
Definition 5. Let V be a vector space, and U ⊆ V
a subspace. For any k ≥ 0, we define the space
PU,k of functions f : V → R such that for any
x ∈ U , the function fU,x introduced in Definition 4
is a polynomial of degree at most k.

Simply put, the space PU,k consists of polynomials
inx⊥ of degree at most k, whose coefficients can be
functions of x. We will denote by PU,≤k and PU,>k
the projections on PU,k and P⊥

U,k in ℓ2(R, γ), re-
spectively, where γ is the Gaussian measure. This
allows us to write the above intuition in the follow-
ing precise conjecture:
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Figure 5: Feature learning with multiple gradient steps. Top: Generalization error as a function of n
(d = 512, p = 256) after iterating the training procedure for six steps. Bottom: Cosine similarity of the
projected gradient matrix Gp inside the target subspace for all the p neurons at a fixed ratio n/d = 4, plotted
at different stages of the training. The blue and purple lines are the theoretical predictions for the orientation
of the gradient in the second step.
We fix a relu student and consider two different 2-index target functions f⋆(z) = σ⋆

1(⟨w⋆
1,z⟩)+σ⋆

2(⟨w⋆
2,z⟩).

Left: σ⋆
1(z) = σ⋆

2(z) = He1(z) + He2(z)/2 + He4(z)/4! Right: σ⋆
1(z) = z − z2 and σ⋆

2(z) = z + z2. In
accordance with Theorem 3, the difference between the two cases is clear already after the first GD step: while
on the left the gradient is stuck around the predicted rank-one spike after the first step (black line), on the right
the gradient changes orientation in the second step, allowing to learn multiple features. See details in App. B.

Conjecture 2. Assume that p = O(dκ1) and n = O(dκ2), and that the first layerW only learns a
subspace U⋆ ⊆ V ⋆. Then, if â is obtained as in Eq. (13) for any value of λ,

E
[(
f⋆(z)− f̂(z;W, â)

)2]
≥ ∥PU⋆,>κf

⋆∥2γ − o(1), (24)

where κ = min(κ1, κ2) and ∥ · ∥γ is the norm in ℓ2(R, γ).

While a general proof for this conjecture would require significant additional work, we can prove
some particular cases. First, it is easy to check that Proposition 1 corresponds to the κ = κ1 = 0
case of the above conjecture. Second, in the next section, we prove the fairly delicate κ1 = κ2 case.

The linear case — We provide a proof of the κ1 = κ2 = 1 case of the above conjecture, also
known as the proportional regime. In this setting, [Mei andMontanari, 2022, Gerace et al., 2020, Goldt
et al., 2022, Hu and Lu, 2022] have shown that for the random featuresW 0 case, the generalization
error of the minimizer for the second layer (13) is equivalent to the generalization error of an
equivalent linear model; this result was extended in Ba et al. [2022] to a trained first layerW 1 for
small, “lazy” stepsizes η = O(1). Ba et al. [2022] has also shown that when η = Θ(p), the equivalent
linear description breaks down, due to the appearance of a spike term proportional to η in the
trained weight matrixW 1; here, we show that this spike only allows the learning of non-linear
functions parallel to the spike. Notice that the optimization problem (13) is equivalent to

min
a∈Rp

1

n

n∑
ν=1

(⟨a, ϕCK(zν)⟩ − f⋆(zν))2 + λ∥a∥2 (25)

where ϕCK(z) = σ(Wz) is the feature map corresponding to the conjugate kernel of the neural
network. For a given direction v, we define the conditional linear equivalent map ϕCL(z;v) as
follows: given the decomposition z = zvv + z⊥,

ϕCL(z;v) = µ (zv) + Ψ(zv)z
⊥ +Φ(zv)ξ (26)
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Figure 6: Feature learning and generalization: We illustrate how one step of gradient descent may (or
may not) improve generalization over random features. The plot shows the generalization error as a function
of the number of hidden neurons p normalized by the number of samples used for the first layer training
n = {4d, 8d, 16d} with fixed dimension d = 28. Left: f⋆(z) = z1 + z1z2. While random features can only
fit a linear model in the proportional regime considered, one step of gradient descent over W allows to fit the
z1z2 part, resulting in a much lower generalization error with respect to random features, despite only the
direction z1 being learned inW . Right: f⋆(z) = z1 + z2z3. In this case, since the nonlinear part does not
depend on z1, one step of gradient descent on the W does not allow to improve generalization over random
features (see Theorem 4 and Corollary 1). See App. B.

where ξ ∼ N(0, Ip − vv⊥), and µ ∈ Rp,Ψ ∈ Rp×d,Φ ∈ Rp×p are chosen to match the first two
conditional moments of ϕCK:

µ(zv) = E [ϕCK(z) | zv] , Ψ(zv) = E
[
ϕCK(z)(z

⊥)⊤ | zv
]
,

Φ(zv) = Cov [ϕCK(z) | zv]−Ψ(zv)Ψ(zv)
⊤

Then, the following theorem holds:
Theorem 4. (informal) Assume that n, p = Θ(d), and that V ⋆1 defined in Theorem 2 is non-zero. Let
v⋆ = C1(f

⋆), so that V ⋆1 = span(v⋆).Then, after one gradient step, there exists a vector v ∈ Rd such
that:

• the projection of v on V ⋆ is proportional to v⋆,
• the solutions â, ã to the optimization problem in (25) with the feature maps ϕCK(z) and ϕCL(z;v)
yield the same generalization error.

The full statement of Theorem 4 with the relevant hypotheses is discussed App. D. In particular, as
we show in App. D, Theorem 4 provides a proof of the case κ1 = κ2 = 1 of Conjecture 2:
Corollary 1. Conjecture 2 holds for κ1 = κ2 = 1.

Informally, as for the random features model, features in the subspace orthogonal to v map to
a linear model, and therefore only the linear part of f⋆ can be learned in this subspace. This
precisely corresponds to the statement in Conjecture 2. This is illustrated in particular in Fig.6
where the generalization after one step of gradient descent is improved drastically over initialization
for f⋆(z) = z1 + z1z2, while it is not for f⋆(z) = z1 + z2z3. We refer to App. B for additional
discussion on the numerical validation of these claims.

General overview — We conclude this section by offering a summary on the generalization
properties of two-layer networks. In table 2 we focus on the effect of overparameterization, i.e.
number of neurons in the hidden layer.
Here, the function f⋆(z) = z1 + z1z2 can either be learned in two steps through the staircase
property or in a single step by increasing the number of hidden neurons. This is an example of
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f∗(·) Random GD GD
Features p=O(1), n=O(d) p=O(d), n=O(d)

z1+z1z2 min(p, n)=Θ̃(d2) τ = 2 τ = 1
z1+z2z3 min(p, n)=Θ̃(d2) No learn. in τ=Θ(1) No learn. in τ=Θ(1)

z1+z1z2+He3(z1)z3 min(p, n)=Θ̃(d4) τ = 2 τ = 1
z1+z1z2+He3(z2)z3 min(p, n)=Θ̃(d4) τ = 3 τ = 2
z1+z2z3+He3(z2)z3 min(p, n)=Θ̃(d4) No learn. in τ=Θ(1) No learn. in τ=Θ(1)

Table 2: Overparametrization helps learning multi-index targets. Table summarizing the
number of iterations needed to learn different multi-index targets f⋆(·) with underparametrized
(p = O(1)) and overparametrized (p = O(d)) two-layer networks trained in the proportional batch-
size regime n = O(d). We contrast this behaviour with the sample complexity of Random Features
trained with n samples (nT = n), corresponding to τ = 0, i.e, the network at initialization. The time
complexity can be significantly reduced by considering overparametrized networks, in accordance
with Theorem 4.

a multi-index target function that can be learned with a single step of O(d) batch-size through
overparameterization, exemplified in the left panel of Fig. 6. On the other hand, f⋆(z) = z1 + z2z3
is not linear conditioned on z1 (learned at the first step), and this leads to a generalization pattern
similar to Random Features in the overparametrized regime, see right panel of Fig. 6. We refer to
App. B for the analysis of the last two example of Table 2 (see Fig. 9).
Conjecture. 2 extends the claims of Thm 4 to the polynomial scaling regime of p = O(dκ1) and
d = O(dκ2). We exemplify the effect of overparametrization in this setting by considering the
following target function:

f⋆(z) = z1 +He3(z1)z2 +He2(z1)He2(z3). (27)

Here, we can illustrate the intertwined dependence between batch-size, number of hidden neurons,
and time iteration in determining learning efficiency. Indeed, changing any of these quantities can
affect the components of the target function that are fitted by the network. Consider the following
concrete scenarios, where f̂(z) denotes the predicted output function, after training the second
layer:

(i) One-step GD with n = Θ(d), p = O(1): f̂(z) = z1.

(ii) One-step GD with n = Θ(d), p = O(d): f̂(z) = z1 +He3(z1)z2.

(iii) One-step GD with n = Θ(d2), p = Θ(d2): f̂(z) = z1 +He3(z1)z2 +He2(z1)He2(z3).

Conclusion — In this work, we investigated the dynamics of two-layer neural networks as
they learn a multi-index model using a single-pass, large-batch, gradient descent algorithm. We
shed light on the intricate interactions between the task’s structure, notably the complexity of
the target function, the hyperparameters of SGD, such as the batch size and learning rate, and the
network architecture, such as how the hidden layer width impact the approximation capacity of the
network at fixed data budget. We highlight three key findings: a) The pronounced influence of a
single gradient step on feature learning, underlining the nexus between batch size and the target’s
information exponent; b) The amplification of the network’s approximation capacity over successive
gradient steps and the learning of increasingly complex functions over time; c) The improvement in
generalization when contrasted with the random feature/kernel regime. In conclusion, we presented
a thorough mathematical framework detailing many nuances of data representation learning in
two-layer neural networks during their early training phase. Finally, we note that while certain
aspects of those results are left as conjectures, we believe that they capture both the dynamics
of multiple gradient steps, as well as the structure of the remaining directions. Proving those
conjectures requires fairly delicate concentration and random matrix arguments, which may be of
independent mathematical interest.
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B Numerical investigation

In this section we explain the procedures to get the different figures in the main text, along with
the details behind the numerical experiments. We provide as well additional plots corroborating
the theoretical results presented in the main manuscript. The code is available on GitHub.

Description of training algorithm and hyperparameters: First, we describe the training
protocol reported in Alg. 1: we separately update the first layer with T−GD steps of learning rate
η, followed by training with standard ridge regression for the second layer with fixed regularization
strength λ. We vary adaptively the learning rate to satisfy the hypothesis of Thm. 2, i.e. η =
O(p

√
n
d ), and we take noiseless labels. If not stated otherwise, we consider fixed regularization

strenghth λ = 1. We average over 10 different seeds to get the mean performance, and we use
standard deviation for giving confidence intervals.

B.1 Learning with a single giant step

A sizable part of our results concerns the feature learning efficiency of two layer neural networks
after one giant step of GD. We provide a toy illustration of the phenomenology in Fig. 1, and
rigorously characterize this in Theorems 1 and 2. Moreover, in section A.5 we provide a plethora of
results analyzing the consequences of the theorems above in the actual learning performance of
the network. Here, we perform a detailed numerical investigation of the different claims in these
results.

Learning single-index targets: We start by analyzing the generalization performance of different
two-layer networks after one giant GD step when learning single-index teacher functions (See
Fig. 4). We compare the generalization performances of linear and quadratic kernel methods -
horizontal lines marked by different colors computed at n = nmax ∼ d2.25 - with three networks:
a) random features (red points) random network with fixed weight matrixW0 at initialization; b) 1
GD step (green points) two-layer network trained using one step in the protocol of Alg. 1; c) 1 GD
step with preprocessing (blue points) two-layer network trained using a preprocessing step in Alg. 1.
The introduction of a preprocessed algorithm is linked with the theoretical results of Theorem 2
and we provide a detailed analysis in the next paragraph.

The importance of preprocessing: As Theorem. 2 provably states, it is not possible to get
fully specialized hidden units with one giant step of GD in the n = O(dk) regime (with k > 1),
if the directions associated to teacher Hermite coefficients lower than k are not suppressed, or
equivalently, if the leap index of the target is lower than k - see Fig. 1. We can circumvent this issue
by using a preprocessing step. Given a batch of size n = O(dk), we preprocess the labels in Alg. 1
using a method introduced in Damian et al. [2022] for the case n = O(d):

ĉj1,...,jd ←
1

n

n∑
ν=1

yν Hej1(⟨e1, zν)⟩ · · ·Hejd(⟨ed, zν)⟩ (28)

yν ← yν −
∑

j1,...,jd:j1+···+jd<k

ĉj1,...,jd
j1! · · · jd!

Hej1(⟨e1, zν)⟩ · · ·Hejd(⟨ed, zν)⟩ (29)

where we denoted with ĉj1,··· ,jd the plug-in estimates from data of the teacher Hermite coefficients,
and with {ei}i∈[d] the canonical basis in Rd. By standard concentration arguments Gotze et al.
[2019] the plug-in estimation of the coefficients is accurate only in the n = ω(dpolylog(d)) regime.
Indeed, in Fig. 4 the inefficient estimation of eq. (28) in the n = o(d) sample regime generates a noisy
learning curve for the preprocessed algorithm (blue points). The ridge estimator â is consequently
found by training on the processed labels defined in eq. (29) and the suppressed part is injected
back in the predictor only at test time:

f̂(zν) =
1
√
p
â⊤σ(Wzν) +

∑
j1,··· ,jd:j1+···+jd<k

ĉj1,...,jd
j1! · · · jd!

Hej1(⟨e1, zν)⟩ · · ·Hejd(⟨ed, zν)⟩ (30)

Comparison of different methods: The results presented in Fig. 4 verify the theoretical pre-
dictions of Thm. 2: in the n = O(d) regime vanilla Alg. 1 attains the “linear subspace learning”
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Figure 7: Learning as a function of the number of neurons. Simulations illustrating the different regimes
in Fig. 1, using d = 512, a symmetric two-index target function f⋆(z) = σ⋆(⟨w⋆

1,z⟩) + σ⋆(⟨w⋆
2,z⟩)

with activation σ⋆(z) = He1(x) + He2(x)/2! + He4(x)/4!, a relu student, and changing the value of
p ∈ (128, 256, 512, 1024) from left to right. (a) The first algorithm (green) applies a giant step and then learns
the second layer. When n≫d, its performance goes beyond the linear predictor that would be obtained with a
kernel method and reach the “linear subspace learning” regime exemplified in Fig. 1. (b) To go beyond this
regime, the second algorithm (blue) preprocesses the data to remove a plug-in estimate of the first Hermite
coefficient. The dotted black lines are a guide for the eyes referencing to the different plateaus of the rightmost
plot.

regime (see Fig. 1) and beats the linear kernel, while the preprocessed version cannot. However,
implementing preprocessing turns out definitely beneficial in the n = O(d2) region. Indeed, while
the vanilla Alg. 1 remains stuck on the linear subspace learning plateau, the preprocessed Alg. 1
reaches a lower test error than the quadratic kernel. This is achieved by effectively raising the leap
index of the target function. More precisely, given a target with leap index ℓ = 1 as in Fig. 4, the
manipulation in eq. (29) aims exactly at the removal of the first Hermite coefficient of the target by
estimating it from the data, allowing feature learning in the n = O(d2) regime in accordance with
Thm. 2. We complement the above picture by analyzing the influence of the number of neurons p
on the generalization performance (see Fig. 7): by increasing the expressive power of the network,
we attain the single-index regime by using a single giant step of Alg. 1 (in accordance with Conj. 1).
Moreover, we note that it is necessary to use p = 2d in order to be able to beat the performance of
the quadratic kernel in this learning task (rightmost section).

Investigating representation learning efficiency: We move to an additional numerical inves-
tigation of feature learning efficiency, as characterized by Theorems 1 and 2. We again consider
a single step of Alg. 1, focusing now on the analysis of the gradient - see Fig. 3. We compute the
gradient matrix G ∈ Rp×d and plot the cosine similarities of all the rows {Gi ∈ Rd}pi=1 with the
teacher vectors (w⋆

1 ,w
⋆
2). The figure clearly illustrates the claims of Thm. 2: in the n = O(dk)

regime (with k > 1) is necessary to analyze targets with leap index k in order to obtain specialized
hidden units. Moreover, the leftmost section of Fig. 3 completes the picture offered by Figs. 4&7
about the lack of specialization in presence of teacher functions with non-zero first Hermite coeffi-
cient: the gradient is stuck in the single-index regime theoretically predicted by Thm. 2, regardless
of the sample regime considered, preventing feature learning. To produce the plot, we consider
the initialization of the second layer to be Gaussian, i.e. a0 ∼ √pN(0, Ip). This choice helps the
spreading of the neurons in the teacher subspace, improving the figure’s visualization clarity.

B.2 Learning with multiple steps

We move now the numerical investigation of the learning behavior of two layer networks after
multiple gradient steps. The general picture of the phenomenology is offered in Fig. 2, following
the theoretical characterization of Theorem 3.

Investigating the generalization performance First, we investigate the generalization behavior
in the upper panel of Fig. 5. We modify slightly the training procedure in Alg. 1 to perform the
numerical experiments: at every gradient step on the first layer weights we train the second layer
sequentially with ridge regression. The analysis of the test error behavior in the upper panel of Fig. 5
sheds light on the consequences of Thm. 3 on the generalization performance of two-layer networks.
Indeed, we observe a clear benefit in performing multiple gradient steps if the teacher function has a
direction linearly connected to the rank-one spike in the gradient identified by C1(f

⋆) (right panel),
while if such linearly connected direction does not exist (left panel) the generalization performance
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Figure 8: Lack of feature learning after few GD steps. The plots show the cosine similarity with respect to
the teacher vectors (w⋆

1 ,w
⋆
2) for the gradient at different stages of the training. The predicted orientation

(Thm. 2) of the gradient is shown as a continuous black line, the circle of unitary radius in black, and the
circle of radius 2/

√
d in blue. We fix n = d = 213, the learning rate η = p, and we use a relu student. We

vary the teacher functions: Left: σ⋆
1(z) = 4z2 + z, σ⋆

2(z) = z Center: σ⋆
1(z) = σ⋆

2(z) = 4z2 + z, Right:
σ⋆
2(z) = 4z2 + z, σ⋆

1(z) = z. The orientation of the gradient does not change after T = 6 steps preventing
specialization, in agreement with Thm. 3.

does not improve relevantly over time, and the network is stuck on the “linear subspace learning”
(see the upper right plot of Fig. 2). These results are in perfect agreement with Thm. 3.

Investigating representation learning efficiency: In this paragraph we further analyze the
claims of Thm. 3 in the context of feature learning. The experiments done in the lower panel of
Fig. 5 are closely related to the ones of Fig. 3. However, contrary to the previous setting, we study
the cosine similarity of the projected gradient Gp = GΠ⋆ in the teacher subspace. This quantity
differs from the cosine similarity of the full gradient, plotted in Fig. 3, as we lose completely the
information about the share of the gradient lying in the subspace orthogonal to the teacher one.
This divergence in the choices is due to the different illustrative goals of the figures: while in Fig. 5
we highlight the change in orientation of the gradient inside the teacher subspace after a few steps,
hence not caring about the relative magnitude, in Fig. 3 we contrast the magnitude of the true
gradient with the one of a random object (blue circles) in order to claim the presence (or lack) of
feature learning after a single step. The results in the lower panel of Fig. 5 are obtained iterating
2 steps of the training procedure in Alg. 1: in accordance with Thm. 3 we observe delocalization
of the projected gradient only if there are linearly connected directions that can be exploited to
escape the spike given by the first Hermite coefficient C1(f

⋆) (right panel). Moreover, we are able
to theoretically predict the orientation of the gradient at the second step as well (see Appendix. C).
On the contrary, when such linearly connected directions do not exist, the gradient is stuck on
the spike C1(f

⋆) (Left panel). We elaborate on this last observation by checking that the lack of
specialization persists iterating for more than two GD steps. We present the results in Fig. 8: the
gradient is stuck in the single index regime even as the training proceeds, again in agreement with
Thm. 3. Moreover, we illustrate by changing the teacher functions, that the theoretical prediction
of Thm. 2 on the gradient orientation, are valid beyond the symmetric teachers.

Multiple stairs Exploiting the same visualization framework of Fig. 5, we complement the picture
by studying a straightforward generalization in order to test Thm. 3 on functions having multiple
linearly connected directions to the previously learned one, or informally, "multiple-stairs function".
The results are presented in Fig. 10 by considering the function f⋆(z) = z1/3 + 2z1z2/3 + z2z3; we
consider 3 steps in the training of Alg. 1, the network is able to learn respectively e1, e2, e3 after
the first three steps of training in the proportional sample regime. This is clearly appreciable by
studying the cosine similarity of the projected gradient on the teacher subspace: after the first step
it is localized around e1, proceeding with training it has projections along e2 while e3 remains
hidden, and only at the third step we obtain delocalization of the gradient along e3. These results
are in perfect agreement with Thm. 3. Note that the hierarchical learning framework of Thm. 3
allows neurons to simultaneously specialize along different directions, as exemplified in Fig. 2 (see
the bottom right plot). We observe one instance of this multidirectional staircase learning in Fig. 11
by considering the target f⋆(z) = z1/3 + 2He2(z1)z2 + z1z3: while the results are unchanged in
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Figure 9: Learning 3-index targets with overparametried networks. We illustrate how overparametriza-
tion helps improving generalization over random features in accordance with Table 2. The plot shows the
generalization error as a function of the number of hidden neurons p normalized by the number of samples used
for the first layer trainingn = {4d, 8d, 16d}with fixed dimension d = 28. Left: f⋆(z) = z1+z1z2+g3(z1)z3,
where the auxiliary function has leap index ℓ = 3, here g(z) = tanh z−zEξ∼N(0,1) [ξ tanh ξ]. While random
features can only fit a linear model in this case, one step of gradient descent over W allows to fit the z1z2 and
g(z1)z3 parts, resulting in a much lower generalization error with respect to random features, despite only
the direction z1 being learned inW . Right: f⋆(z) = z1 + z1z2 + g3(z2)z3, where g(·) is defined above. In
this case, two steps of gradient descent allow to improve generalization over both Random Features and one
GD step by allowing the network to fit the g(z2)z3 term, linealry connected to z2 that is learned only at the
second step through the staircase property (Thm. 3).

the first step with respect to Fig. 10 (with only the e1 direction being learned), we observe that both
directions e2 & e3 are learned at the second step.

Benefit of overparametrization In this paragraph we investigate benefit of overparametrization
for two-layer networks trained with giant steps of GD when learning multi-index teacher functions
(See Fig. 6). Theorem 4 precisely characterizes that in the diverging p limit it is not possible to
fit functions that are non-linear conditioned on the knowledge of the spike C1(f⋆) learned at the
first step. However, this conditional form of Gaussian Equivalence does not prevent the learning
of functions in orthogonal directions that are linearly connected to C1(f⋆) (Thm. 3). The results
in Fig. 6 clearly show these claims: when such linearly connected directions exist (left panel), one
(giant) step of gradient descent training surpass the generalization performance of random features,
while it is not possible otherwise (right panel). To produce the figure we fix the regularization
strength to be infinitesimal λ = 10−6 and we adapt the learning rate η = 5p

√
n
d for different

values of p. Moreover, we normalize the squared generalization risk by the variance of the target
functions in order to have comparable y-axis for the two panel of Fig. 6. We complement these
illustrations with an additional plot using the same numerical setup: Fig. 9 extend the claims above
to the 3−index target functions and conclude the analysis of the examples included in Table 2. In
both cases displayed in Fig. 9 overparametrization helps improving the generalization with respect
to random features and reduces the time iterations needed to learn the target compared to the
underparametrized case. Although we do not consider the same example as Table 2 to improve
numerical stability, the overall claims of the table are left unchanged by substituting the the ℓ−th
Hermite polynomial Heℓ with the auxiliary function gℓ(·) having leap index ℓ.
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Figure 10: Climbing multiple stairs. Fix the teacher function f⋆(z) = z1/3 + 2z1z2/3 + z2z3 and a relu
student. The plots show the cosine similarity of the projected gradient matrix Gp inside the teacher subspace
for all the p neurons at a fixed ratio n/d = 4, plotted at different stages of the training following Alg. 1. The
plot shows the similarity in the 3D teacher subspace on the right, and two sections of it on the left: Up:
(e1, e2) plane. Bottom:(e2, e3) plane. In accordance with Thm. 3, the gradient is first localized around e1,
then sequentially learns e2, and only at the third step has components along e3.

Figure 11: Learning multiple directions at a time. Fix the teacher function f⋆(z) = z1/3 + 2He2(z1)z2 +
z1z3 and a relu student. The plots show the cosine similarity of the projected gradient matrix Gp inside
the teacher subspace for all the p neurons at a fixed ratio n/d = 4, plotted at different stages of the training
following Alg. 1. The plot shows the similarity measure in different cases. Left: (e1, e2) cross section. Center:
(e3, e2) cross section. Right: 3D teacher subspace (e1, e2, e3). In accordance with Thm. 3, the gradient is
first localized around the direction e1, and then learns both directions (e3, e2) at the second gradient step.
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Algorithm 1 Training procedure
Choice of parameters Fix the data dimension and the width of the second layer (d, p) and
sample (W0,a0) obeying eq. (10). Fix a regularization parameter λ, and a number of GD steps
Tmax.
for n in a given range do
Learning rate tuning Fix the learning rate η = O(p

√
n
d ).

for t < Tmax do
Data generation Sample the data matrixZ ∼ N(0, In×d) and get the labels Y = f⋆(Z) ∈
Rn
Update first layer Compute the gradient matrix Gt = {G(t)

i }i∈[p] ∈ Rp×d and update
W :

G
(t)
i ←

a0,i√
p
· 1
n

n∑
ν=1

xνσ′(⟨w(t)
i , zν⟩)

(
f̂(zν ,Wt,a0)− f⋆(zν)

)
(31)

Wt+1 ←Wt − ηGt (32)

if t == Tmax then
Train second layer Get the feature matrix Xt ← σ(WtZ), and compute estimator:

â←

{
X⊤
t

(
XtX

⊤
t + λIn

)−1
Y if n < p(

X⊤
t Xt + λIp

)−1
X⊤
t Y if n > p

end if
end for

end for
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C Gradient descent on the first layer

C.1 Technical assumptions

We shall show our results under the following assumptions. First, since we assume that the leap
index of f⋆ is at least one, and we setup the network to zero output the following assumption is
unrestrictive:
Assumption 4. The teacher function f⋆ and the student activation σ both have their zero-th Hermite
coefficient equal to 0.

We shall also need a smoothness assumption:
Assumption 5. Both the student activation σ and g∗ are continuous, and differentiable except possibly
on a finite set of points. Further, the first two derivatives of g⋆ and the first three derivatives of σ are
uniformly bounded in R.

C.2 Preliminaries

More on Hermite expansion We recall a few properties of the Hermite tensors of Definition 1.
Up to symmetry, the tensors Hk(x) are an orthonormal basis of ℓ2(Rm, γ), in the sense that for
any i, j ∈ Rk ,

⟨Hk,i(x),Hk,j(x)⟩γ =
1

|o(i)|
1i is a permutation of j (33)

where |o(i)| is the number of distinct permutations of i. It can be checked from the definition in
Grad [1949] that theHk , and hence the Ck(f), are basis-invariant, and hence represent an actual
k-linear form on Rm. Further, the property (33) yields an immediate expression for the scalar
product in ℓ2(Rm, γm):

⟨f, g⟩γ =
∑
k∈N
⟨Ck(f), Ck(g)⟩. (34)

Further, the Hermite coefficients of low-rank functions are straightforward to compute:
Lemma 1. Let g : Rr → R, and a linear map A ∈ Rr×d such that AA⊤ = Ir . Then the Hermite
coefficients of f(x) = g(Ax) are

Ck(f) = Ck(g) · (A, . . . , A), (35)

where · is the multilinear multiplication operator [Greub, 2012].

In particular, this implies that the singular vectors of C⋆k all belong to V ⋆.

Concentration in Orlicz spaces We recall the classical definition of Orlicz spaces:
Definition 6. For any α ∈ R, let ψα(x) = ex

α − 1. Let X be a real random variable; the Orlicz
norm ∥X∥ψα

is defined as

∥X∥ψα
= inf

{
t > 0 : E

[
ψα

(
|X|
t

)]
≤ 1

}
(36)

We refer to the monographs Ledoux and Talagrand [1991], van der Vaart and Wellner [1996] for
more information. We say that a random variable is sub-gaussian (resp. sub-exponential) if its ψ2

(resp. ψ1) norm is finite. The main use of this definition is the following concentration inequality:
for a variable X with finite Orlicz norm,

P(|X − EX| > t∥X∥ψα) ≤ 2e−t
α

. (37)

The Orlicz norms are sub-multiplicative, in the following sense:
Lemma 2. Let X and Y be two random variables. Then, for any α > 0, there exists a constantKα

such that
∥XY ∥ψα/2

≤ Kα∥X∥ψα
∥Y ∥ψα

(38)

Finally, we shall use the following theorem:
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Theorem 5 (Theorem 6.2.3 in Ledoux and Talagrand [1991]). Let X1, . . . , Xn be n independent
random variables with zero mean and second moment EX2

i = σ2
i . Then,∥∥∥∥∥

n∑
i=1

Xi

∥∥∥∥∥
ψα

≤ Kα log(n)
1/α

√√√√ n∑
i=1

σ2
i +max

i
∥Xi∥ψα

 (39)

Preliminary computations We begin with a few useful preliminary computations. First, since
w0
i ∼ Unif(Sd−1), the following lemma holds:

Lemma 3. With probability at least 1− cpe−c log(d)2 , we have for any i ∈ [p] and k ∈ [r]:

∥π0
i ∥ ≤

√
r log(d)√

d
(40)

Let gi be the negative gradient for the i-th neuron at initialization:

gi = −∇wjL
(
f̂(zν ;W 0,a), f⋆(zν)

)
. (41)

Since at initialization the output of the network is exactly zero, we have

gi =
ai√
p
· 1
n

n∑
ν=1

zνσ′(⟨w0
i , z

ν⟩)f⋆(zν) (42)

Finally, the update equation for ∥wi∥ reads

∥w1
i ∥2 = 1 + 2η⟨w0

i , gi⟩+ η2∥gi∥2 (43)

C.3 Computing expectations

We begin by a simple computation of the expectation of gi:
Lemma 4. For any i ∈ [p], we have

E[gi] =
ai√
p

( ∞∑
k=0

ck+2 ⟨(w0
i )

⊗k, C⋆k⟩wi +

∞∑
k=0

ck+1 C
⋆
k+1 ×1...k (w

0
i )

⊗k

)
(44)

where the last multiplication is a product over the first k axes of Ck+1 (and thus results in a vector).

Proof. By Stein’s lemma, for any w, we have
E [zσ′(⟨w, z⟩)f⋆(z)] = E [∇zσ

′(⟨w, z⟩)f⋆(z)] + E [σ′(⟨w, z⟩)∇zf
⋆(z)]

= wE [σ′′(⟨w, z⟩)f⋆(z)] + E [σ′(⟨w, z⟩)∇zf
⋆(z)]

From Lemma 1, the k-th Hermite coefficient of z 7→ σ′′(⟨w, z⟩) is ck+2 w
⊗k, where the (ck)k≥0

are the Hermite coefficients of σ. By two applications of the scalar product formula (34), we find

E [zσ′(⟨w, z⟩)f⋆(z)] =
∞∑
k=0

ck+2 ⟨w⊗k, C⋆k⟩w +

∞∑
k=0

ck+1 C
⋆
k+1 ×1...k w

⊗k. (45)

Truncating the expansions Now, we show that the expectations in Lemma 4 can be truncated
at the leap index term.
Lemma 5. With probability at least 1− cpe−c log(d)2 , for every k ≥ 0 and i ∈ [p], we have∣∣⟨C⋆k , (w0

i )
⊗k⟩
∣∣ ≤ c (√r log(d)√

d

)k
and

∥∥C⋆k+1 ×1...k (w
0
i )

⊗k∥∥ ≤ c(√r log(d)√
d

)k
(46)

As a result, if ℓ is the leap index of f⋆,∥∥∥E[gi]− C⋆ℓ ×1...(ℓ−1) (w
0
i )

⊗(ℓ−1)
∥∥∥ = O

(
rℓ/2 polylog(d)

dℓ/2

)
(47)
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Proof. First, we have by Lemma 1,∣∣⟨C⋆k , (w0
i )

⊗k⟩
∣∣ = ∣∣⟨Ck(g⋆), (W ⋆w0

i )
⊗k⟩
∣∣ ≤ ∥Ck(g⋆)∥2 · ∥π0

i ∥k,

where ∥Ck(g⋆)∥2 is the operator norm of Ck(g⋆). Since
∥Ck(g⋆)∥2 ≤ ∥Ck(g⋆)∥F ≤ ∥g⋆∥γ ,

the first inequality ensues by Lemma 3. Now, letAk+1 be the (k+1)-th mode unfolding ofCk+1(g
⋆);

then ∥∥C⋆k+1 ×1...k (w
0
i )

⊗k∥∥ =
∥∥Ak+1(W

⋆w0
i )

⊗k∥∥ ≤ ∥Ak+1∥2∥π0
i ∥k

The norm of Ak+1 is then bounded by the same argument as above. The final equality is obtained
by using the above bounds on every term above k = ℓ in the first sum, and above k = ℓ− 1 in the
second.

Student norms We now move on to controlling (43), in expectation. We begin with the cross-
term:
Lemma 6. With probability at least 1− cpe−c log(d)2 , we have for any i ∈ [p],

E
[
⟨w0

i , gi⟩
]
= O

(
rℓ/2 polylog(d)

pdℓ/2

)
(48)

Proof. From eq. (47), we have

E
[
⟨w0

i , gi⟩
]
=

ai√
p

(
⟨C⋆ℓ , (w0

i )
⊗ℓ⟩+ O

(
rℓ/2 polylog(d)

dℓ/2

))
The first part of Lemma 5 gives

⟨C⋆ℓ , (w0
i )

⊗ℓ⟩ = O

(
rℓ/2 polylog(d)

pdℓ/2

)
,

and the lemma follows since |ai| ≤ 1/
√
p.

The main object of study is therefore ∥gi∥2. We can write it as

∥gi∥2 =
a2i
n2p2

n∑
ν,ν′=1

⟨zν , zν
′
⟩σ′(⟨wi, z

ν⟩)f⋆(zν)σ′(⟨wi, z
ν′
⟩)f⋆(zν

′
)

=
a2i
n2p2

( ∑
ν ̸=ν′

⟨zν , zν
′
⟩σ′(⟨wi, z

ν⟩)f⋆(zν)σ′(⟨wi, z
ν′
⟩)f⋆(zν

′
)

+

n∑
ν=1

∥zν∥2σ′(⟨wi, z
ν⟩)2f⋆(zν)2

)
(49)

Since zν , zν′ are independent for ν ̸= ν′, this leaves

E
[
∥gi∥2

]
=
n(n− 1)

n2
∥E[gi]∥2 +

a2i
np2

E
[
∥zν∥2σ′(⟨wi, z

ν⟩)2f⋆(zν)2
]

(50)

We shall only need orders of magnitude for those terms. These are taken care of in the following
lemma:
Lemma 7. There exists a bounded random variableX independent from d such that, with probability
at least 1− cpe− log(d)2 ,

∥E[gi]∥2 = a2iXi ·
∥∥π0

i

∥∥2(ℓ−1)

p2
+ O

(
rℓ/2 polylog(d)

dℓ/2

)
(51)

where (Xi)i∈[p] are i.i.d copies of X . Additionally, there exist two constants c, C such that

c · d ≤ E
[
∥z∥2σ′(⟨wi, z⟩)2f⋆(z)2

]
≤ C · d (52)
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Proof. We begin with (51). Define the unit norm vectors

ri =
W ⋆w0

i

∥π0
i ∥

,

since the wi are isotropic, the ri are uniform on Sr−1. Then,∥∥∥C⋆ℓ ×1...(ℓ−1) (w
0
i )

⊗(ℓ−1)
∥∥∥2 =

∥∥∥Cℓ(g⋆)×1...(ℓ−1) r
⊗(ℓ−1)
i

∥∥∥2︸ ︷︷ ︸
=:Xi

·
∥∥π0

i

∥∥2(ℓ−1)
.

The random variables Xi thus defined are i.i.d, independent from d, and have positive expectation
since Cℓ(g⋆) is nonzero. Equation (51) then results from the expansion in (47).

We now move on to the second part; first, by Hölder’s inequality,

E
[
∥z∥2σ′(⟨wi, z⟩)2f⋆(z)2

]
≤
√

E [∥z∥4] 4
√
E [σ′(⟨wi, z⟩)8]E [f⋆(z)8] ≤ C · d, (53)

since the last two expectations are independent from d. On the other hand, using the same inequality
with ∥z∥2 − d, we can write

E
[
∥z∥2σ′(⟨wi, z⟩)2f⋆(z)2

]
= dE

[
σ′(⟨wi, z⟩)2f⋆(z)2

]
+ O(

√
d).

Since µℓ ̸= 0 and f⋆ has leap index ℓ, there exists ε > 0 two subsets A ⊆ R,B ⊆ V ⋆ of positive
measure such that σ′(x)2 ≥ ε if x ∈ A and f⋆(z⋆) > ε if z⋆ ∈ B. From the fact that πi ≤ 1/2
with high probability, we conclude that the set

C := {z ∈ Rp : ⟨wi, z⟩ ∈ A, PV ⋆z ∈ B}

has positive (Gaussian) measure. It follows that

E
[
σ′(⟨wi, z⟩)2f⋆(z)2

]
≥ γ(C)ε2, (54)

which concludes the proof of Eq. (52).

C.4 Concentration

We now move on to concentrating the quantities of interest of the previous section. Our aim will
be to show the following proposition:

Proposition 2. With probability at least 1−Cpe−c log(n)2 −Cpe−c log(d)2 , for any i ∈ [p], k ∈ [r],∥∥π1
i − E

[
π1

i

]∥∥ = O

(
η
√
r log(n)

p
√
n

)
(55)∣∣∣∥∥w1

i

∥∥2 − E
[∥∥w1

i

∥∥2
]∣∣∣ = O

(
η log(n)

p
√
n

+
η2d log(n)6

p2n
√
n

+
η2 log(d)

p2n
√
d

+
η2r log(n)2

p2n
+

η2 log(n)ℓr(ℓ−1)/2

p2d(ℓ−1)/2
√
n

)
(56)

Importantly, we do not claim that the whole vectorw1
i concentrates; only its norm and its projection

on a low-dimensional subspace do. Throughout this section, we define the random vectors

Xν = zνσ′(⟨wi, z
ν⟩)f⋆(zν). (57)

These vectors are i.i.d, with the same distribution as a random vector that we will call X .

Concentration of linear functionals We begin with a simple bound, that implies both Eq. (55)
and the first term of Eq. (56).
Lemma 8. Letw be a unit vector in Rd. There exists a universal constant c such that with probability
1− 2pe−c log(n)

2

, for any i ∈ [p] and k ∈ [r],

|⟨w, gi⟩ − E[⟨w, gi⟩]| ≤
log(n)

p
√
n

(58)
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Proof. By Assumption 5, the function f⋆ is Lipschitz, so f⋆(z) is a sub-gaussian random variable.
The same is obviously true for ⟨w, z⟩, and since σ′ is bounded the random variable ⟨w,X⟩ =
⟨w, z⟩σ′(⟨w0

i , z⟩)f⋆(z) is sub-exponential with bounded sub-exponential norm. We can thus apply
Bernstein’s inequality [Vershynin, 2018, Corollary 2.8.3] with t = log(n)/

√
n to get

P

(∣∣∣∣∣ 1n
n∑
ν=1

⟨w,Xν⟩ − E⟨w,X⟩

∣∣∣∣∣ ≥ log(n)√
n

)
≤ 2e−c log(n)

2

. (59)

The result ensues upon noticing that 1
n

∑
Xν differs from gi by a factor of at most 1/p.

Decomposing the gradient norm We now move on to the concentration of the qi. This allows
us to write

∥gi∥2 − E[∥gi∥2] =
a2i
n2p2


n∑
ν=1

∥Xν∥2 − nE[∥X∥2]︸ ︷︷ ︸
S1

+
∑
ν ̸=ν′

⟨Xν ,Xν′
⟩ − n(n− 1)∥EX∥2︸ ︷︷ ︸
S2


(60)

We shall show the concentration of those two terms sequentially.

Concentrating the norms We first focus on S1:
Lemma 9. Let i ∈ [p]. There exists a constant c > 0 such that with probability 1− e−c log(n)2 ,

P
(
|S1| ≥ log(n)6d

√
n
)
≤ e−c log(n)

2

. (61)

Proof. The random variable ∥z∥/
√
d is sub-gaussian, and so is f⋆(zν). By Lemma 2 and the Hölder

inequality, the random variable ∥Xν∥2 satisfies
∥∥Xν∥2∥ψ1/2

≤ C · d and Var
(
∥Xν∥2

)
≤ C · d2

As a result, we can apply Theorem 5 to the random variables ∥Xν∥2 − E[∥X∥2], which yields∥∥∥∥∥
n∑
ν=1

∥Xν∥2 − nE
[
∥X∥2

]∥∥∥∥∥
ψ1/2

≤ c log(n)2d
√
n. (62)

Equation (61) is then a consequence of the Orlicz concentration bound (37).

Decomposing the cross-term We now move on to S2. To handle this sum, we use the following
decoupling result from Pena and Montgomery-Smith [1995]:
Theorem 6. Let (fij)i,j∈[n] be a set of measurable functions from S2 to a Banach space (B, ∥·∥), and
(X1, . . . , Xn), (Y1, . . . , Yn) two sets of independent random variables such that the laws of Xi and
Yi are the same. Then there exists a constant C > 0 such that

P

∥∥∥∥∥∥
∑
i̸=j

fij(Xi, Xj)

∥∥∥∥∥∥ ≥ t
 ≤ CP

∥∥∥∥∥∥
∑
i ̸=j

fij(Xi, Yj)

∥∥∥∥∥∥ ≥ t

C

 (63)

We apply this theorem to the functions fν,ν′(Xν ,Xν′
) = ⟨Xν ,Xν′⟩ − ∥EX∥2. Let Y ν be an

independent copy of the Xν for ν ∈ [n], we then have to estimate

P

∣∣∣∣∣∣
∑
ν ̸=ν′

⟨Xν ,Y ν′
⟩ − n(n− 1)∥EX∥2

∣∣∣∣∣∣ ≥ t
.

For convenience, let x̄ = ∥EX∥2. Since the Xν are sub-exponential vectors, the scalar product
⟨Xν ,Y ν⟩ has finite ψ1/2-norm. The same bound as Lemma 9 then gives that

P

(∣∣∣∣∣
n∑
ν=1

⟨Xν ,Y ν⟩ − nx̄2
∣∣∣∣∣ ≥ √nd log(n)6

)
≤ e−c log(n)

2

(64)
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Hence, to show Proposition 2, we only need to study the overall sum

S̃2 :=

n∑
ν,ν′=1

⟨Xν ,Y ν′
⟩ − n2x̄2 (65)

Recall that, as in the proof of Lemma 7, the vector EX belongs to the space Vi = V ⋆ + span(w0
i ).

We thus make the decomposition
Xν = Xν

i +Xν
⊥ and Y ν = Y ν

i + Y ν
⊥ (66)

where Xν
i ,Y

ν
i ∈ Vi. Hence,
n∑

ν,ν′=1

⟨Xν ,Y ν′
⟩ − n2x̄2 = ⟨

n∑
ν=1

Xν
i ,

n∑
ν=1

Y ν
i ⟩ − n2x̄2︸ ︷︷ ︸

S′
2

+ ⟨
n∑
ν=1

Xν
⊥,

n∑
ν=1

Y ν
⊥ ⟩︸ ︷︷ ︸

S′′
2

(67)

Bounding the last two terms The main step in bounding S′
2 is the following lemma:

Lemma 10. With probability at least 1− Ce−c log(n)2 ,∥∥∥∥∥
n∑
ν=1

Xν
i − nEX

∥∥∥∥∥ ≤ C√r log(n)√n (68)

Proof. Let (u1, . . . ,ur+1) be an orthonormal basis of Vi. Since we have for any vector x ∈ Vi

∥x∥2 =

r+1∑
k=1

⟨x,uk⟩2,

it suffices to bound such a scalar product with high probability. Each term of the form ⟨Xν
i −

EX,uk⟩ is a sub-exponential random variable with zero mean and bounded variance, and hence
by another application of Bernstein’s inequality

P

(∣∣∣∣∣⟨
n∑
ν=1

Xν
i − nEX,uk⟩

∣∣∣∣∣ ≥ log(n)
√
n

)
≤ e−c log(n)

2

(69)

The result ensues from a union bound, and the equivalence of norms in finite-dimensional spaces.

As an easy corollary of this lemma, we get the following bound on S′
2:

Corollary 2. With probability at least 1− Ce−c log(n)2 ,

S′
2 = O

(
rn log(n)2 +

log(n)ℓr(ℓ−1)/2n
√
n

d(ℓ−1)/2

)
(70)

Proof. We use the following decomposition:

S′
2 = n⟨

n∑
ν=1

Xν
i − nEX,EX⟩+ n⟨EX,

n∑
ν=1

Y ν
i − nEX⟩+ ⟨

n∑
ν=1

Xν
i − nEX,

n∑
ν=1

Y ν
i − nEX⟩

≤ n∥EX∥

(∥∥∥∥∥
n∑
ν=1

Xν
i − nEX

∥∥∥∥∥+
∥∥∥∥∥
n∑
ν=1

Y ν
i − nEX

∥∥∥∥∥
)

+

∥∥∥∥∥
n∑
ν=1

Xν
i − nEX

∥∥∥∥∥ ·
∥∥∥∥∥
n∑
ν=1

Y ν
i − nEX

∥∥∥∥∥
by the Cauchy-Schwarz inequality. The result ensues from the high probability bounds of Lemma
10, as well as the bound on ∥EX∥ from Lemma 7.

We finally bound the last term, which closes the proof of Proposition 2.
Lemma 11. Let i ∈ [p]. With probability at least 1− 2e−c log(n)

2 − e−c log(d)2 , we have

|S′′
2 | ≤ 2 log(d)n

√
d (71)
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Proof. Define αν = σ′(⟨w0
i , z

ν⟩)f⋆(zν), and βν its equivalent for Y ν . Since αν only depends on
zi, the distribution of

∑
Xν

⊥ is the same as ∥α∥X⊥, where X⊥ is a normal random vector in V ⊥
i .

Therefore, we have
S′′
2
d
= ∥α∥ · ∥β∥ · ⟨X⊥,Y⊥⟩

for two independent Gaussian vectors X⊥,Y⊥. Now, both ∥α∥2 and ∥β∥2 are the sum of n sub-
exponential random variables with bounded variance, and ⟨X⊥,Y⊥⟩ is the sum of d such variables.
Hence, by Bernstein’s inequality, with probability 1− 2e−c log(n)

2 ,

∥α∥2 ≤ n+ log(n)
√
n ≤ 2n and ∥β∥2 ≤ 2n,

and with probability at least 1− e−c log(d)2

⟨X⊥,Y⊥⟩ ≤ log(d)
√
d,

which ends the proof.

C.5 Proof of Theorems 1 and 2

We begin with a proposition that summarizes everything from the two previous sections.
Proposition 3. Let ℓ be the leap index of f⋆, and assume that n = Ω(dℓ−δ) for some δ > 0. There is
an event with probability at least 1− cpe− log(d)2 such that for i ∈ [p]:∥∥∥∥π1

i −
(
π0
i +

ηai√
p
C⋆ℓ ×1...(ℓ−1) (w

0
i )

⊗(ℓ−1)

)∥∥∥∥ = O

(
rℓ/2 polylog(d)

dℓ/2
+

√
rη log(d)

p
√
n

)
(72)

∥∥w1
i

∥∥2 = Θ

(
1 +

η2Xi

∥∥π0
i

∥∥2
p2

+
η2d

np2

)
(73)

where the Xi are i.i.d random variables as in Lemma 7.

Proof. The proof amounts to checking that all the bounds proven so far are of the right order. The
first equality is simply a combination of Lemma 5 and Proposition 2. For the second part, notice
that Lemma 7 implies that

E
[∥∥w1

i

∥∥2] = Θ

(
1 +

η2Xi

∥∥π0
i

∥∥2
p2

+
η2d

np2

)
,

and it is straightforward (albeit tedious) to check that all bounds in Proposition 2 are negligible
with respect to the above expectation.

Proof of Theorem 1 We first consider the case where n = Θ(dℓ−δ). A simple triangular
inequality yields

∥π1
i ∥ = O

(
∥π0

i ∥+
η∥π0

i ∥ℓ−1

p

)
where the second part is due to Lemma 7. On the other hand, the middle term in (73) becomes
negligible w.r.t the rightmost one, so we get

∥∥w1
i

∥∥ = Ω

(
1 +

η dδ/2

p

)
This implies

∥π1
i ∥

∥w1
i ∥

= O

(
max

(∥∥π0
i

∥∥, ∥∥π0
i

∥∥ℓ−1

dδ/2

))
= O

(
polylog(d)

d(1∧δ)/2

)
(74)

where the last inequality is due to Lemma 3.
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Proof of Theorem 2 Now, we take n = Ω(dℓ), and η = d(ℓ−1)/2. Then, the bounds of Proposition
3 become∥∥∥π1

i − aid(ℓ−1)/2C⋆ℓ ×1...(ℓ−1) (w
0
i )

⊗(ℓ−1)
∥∥∥ = O

(√
r polylog(d)√

d

)
and

∥∥w1
i

∥∥2 = O(1)

Hence, the first part of Theorem 2 is straightforward: from Lemma 7,

∥π1
i ∥

∥w1
i ∥

= Ω
(
a2iXi · (

√
d
∥∥π0

i

∥∥)ℓ−1
)
, (75)

which is a random variable with positive expectation. The latter part is not independent from d, but
it dominates e.g. a variable of the form ∥zr∥where zr ∼ N(0, Ir/2)with probability 1−ce− log(d)2 .
For the second part, we write using the higher-order SVD of C⋆ℓ

C⋆ℓ ×1...(ℓ−1) (w
0
i )

⊗(ℓ−1) =

rℓ∑
j1,...,jℓ=1

Sj1,...,jℓ ⟨w0
i ,u

⋆
j1⟩ . . . ⟨w

0
i ,u

⋆
jℓ−1
⟩u⋆jℓ

which belongs to V ⋆ℓ . Finally, since S is full-rank, each vector C⋆ℓ ×1...(ℓ−1) (w
0
i )

⊗(ℓ−1) is an i.i.d
random variable which is absolutely continuous w.r.t the Lebesgue measure in V ⋆ℓ . This implies that
the collection of such vectors is full-rank with probability one, and ends the proof of Theorem 2.

C.6 Spike+Bulk decomposition

Having proven Theorems 1 and 2, we move to investigate the behavior after multiple gradient steps.
First, we relate the discussion above to a “spike+noise" decomposition of the gradient. We start
from Equation (42):

gi =
ai√
p
· 1
n

n∑
ν=1

zνσ′(⟨wi, z
ν⟩)f⋆(zν) (76)

Define σ′
>1(u) : R→ R as the following function:

σ′
>1(u) = σ′(u)− µ1, (77)

so that E [σ′
>1(u)] = 0. We have the following decomposition of the gradient:

gi =
aj√
p

1

n
µ1

n∑
i=1

yixi +
1

n

aj√
p
µ1

n∑
i=1

σ′
>1(x

⊤
i w

0)xiyi︸ ︷︷ ︸
∆j

, (78)

or in matrix form:
G = uv⊤ +∆, (79)

where u = µ1√
pa,v = 1

n

∑n
i=1 yixi. A similar decomposition was utilized in Ba et al. [2022] to

provide an asymptotic characterization of the training and generalization errors in the regime
n = Θ(d) and step-size η = O(

√
p). In particular, they show that the presence of this spike for

η = O(
√
p) is not enough to go beyond the linear kernel regime.

However, as we see below, it is possible to obtain a precise characterization in the feature learning
regime η = Θ(p) and generalizing to multiple steps, with stronger concentration over the structure
of ∆. In particular, we prove that ∆ effectively acts as uniform noise that can be incorporated into
the initialization W (0).
This is expressed through the following Lemma:
Lemma 12. With high probability over the initializationW 0, as n, d→∞ with n = Ω(max (p, d)),
the matrix ∆ satisfies the following:

(i) For any v ∈ V ⋆, with ∥v∥ = 1, ⟨∆j ,v⟩ = O
(

polylog(d)

p
√
d

)
.

(ii) ∥∆∥ = O(polylog d/
√
d).
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(iii) For any i ̸= j, i, j ∈ [p/2] , ∆⊤
j ∆i = O

(
polylog(d)

p2
√
d

)
,

where we only consider the first half neurons due to the choice of the symmetric initialization in
Equation (10).

Proof. Without loss of generality, we assume that µ1 = 0 and hence that ∆i = gi. By Lemma 4,
since µ1 = 0; we have E

[
∆⊤
j v
]
= O

(
polylog(d)

p
√
d

)
. Furthermore, from Lemma 8, we obtain that,

with high probability:

|∆⊤
j v − E

[
∆⊤
j v
]
| = O

(
log(n)

p
√
d

)
. (80)

This proves Part (i). Part (ii) follows from Lemma 14 in Ba et al. [2022].
It remains to show Part (iii). The same proof as in Proposition 2 (Eq. (56)) implies that, with high
probability,

⟨gi, gj⟩ = E[⟨gi, gj⟩] + O

(
polylog(d)

p2
√
d

)
, (81)

and hence we only need to bound the expectationE[⟨gi, gj⟩]. In turn, the decomposition of Equation
(50) still holds, and we get

E[⟨gi, gj⟩] ≤ ∥E[gi]∥∥E[gj ]∥+
a2i
np2

E
[
∥z∥2σ′(⟨w0

i , z⟩)σ′(⟨w0
j , z⟩)f⋆(z)2

]
(82)

Since µ1 = 0, the bound of Lemma 7 becomes

∥E[gi]∥ ≤
πi
p

= O

(
log(d)

p
√
d

)
,

and it remains to bound the cross term. The main argument is the following lemma, which is the
generalization (with an identical proof) of Lemma D.4 in Arnaboldi et al. [2023]:
Lemma 13. Let N ≥ 0 be fixed, and f1, . . . , fN be a sequence of functions with bounded first and
second derivatives. Consider the function on N ×N matrices

F (Σ) = Ex∼N(0,Σ)[f1(z1) . . . fN (zN )] (83)

Then, for Σ,Σ′ two semidefinite positive matrices with unit diagonal, we have

|F (Σ)− F (Σ′)| ≤ C∥Σ− Σ′∥∞. (84)

Now, we first have by the same arguments as in Lemma 7

E
[
∥z∥2σ′(⟨w0

i , z⟩)σ′(⟨w0
j , z⟩)f⋆(z)2

]
= dE

[
σ′(⟨w0

i , z⟩)σ′(⟨w0
j , z⟩)f⋆(z)2

]
+ O

(√
d
)
,

so we only to bound the first term of the RHS. Expanding the definition of f⋆, the latter is a sum of
k2 terms of the form

E[σ′(⟨w0
i , z⟩)σ′(⟨w0

j , z⟩)σ⋆k(⟨w⋆
k, z⟩)σ⋆k′(⟨w⋆

k, z⟩)],

which falls under the framework Lemma 13 for N = 4. In particular, since µ1 = 0, F (Σ) = 0
whenever we have Σ1i = Σ2j = 0 for i ̸= 1, j ̸= 2. Hence, by an application of Lemma 13, we have

E[σ′(⟨w0
i , z⟩)σ′(⟨w0

j , z⟩)σ⋆k(⟨w⋆
k, z⟩)σ⋆k′(⟨w⋆

k, z⟩)] ≤ Cmax(⟨w0
i ,w

0
j ⟩, πi, πj) ≤ C

log(d)√
d

with high probability, which ends the proof.

We next prove that the norm of w1
i after the first gradient step posseses a simplified dimension-

independent limit:
Lemma 14. Suppose n = Θ(d). Then, there exists a constant C , such that for any neuron i, with
high-probability as d→∞, with step-size η:

∥w1
i ∥2 = 1 + ηCa2i + O(

polylog d√
d

) (85)

34



Proof. Recall Equation 50:

E
[
∥gi∥2

]
=
n(n− 1)

n2
∥E[gi]∥2 +

a2i
np2

E
[
∥zν∥2σ′(⟨wi, z

ν⟩)2f⋆(zν)2
]

(86)

Lemma 7 implies that ∥E[gi]∥2 is approximately a2iXi ·
∥π0

i∥2(ℓ−1)

p2 for a random variableXi. When
ℓ = 1, Xi simply reduces to a constan depending only on g∗. The second term can be decomposed
as:

a2i
np2

E
[
∥zν∥2σ′(⟨wi, z

ν⟩)2f⋆(zν)2
]
=

a2i
np2

E
[
dσ′(⟨wi, z

ν⟩)2f⋆(zν)2
]

+ E
[
(d− ∥zν∥2)σ′(⟨wi, z

ν⟩)2f⋆(zν)2
]

Let mi
0 ∈ Rr denote the vector of overlaps ⟨w0

i ,w
∗
1⟩, · · · , ⟨w0

i ,w
∗
k⟩ By Holder’s inequality, the

second term is of order O( 1√
d
) while through a change of variables, the first term can be expressed

as a function of the overlaps ⟨w0
i ,w

∗
j ⟩ for j ∈ [r]:

a2i
np2

E
[
dσ′(⟨wi, z

ν⟩)2f⋆(zν)2
]
=
a2i d

np2
E
[
σ′(⟨wi, z

ν⟩)2f⋆(zν)2
]
=
a2i d

np2
Fσ,g∗(M0)

=
a2i d

np2
Fσ,g∗(0) + O(

1√
d
)

The result then follows by noting that Lemmas 6 and 8 imply that η⟨w, gi⟩ = O(polylog d√
d

) with
high probability.

C.7 Second step: Proof Sketch for Theorem 3

Before providing detailed proof of Theorem 3 for general polynomial activation functions, and
a general number of steps, we illustrate the essential idea by analyzing the second gradient step.
We suppose that nd is fixed to a constant α. Let Z0 denote the batch of inputs used for the first
gradient step. We condition on Z0 and assume that the high-probability events in Lemma 12 hold.
We independently sample another batch of n training inputs Z and perform the gradient update:

g1
j = −∇wj

L
(
f̂(zν ;W 1,a), f⋆(zν)

)
(87)

However, unlike the first gradient step, the weightsw1 are no-longer approximately orthonormal
across neurons and contain significant correlation along the teacher subspace.
We have:

w1
j = η

ajµ1√
p
v +w0

j +∆j , (88)

where v = 1
n

∑n
i=1 yizi. By theorem 2, we have that the projection of v along the target subspace

V ∗ converges in probability to C1(f). Let v∗ = C1(f). We show that the alignment of v along
v∗ affects the components of the second gradient step along the teacher subspace, allowing the
gradient to be sensitive to directions linearly coupled with v∗ in the target function.
We proceed by analyzing the projection of the above update along a direction in the teacher subspace.
Let vj = PV ⋆(w1

j ) and consider the decomposition w1
j = vj + P⊥

V ⋆(w1
j ). We further have from

Lemma 14 that ∥P⊥
V ⋆(w1

j )∥22 concentrates to a positive bounded value cj depending only on aj . For
each sample, zi let κi = ⟨vj , zi⟩ denote the projection along the “signal" vj .
We now introduce the following function for z ∈ R:

σκ,j(z) = σ(cjz + κ). (89)
Define µ1,κ,j = Ez∼N(0,1) [σκ,j(z)z]. Further, let:

σ′
>1,κ(u) = σ′

κ,j(u)− µ1,κ,j . (90)
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From Lemma 5, we have that PV ⋆(v)
P−→ v⋆. Now, let u ∈ V ⋆ be a direction in the teacher

subspace orthogonal to v⋆. Using, equation (45), we have:

E
[
⟨u, g1

j ⟩
]
= E

[
(f⋆(z)− f̂(z,W 1,a))σ′(⟨z,w1

j ⟩)j(⟨z,u⟩)
]

= E
[
(f⋆(z)µ1,⟨z,vj⟩(⟨zi,u⟩)

]
− E

[
f̂(z,W 1,a)σ′(⟨zi,w1⟩)j(⟨zi,u⟩)

] (91)

Where in the first term we took the expectation over P⊥
V ⋆(w1) since it is orthogonal to the teacher-

subspace.
The second term can be expressed as:

⟨(E
[
f̂(z,W 1,a)σ′(⟨z,w1)jzi

]
),u⟩ (92)

We have that f̂(z,W 1,a) depends only on the directions w1
1, · · · ,w1

p. By Lemma 12,
each of the directions, satisfies ⟨wi,u⟩ = O(polylog(d)

p
√
d

). Furthermore, one can show that

(E
[
f̂(z,W 1,a)σ′(⟨z,w1⟩)jzi

]
lies in the span of w1

1, · · · ,w1
p. Therefore:

E
[
f̂(z,W 1,a)σ′(⟨zi,w1⟩)jzi

]
)⊤u

d→∞−→ 0 (93)

Now, consider the first term i.e E
[
f⋆(z)µ1,⟨z,vj⟩(⟨z,u⟩)

]
. Denote by v⋆u a unit vector along

v⋆u. Let v⋆u,u,u′
1 · · · ,u′

d−2 be an orthonormal basis of Rd. Without loss of generality, assume
that v⋆u,u, · · · ,u′

r−2. span the teacher subspace V ⋆. We express y using the product Hermite
decomposition under the above basis:

y = f⋆(z) =

∞∑
j1,··· ,jr=1

c⋆j1,··· ,jr
j1!j2! · · · jr!

Hej1(⟨v⋆u, z⟩)Hej2(⟨u, z⟩) · · ·Hejr (⟨ur−2, z⟩). (94)

Lemma 4 and 12 imply that vj
P−→ c′jv

⋆ where c′j denotes the constant ηaj
√
pαµ1 Since u ⊥

u′
1, · · · ,u′

r−2, only the terms in y corresponding to products of the formHej1(⟨v⋆u, z⟩)Hej2(⟨u, z⟩)
contribute to the expectation E

[
yµ1,⟨z,vj⟩(⟨z,u⟩)

]
in the limit d→∞. Consider the contribution

of one such term:

E
[
Hej1(⟨v⋆u, z⟩)Hej2(⟨u, z⟩)µ1,⟨z,vj⟩,j⟨z,u⟩

]
→ E

[
Hej1(⟨v⋆u, z⟩)Hej2(⟨u, z⟩)µ1,⟨z,c′jv⋆⟩,j⟨z,u⟩

]
(95)

Suppose j2 ̸= 1, then E [Hej2(⟨u, z⟩)⟨zi,u⟩] = 0. Therefore, the non-zero contributions arise
from terms of the form Hej1(⟨v⋆u, z⟩)⟨u, z⟩. It can be checked that directions u having non-zero
terms of this form span U⋆2 as defined in Theorem 3. However, in general, the RHS of equation 95
might be 0 for some choices of σ and aj . Moreover, such non-zero contributions might cancel each
other for a chosen direction in U⋆2 . Furthermore, to obtain high-probability result on the alignment
along U⋆t for a general number of t steps, one needs to quantitatively propagate the expectations
and concentration bounds on the projections and norms of W, and show that the magnitude of
the projections can be bounded independent of the dimension. We tackle these issues in the next
section and provide a full proof of Theorem 3.

C.8 Proof of Theorem 3

The proof proceeds by induction on the number of time-steps t. To avoid certain degeneracy
conditions in the proof, we restrict ourselves to polynomial activations. Let U⋆t be the learned
subspace at time-step t according to the definition 4.
Let Qt ∈ Rp×p denote the overlap matrix for weights of the first-layer neurons at time t, i.e.
Qti,j = ⟨wt

i ,w
t
j⟩ ∀i, j ∈ [p]. LetMt ∈ Rr×p denote the target-network overlap matrix i.e .M t

i,j =

⟨w⋆
i ,w

t
j⟩ ∀i ∈ [p], j ∈ [r]. LetW ∗ ∈ Rr×d denote the matrix with rows w⋆

1, · · · ,w⋆
r .

We denote by Zt, the batch of input sampled at time t ∈ [T ]. By assumption Z1, · · · ,ZT are
independent. Let Ft denote the natural filtration associated to Z1, · · · ,ZT , i.e Ft is the σ-algebra
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generated by Z1, · · · ,Zt, and let µt denote the corresponding joint-measure of Z1, · · · ,Zt. We
let gti denote the gradient for the ith neuron at time t obtained using the batch Zt+1.

For any time t, let rt denote the dimension of U∗
t and let W ∗

t ∈ Rrt×d denote a matrix with
rows forming a basis of U∗

t , such that (W ∗)⊤W ∗
t is independent of d, n. Thus, W ∗

t represents
a dimension independent basis of U∗

t . Let vj,a ∈ Rrt denote the projections of wt
j along W ∗

t

i.e vj,a = W ∗
tw

t
j . Similarly, for an input z ∈ Rd, we denote the projection of z along W ∗

t by
κ = W ∗

tz. In what follows, we shall say that a sequence of events En occurs with high-probability
as n, d→∞ if there exist constants c, C > 0 such that P(En) ≥ 1−Cpe−c log(n)2 +Cpe−c log(d)

2

At any timestep t ≥ 1, we prove that the following statements hold with high probability w.r.t µt:

(i) Qt = Q̃ta + O( polylogd√
d

),M t = M̃ t
a + O( polylogd√

d
), where Q̃ta, M̃ t

a denote dimension-
independent matrices with each entry being a polynomial dependent only on a, t of wt

i ,
dependent on the second layer i,a.

(ii) Let v ∈ U⋆t , with ∥v∥ = 1 be arbitrary. Denote by vm ∈ Rk , the components of v along
w⋆

1, · · · ,w⋆
r i.e vm = W ⋆v. Then there exists an almost surely positive random variable

qt,vm,a, independent of d, n such that ⟨wi,v⟩) = qt,v,a +O(polylog√
d

). Furthermore, qt,v,a
is a non-constant polynomial in a, v1, · · · , vk .

(iii) For any v ∈ U⊥⋆
t ∩ V ⋆, |⟨wi,v⟩| = O(polylog√

d
), with high probability, for all i ∈ [p].

Proof. We proceed by induction over t. Suppose that the statements hold at some timestep t. We
start by proving that (i) holds at time t+ 1 in expectation:

Lemma 15. E [Qt] = Q̃ta+O( polylogd√
d

) and E [Mt] = M̃ t
a+O( polylogd√

d
) where each entry of Q̃ta, M̃

t
a

is a polynomial of a with degree independent of d, n.

Proof. Recall that:
Qt+1
i,j = ⟨wt+1

i ,wt+1
j ⟩

= Qti,j + η⟨gti ,wt
j⟩+ η⟨wt

i , g
t
j⟩+ η2⟨gti , gtj⟩.

M t+1
i,j = ⟨w⋆

i ,w
t+1
j ⟩

=M t
i,j + η⟨w⋆

i , g
t
j⟩

(96)

By the induction hypothesis, the entries of E [Qt] ,E [M t] converge with high-probability to
polynomial limits with error O

(
polylog d

d

)
. Therefore, it suffices to show that E

[
⟨gti ,wt

j⟩
]
,

E
[
⟨wt

i ,w
t
j⟩
]
,E
[
⟨gti , gtj⟩

]
converge to dimension-inpedendent polynomial limits. First, consider

the case i = j. We have, analogous to Equation 50

E
[
∥gti∥2

]
=

a2i
np2

E
[
∥zν∥2σ′(⟨wt

i , z
ν⟩)2(f⋆(zν)− f̂(zν ;W t,a))2

]
︸ ︷︷ ︸

T1

+
n(n− 1)

n2
∥E[gi]∥2︸ ︷︷ ︸

T2

(97)

The first term T1 can be decomposed as follows:
a2
i

np2
E
[
∥zν∥2σ′(⟨wt

i ,z
ν⟩)2(f⋆(zν)− f̂(zν ;W t,a))2

]
=

da2
i

np2
E
[
σ′(⟨wt

i ,z
ν⟩)2(f⋆(zν)− f̂(zν ;W t,a))2

]
+

a2
i

np2
E
[
(d− ∥zν∥2)σ′(⟨wt

i ,z
ν⟩)2(f⋆(zν)− f̂(zν ;W t,a))2

]
.

Similar to equation 53, Holder’s inequality implies that conditioned on the event in Ft of Qt,Mt

being bounded independent of d, n, the second term is of order O(
√
d
n ) = O( 1√

d
). Consider the first

term, conditioned on Ft.
da2i
np2

E
[
σ′(⟨wt

i , z
ν⟩)2(f⋆(zν)− f̂(zν ;W t,a))2|Ft

]
(98)
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By assumption, da2i
np2 =

a2iα
p2 for some constant α. Therefore, by definition of f⋆(zν) and

f̂(zν ;W t,a), the term inside the expectation only depends on the overlaps of zν with the neurons
and teacher subspace i.e ⟨wt

1, z
ν⟩, · · · , ⟨wt

p, z
ν⟩ ⟨w⋆

1 , z
ν ,⟩, · · · , ⟨w⋆

r , z
ν⟩. By a change of variables

the above term can therefore be expressed as an expectation w.r.t the r + j correlated variables
corresponding to the above overlaps.
Concretely, we have:

d

np2
E
[
σ′(⟨wt

i , z
ν⟩)2(f⋆(zν)− f̂(zν ;W t,a))2|Ft

]
= Fg(Qt,Mt), (99)

for some function F : R→ R

Lemma 16. Fg is a polynomial in Qt,Mt independent of d, n.

Proof. By assumption, σ′ and f⋆ are polynomials in ⟨wt
1, z

ν⟩, · · · ⟨wt
p, z

ν⟩ and ⟨w⋆
1 , z

ν⟩, · · · ,
⟨w⋆

r , z
ν⟩ respectively. Therefore, σ′(⟨wt

i , z
ν⟩)2(f⋆(zν)− f̂(zν ;W t,a))2 is a polynomial in the

zero mean correlated Gaussian variables ⟨wt
1, z

ν⟩, · · · , ⟨wt
p, z

ν⟩, ⟨w⋆
1 , z

ν⟩, · · · , ⟨w⋆
r , z

ν⟩. There-
fore, by Wick’s/Isserlis’ theorem [Janson, 1997, Polyak, 2005], Fg is a polynomial in Qt,Mt.

By the induction hypothesis, with high-probability, Qt = Q̃t,a + O(polylog d√
d

) and M̃t,a +

O(polylog d√
d

), where Q̃t,a, M̃t,a denote deterministic matriceswith entries being polynomial func-
tions of a. By propagating the errors through the polynomial Fg , we obtain that Fg(Qt,Mt) =

Fg(Q̃t,a, M̃t,a) + O(polylog d√
d

).

Next, consider the term T2 in Equation 97. By repeatedly applying Stein’s Lemma w.r.t terms
⟨wt

i , z⟩ for i ∈ [p] and ⟨w∗, z⟩ for j ∈ [r], analogous to Lemma 4, E[gi], can be expressed as a
linear combination of wt

1, · · · ,wt
p and w∗

1 , · · · ,w∗
r . Concretely, we have:

E[gti ] = E
[
zσ′(⟨wt

i , z⟩)(f⋆(z)− f̂(zν ;W
t,a))

]
= E

[
zσ′(⟨wt

i , z⟩)f⋆(z)
]
− E

[
zσ′(⟨wt

i , z⟩)f̂(zν ;W
t,a))

]
Consider the first-term, by Stein’s Lemma, we obtain:

E [f⋆(z)σ′(⟨wi, z⟩)z] = E [zg⋆(⟨w⋆
1, z⟩, · · · , ⟨w⋆

r, z⟩)σ′(⟨w, z⟩)]
= E [σ′(⟨w, z⟩)∇g⋆(⟨w⋆

1, z⟩, · · · , ⟨w⋆
r, z⟩)]

+ E [wiσ
′′(⟨wi, z⟩)g⋆(⟨w⋆

1, z⟩, · · · , ⟨w⋆
r, z⟩)]

By chain rule, ∇g⋆(⟨w⋆
1, z⟩, · · · , ⟨w⋆

r, z⟩) can be expressed as a linear combination of w⋆
1, · · · ,

w⋆
r and wt

i with coefficients being polynomials in ⟨w⋆
1, z⟩, · · · , ⟨w⋆

r, z⟩ independent of d.
Therefore, by Wick’s theorem [Janson, 1997, Polyak, 2005], E [f⋆(z)σ′(⟨wi, z⟩)z] can be expressed
as
∑r
k=1 pk(Qt,Mt)w

∗
k+hi(Qt,Mt)w

t
i , where {pk}k=1,··· ,r and hi are polynomials independent

of d. Similarly, we obtain E
[
zσ′(⟨wt

i , z⟩)f̂(zν ;W
t,a))

]
as a linear combination of wt

1, · · · ,wt
p.

Therefore, ∥E[gti ]∥2 conditioned on Ft is a polynomial in Qt,Mt. Propagating errors from time t,
we conclude that T2 can be approximated by polynomials in Qt,Mt with error O(polylog d√

d
)

Similary, the terms E
[
⟨gti , gtj⟩

]
,E
[
⟨w∗

i , g
t
j⟩
]
converge with high-probability to dimension-

independent polynomials in Qt,Mt

Next, we prove that (ii) and (iii) holds in expectation:
Lemma 17. Let v ∈ V ⋆, with ∥v∥ = 1 be arbitrary with components vm ∈ Rr alongw⋆

1, · · · ,w⋆
r ,

then E
[
⟨v, gtj⟩

]
= h(vm,a, Qt,Mt) + O(polylog d

p
√
d

), where h(vm,a, Qt,Mt) satisfies:

(i) h(vm,a, Qt,Mt) is non-zero, almost surely over a if v ∈ U⋆t+1.

(ii) h(vm,a, Qt,Mt) = 0 otherwise.
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Consider the gradient w.r.t the jth neuron’s parameters:

gtj = −∇wjL
(
f̂(zν ;W t,a), f⋆(zν)

)
=

1

n
aj

n∑
ν=1

zν(f⋆(zν)− f̂(zν ;W t,a))σ′(⟨zν ,wt
j⟩)

(100)

Suppose that v ∈ U⋆t+1 ∩ (U⋆t )
⊥ i.e when v is a new direction not yet learned upto time t.Using,

equation (100), the expectation E
[
⟨v, gtj⟩

]
can be expressed as:

E
[
⟨v, gtj⟩

]
= E

[
aj(f

⋆(z)− f̂(z;W t,a))σ′(⟨z,wt
j⟩)⟨z,v⟩

]
. (101)

Consider the term E
[
f̂(z;W t,a))σ′(⟨z,wt

j⟩)⟨z,v⟩
]
. Through a change of variables, and Wick’s

theorem [Janson, 1997, Polyak, 2005], one obtains that E
[
f̂(z;W t,a)σ′(⟨z,w1⟩)j⟨z,v⟩

]
is

a polynomial in Q and the overlaps ⟨wi,v⟩ for i ∈ [p] having value 0 when ⟨wi,v⟩ = 0

for all i ∈ [p]. By the induction hypothesis, ⟨wi,v⟩ = O(polylog d√
d

) with high probability.

Therefore E
[
f̂(z;W t,a))σ′(⟨z,wt

j⟩)⟨z,v⟩|Ft
]
= O(polylog d√

d
) with high probability. Similarly,

E
[
f̂(z;W t,a))σ′(⟨z,wt

j⟩)⟨z,v⟩|Ft
]
= O(polylog d√

d
) holds when v /∈ U⋆t+1.

Now, consider the term E
[
ajf

⋆(z)σ′(⟨z,wt
j⟩)⟨z,v⟩

]
. First, using Fubini’s theorem, we take the

expectation w.r.t the component z⊥ of z in V ⋆⊥.
Recall that vj,a = W ∗

tw
t
j and κ = W ∗

tz. The resulting expectation converges in probability to a
function of κ:

Ez⊥
[
ajf

⋆(z)σ′(⟨z,wt
j⟩)⟨z,v⟩

]
= Eκ [ajf⋆(z)f1(a, κ)⟨z,v⟩] , (102)

where f1(a, κ) is defined as follows:

f1(a, κ) = Ez⊥
[
σ′(z⊤wt

j)
]

= Eu∼N(0,1) [σ
′(cj,au+ ⟨κ,vj,a⟩)]

, where cj,a denotes the norm of wt
j along the orthogonal complement of V ∗. f1(a, κ) generalizes

the “shifted-hermite" µ1,κ,j defined in the section C.7. By assumption on σ, σ′(cj,au+ ⟨κ,vj,a⟩) is
a polynomial in cj,au, ⟨κ,vj,a⟩. Furthermore, only the odd terms in cj,au are zero in expectation
u ∼ N(0, 1). Therefore, f1(a, κ) is a polynomial in ⟨κ,vj,a⟩ and cj,a with only even degree terms
in cj,a. By the induction hypothesis, c2j,a converges in probability to a polynomial in a. Therefore
f1(a, κ) is a polynomial in a, κ.
Subsequently, we consider the expectation w.r.t ⟨z,v⟩, at a fixed value of κ. Define the following
function of κ:

f2(κ) = E⟨z,v⟩ [y⟨z,v⟩|κ] . (103)

Using the tower law of expectation, we obtain:

E
[
ajf

⋆(z)σ′(z⊤wt
j)⟨z,v⟩

]
= Eκ [f1(aj , κ)f2(κ)] , (104)

When v /∈ U⋆t+1, f2(κ) is identically 0 and the above expectation vanishes.
We aim to show that the above expectation does not vanish except for ai belonging to a zero-measure
set. By the definition of subspace conditioning (definition 4), ∃κ > 0 such that E⟨z,v⟩ [f

⋆(z)z|κ]
has non-zero overlap with v.
Therefore, f2(κ) is not identically zero. Furthermore, since f⋆ is a polynomial by assumption, and
v ⊥ V ⋆, a rotation of basis implies that f2 is a polynomial in κ. Let Sy,t be the set of degrees s ∈ N0

such that Ef2(κ)κs [κ] ̸= 0. Since f2 is not identically 0, we have that Sy,t ̸= ϕ.
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Now, recall that:
f1(a, κ) = Eu∼N(0,1) [σ

′(cj,au+ ⟨κ,vj,a⟩)]

= Eu∼N(0,1)

deg(σ)−1∑
k=0

(k + 1)bk+1(cj,au+ ⟨κ,vj,a⟩)r


=

deg(σ)−1∑
k=0

(k + 1)bk+1Eu∼N(0,1)

[
(cj,au+ ⟨κ,vj,a⟩)k

]
.

Now, let s ∈ Sy,t be arbitrary. By assumption, deg(σ) − 1 ≥ s. Let ps(a) denote the coefficient
of κs in f1(a, κ). Since cj,a,vj,a are non-constant polynomials in a, the coefficient of κs in
(cj,au+⟨κ,vj,a⟩)k is a non-constant polynomial in a for any k such that k−q is even. Furthermore,
the degree of the coefficient of κs in (cj,au+ ⟨κ,vj,a⟩)k is strictly increasing in k. Therefore, for
any s ∈ Sy,t, ps(a) is a non-constant polynomial in a. Now, consider the term in ps(a) with the
least degree in aj . From the definition of vj,a, we have that vj,a = 0 whenever aj = 0. Let dj
denote the least s ∈ N0 such that the coefficient of asj in ⟨vj,a, κ⟩ is non-zero. We have that dj > 0.
Consequently, the minimum degree of aj in (cj,a)

q(⟨κ,vj,a⟩)s, is (dj)s for any q. Therefore, the
minimum degree of ps(a) is strictly increasing in s. This implies that ps(a) are linearly independent
for s = 1, · · · ,deg(σ)− 1.
Now, consider the function defined above in Equation 104:

h(t,a) = Eκ [f1(a, κ)f2(κ)] . (105)
By expanding f1, f2 along κ, the coefficient of κs for each s ∈ Sy,t results in a non-constant
polynomial in a. We obtain:

h(t,a) =
∑
s∈Sy,t

csps(a), (106)

where cs denote constants independent of d, n. Therefore, we have that h(a) is a non-constant
polynomial in a. Using Fubini’s theorem, we have that the set of zeros of non-zero multivariate
polynomials has 0 measure w.r.t the Lebesque measure (for a generalization, see [Mityagin, 2020]),
we obtain that q(a) ̸= 0 almost surely.
Now, suppose that v ∈ (U⋆t ), i.e when v is an already learned direction. By the induc-
tion hypothesis, ⟨wt

i ,v⟩ converges to a non-constant polynomial in a. Consider the term
aj√
pE
[
f̂(z;W t,a))σ′(⟨z,wt

j⟩)⟨z,v⟩
]
in ⟨gti ,v⟩. By expanding f̂(z;W t,a) we obtain:

aj√
p
E
[
f̂(z;W t,a))σ′(⟨z,wt

j⟩)⟨z,v⟩
]
=
aj
p

p∑
i=1

aiE
[
σ(⟨wt

i , z⟩)σ′(⟨z,wt
j⟩)⟨z,v⟩

]
(107)

The term correspondign to the jth neuron has the form:
a2j
p
E
[
σ(⟨wt

j , z⟩)σ′(⟨z,wt
j⟩)⟨z,v⟩

]
(108)

By Wick’s theorem [Janson, 1997, Polyak, 2005] and the polynomial assumption on σ,
E
[
σ(⟨wt

j , z⟩)σ′(⟨z,wt
j⟩)⟨z,v⟩

]
is a non-zero polynomial in ⟨wt

j ,v⟩. Let dj be the degree of

aj in ⟨wt
j ,v⟩. Then, the degree of aj in

a2j
p E
[
σ(⟨wt

j , z⟩)σ′(⟨z,wt
j⟩)⟨z,v⟩

]
is at-least dj + 2. Pro-

ceeding similarly for the other terms, one can show that the degree of aj in ⟨gti ,v⟩ is strictly
larger than in ⟨wt

i ,u⟩. This ensures that ⟨wt+1
i ,v⟩ = ⟨gti ,v⟩+ η⟨gti ,v⟩ remains a non-constant

polynomial upto error O(polylog d√
d

). Therefore, almost surely over a, a direction is not “un-learned".
Finally, by decomposing along a general v ∈ U⋆t+1, along U⋆t and U⋆t+1 ∩ (U⋆t )

⊥, one obtains that
points (ii) and (iii) of the induction statements hold in expectation.
Next, we prove that the events (i), (ii), (iii) hold with high probability. By the induction hypothesis,
we have that and the above analysis, we have that:
Lemma 18. Suppose that the induction hypothesis holds at time t. Then, the following events occur
with high-probability for all i, j ∈ [p]
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(i) |∥gt+1
i ∥2 − E

[
∥gt+1
i ∥2

]
| = O

(
polylog d√

d

)
(ii) ∥⟨gi, gj⟩ − E [⟨gi, gj⟩]∥ = O

(
polylog d√

d

)
(iii) For any k ∈ [r], and any unit vector w

|⟨w, gi⟩ − E[⟨w, gi⟩]| = O

(
polylog d√

d

)
(109)

Proof. We condition on the event in Ft that Qt,Mt are bounded by some constants independent of
d, n. Subsequently, the proof proceeds similar to Proposition 2, with the additional incorporation of
the term due to f̂(zν ;W t,a)) in the gradient.
We have:

gtj =
1

n
aj

n∑
ν=1

zi(f
⋆(zν)− f̂(zν ;W t,a))σ′(z⊤

i w
t
j) (110)

Define:
Xν
i = zνσ′(⟨wt

i , z
ν⟩)(f⋆(zν)− f̂(zν ;W t,a)). (111)

Analogous to the proof of Proposition 2, we have:

∥gi∥2 − E[∥gi∥2] =
a2
i

n2p2


n∑

ν=1

∥Xν
i ∥2 − nE[∥Xν∥2]︸ ︷︷ ︸

S1

+
∑
ν ̸=ν′

⟨Xν
i ,X

ν′
i ⟩ − n(n− 1)∥E⟨Xν

i ,X
ν′
i ⟩∥2

︸ ︷︷ ︸
S2


(112)

Similarly, we have:

⟨gi, gj⟩−E[gi, gj ] =
a2
i

n2p2


n∑

ν=1

⟨Xν
i ,X

ν
j ⟩ − nE[⟨Xν

i ,X
ν
j ⟩]︸ ︷︷ ︸

S′
1

+
∑
ν ̸=ν′

⟨Xν
i ,X

ν′
j ⟩ − n(n− 1)(E⟨Xν

i ,X
ν′
j ⟩)2

︸ ︷︷ ︸
S′
2


(113)

Note that f⋆(zν) and f̂(zν ;W t,a) are polynomials in finite-number of correlated Gaussians
⟨wt

1, z
ν⟩, · · · , ⟨wt

p, z
ν⟩, ⟨w⋆

1 , z
ν⟩, · · · , ⟨w⋆

r , z
ν⟩. Therefore, by repeated applications of Lemma 2

and Theorem 5, we obtain that σ′(⟨wt
i , z⟩), f⋆(zν) and f̂(zν ;W

t,a)) have bounded Orlicz norms
of some finite order αt.
Subsequently, similar to Lemma 9, through Holder’s inequality, Lemma 2 and Theorem 5, we obtain
that ∥Xν

i ∥2, ⟨Xν
i ,X

ν′

i ⟩, ⟨Xν
i ,X

ν
j ⟩, ⟨Xν

i ,X
ν′

j ⟩, have Orlicz norms of order O(d) with α = αt for
some αt independent of d.
The remaining proof follows by repeating the arguments in Lemmas 9, 10 for Orlicz norms of
general order.
Similarly (iii) is obtained by replacing the application of Bernstein’s inequality in Lemma 8 by
Theorem 5.

Lemmas 15 and 18 together with C.8 and the induction hypothesis imply statement (iii) at time
t+ 1.
It remains to prove the base case i.e t = 1. If the leap ℓ > 1, U⋆t = 0 for all t ≥ 1. Applying the
above arguments then implies that (i) and (iii) hold for all timesteps t.
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Therefore, we may assume that ℓ = 1. At t = 1, U⋆1 is simply the subspace along (C1(f
⋆)). Let

v = ± 1
∥C1(f⋆)∥C1(f

⋆) be a vector as per (ii) let i ∈ [p] be an arbitrary neuron. We have:

⟨v,w1
i ⟩ = ⟨v,w0

i ⟩+ η⟨v, gi⟩

= η⟨v, gi⟩+ O(
1√
d
)

It is straightforward to check that Lemma 4 holds when σ, g∗ are polynomials, while Lemma 14
holds in expectation. Applying the concentration results for Orlicz norms of general order as in
Lemma 18 imply that Lemma 14 also holds in probability for polynomial σ, g∗. To establish (i) at
time t = 1, we note that Lemma 14 implies that E [wi]

2 converges to 1+ca2i where c is independent
of d, n. By Lemma 4 the first term equals with high-probability, ±aiµ1

p ∥C1(f
⋆)∥ + O 1√

d
. Since,

aiµ1

p ∥C1(f
⋆)∥ is a non-constant (linear) polynomial in ai, this proves (ii) for t = 1. Lemmas 4 and

part (iii) in Lemma 18 directly imply (iii) of the induction statements.
Points (ii), (iii) of the induction statements directly imply Theorem 3.

C.9 Prediction of the alignment at the second step

We now utilize the analysis in the previous section to obtain a theoretical prediction for the gradient
orientation after two steps for the target function defined in bottom right of Figure 5 i.e.:

f⋆(z) = σ⋆1(⟨w⋆
1, z⟩) + σ⋆2(⟨w⋆

2, z⟩), (114)
with σ⋆1(z) = z − z2 and σ⋆2(z) = z + z2. Equivalently, the above target function can be expressed
in a rotated basis as:

f⋆(z) =
√
2u⋆1 + 2u⋆1u

⋆
2. (115)

Where u⋆1 = 1√
2
(w⋆

1 +w⋆
2) and u⋆2 = 1√

2
(w⋆

1 −w⋆
2). Therefore v∗ =

√
2u⋆1 with ∥v∗∥ =

√
2.

We follow the notation defined in the proof sketch in Section C.7 and assume that ai = ± 1√
p , while

α = n
d = 4 as in Figure 5.

We have, using Equation (91):

E
[
⟨u, g1

j ⟩
]
→ E

[
yµ1,c′j⟨z,v⋆⟩(⟨zi,u⟩)

]
− E

[
ŷ1i σ

′(⟨zi,w1⟩)j(⟨zi,u⟩)
]
. (116)

As explained in the previous section, the second term does not contribute to an alignment towards
v⊥. Denoting by v⋆u, the normalized vector along v∗,we consider the ratio of the first term when
u = v⋆u or u = v⊥. We obtain:

⟨g1,v⋆u⟩ ≈ E
[
yµ1,c′j⟨z,v⋆⟩,j⟨zi,v⋆u⟩

]
, (117)

Since the first Hermite coefficient µ1 of the student activation for Relu equals 0.5, we obtain that
c′j = ajη.
We assume that cj ≈ 1. Therefore, µ1,⟨z,v⋆

u⟩ corresponds to the first Hermite coefficient of a
translated Relu function and is given by:

µ1,κ,j = (1− Φ(−κ)) = 1

2
(1 + erf(−κ/

√
2)). (118)

Therefore, when η = 2, we obtain that c′j = 2:

µ1,c′j⟨z,v⋆⟩,j =
1

2
(1± erf(⟨z,v⋆⟩/

√
2)) =

1

2
(1± erf(⟨z,v⋆u⟩)) (119)

Let v(t=2)
1 and v

(t=2)
2 denote the projections of the neurons wj with aj = 1 and aj = −1 re-

spectively. Therefore, using the Hermite decomposition of erf, we obtain the following predicted
orientations in the setting considered in the right panel of Fig. 5:

v
(t=2)
1 = (1− 2√

3π
)w⋆

1 + (1 +
2√
3π

)w⋆
2 v

(t=2)
2 = (1 +

2√
3π

)w⋆
1 + (1− 2√

3π
)w⋆

2 (120)
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C.10 Limitations of the Staircase Structure

We show that a natural class of teacher functions, containing neurons with identical activation
functions and uniform second-layer weights does not contain a staircase structure:
Proposition 4. Let y = f⋆(z) =

∑r
k=1 σ

⋆(⟨w⋆
k, z⟩) for some σ⋆ having leap index 1, thenU⋆i = U⋆1

for all i ≥ 1.

Proof. For any such target function, v⋆u is given by v⋆u = 1√
r
(
∑r
k=1 w

⋆
k). Without loss of generality,

assume that w⋆
k = ek, where ek denotes the unit vector corresponding to the kth coordinate.

Now, consider any direction u ⊥ v⋆ in the teacher subspace. Such a vector satisfies
∑r
k=1 ui = 0.

Therefore, for any k ≥ 0, we have:

E [f⋆(z)Hk(⟨v⋆, z⟩)(⟨ui, z⟩)] = (

p∑
i=1

(ui))(E [f⋆(z)Hk(⟨v⋆u, z⟩)z1])

= 0.

(121)

Where we used the symmetry of f⋆(z) w.r.t permutations of the first r coordinates. Therefore, the
Hermite decomposition of f⋆(z) does not contain any term that linearly couples u to v⋆.

Therefore, the presence of a staircase structure requires asymmetry between the the dependence of
the target function on different directions in the teacher subspace.
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D Learning the second layer

D.1 Proof of Proposition 1

We first prove the finite p case of Proposition 1. Let a be a second layer vector with ai ≤ c/
√
p,

and assume thatW only learns a subspace U ⊆ V ⋆. We write Rd = U ⊕ U⊥ ⊕ V ⋆⊥, where U⊥ is
the orthogonal subspace of U in V ⋆. By assumption, we have ∥PU⊥wi∥ ≤ εd for every i; where εd
is going to zero as d grows.
For any z ∈ Rd, we have

f̂(z;W,a) =

p∑
i=1

ai√
p
σ(⟨wi, PUz⟩+ ⟨wi, PU⊥z⟩+ ⟨wi, PV ⋆⊥z⟩)

=

p∑
i=1

ai√
p
σ(⟨wi, PUz⟩+ ⟨wi, PV ⋆⊥z⟩) + ai√

p
εdσ̃(⟨wi, PU⊥z⟩)

where σ̃ is a Lipschitz function. We call the first term of the above expression f̃(PUz, PV ⋆⊥z),
forgetting the structure of the function f̂ . Then, we can write the risk as

R(W,a) = Ez

[(
f⋆(z)− f̃(PUz, PV ⋆⊥z)

)2]
+O(εd), (122)

having used the Cauchy-Schwarz inequality to bound the contribution of σ̃. Then, by successive
expectations,

R(W,a) = EP
V ⋆⊥z,PUz

[
EP

U⊥z

[(
f⋆(z)− f̃(PUz, PV ⋆⊥z)

)2 ∣∣∣∣PV ⋆⊥z, PUz

]]
+O(εd),

≥ EP
V ⋆⊥z,PUz

[
inf
f

EP
U⊥z

[
(f⋆(z)− f(PUz, PV ⋆⊥z))

2

∣∣∣∣PV ⋆⊥z, PUz

]]
+O(εd)

where the infimum is taken over all measurable functions f : U × V ⋆⊥ → R. But this infimum
exactly corresponds to the definition of conditional expectation/conditional variance, which is
independent from PV ⋆⊥z (since f⋆ is). As a result,

R(W,a) ≥ EPUz [Var (f
⋆(z)|PUz)] +O(εd), (123)

which implies the statement of Proposition 1.

D.2 Full statement of Theorem 4

We now provide the full statement of Theorem 4. It establishes the asymptotic equivalence of the
training and generalization errors of the original features and the conditional Gaussian features
defined by equation (25).
Consider the sequence of vectors vn ∈ Rd defined as in Equation (79) by vn = 1

n

∑n
i=1 yizi. For

simplicity, we omit the dependence of vn on n and denote each entry by v. For any vector z ∈ Rd,
define the decomposition z = zvv + z⊥ and feature maps:

ϕCK(z) = σ(W (1)z), (124)

whereW (1) denotes the weight matrix obtained through the application of a single gradient step.
Then the random variable ϕCK(z) admits a regular conditional distribution conditioned on the
values of zv (Theorem 8.37 in Klenke [2013]). Therefore, the following mean, correlation, and
covariance matrix are well-defined:

µ(zv) = E [ϕCK(z) | zv] , Ψ(zv) = E
[
ϕCK(z)(z

⊥)⊤ | zv
]
,

Φ(zv) = Cov [ϕCK(z) | zv]−Ψ(zv)Ψ(zv)
⊤ (125)

Now, for each value of zv , define the following random variable:

ϕCL(z;v) = µ (zv) + Ψ(zv)z
⊥ +Φ(zv)ξ. (126)
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Then ϕCL(z;v) satisfies:

E [ϕCL(z) | zv] = µ(zv),E
[
ϕCL(z)(z

⊥)⊤ | zv
]
= Ψ(zv), Cov [ϕCL(z) | zv] = Cov [ϕCK(z) | zv] .

(127)
Therefore, ϕCL(z;v) is a Gaussian variable having the same conditional mean, covariance as
ϕCK(z;v) and the same corrrelation with z⊥ as ϕCK(z;v). Since z⊥ is Gaussian and independent
of zv , this uniquely characterizes the conditional measure of ϕCL(z;v).
Now, consider a set of n training inputs z1, · · · , zn. For each i ∈ n, generate an equivalent feature
mapΦCL through equation (1), with ξ being independently sampled for each example. LetΦCK and
ΦCL denote matrices in Rn×p with rows ϕCK(zi) and ϕCL(zi) respectively,
Consider the following minimization problem:

min
a∈Rp

1

n

n∑
ν=1

(⟨a, ϕCK(zν)⟩ − f⋆(zν))2 + λ∥a∥2 (128)

Define the following constraint set:

Sp =
{
a ∈ Rd

∣∣ ∥a∥2 ≤ R, ∥a∥∞ ≤ Cp−η
}
. (129)

We make the following assumption:
Assumption 6. There exist constantsR,C, η such that the minimizer âCK of the optimization problem
defined by equation (128) lies in Sp with high probability as n, d→∞.

The above assumption can be enforced by utilizing constrained minimization for the second layer.
Alternatively, for overparameterized models i.e p/n > 1, one could utilize the arguments in
Theorem 5 of Montanari and Saeed [2022]. Let R̂⋆n(Φ,y(Z)),R⋆g(Φ,y(Z)) denote the training
and generalization errors respectively with features Φ and labels y(Z).
Theorem 4. Assume that n, p = Θ(d), and that the vector v⋆ = C1(f

∗) defined in Theorem 2 is
nonzero. Then, the sequence of vectors vn = 1

n

∑n
i=1 yizi ∈ Rd satisfy:

(i) As n, d→∞, PV ⋆v
P−→ v⋆.

(ii) Under Assumption 6, the training and generalization errors obtained through the minimization
of the objective (25) for training distribution defined by feature maps ϕCK(z) converge in
distribution to the corresponding training and generalization errors for features ϕCL(z;v).

Concretely, we have that for any bounded Lipschitz function Ψ : R→ R:

lim
n,p→∞

∣∣∣E [Ψ(R̂⋆n(ΦCK ,y(Z))
)]
− E

[
Ψ
(
R̂⋆n(ΦCL,y(Z))

)]∣∣∣ = 0

lim
n,p→∞

|E [Ψ (Rg(ΦCK ,y(Z)))]− E [Ψ (Rg(ΦCL,y(Z)))]| = 0

In particular, for any E ∈ R, and denoting P−→ the convergence in probability:

R̂⋆n(ΦCK ,y(Z))
P−→ E if and only if R̂⋆n(ΦCL,y(Z))

P−→ E

R⋆g(ΦCK ,y(Z))
P−→ E if and only if Rg(ΦCL,y(Z))

P−→ E,
(130)

Part (i) follows directly from Lemma 5. To prove the equivalence of training and generalization
errors for the given direction, we rely on the framework of one-dimensional CLT (Central Limit
Theorem), discussed in Goldt et al. [2022]. One-dimensional CLT was recently shown to imply the
universality of training and generalization errors for Random feature models in Hu and Lu [2022].
However, in our setting where we train the model, and as verified empirically in Ba et al. [2022], a
naive one-dimensional CLT with equivalent Gaussian features no longer holds.
Instead, we introduce a generalization termed “conditional one-dimensional CLT", given by the
following Lemma:
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Lemma 19. For any Lipschitz function φ : R2 → R, and ∀k ∈ R:

lim
n,p→∞

sup
θ1∈Sp,θ2∈Sd−1

∣∣E [φ(θ⊤
1 ϕCK(z),θ

⊤
2 z)

∣∣ zv = k
]
− E

[
φ(θ⊤ϕCL(z),θ

⊤
2 z)

∣∣ zv = k
]∣∣ = 0

(131)
where Sd−1 denotes the unit sphere in Rd

Proof. For an input z ∼ N(0, Id), we consider the decomposition z = zvv + z⊥ We note that
conditioned on on zv = k, ϕCL(z), z⊥ is a Gaussian random variable. Next, consider ϕCK(z). Our
proof relies on the observation that while the features ϕCK(z) have complex non-linear dependence
on zv , for a fixed value of zv , they are equivalent to a random-features mapping applied to z⊥.
Concretely, we have by Lemma 12 that the weight matrix W (1) has the following spike+bulk
decomposition (equation (79)):

W (1) = ηuv⊤ +W (0) + η∆, (132)
where u = µ1

p a

LetW⊥ denote the combined matrix W (0) + η∆ with rows w⊥
i for i ∈ [p].

Lemma 14 implies that there exist constants ci for i ∈ [p] depending only on ai such that ∥w⊥
i ∥2 =

ci + O(polylog d√
d

) with high-probability. Define the following neuron-wise activation functions:

σi,zv (u) = σ(cju+ ηvz)− Eu [σ(cju+ ηuizv)] , (133)
where i ∈ [p] denotes the index of the neuron and the expectation is w.r.t z ∼ N(0, 1). Under the
choise of symmetric initialization in Equation (10), it suffices to restrict ourselves to the first half
p/2 neurons.
For a fixed value of zv , the feature map ϕCK(z) = σ(W 1z) is equivalent to a random features
mapping with neurons σi,vz applies to inputs z⊥ ∈ Rd with approximately orthogonal weights
W⊥. Consider the following events for some positive constants C1, C2, C3:

A1 =

{
sup

i,j∈[p/2]

∣∣⟨w⊥
i ,w

⊥
j ⟩ − ciδij

∣∣ ≤ C1

(
polylog d

d

)1/2
}

A2 =
{
∥W⊥∥op ≤ C3(polylog d)

}

We have, using Lemma 12 and a union bound, that for p, d = Θ(n), Pr[A1]
n,d→∞−→ 1. Furthermore,

part (ii) of Lemma 14 in Ba et al. [2022] implies that Pr[A2]→ 1. Next, we utilize Corollary 2 and
Lemma 3 in Hu and Lu [2022]. Note that the neuron wise activation functions (133) for a fixed value
of zv satisfy Eu [σi,vz (u)] = 0. We relax the requirement of odd-activation in Hu and Lu [2022] by
noting that ϕCK , ϕCL have exactly equivalent means and covariances as in Theorem 6 of Dandi
et al. [2023].

The above Lemma states that the one-dimensional projections of ϕCK(z) are asymptotically dis-
tributed as jointly Gaussian variables with z⊥.

D.3 Conditional GET

We now prove part (ii) of Theorem 4 using Lemma 19. This relies on the universality of training and
generalization errors between the given distribution and the “conditional equivalent" distribution.
The central idea of the proof again relies on a the isolation of the effects of the “spikes" and the
“noise" in the features.
The technique presented here is also of independent interest for proving the universality of training,
generalization errors in related setups such as with spiked-covariance inputs.
We utilize the following properties of the features :
Lemma 20. For any fixed zv , the random variable ϕCK − µ(zv) is sub-Gaussian with sub-Gaussian
norm independent of zv and n.

Proof. The result follows from the assumption of uniform boundedness of the derivative of σ⋆ and
the Lipschitz concentration of Gaussian variables.
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Lemma 21. There exists a constant C such that the matrix Φ̄CK with rows ϕCK − µ(zv) satisfies:

Pr[∥Φ̄CK∥ ≥ K
√
p] ≤ 2 exp(−Cn) (134)

Proof. By Lemma 20, each row of Φ̄CK is sub-Gaussian. Therefore, the result follows from the
concentration of spectral norm of matrices with independent sub-Gaussian rows (Theorem 5.39 in
Vershynin [2010]).

We start by proving certain properties of the optimal parameters ai upon the training of the second
layer:
Lemma 22. Let âCK(λ) be the parameters obtained through ridge regression on features
ϕCK(zi){i=1,···n} with regularization strength λ. Then, there exists a constants C such that with
high probability as n, d→∞:

1

n

n∑
i=1

(
â⊤CKµ(zi,v)

)2 ≤ C (135)

Proof. By assumption, yi(z) = 1√
pa

⊤σ(Wz) with σ′ uniformly bounded. Therefore, from the
concentration of Lipschitz functions of gaussian variables, yi(z) is sub-Gaussian. Thus y2i (z) are
sub-exponential variables. Using Bernstein’s inequality Vershynin [2018], we obtain:

Pr[
1

n

n∑
i=1

(yi)
2 − E

[
(yi)

2
]
> K] ≤ 2 exp(−min(c1K, c2K

2)n). (136)

For constants c1, c2.

Let Ay denote the following event:

Ay =

{
1

n

n∑
i=1

(yi)
2 < C1

}
. (137)

By Equation (136), we have Pr [Ay]→ 1 as n, d→∞.

Let R̂(W,a) denote the empirical risk at given values of a,W . We have:

â = argmin
a

R̂(W,a) = argmin
a

1

2n

n∑
i=1

(yi − a⊤ϕk(zi))
2. (138)

We note that when a = 0, we have:

R̂(W,0) =
1

n

n∑
i=1

(yi)
2. (139)

Since â minimizes R̂(W,a), we must have:

R̂(W, â) ≤ R̂(W,0). (140)

We obtain:

1

2n

n∑
i=1

(yi − a⊤ϕk(zi))
2 ≤ 1

n

n∑
i=1

(yi)
2

=⇒ 1

2n

n∑
i=1

(a⊤ϕk(zi))
2 ≤ 1

n

n∑
i=1

a⊤ϕk(zi)yi

=⇒ 1

2n

n∑
i=1

(â⊤ϕk(zi))
2 ≤

√√√√ 1

n

n∑
i=1

(a⊤ϕk(zi))2

√√√√ 1

n

n∑
i=1

y2i ,
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where the last inequality follows from Cauchy-Schwarz. Therefore:√√√√ 1

n

n∑
i=1

(a⊤ϕk(zi))2 ≤ 2

√√√√ 1

n

n∑
i=1

y2i

1

n

n∑
i=1

(a⊤µ(zi))
2 +

1

n
∥Φ̄⊤

CKa∥22 ≤ 4(
1

n

n∑
i=1

y2i ).

Applying Lemma 21 and Pr [Ay]
n,d→−→ 1 then completes the proof.

Next, we prove the universality of the training, generalization error, conditioned on the values of
the projections zv . This can be achieved through a number of techniques such as the Lindeberg’s
method in Hu and Lu [2022]. We utilize the result of Montanari and Saeed [2022], who apply the
interpolation technique to continuously transform the inputs xi to equivalent Gaussian vectors gi.
Instead, we interpolate between the features ϕCK(z) and ϕCL(z). Define:

ut,i = µ(zi,v) + cos(t)(ϕCK(z)− µ(zi,v)) + sin(t)(ϕCL(z)− µ(zi,v)),

.
Let A1 denote the event:

A1 =

{
1

n

n∑
i=1

(
â⊤CKµ(zi,v)

)2 ≤ C1

}
(141)

Under the above interpolation path, we generalize Theorem 1 in Montanari and Saeed [2022] to
obtain that for any bounded Lipschitz function Φ : R→ R:

lim
n,p→∞

sup
vz1 ,··· ,vzn

∣∣∣E [
1A1Φ

(
R̂

⋆
n(ΦCK ,y(Z))

)
− 1A1Φ

(
R̂

⋆
n(ΦCL,y(Z))

)
| vz1 , · · · , vzn

]∣∣∣ = 0. (142)

Below, we explain the modifications to Theorem 1 in Montanari and Saeed [2022] that allow its
applicability to our setting:

(i) We replace equation (12) in Assumption 5 tof Montanari and Saeed [2022] by the conditional
1d-CLT (Lemma 19). This is similar to the conditioning utilized in Dandi et al. [2023] for
proving the universality in mixture models.

(ii) Our target function y = f⋆(z) depends on the projection along the spike vz as well as the
orthogonal component z⊥. Since we condition on the values of vz , their dependence can
be absorbed into the loss function for each input z⊥

i

(iii) While Theorem 1 in Montanari and Saeed [2022] does not allow a dependence of the labels
on the latent variables z, such a target function can be incorporated by considering the
inputs to be the joint variables in (ΦCK(z), z) ∈ Rp+d and constraining the parameters to
have 0 components along the last d directions.

(iv) The event A1 and Lemma 21 ensure that Lemmas 5 and 6 in Montanari and Saeed [2022]
hold under the presence of variable and unbounded means across samples µ(zi,v).

Next, using the Law of total expectation and Equation 142, we obtain:

lim
n,p→∞

∣∣∣E [1A1
Φ
(
R̂⋆n(ΦCK ,y(Z))

)]
− E

[
1A1

Φ
(
R̂⋆n(ϕCL,y(Z))

)]∣∣∣ = 0.

Finally, we note Lemma 22 implies that Pr[Ac1]→ 0. Since Φ is bounded, we have that

lim
n,p→∞

∣∣∣E [1Ac
1
Φ
(
R̂⋆n(ΦCK ,y(Z))

)]
− E

[
1Ac

1
Φ
(
R̂⋆n(ϕCL,y(Z))

)]∣∣∣ = 0.

This completes the proof of Theorem 4.
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D.4 Generalization Error Lower Bounds: Proof of Corollary 1

From Theorem 4, it is sufficient to prove the lower bound for the generalization error corresponding
to the equivalent features ϕCL(z). LetZ denote the input designmatrix with rows zi. Similarly, letΞ
denote the matrix with rows containing n independent Gaussian vectors, denoting the uncorrelated
noise in the equivalent conditional Gaussian features defined by equation (126). We have that
âCL(λ,Z,Ξ) =

(
Φ⊤
CLΦCL + λn

N I
)−1

Φ⊤
CLy. The generalization error can then be expressed as:

R(W, âCL) = Ez,ξ

[
(f⋆(z)− âCL(λ,Z,Ξ)⊤ϕCL(z))

2
]

= Eξ
[
Ez

[
(f⋆(z)− âCL(λ,Z,Ξ)⊤ϕCL(z))

2
]]
,

where the last line follows from Fubini’s theorem.
We note that the predictor f̂(z) = 1√

p â
⊤
CLϕCL(z) is a linear function of z⊥ with coefficients

dependent on zv . Therefore, f̂(z) ∈ Pv,1.
For a fixed value of ξ, we obtain the following expression for the generalization error:

Ez

[
(f⋆(z)− f̂(z))2

]
= ∥f⋆ − f̂∥2.

= ∥Pv,1(f⋆ − f̂)∥2 + ∥Pv,>1(f
⋆ − f̂)∥2

≥ ∥Pv,>1(f
⋆)2∥2,

where we used that Pv,>1(f
⋆ − f̂) = Pv,>1(f

⋆). Since the projection of f⋆ on the orthogonal
complement of the teacher subspace is 0, Corollary 1 then follows using PV ⋆v

P−→ µ√
pv

⋆ and the
dominated convergence theorem for the RHS.
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