
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ADAM-MINI: USE FEWER LEARNING RATES TO
GAIN MORE

Anonymous authors
Paper under double-blind review

ABSTRACT

We propose Adam-mini, an optimizer that achieves on-par or better performance
than AdamW with 50% less memory footprint. Adam-mini reduces memory by
cutting down the learning rate resources in Adam (i.e., 1/

√
v). By delving into the

Hessian structure of neural nets, we find Adam’s v might not function at its full
potential as effectively as we expected. We find that ≥ 99.9% of these learning
rates in v could be harmlessly removed if we (1) carefully partition the parameters
into blocks following our proposed principle on Hessian structure; (2) assign a
single but good learning rate to each parameter block. We then provide one simple
way to find good learning rates and propose Adam-mini. Empirically, we verify that
Adam-mini performs on par or better than AdamW on various language models
sized from 39M to 13B for pre-training, supervised fine-tuning, and RLHF. The
reduced memory footprint of Adam-mini also alleviates communication overheads
among GPUs, thereby increasing throughput. For instance, Adam-mini achieves
49.6% higher throughput than AdamW when pre-training Llama 2-7B on 2×
A800-80GB GPUs, which saves 33% wall-clock time for pre-training.

1 INTRODUCTION

Adam (Kingma & Ba, 2014) has become the de-facto optimizer for training large language models
(LLMs) (e.g., (Vaswani et al., 2017; Achiam et al., 2023; Touvron et al., 2023; Team et al., 2023)).
Despite its superior performance, Adam is expensive to use. Specifically, Adam requires the memory
for its optimizer states: the first-order momentum m, and the second-order momentum v. These
in total take at least 2× the memory of the model size1. This memory consumption has become a
major burden in LLM training. For instance, to train a 7B model, Adam alone requires about 56 GB
for m and v, and with the gradients included, a total of 86 GB is needed. This is expensive even
for cutting-edge graphics cards (e.g., A100-80GB). To support training, CPU-offload and optimizer
state sharding (Rajbhandari et al., 2020) must be used in practice, which unfortunately increases the
latency and slows down the training (Rajbhandari et al., 2021).

It is intriguing to design effective optimizers that require less memory. First, it lowers the threshold
of training LLMs and encourages participation from more diverse researchers, especially those with
limited GPU resources. Second, it requires fewer GPUs to train a model with a desired size, leading
to substantial savings in both cost and energy. Third, it can ease the burden of CPU offloading and
model sharding, which in turn, can enhance the throughput and accelerate the training process.

It is challenging to modify Adam without sacrificing its performance. One primary reason is that we
still lack understanding of the role of Adam’s m and v (Zhang et al., 2020; Kunstner et al., 2023).
It remains uncertain which components in Adam are indispensable for superior performance, and
which components could be re-designed or improved. One notable attempt is Adafactor (Shazeer
& Stern, 2018), which cuts down memory by low-rank factorization on v. However, we find that
Adafactor is not easy to tune and often performs worse than Adam (see evidence in (Luo et al., 2023)
and Section 3.4). One possible reason is that the current v in Adam is crucial and cannot be simplified.
This is possible as most existing Adam variants that attempt to modify v to varying extents have
been reported to perform worse than Adam (Orabona, 2020). Another possible reason is that there
is potential to cut down v, but Adafactor does not use the most suitable way: matrix factorization
is a generic approach that could be applied broadly, but it does not leverage much problem-specific
structure, thus it does not work well on specific neural-net tasks.

1We restate the update rules of Adam and AdamW in Appendix D.1.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

(a) Memory (↓) and Throughput (↑)

0.75 1.00 1.25 1.50 1.75 2.00 2.25
Tokens (billion)

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

Va
l L

os
s

AdamW
Adam-mini

(b) Loss v.s. iteration (c) Loss v.s. time

Figure 1: Results for Llama 2-7B pre-training. (a) Adam-mini takes less memory and can reach higher
throughput (# tokens per second). The throughput is tested on 2× A800-80GB GPUs. (b, c) Adam-mini
performs on-par with AdamW, but takes 33% less time to process the same # tokens.

Figure 2: An illustration of Adam-mini. Adam-mini
assigns learning rates (lrs) by Hessian structure. It uses
more lrs than SGD but fewer than Adam.

In this work, we find it is possible to signifi-
cantly reduce the usage of v. Currently, Adam
assigns an individual learning rate for each pa-
rameter, i.e., i-th parameter receives learning
rate η√

vi
, where vi is the i-th component of v.

For a billion-parameter model, Adam requires
billions of learning rates. We argue that it is
possible to achieve on-par or better performance
with much fewer learning rates. We first recall a
classical result that the Hessian of neural nets is
near-block-diagonal with several dense principle sub-blocks (Collobert, 2004). We then find that, for
each of these dense sub-blocks, there exists a single high-quality learning rate that outperforms Adam,
provided that we have enough resources to search it out. Since the number of dense sub-blocks is
much fewer than the number of parameters, our findings imply that it is possible to achieve good
performance with much fewer learning rates. The remaining question is how to find them efficiently.

We then propose a cheap and simple way to find good learning rates that are sufficient to perform
on-par or better than Adam. We introduce the proposed design principle here: we first partition
the gradient vector into B sub-vectors according to the dense Hessian sub-blocks, and call it gb for
b ∈ {1, · · · , B}. For each gb, we calculate the quantity below.

vb = (1− β2) ∗ mean(gb ⊙ gb) + β2 ∗ vb, b = 1, · · ·B.

We then use η/
√
vb as the learning rate for the parameters in the block associated with gb. Such

design changes almost all Adam’s v to a negligible amount of scalars and thus reduces the memory.
We call the corresponding method Adam-mini. We provide a simple illustration in Figure 2 and
relegate the complete form later in Algorithm 2. We summarize our main contribution as follows.

• New optimizer. We propose a new optimizer called Adam-mini. First, Adam-mini partitions
the model parameters based on the principle we established upon the Hessian structure. Then,
it chooses a single learning rate for each block using the average of Adam’s v in that block.
Adam-mini has the following advantages.

– Lightweightness: By design, Adam-mini largely reduces the number of learning rates used in
Adam. For mainstream LLMs, Adam-mini could cut down ≥ 99.9% proportion of Adam’s v,
which saves 50% of the memory cost of Adam.

– Effectiveness: Despite the memory cut down, we empirically verify that Adam-mini performs
on par or even better than AdamW (Loshchilov & Hutter, 2017) on various language models
sized from 39M to 13B, including pre-training, supervised fine-tuning (SFT), and reinforce-
ment learning from human feedback (RLHF). Adam-mini also performs similarly to Adam on
non-LLM tasks such as training diffusion models, vision models, and graph neural networks.

– Efficiency: Adam-mini can reach higher throughput than AdamW. We observe that Adam-
mini reaches 49.6% higher throughput of AdamW when pre-training Llama 2-7B on 2×
A800-80GB, which saves 33.1% wall-clock time for pre-training. The efficiency comes from
two factors. First, Adam-mini does not introduce extra computation in per-step updates.
Second, the memory cut-down allows larger batch sizes per GPU, and at the same time, it
eases the burden of communication among GPUs, which is usually a major overhead.

• Generic partition principle. A key component in Adam-mini is the strategy for parameter partition.
We propose to partition parameters based on the smallest dense sub-block in Hessian. This principle
can apply to generic problems with block diagonal Hessian: we find that more learning rates do not
necessarily bring extra gain for these problems. In particular, for the problem associated with each
dense sub-block, a single (but good) learning rate suffices to bring better performance.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

• Hessian structure and partition principle of Transformers. We empirically apply the above
principle to Transformers. We find that Transformer Hessian’s smallest dense blocks are: (1)
query, key by heads; (3) value, attn.proj and mlp by output neuron. We emphasize that
our Hessian-based partition principle is crucial for good performance, as naive or default partitions
(e.g. partitioning by layers) would cause training instability on LLMs.

2 METHOD

2.1 MOTIVATIONS AND OBSERVATIONS

Now we discuss our observations that motivate the design of Adam-mini. 2 We start by investigating
the role of Adam’s v and explore possibilities for improvement. In Adam, v provides an individual
learning rate for each parameter, i.e., i-th parameter receives the learning rate η√

vi
, where vi is the

i-th component of v. Very recently, Zhang et al. (2024) pointed out that such design is crucial for
modern architectures such as Transformers. This is because these models often exhibit Hessian-block
heterogeneity, i.e., the Hessian of different parameter blocks have dramatically different eigenvalue
distributions (We restate their findings in Appendix D.2). This phenomenon suggests that different
parameter blocks need different learning rates. This can be provided by Adam’s v.

The findings in (Zhang et al., 2024) suggest that it is necessary to use a different learning rate for
each block. Nonetheless, Adam does much more than that: it assigns an individual learning rate not
just for each block, but for each parameter. Note that the number of parameters (could be billions) is
much larger than the number of blocks (usually hundreds). This begs the question:

(Q1) Is it necessary to use a customized learning rate for each parameter?
If not, how much can we save?

(a) Exact Hessian of a
MLP (Collobert, 2004)

0 200 400 600 800 1000

0

200

400

600

800

1000
0.0

0.1

0.2

0.3

0.4

(b) Hessian of a MLP
at 1% step

0 200 400 600 800 1000

0

200

400

600

800

1000
0.00

0.05

0.10

0.15

0.20

0.25

(c) Hessian of a MLP
at 50% step

0 200 400 600 800 1000

0

200

400

600

800

1000
0.00

0.02

0.04

0.06

0.08

0.10

0.12

(d) Hessian of a MLP
at 100% step

Figure 3: The near-block-diagonal Hessian structure of neural nets. (a) is the Hessian of an MLP after 1 training
step reported in (Collobert, 2004). (b,c,d): the Hessians of an MLP that we observe along the training. We find
the near-block-diagonal structure maintains throughout training.

To answer (Q1), we delve into the Hessian structures of neural networks. First, we recall an important
(but often overlooked) result: the Hessian of neural nets is near-block-diagonal. This is an old result
that has been reported for at least two decades; see, e.g., (Collobert, 2004, Section 7). The authors
also provide theoretical justification. Consider a standard supervised learning problem: minimizing
ℓ(f(θ, x), y) where ℓ(·, ·) is the Cross-Entropy (CE) loss, f(θ, x) =

∑n
i=1 viϕ(w

⊤
i x) is an 1-hidden-

layer neural network with input x ∈ Rd, weight wi ∈ Rd, vi ∈ R, and label y ∈ {0, 1}, then the
off-diagonal-block Hessian elements would contain

∂2ℓ(f(θ, x), y)

∂wi∂wj
= p(x) (1− p(x))vivjϕ

′
(
w⊤

i x
)
ϕ′

(
w⊤

j x
)
xx⊤ for i ̸= j, (1)

where p(x) = 1/(1 + exp(−yf(θ, x))) and ϕ′(·) is the derivative of ϕ(·). Since the training
objective is to maximize p(x), the term p(x) (1− p(x)) will quickly shrink to zero. This term
will push the Hessian to near-block-diagonal structure where each block corresponds to one output
neuron. The authors report that this can happen just after 1 training step, as restated in Figure 3 (a).
We also numerically reproduce this result on a small MLP in Figure 3 (b,c,d), and show that the
near-block-diagonal Hessian structure maintains along training.

Case study I: random quadratic problems. With the above observation in mind, we now explore
(Q1) on generic optimization problems with block-diagonal Hessian. We consider the random
quadratic minimization problem minw

1
2w

⊤Hw where the Hessian H is a random positive definite
(PD) matrix and is visualized in Figure 4 (a). We compare the coordinate-wise learning-rate method,

2All experimental details in Section 2 are shown in Appendix E.2.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

(a) Hessian matrix

0 10000 20000 30000 40000 50000
Iteration

10 5

10 4

10 3

10 2

10 1

100

101

Lo
g

Gr
ad

ie
nt

 M
or

m

Adam
Optimal single-learning-rate method
Optimal blockwise-learning-rate method

(b) Total loss (c) Dense sub-block

0 200 400 600 800 1000
Iteration

10 5

10 4

10 3

10 2

10 1

100

101

Lo
g

Gr
ad

ie
nt

 M
or

m

Adam
Optimal single-learning-rate method

(d) Sub-problem loss
Figure 4: (a): The Hessian of a three-block random quadratic problem. (b): Training curves for the problem
associated with the full Hessian in (a). The optimal single (blockwise) learning rate is chosen based on the
full (blockwise) Hessian in (a). (c): The 1st dense Hessian sub-blocks in (a). (d): Training curves for the new
problem associated with the Hessian in (c).
i.e., Adam, with the single-learning-rate method, i.e., gradient descent (GD). We choose quadratic
minimization because the optimal learning rate has a close form. We have the following findings.

• (1): as shown in Figure 4 (a) and (b), Adam outperforms the optimal single-learning-rate method.
This is expected since Adam deploys different learning rates to different parameters.

• (2): as shown in Figure 4 (c) and (d), we consider a new problem whose Hessian is a dense
sub-block of (a). We consider the optimal single learning-rate method for this new problem and find
it outperforms Adam, even though Adam assigns much more learning rates. Similar phenomena
apply to all the three sub-blocks of (a).

• (3): If we collect these optimal learning rates in (2) and apply them to a “blockwise" version of
GD, it would be faster than Adam on the original problem (the green line in Figure 4 (b)).

In summary, for generic problems with block-diagonal Hessian, we find that more learning rates
do not necessarily bring extra gain. In particular, for each dense sub-block, a single (but good)
learning rate suffices to bring better performance than using tens or hundreds more.

More discussions on case study I. Why would this happen? We provide one possible explanation
from a linear algebra perspective. Adam can be viewed as a diagonal preconditioned method , i.e., at
the t-th step:

wt+1 = wt − ηtDtmt, (2)

where Dt = Diag(1/
√
vt) is a diagonal matrix, mt is the 1st-order momentum, wt and ηt are model

parameters and learning rate. However, Adam may not be an optimal preconditioner and thus cannot
effectively reduce the condition number of the dense sub-matrix. In the field of optimization, the
effectiveness of a diagonal preconditioner D is often measured by “how much is κ(DH) reduced
over κ(H)", where H usually refers to the Hessian matrix and κ(·) is the condition number (smaller
is better). Unfortunately, there is no guarantee of κ(DH) ≤ κ(H) and this inequality often requires
strict assumptions on both D and H . For instance, κ(DH) would be small if H is close to diagonal
and D is a cleverly designed compressor of H (Forsythe & Straus, 1955; Young, 1954; Sun & Ye,
2021; Qu et al., 2022).

Here, we numerically explore the effectiveness of Adam’s preconditioner within each dense Hessian
sub-block. We generate a random dense PD matrix Hb ∈ Rd×d and use it as a proxy for the dense
Hessian sub-block of neural nets in Figure 3. We define DAdam = Diag(1/

√
v), where v = g ⊙ g,

g = Hbx ∈ Rd, and each entry xi ∼ N (0, 1/
√
d) follows Xavier initialization. We explore the

interplay between the following two metrics:

τ =

∑
i |Hb,i,i|∑

i,j |Hb,i,j |
, r =

κ(DAdamHb)

κ(Hb)
, (3)

where τ ∈ [0, 1] is the “diagonal-over-off-diagonal ratio", and we use it to measure how dense Hb is
(Hb is pure diagonal when τ = 1). r ≥ 0 measures the effectiveness of Adam’s preconditioner DAdam
when operating on the Hessian-block Hb (the smaller the better). We investigate the change of r when
changing the structure of Hb, including changing τ , dimension d, and also κ(Hb). We emphasize
that for a fixed d or κ(Hb), we change τ by only rotating the eigenvectors, but not changing the
eigenvalues of Hb. This ensures τ is the only changing factor in the experiments.

We summarize the key findings in Figure 5: for Hb with most dimension d and κ(Hb), r decreases as
τ → 1. That is, DAdam is effective when Hb is close to diagonal, and DAdam is not so effective when
Hb is dense. This aligns with the convergence rates in Figure 4. It is intriguing to provide a lower
bound on κ(DAdamHb) to ground the observation in Figure 5, and we are not aware of any existing
lower bound of this kind. Note that it is rather difficult to characterize κ(DAdamH), partially because
the extreme eigenvalues are neither sub-additive nor sub-multiplicative (Kittaneh, 2006). We leave it
as an important but challenging future direction. To summarize, for the dense Hessian-blocks, it is
possible to outperform Adam with only one good learning rate.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

10 20 30 40 50 60 70 80 90 100
Dimension d

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Di
ag

on
al

-o
ve

r-o
ff-

di
ag

on
al

 R
at

io

1

2

3

4

5

Ra
tio

 o
f C

on
di

tio
n

Nu
m

be
r r

(a) r v.s. dimension d

200 400 600 800 1000
Condition Number (Hb)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Di
ag

on
al

-o
ve

r-o
ff-

di
ag

on
al

 R
at

io

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Ra
tio

 o
f C

on
di

tio
n

Nu
m

be
r r

(b) r v.s. dimension κ(Hb)
Figure 5: The effectiveness of Adam’s preconditioner DAdam on different matrix structures of Hb. (a): for most
dimension d, r is large when τ is small (r and τ are defined in Eq. (3)). This indicates that Adam might not be
so effective when Hb is dense. We fix κ(Hb) = 500 here. (b): We use the same setups as (a), except that we fix
the dimension d = 50 and change the x-axis to κ(Hb).

Case study II: Transformers. The above analysis suggests there is room to cut down the number
of learning rates. We also observe similar phenomena in Transformers. We consider a 4-layer
Transformer and under the PyTorch default partition, and we randomly choose one parameter block as
the “left-out" block and change the coordinate-wise learning rate to a single-learning rate counter-part.
We use Adam for the rest of the blocks. We grid-search the learning rate for the left-out block and
apply the cosine decay schedule like the rest of the blocks. We report the best result and call this
method “Adam (leave-one-out)". Figure 6 shows that Adam (leave-one-out) can achieve similar or
better performance than Adam. A similar phenomenon is also observed when we randomly leave out
up to three blocks and search three learning rates. We do not explore the possibility of leaving more
blocks out since the cost of grid search grows exponentially.

To summarize this section, we find that it is possible to reach similar or better performance with
much fewer learning rates than Adam. The remaining issue is how to find them without grid-search.
In the next part, we propose a simple and effective method called Adam-mini, which could bring
comparable or even better performance than Adam, but with 99.9% fewer learning rates.

2.2 PROPOSED METHOD: ADAM-MINI

We now introduce Adam-mini. We will first state the “general principled form" of Adam-mini
and then introduce the “the realization" of Adam-mini on specific architectures. In this section,
we present the general form of Adam-mini in Algorithm 1. Following this general principled form,
Adam-mini will have different realizations on different architectures, and the concrete example on
Transformers is shown in Appendix B. As shown in Algorithm 1, Adam-mini contains two steps.

Algorithm 1 Adam-mini (General form)

1: Input weight-decay coefficient λ and
current step t

2: Partition params into param_blocks
by Principle 1 in Section 2.3

3: for param in param_blocks do
4: g = param.grad
5: param = param - ηt ∗ λ∗ param
6: m = (1− β1) ∗ g+ β1 ∗ m
7: m̂ = m

1−βt
1

8: v = (1−β2)∗mean(g⊙g)+β2 ∗v
9: v̂ = v

1−βt
2

10: param = param - ηt * m̂√
v̂+ϵ

11: end for

Step 1 Partition the model parameters into
blocks by Hessian structure. We discuss Prin-
ciple 1 later in Section 2.3. For different
architectures, the principle will be realized
in different forms; see Algorithm 3: “Parti-
tion for non-Transformers". and Algorithm
3: “Partition for Transformers".

Step 2. For each parameter block, we use
a single learning rate. To efficiently choose
a suitable learning rate in each block, Adam-
mini simply replaces g⊙g in vanilla Adam by
its mean value. We adopt the moving average
on these mean values as in Adam.

A simple example of Adam-mini. We use a simple example to illustrate the key design of Adam-
mini. For a problem with 5 parameters w ∈ R5, Adam and Adam-mini both perform w = w−u⊙m,
where m is the 1st-order momentum and u has different forms as follows:

• For Adam: uAdam =
(

η√
v1
, η√

v2
, η√

v3
, η√

v4
, η√

v5

)
.

• For Adam-mini: suppose the partition is (1, 2, 3) and (4, 5) then

umini =
(

η√
(v1+v2+v3)/3

, η√
(v1+v2+v3)/3

, η√
(v1+v2+v3)/3

, η√
(v4+v5)/2

, η√
(v4+v5)/2

)
.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

0 50 100 150 200 250 300
Iteration

0.2

0.3

0.4

0.5

0.6

0.7

Tr
ai

ni
ng

 L
os

s

Adam
Adam(leave-one-out) 1st trial
Adam(leave-one-out) 2nd trial
Adam(leave-one-out) 3rd trial
Adam(leave-one-out) 4th trial
Adam(leave-one-out) 5th trial

(a) Randomly leave one
block out

0 50 100 150 200 250 300
Iteration

0.2

0.3

0.4

0.5

0.6

0.7

Tr
ai

ni
ng

 L
os

s

Adam
Adam(leave-two-out) 1st trial
Adam(leave-two-out) 2nd trial
Adam(leave-two-out) 3rd trial
Adam(leave-two-out) 4th trial
Adam(leave-two-out) 5th trial

(b) Randomly leave two
blocks out

0 50 100 150 200 250 300
Iteration

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Tr
ai

ni
ng

 L
os

s

Adam
Adam(leave-three-out) 1st trial
Adam(leave-three-out) 2nd trial
Adam(leave-three-out) 3rd trial
Adam(leave-three-out) 4th trial
Adam(leave-three-out) 5th trial

(c) Randomly leave three
blocks out

qu
ery key va

lue

att
n.p

roj

mlp_
fc

mlp_
pro

j

layer_1

layer_2

layer_3

layer_4

-0.1452 -0.0118 -0.0034 0.0434 -0.0433 -0.1081

-0.0100 -0.0441 0.0333 -0.0408 -0.1738 -0.1806

-0.1244 -0.1023 -0.1647 -0.1687 -0.1468 -0.1808

-0.0120 0.0136 -0.1804 -0.1805 -0.1416 -0.1808

Loss gap: loss(Adam(leave-one-out)) - loss(Adam)

0.20

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.20

(d) Performance gap

Figure 6: (a) (b) (c) Adam (leave-x-out) can reach a similar or better performance than Adam for all randomly
picked left-out blocks. x = 1, 2, 3. (d) The performance gap between Adam and Adam (leave-one-out) for all
possible blocks. We find Adam (leave-one-out) always performs on par with Adam, and for most blocks, Adam
(leave-one-out) performs better.

Note that the number of effective elements umini equals the number of blocks, which could be
significantly smaller than that of uAdam, which equals the number of parameters. For LLMs, this will
free ≥ 99.9% elements in v.

2.3 PRINCIPLE FOR THE PARTITION STRATEGY

We now discuss how to choose the parameter partition for Adam-mini. A straightforward way is
to use PyTorch default partition. Unfortunately, we find that the PyTorch default partition does
not always work well on larger-scaled tasks including Transformer training. In particular, we find
that Adam-mini encounters training instability on 1B models (see Figure 7 (d)). We suspect this
is because the default PyTorch partition did not fully capture the Hessian structure. We propose a
general principle in Principle 1 below.

Principle 1: We should partition parameters into blocks, such that each parameter block is associated
with the smallest dense sub-block in Hessian.

Principle 1 comes from the analysis in Section 2.1: it is possible to harmlessly reduce the number of
Adam’s learning rates within each dense Hessian block. However, if the partition is too coarse and
violates Principle 1, we might accidentally remove some crucial learning rates and oversimplify the
problem, causing training failure. It is important to follow Principle 1 since it is necessary to use (at
least) one distinct learning rate for each Hessian block (as evident in Appendix D.2).

Does the PyTorch default partition follow Principle 1? To find out, we explore the Hessian of a small
Transformer as in Figure 7. Under the default PyTorch partition, we compute the exact Hessian at
initialization for each parameter block. We find there are three classes of Hessian sub-blocks.

• Class 1: query and key. For query and key, the Hessian sub-block itself has a block-diagonal
structure and consists of smaller dense matrices. We empirically find that the number of small
dense sub-blocks equals the number of heads in multi-head attention.

• Class 2: attn.proj and MLPs. For attn.proj, mlp.fc_1, and mlp.proj, the Hessian
sub-block has a block-diagonal structure and the number of small dense sub-blocks equals the
number of output neuron. This observation suggests that the calculation in Eq. (1) not only holds
in pure MLPs, but also can generalize to various building blocks in Transformers.

• Class 2: value. For value, the structure of Hessian sub-blocks seems less clear. It seems to
have the hint of 16 diagonal blocks (16 is the number of output neurons), but the pattern is less
obvious. This Hessian structure is significantly different from that of query and key, although
they all consist of four heads. The Hessian entries of value are also about 105 larger than those of
query and key 3. One possible reason is that value is positioned outside the softmax operator
in the self-attention design, while query and key are not.

Based on the above findings, we find that the PyTorch default partition is indeed not the best
fit for Transformers. By Principle 1, query and key should be further partitioned by heads;
value, attn.proj, and MLPs should be partitioned by output neurons; embed_layer and
output_layer should be partitioned by tokens. As for value, the Hessian shows the hint of
16 diagonal blocks (where 16 is the number of output neurons), but the pattern is less clear. Our
experiments show that “partition value by output neurons" works well in general, yet there are also
some special cases where it is better to “treat value as a whole" (see discussions in Appendix C.5).
By default, we will partition value by output neurons.

3This might be one source of the heterogeneity of Hessian eigenvalues as reported by (Zhang et al., 2024).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

(a) query (4 heads) (b) key (4 heads)

0 50 100 150 200 250

0

50

100

150

200

250 0.00

0.01

0.02

0.03

0.04

0.05

0.06

(c) value (4 heads)

(d) attn.proj (16 neurons) (e) mlp.fc_1 (32 neurons) (f) mlp.proj (16 neurons)

Figure 7: (a-f): The initial Hessian of different parameter blocks in a small Transformer on Openwebtext.
Here, neuron refers to the “output neuron". We find that these Hessian sub-blocks (except for value) have
near-block-diagonal structure and consists of smaller dense matrices. Different parameter blocks have different
numbers of small dense matrices.
We then introduce the resulting Algorithm 3: “Partition for Transformers". As shown in Figure 7 (d).
This strategy indeed stabilizes the training and boosts the performance.
2.4 SOME CHARACTERISTICS OF ADAM-MINI AND DISCUSSIONS

Memory cut down. Adam-mini reduces the number of learning rates from the number of model
parameters to the number of total number of blocks by our partition strategies. As a result, Adam-mini
cuts down more than 99.9% of Adam’s v, which saves 50% of Adam’s memory.

Higher throughput. Adam-mini can reach a higher throughput than AdamW, especially under limited
GPU resources. There are two reasons. First, Adam-mini does not introduce extra computation in
its update rules. The averaging operation in Algorithm 1 incurs negligible cost and it significantly
reduces the number of vector-square-root and vector-division operations in AdamW. Second, thanks
to the memory cut-down, Adam-mini can support larger batch sizes per GPU. It also reduces the
communication among GPUs, which is known to be a major overhead (Rajbhandari et al., 2021).

Owing to these properties, Adam-mini could reduce the overall time for pre-training. We provide
evidence in Table 2. When pre-training Llama 2-7B on 2× A800-80GB GPUs, we find Adam-mini
could reach 49.6% higher throughput than AdamW. This translates to 33.1% reduction of wall-clock
time on processing the same amount of tokens for pre-training.

Why using average v as learning rates. In Line 9 of Algorithm 1, we use the average of v in a
block as the learning rate for that block. We choose such a design due to the following reasons.

• First: grid-search is too expensive. Optimal blockwise learning rates can be powerful (as evident
in Figure 6), but they are too expensive to search. Such a searching procedure is not scalable.

• Second: average of v can be borrowed from Adam. Compared to searching all the learning rates
from scratch, it is much easier to "borrow" them from the current design of Adam. The average of
v is the most natural quantity to "borrow" and it performs the best among other candidates such as
the maximum of v (see the ablation studies in Appendix C.2). We find that the average of v helps
Adam-mini to be as effective as Adam (though not significantly surpassing it).

• Third: average of v keeps us close to Adam. For neural nets, we find that the average of v is
a good representative for the whole v in the block, and can help Adam-mini keep close to Adam.
The reason comes from backpropagation (BP) rule: for one data sample, the gradient of the weight
matrix W ∈ Rd×d can be expressed as G := ∂ℓ

∂W = ez⊤ ∈ Rd×d, where e is certain BP error
vector and z is the input feature to the current weight. For all entries in the i-th row of G, they
all share the same BP error term ei, which is usually non-negligible when G ̸= 0. Therefore, G
usually has similar entries within a row (which associates with the same output neuron), and its
mean value can be a good representative of the whole row. As a result, we find that Adam-mini’s
trajectory closely resembles that of Adam (see the curves in Figure 9 and Figure 10). One resulting
advantage is that Adam-mini can maintain the scaling laws of LLMs trained by Adam, while
substantially saving the training cost (see evidence in Figure 12).

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: Memory cost of AdamW v.s. Adam-mini.
Calculation is based on float32, which is a standard
choice for optimizer states.

Model Optimizer Memory (GB)
GPT-2-1.5B AdamW 12.48
GPT-2-1.5B Adam-mini 6.24 (50% ↓)
Llama 2-1B AdamW 8.80
Llama 2-1B Adam-mini 4.40 (50% ↓)
Llama 2-7B AdamW 53.92
Llama 2-7B Adam-mini 26.96 (50% ↓)
Llama 2-13B AdamW 104.16
Llama 2-13B Adam-mini 52.08 (50% ↓)

Table 2: Throughput (↑) test on 2× A800-80GB GPUs
for Llama 2-7B pre-training. ✗means out of memory.
GPU hours (↓) to pre-train Llama 2-7B with the optimal
token amount by Chinchila’s law.

Optimizer bs_per_GPU total_bs Throughput (↑)
Adam-mini 4 256 5572.19 (↑ 49.6%)

AdamW 2 256 ✗
AdamW 1 256 3725.59

Optimizer # Tokens (B) GPU hours (h) (↓)
AdamW 1 74.56

Adam-mini 1 49.85 (↓ 33.1%)
AdamW 70 5219.16

Adam-mini 70 3489.55 (↓ 33.1%)
AdamW 140 10438.32

Adam-mini 140 6979.10 (↓ 33.1%)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Tokens (B)

2

4

6

8

10

12

Va
l L

os
s

Adam-mini (Default PyTorch partition)
Adam-mini

Figure 8: Training curves on Llama 2-1B. When using
the PyTorch default partition, Adam-mini could suffer
loss spikes. The spike disappears when we use the parti-
tion strategy in Algorithm 3.

Has room to improve. Adam-mini designs the
learning rate for each dense Hessian sub-block
using the average of Adam’s v in that block.
Such a design achieves cheap computation, but
it might not be optimal. We believe there is great
room to improve the learning rate design. As
shown in Figure 4, we can reach much faster
convergence if we utilize more information in
the dense block to design the learning rate (e.g.,
using eigenvalues of each block), However, such
a design requires expensive computation. We
leave it as an important future direction.

3 EXPERIMENTS
We now verify the efficacy of Adam-mini on two types of neural-net tasks: (1) LLM tasks including
pre-training, supervised fine-tuning (SFT), and reinforcement learning from human feedback (RLHF).
(2) Non-LLM tasks including vision, graph, and diffusion model training. Due to the limited
space, we primarily focus on LLM tasks in this section, and we relegate the non-LLM tasks to
Appendix C.4. All LLM experiments are conducted on four NVIDIA A800-80GB GPUs and the
rest are conducted on four V100 GPUs. All the experimental details are explained in Appendix E.1.

3.1 PRE-TRAINING

Setups. We pre-train LLMs including GPT-2 series and Llama series. We train these models on
mainstream English Corpus from scratch. In particular, We train GPT-2 (Radford et al., 2019) series
(125M to 1.5B) on Openwebtext (Gokaslan et al., 2019). We train Llama series (20M to 13B)
(Touvron et al., 2023) on C4 (Raffel et al., 2020). We compare Adam-mini with AdamW (Loshchilov
& Hutter, 2017) as well as popular memory-efficient methods including Adafactor (Shazeer & Stern,
2018), CAME (Luo et al., 2023), and SM3 (Anil et al., 2019). For Adafactor and SM3, we incorporate
momentum with β1 = 0.9 to ensure a fair comparison with other methods. We tune the learning rate
for all methods, using the same tuning budget for each, and report the best performance.

GPT-2 series. Figure 9 (b) shows the loss curves for GPT-2 sized from 125M to 1.5B. We find
that Adam-mini performs similarly to AdamW with less memory, while other methods perform
worse. In Figure 9 (a), we include results for Adam-mini (embd_blocks_removed), which sets the
embd_blocks= ∅. That is, we use one single learning rate for the whole embedding (output) layer.
We find that Adam-mini (embd_blocks_removed) performs poorly, as expected from the analysis in
Section 2.1. We stopped the trial since it shows clear unstable behavior.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Tokens (billion)

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

Va
lid

at
io

n
Lo

ss

AdamW
Adam-mini
Adam-mini (PyTorch default partition)
Adafactor
SM3
LAMB

(a) GPT-2-125M

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Tokens (billion)

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

Va
lid

at
io

n
Lo

ss

AdamW-330M
AdamW-1.5B
Adam-mini-330M
Adam-mini-1.5B

(b) GPT-2-330M and 1.5B

Figure 9: For GPT-2 series pre-training, Adam-mini performs similarly to AdamW with 50% less memory,
while other methods perform worse.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

0 2000 4000 6000 8000 10000
Iteration

3

4

5

6

7

8

Tr
ai

n
lo

ss

AdamW
Adam-mini
CAME
Adafactor
Adafactor-Zhai-version

(a) Llama 2-1B

0 2000 4000 6000 8000 10000
Iteration

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

Tr
ai

n
lo

ss

AdamW-8B
AdamW-13B
Adam-mini-8B
Adam-mini-13B

(b) Llama 3-8B and Llama 2-13B

1000 2000 3000 4000
Iteration

0

50

100

150

200

250

M
od

el
 w

ei
gh

t d
iff

er
en

ce

Adafactor v.s. AdamW
CAME v.s. AdamW
Adam-mini v.s. AdamW

(c) Trajectory comparison

Figure 10: (a, b): Training curves of Llama 2-1B, Llama 3-8B, and Llama 2-13B. Adam-mini performs on par
or better than AdamW with about 50% less memory, while other methods perform worse. In (a), we stopped
CAME due to unexpected infrastructure break-down and we cannot afford to re-run. (c): Adam-mini can
generate similar trajectories to AdamW (in terms of the ℓ-2 distance of model checkpoints).

Llama series. Figure 10 shows the loss curve for pre-training Llama 2-1B, Llama 3-8B and Llama
2-13B. We also train Llama 2-7B as shown in Figure 1 (c) in Section 1. We find that Adam-mini
performs on par with AdamW with about 50% less memory, while other methods perform worse.

Sensitivity analysis. On GPT-2-125M pre-training task, we test the sensitivity of Adam-mini to
hyperparameters. We report the validation loss after training with 2.5B tokens (by Chinchilla’s law).
As shown in Figure 12 (b), Adam-mini seems not overly sensitive to hyperparameters.
Trajectory comparison. On a small Transformer, Adam-mini generates similar trajectories to that of
AdamW, while other methods cannot. This can be seen in Figure 10 (c) and the detailed description
is in Appendix E. This might because Adam-mini makes fewer modifications over AdamW.

3.2 SUPERVISED FINE-TUNING AND RLHF
We now run Adam-mini on downstream tasks including SFT and RLHF. We use the Llama 2-7B
pretrained model (Touvron et al., 2023) for our study. We use the ultrafeedback dataset and
implement the RLHF workflow from (Ouyang et al., 2022). We use ReMax (Li et al., 2023), a
memory-efficient alternative to PPO (Schulman et al., 2017), to optimize the preference reward.

We evaluate the alignment performance in terms of chat ability using the MT-Bench (Zheng et al.,
2024), where GPT-4 assesses multi-turn chatting capabilities and assigns a score from 0 to 10 (higher
is better). Our results, presented in Table 3, demonstrate that Adam-mini can outperform AdamW.

0 10000 20000 30000 40000 50000 60000
Iteration

2.45

2.50

2.55

2.60

2.65

2.70

2.75

Ev
al

ua
tio

n
Pe

rp
le

xi
ty

AdamW
Adam-mini

(a) SFT (LoRA)

0 10000 20000 30000 40000 50000 60000
Iteration

2.3

2.4

2.5

2.6

2.7

Ev
al

ua
tio

n
Pe

rp
le

xi
ty

AdamW
Adam-mini

(b) SFT

0 100 200 300 400 500 600
Iteration

1.50

1.75

2.00

2.25

2.50

2.75

3.00

3.25

3.50

Ev
al

ua
tio

n
R

ew
ar

d

AdamW
Adam-mini

(c) RLHF

Figure 11: Training curves of SFT (LoRA), SFT, and RLHF when aligning Llama 2-7B. Adam-mini reaches
better performance (smaller perplexity, higher reward) than AdamW with less memory.

Table 3: Averaged GPT-4 evaluation score (↑) of SFT and RLHF on the MT-Bench.

SFT (LoRA) SFT RLHF

AdamW Adam-mini AdamW Adam-mini AdamW Adam-mini

MT-Bench 4.23 4.41 5.37 5.40 5.54 5.68

3.3 SCALING LAWS OF ADAM-MINI

We now show the efficacy of Adam-mini through scaling law experiments. We use C4 dataset to
pre-train the Llama 2 architecture from 39M to 1B. For the model with size nparam, we train the
model with about 20 ∗ nparam tokens, which is suggested to be the optimal amount by Chinchilla’s
law (Hoffmann et al., 2022). The largest-scaled experiment we conducted is Llama 2-1B pre-training
with 26.2B tokens, which takes about 170 GPU hours on 4× A800-80GB GPUs. The total running
time for the scaling law experiments is about 300 GPU hours.

As shown in Figure 12, Adam-mini consistently performs similarly to AdamW for all models. We
also present the final validation perplexity and find that Adam-mini reaches a lower perplexity
than AdamW for all models (see Table 5 in Appendix C). These scaling law experiments can serve
as additional evidence that Adam-mini can be scaled up to larger models (if the scaling law holds).

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

1015 1016 1017 1018 1019 1020

FLOPs (log)

3 × 100

4 × 100

6 × 100

Va
lid

at
io

n
lo

ss
 (l

og
)

Llama Series Pre-training (by Chinchilla's Law)

AdamW-6e-4-39M
AdamW-6e-4-67M
AdamW-6e-4-102M
AdamW-6e-4-162M
AdamW-6e-4-271M
AdamW-2e-4-1B
Adam-mini-6e-4-39M
Adam-mini-6e-4-67M
Adam-mini-6e-4-102M
Adam-mini-6e-4-162M
Adam-mini-6e-4-271M
Adam-mini-2e-4-1B

(a) Scaling laws of Adam-mini (b) Sensitivity analysis

Figure 12: (a) Scaling laws of Adam-mini. We pre-train Llama 2 architectures following Chinchilla’s law. For
all models sized from 39M to 1B, we consistently find Adam-mini’s performance to be similar to AdamW. (b)
We find that Adam-mini seems not overly sensitive to hyperparameters.

3.4 DETAILED COMPARISON WITH ADAFACTOR

We now carefully compare Adam-mini and the popular memory-efficient optimizer Adafactor.
Besides the original Adafactor, we also consider a modified version in (Zhai et al., 2022), which we
call “Adafactor-Zhai-version". For both versions, we use momentum with β1 = 0.9.

We first conduct learning rate grid-search on Llama 2-20M and train it following Chinchilla’s law.
As shown in Figure 13 (a), we find that Adafactor-Zhai-version improves over the original version,
but both versions of Adafactor are still consistently worse than Adam-mini. We further sweep over
other hyperparameters including (1) β2 = 0.95; (2) ϵ = {10−30, 10−16, 10−8, 10−6}; (3) warm-up
steps = {1%, 2%, 3%, 4%, 5%, 10%} total steps. The results are shown in Appendix C.6. We find
that the change of hyperparameters does not significantly boost the performance of Adafactor, and
both versions still underperform Adam-mini.

We further sweep hyperparameters on Llama 2-1B. In contrast to the case of Llama 2-20M, we find
that the Adafactor-Zhai-version now suffers from training instability and the original version performs
better. Nevertheless, they still underperform Adam-mini. In Appendix C.7, we conduct a similar
hyperparameter search for Lion (Chen et al., 2024b) and we find it also underperforms Adam-mini.

About hyperparameter tuning. We acknowledge that it might be possible to improve these methods
if we spend more resources on grid search (as claimed by a recent work (Zhao et al., 2024b)).
However, based on our experience so far, it is not easy to tune these methods, and to our knowledge,
there is no much open-source guidance. Recall that there are 9 tunable hyperparameters in Adafactor,
so it is rather non-trivial to find the correct combination. In contrast, Adam-mini is much easier to use.
In all our experiments, Adam-mini performs well using the same hyperparameters as AdamW.

0 500 1000 1500 2000 2500 3000 3500 4000
Iteration

4.00

4.25

4.50

4.75

5.00

5.25

5.50

5.75

6.00

Va
lid

at
io

n
lo

ss

Adam-mini-5e-3
Adafactor-1e-5
Adafactor-5e-5
Adafactor-1e-4
Adafactor-5e-4
Adafactor-1e-3
Adafactor-5e-3
Adafactor-1e-2
Adafactor-Zhai-version-1e-5
Adafactor-Zhai-version-5e-5
Adafactor-Zhai-version-1e-4
Adafactor-Zhai-version-5e-4
Adafactor-Zhai-version-1e-3
Adafactor-Zhai-version-5e-3
Adafactor-Zhai-version-1e-2

(a) Llama 2-20M

0 2000 4000 6000 8000 10000
Iteration

3

4

5

6

7

8

Va
lid

at
io

n
lo

ss

Adam-mini-6e-4
AdamW-6e-4
Adafactor-1e-4
Adafactor-4e-4
Adafactor-6e-4-1B
Adafactor-1e-3-1B
Adafactor-4e-3-1B
Adafactor-6e-3-1B
Adafactor-1e-2-1B
Adafactor-Zhai-version-1e-4
Adafactor-Zhai-version-4e-4
Adafactor-Zhai-version-6e-4
Adafactor-Zhai-version-1e-3
Adafactor-Zhai-version-4e-3
Adafactor-Zhai-version-6e-3
Adafactor-Zhai-version-1e-2

(b) Llama 2-1B (c) Throughput comparison
Figure 13: (a, b): Training curves of Adafactor & Adafactor-Zhai-version on Llama 2-20M & Llama 2-1B
pre-training. We find these two methods consistently underperform Adam-mini. (c): On Llama 2-1B, Adam-mini
achieves 40% higher throughput than Adafactor (tested on 2× A800-80GB GPUs).
Throughput comparison. Besides the performance comparison, we further find that Adafactor
has higher latency than Adam-mini (Figure 13 (c)). This is primarily due to two reasons. First,
Adam-mini only requires computing the mean by rows of the weight matrix, whereas Adafactor
needs to sum across both the rows and the columns. Second, the dimension of v in Adam-mini equals
the output dimension or the number of heads, which is significantly smaller than the dimension of v
in Adafactor, which equals the product of the input and output dimension. Consequently, Adam-mini
saves computation when taking the square root of v. As such, Adam-mini reaches higher throughput.

4 CONCLUDING REMARKS

We proposed Adam-mini, an optimizer that saves 50% memory of Adam. We remark that there
is great room to improve the design of Adam-mini: currently Adam-mini uses a simple and cost-
effective way to design a learning rate for each dense Hessian sub-block, but it might not be an
optimal way. We leave the development of even stronger designs as a future direction.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Kwangjun Ahn, Zhiyu Zhang, Yunbum Kook, and Yan Dai. Understanding adam optimizer via online
learning of updates: Adam is ftrl in disguise. In Forty-first International Conference on Machine
Learning.

Rohan Anil, Vineet Gupta, Tomer Koren, and Yoram Singer. Memory efficient adaptive optimization.
Advances in Neural Information Processing Systems, 32, 2019.

Anonymous authors. Deconstructing what makes a good optimizer for language models.
https://openreview.net/pdf?id=zfeso8ceqr, 2024.

Pratik Chaudhari, Anna Choromanska, Stefano Soatto, Yann LeCun, Carlo Baldassi, Christian Borgs,
Jennifer Chayes, Levent Sagun, and Riccardo Zecchina. Entropy-sgd: Biasing gradient descent
into wide valleys. Journal of Statistical Mechanics: Theory and Experiment, 2019(12):124018,
2019.

Junyu Chen, Han Cai, Junsong Chen, Enze Xie, Shang Yang, Haotian Tang, Muyang Li, Yao Lu, and
Song Han. Deep compression autoencoder for efficient high-resolution diffusion models. arXiv
preprint arXiv:2410.10733, 2024a.

Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. Training deep nets with sublinear
memory cost. arXiv preprint arXiv:1604.06174, 2016.

Xiangning Chen, Chen Liang, Da Huang, Esteban Real, Kaiyuan Wang, Hieu Pham, Xuanyi Dong,
Thang Luong, Cho-Jui Hsieh, Yifeng Lu, et al. Symbolic discovery of optimization algorithms.
Advances in neural information processing systems, 36, 2024b.

Ronan Collobert. Large scale machine learning. Technical report, Université de Paris VI, 2004.

Ganqu Cui, Lifan Yuan, Ning Ding, Guanming Yao, Wei Zhu, Yuan Ni, Guotong Xie, Zhiyuan Liu,
and Maosong Sun. Ultrafeedback: Boosting language models with high-quality feedback, 2023.

André Belotto Da Silva and Maxime Gazeau. A general system of differential equations to model
first-order adaptive algorithms. The Journal of Machine Learning Research, 21(1):5072–5113,
2020.

Rudrajit Das, Naman Agarwal, Sujay Sanghavi, and Inderjit S Dhillon. Towards quantifying the
preconditioning effect of adam. arXiv preprint arXiv:2402.07114, 2024.

Yann N Dauphin, Atish Agarwala, and Hossein Mobahi. Neglected hessian component explains
mysteries in sharpness regularization. arXiv preprint arXiv:2401.10809, 2024.

Aaron Defazio, Harsh Mehta, Konstantin Mishchenko, Ahmed Khaled, Ashok Cutkosky, et al. The
road less scheduled. arXiv preprint arXiv:2405.15682, 2024.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Tim Dettmers, Mike Lewis, Sam Shleifer, and Luke Zettlemoyer. 8-bit optimizers via block-wise
quantization. In International Conference on Learning Representations, 2021.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of machine learning research, 12(7), 2011.

George E Forsythe and Ernst G Straus. On best conditioned matrices. Proceedings of the American
Mathematical Society, 6(3):340–345, 1955.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Behrooz Ghorbani, Shankar Krishnan, and Ying Xiao. An investigation into neural net optimization
via hessian eigenvalue density. In International Conference on Machine Learning, pp. 2232–2241.
PMLR, 2019.

Boris Ginsburg, Patrice Castonguay, Oleksii Hrinchuk, Oleksii Kuchaiev, Vitaly Lavrukhin, Ryan
Leary, Jason Li, Huyen Nguyen, Yang Zhang, and Jonathan M Cohen. Training deep networks
with stochastic gradient normalized by layerwise adaptive second moments. 2019.

Aaron Gokaslan, Vanya Cohen, Ellie Pavlick, and Stefanie Tellex. Openwebtext corpus, 2019.

Guy Gur-Ari, Daniel A Roberts, and Ethan Dyer. Gradient descent happens in a tiny subspace. arXiv
preprint arXiv:1812.04754, 2018.

Alexander Hägele, Elie Bakouch, Atli Kosson, Loubna Ben Allal, Leandro Von Werra, and Martin
Jaggi. Scaling laws and compute-optimal training beyond fixed training durations. arXiv preprint
arXiv:2405.18392, 2024.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al.
Training compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Adam Ibrahim, Benjamin Thérien, Kshitij Gupta, Mats L Richter, Quentin Anthony, Timothée Lesort,
Eugene Belilovsky, and Irina Rish. Simple and scalable strategies to continually pre-train large
language models. arXiv preprint arXiv:2403.08763, 2024.

Kaiqi Jiang, Dhruv Malik, and Yuanzhi Li. How does adaptive optimization impact local neural
network geometry? Advances in Neural Information Processing Systems, 36, 2023.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
In International Conference on Learning Representations, 2016.

Fuad Kittaneh. Spectral radius inequalities for hilbert space operators. Proceedings of the American
Mathematical Society, pp. 385–390, 2006.

Frederik Kunstner, Jacques Chen, Jonathan Wilder Lavington, and Mark Schmidt. Noise is not the
main factor behind the gap between sgd and adam on transformers, but sign descent might be.
arXiv preprint arXiv:2304.13960, 2023.

Frederik Kunstner, Robin Yadav, Alan Milligan, Mark Schmidt, and Alberto Bietti. Heavy-tailed
class imbalance and why adam outperforms gradient descent on language models. arXiv preprint
arXiv:2402.19449, 2024.

Bingrui Li, Jianfei Chen, and Jun Zhu. Memory efficient optimizers with 4-bit states. Advances in
Neural Information Processing Systems, 36, 2024.

Ziniu Li, Tian Xu, Yushun Zhang, Yang Yu, Ruoyu Sun, and Zhi-Quan Luo. Remax: A simple, effec-
tive, and efficient method for aligning large language models. arXiv preprint arXiv:2310.10505,
2023.

Zhenyu Liao and Michael W Mahoney. Hessian eigenspectra of more realistic nonlinear models.
Advances in Neural Information Processing Systems, 34:20104–20117, 2021.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Hong Liu, Zhiyuan Li, David Hall, Percy Liang, and Tengyu Ma. Sophia: A scalable stochastic
second-order optimizer for language model pre-training. arXiv preprint arXiv:2305.14342, 2023.

Yang Liu, Jeremy Bernstein, Markus Meister, and Yisong Yue. Learning by turning: Neural
architecture aware optimisation. In International Conference on Machine Learning, pp. 6748–
6758. PMLR, 2021a.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the
IEEE/CVF international conference on computer vision, pp. 10012–10022, 2021b.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Qijun Luo, Hengxu Yu, and Xiao Li. Badam: A memory efficient full parameter training method for
large language models. arXiv preprint arXiv:2404.02827, 2024.

Yang Luo, Xiaozhe Ren, Zangwei Zheng, Zhuo Jiang, Xin Jiang, and Yang You. Came: Confidence-
guided adaptive memory efficient optimization. arXiv preprint arXiv:2307.02047, 2023.

Kai Lv, Hang Yan, Qipeng Guo, Haijun Lv, and Xipeng Qiu. Adalomo: Low-memory optimization
with adaptive learning rate. arXiv preprint arXiv:2310.10195, 2023a.

Kai Lv, Yuqing Yang, Tengxiao Liu, Qinghui Gao, Qipeng Guo, and Xipeng Qiu. Full parameter
fine-tuning for large language models with limited resources. arXiv preprint arXiv:2306.09782,
2023b.

Sadhika Malladi, Tianyu Gao, Eshaan Nichani, Alex Damian, Jason D Lee, Danqi Chen, and Sanjeev
Arora. Fine-tuning language models with just forward passes. Advances in Neural Information
Processing Systems, 36:53038–53075, 2023.

James Martens and Roger Grosse. Optimizing neural networks with kronecker-factored approximate
curvature. In International conference on machine learning, pp. 2408–2417. PMLR, 2015.

Francesco Orabona. Neural networks (maybe) evolved to make adam the best
optimizer. 2020. URL https://parameterfree.com/2020/12/06/
neural-network-maybe-evolved-to-make-adam-the-best-optimizer/.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in neural information processing systems, 35:27730–
27744, 2022.

Yan Pan and Yuanzhi Li. Toward understanding why adam converges faster than sgd for transformers.
arXiv preprint arXiv:2306.00204, 2023.

Vardan Papyan. The full spectrum of deepnet hessians at scale: Dynamics with sgd training and
sample size. arXiv preprint arXiv:1811.07062, 2018.

Vardan Papyan. Measurements of three-level hierarchical structure in the outliers in the spectrum of
deepnet hessians. arXiv preprint arXiv:1901.08244, 2019.

Vardan Papyan. Traces of class/cross-class structure pervade deep learning spectra. The Journal of
Machine Learning Research, 21(1):10197–10260, 2020.

Barak A Pearlmutter. Fast exact multiplication by the hessian. Neural computation, 6(1):147–160,
1994.

William Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pp. 4195–4205, 2023.

Zhaonan Qu, Wenzhi Gao, Oliver Hinder, Yinyu Ye, and Zhengyuan Zhou. Optimal diagonal
preconditioning: Theory and practice. arXiv preprint arXiv:2209.00809, 2022.

13

https://parameterfree.com/2020/12/06/neural-network-maybe-evolved-to-make-adam-the-best-optimizer/
https://parameterfree.com/2020/12/06/neural-network-maybe-evolved-to-make-adam-the-best-optimizer/

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,
Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified
text-to-text transformer. Journal of Machine Learning Research, 21(140):1–67, 2020. URL
http://jmlr.org/papers/v21/20-074.html.

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. Zero: Memory optimizations
toward training trillion parameter models. In SC20: International Conference for High Performance
Computing, Networking, Storage and Analysis, pp. 1–16. IEEE, 2020.

Samyam Rajbhandari, Olatunji Ruwase, Jeff Rasley, Shaden Smith, and Yuxiong He. Zero-infinity:
Breaking the gpu memory wall for extreme scale deep learning. In Proceedings of the international
conference for high performance computing, networking, storage and analysis, pp. 1–14, 2021.

Nicolas Roux, Pierre-Antoine Manzagol, and Yoshua Bengio. Topmoumoute online natural gradient
algorithm. Advances in neural information processing systems, 20, 2007.

Levent Sagun, Leon Bottou, and Yann LeCun. Eigenvalues of the hessian in deep learning: Singularity
and beyond. arXiv preprint arXiv:1611.07476, 2016.

Levent Sagun, Utku Evci, V Ugur Guney, Yann Dauphin, and Leon Bottou. Empirical analysis of the
hessian of over-parametrized neural networks. arXiv preprint arXiv:1706.04454, 2017.

Adepu Ravi Sankar, Yash Khasbage, Rahul Vigneswaran, and Vineeth N Balasubramanian. A deeper
look at the hessian eigenspectrum of deep neural networks and its applications to regularization. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pp. 9481–9488, 2021.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Noam Shazeer and Mitchell Stern. Adafactor: Adaptive learning rates with sublinear memory cost.
In International Conference on Machine Learning, pp. 4596–4604. PMLR, 2018.

Naichen Shi, Dawei Li, Mingyi Hong, and Ruoyu Sun. Rmsprop converges with proper hyper-
parameter. In International Conference on Learning Representations, 2020.

Ruoyu Sun and Yinyu Ye. Worst-case complexity of cyclic coordinate descent: O (nˆ 2) o (n 2) gap
with randomized version. Mathematical Programming, 185:487–520, 2021.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu, Radu
Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family of highly capable
multimodal models. arXiv preprint arXiv:2312.11805, 2023.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, Yoshua Bengio,
et al. Graph attention networks. stat, 1050(20):10–48550, 2017.

Bohan Wang, Yushun Zhang, Huishuai Zhang, Qi Meng, Zhi-Ming Ma, Tie-Yan Liu, and Wei Chen.
Provable adaptivity in adam. arXiv preprint arXiv:2208.09900, 2022.

Yikai Wu, Xingyu Zhu, Chenwei Wu, Annie Wang, and Rong Ge. Dissecting hessian: Understanding
common structure of hessian in neural networks. arXiv preprint arXiv:2010.04261, 2020.

14

http://jmlr.org/papers/v21/20-074.html

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Xingyu Xie, Pan Zhou, Huan Li, Zhouchen Lin, and Shuicheng Yan. Adan: Adaptive nesterov
momentum algorithm for faster optimizing deep models. arXiv preprint arXiv:2208.06677, 2022.

Zhewei Yao, Amir Gholami, Qi Lei, Kurt Keutzer, and Michael W Mahoney. Hessian-based analysis
of large batch training and robustness to adversaries. Advances in Neural Information Processing
Systems, 31, 2018.

Zhewei Yao, Amir Gholami, Kurt Keutzer, and Michael W Mahoney. Pyhessian: Neural networks
through the lens of the hessian. In 2020 IEEE international conference on big data (Big data), pp.
581–590. IEEE, 2020.

Yang You, Jing Li, Sashank Reddi, Jonathan Hseu, Sanjiv Kumar, Srinadh Bhojanapalli, Xiaodan
Song, James Demmel, Kurt Keutzer, and Cho-Jui Hsieh. Large batch optimization for deep
learning: Training bert in 76 minutes. arXiv preprint arXiv:1904.00962, 2019.

David Young. Iterative methods for solving partial difference equations of elliptic type. Transactions
of the American Mathematical Society, 76(1):92–111, 1954.

Xiaohua Zhai, Alexander Kolesnikov, Neil Houlsby, and Lucas Beyer. Scaling vision transformers.
In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp.
12104–12113, 2022.

Guodong Zhang, Lala Li, Zachary Nado, James Martens, Sushant Sachdeva, George Dahl, Chris
Shallue, and Roger B Grosse. Which algorithmic choices matter at which batch sizes? insights
from a noisy quadratic model. Advances in neural information processing systems, 32, 2019a.

Jingzhao Zhang, Tianxing He, Suvrit Sra, and Ali Jadbabaie. Why gradient clipping accelerates
training: A theoretical justification for adaptivity. arXiv preprint arXiv:1905.11881, 2019b.

Jingzhao Zhang, Sai Praneeth Karimireddy, Andreas Veit, Seungyeon Kim, Sashank Reddi, Sanjiv
Kumar, and Suvrit Sra. Why are adaptive methods good for attention models? Advances in Neural
Information Processing Systems, 33:15383–15393, 2020.

Yushun Zhang, Congliang Chen, Naichen Shi, Ruoyu Sun, and Zhi-Quan Luo. Adam can converge
without any modification on update rules. Advances in Neural Information Processing Systems, 35:
28386–28399, 2022.

Yushun Zhang, Congliang Chen, Tian Ding, Ziniu Li, Ruoyu Sun, and Zhi-Quan Luo. Why trans-
formers need adam: A hessian perspective. arXiv preprint arXiv:2402.16788, 2024.

Jiawei Zhao, Zhenyu Zhang, Beidi Chen, Zhangyang Wang, Anima Anandkumar, and Yuandong
Tian. Galore: Memory-efficient llm training by gradient low-rank projection. arXiv preprint
arXiv:2403.03507, 2024a.

Rosie Zhao, Depen Morwani, David Brandfonbrener, Nikhil Vyas, and Sham Kakade. Deconstructing
what makes a good optimizer for language models. arXiv preprint arXiv:2407.07972, 2024b.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
chatbot arena. Advances in Neural Information Processing Systems, 36, 2024.

Shuai Zheng and James T Kwok. Blockwise adaptivity: Faster training and better generalization in
deep learning. arXiv preprint arXiv:1905.09899, 2019.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A RELATED WORKS

Understanding of Adam. There is an active line of works trying to understand why Adam works
well (Zhang et al., 2019b; Wu et al., 2020; Shi et al., 2020; Zhang et al., 2022; Wang et al., 2022; Pan
& Li, 2023; Jiang et al., 2023; Kunstner et al., 2023; Zhang et al., 2024; Ahn et al.; Kunstner et al.,
2024). In contrast to these works, we point out that Adam’s v might not function at its full potential
as effectively as we expected: sometimes fewer learning rates can reach the same or better results
(due to the dense Hessian sub-blocks). Our findings might motivate stronger optimizers that better fit
the neural-net Hessian structure.

Similarly to in our Section 2.1, a recent work (Das et al., 2024) also explores the effectiveness of
Adam’s preconditioner DAdam from a linear algebra perspective. They focus on (a variant of) Adam
and prove the following result: First, for diagonal dominant (DD) matrix Hb when the dimension
d is less than κ1/3, their modified version of Adam exhibits a faster convergence rate compared to
gradient descent (GD); Second, for non-DD matrix, the constant terms in Adam’s upper bound can be
much larger than that of GD. Their results take a valuable and important step towards understanding
DAdam. However, they remain insufficient to fully support our numerical findings in Figure 5. This is
because they only provide an upper bound for the non-DD case, while we need a lower bound. We
note that it is rather difficult to derive the desired lower bound, and we leave it as a future direction.

On the Hessian of Neural Nets. Hessian matrix is crucial for the behaviors of gradient methods.
There are several important attempts to study the Hessian of MLPs and CNNs (Collobert, 2004;
Roux et al., 2007; Martens & Grosse, 2015; Sagun et al., 2016; 2017; Chaudhari et al., 2019; Papyan,
2020; Wu et al., 2020; Liao & Mahoney, 2021; Papyan, 2018; 2019; Sankar et al., 2021; Gur-Ari
et al., 2018; Yao et al., 2018; Zhang et al., 2019a; Ghorbani et al., 2019; Yao et al., 2020; Dauphin
et al., 2024). Inspired by these works, we explore the Hessian structure of Transformers and connect
it to the behaviors of Adam. We then find room to improve and propose to slim down Adam into
Adam-mini.

Lightweight optimizers for general tasks. There are several attempts to reduce the memory cost
of Adam. Adafactor (Shazeer & Stern, 2018) and its variant CAME (Luo et al., 2023) conduct
nonnegative low-rank factorization over Adam’s v. SM3 (Anil et al., 2019) is a lightweight version
of AdaGrad (Duchi et al., 2011). SM3 chooses the learning rate of the i-th parameter by taking
the minimal value in a certain candidate set, and each element in the candidate set is related to the
maximal squared gradient under a predetermined cover. All these aforementioned methods could
release almost all memory for v and save about 48% of Adam’s memory. However, we find that their
performance degenerate in various experiments, while Adam-mini maintains as effective as AdamW
(as shown in Section 3).

After completing this work, we noticed two methods that share some of the ideas of Adam-mini:
BAGM (Zheng & Kwok, 2019) and NovoGrad (Ginsburg et al., 2019). Both of them use block-wise
or layer-wise adaptive learning rates to achieve robust performance and better generalization. We
summarize their key differences with Adam-mini. BAGM partitions parameters to reach minimal-
norm solutions and achieve provable robustness. In particular, their theory in Proposition 1 states that
layer-by-layer parameter partition can lead to minimum ℓ-2 norm solutions. Aligning with the theory,
they find that the PyTorch default partition (BAGM-B.1) indeed brings overall the best performance
on both CIFAR-10 and ImageNet. Although the PyTorch default partition may have benefits on
robustness, we find that it overlooks the Hessian structure and oversimplifies the training problem for
Transformers (as we discussed in Section 2.3). As a result, the PyTorch default partition will lead
to training instability in large-scale LLMs, and this is evident in our failed preliminary versions of
Adam-mini in Figure 8 and 9. We then propose a new partition strategy Algorithm 3 which partition
parameters by the smallest dense Hessian sub-blocks. For Transformers, Algorithm 3 uses different
strategies for different building blocks (e.g., partition the embedding layer by tokens, and partition
Query by heads) and we find that Algorithm 3 is necessary to stabilize the training.

In summary, these two methods have different designs and their partition strategies oversimplify the
training problems. Consequently, they would cause training instability on large-scale experiments
as evident in Figure 8 and 9. In contrast, Adam-mini carefully assigns learning rates following our
proposed principle on Hessian structures. Such design principle is crucial for training stability and it
works well on various LLMs including 7B models.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Besides algorithmic design, our work also provides new understandings of Adam, and particularly,
how Adam behaves on generic optimization problems with near-block-diagonal Hessian. We also
provide new findings on the Hessian structure of Transformers and provide new principles for
designing better algorithms.

Other orthogonal methods. The idea of Adam-mini can be orthogonally combined with various
existing methods. We list two most relevant examples here.

1. GaLore (Zhao et al., 2024a) is a new memory-efficient optimizer for LLMs. Given a gradient
matrix g, GaLore calculates a low-rank gradient estimator ĝ and then calculates m and v based on
this ĝ. Adam-mini can potentially be combined with GaLore to reach further memory reduction on
v. The combined method, e.g., “GaLore-mini", can further reduce about 40% memory on GaLore
and about 81% on AdamW in total.4 Additionally, GaLore-mini can ease the offload burden and
enhance the throughput of GaLore, especially when training on customer-level GPUs with limited
memory.

2. Sophia (Liu et al., 2023) is another recent diagonal preconditioned optimizer. Just as Adam, Sophia
requires memory for m and v. It is possible to combine Adam-mini and Sophia to get “Sophia-
mini", which saves up to 50% of memory in Sophia. Sophia-mini can also enhance throughput and
further speed up Sophia on wall-clock time as in Table 2.

We list more potential combinations here. LoRA (Hu et al., 2021) is a memory-efficient method
for SFT tasks. This method fine-tunes the model via additive low-rank adaptors and uses Adam to
update these adaptors. Note that the Adam steps in LoRA can be replaced by Adam-mini. As a
result, Adam-mini brings better performance (Figure 11). In parallel to our work, BAdam (Luo et al.,
2024) conducts SFT in a block-coordinate-descent (BCD) fashion. This method requires repeated
Adam steps to solve the sub-problem in BCD. Similarly as in LoRA, the Adam steps in BAdam
can be replaced by Adam-mini to further reduce memory. Nero optimizer (Liu et al., 2021a) also
cuts down the memory of Adam. It removes the 1st-order momentum and uses a neuron-specific
projected gradient-style update. According to (Liu et al., 2021a), their design imposes constraints
on weight matrices and has the advantage of “balanced excitation and inhibition". Such design can
potentially be combined with Adam-mini to further boost performance. To save the memory cost
for fine-tuning LLMs, MeZO (Malladi et al., 2023) uses zeroth-order methods to approximate the
gradient information. It is possible to combine this idea with Adam-mini to further save memory
for SFT. Adam-mini can also potentially be combined with other diagonal preconditioned methods
(such as AdaGrad (Duchi et al., 2011) and Adan (Xie et al., 2022)) as well as recent schedule-free
optimizers such as SchedulefreeAdamW (Defazio et al., 2024).

There are several other tricks that ease GPU memory burden but are orthogonal to optimizer design.
These tricks include gradient checkpointing (Chen et al., 2016), model offloading and sharding
(Rajbhandari et al., 2020; 2021), quantization (Dettmers et al., 2021; Li et al., 2024), and fused update
(Lv et al., 2023a;b). Adam-mini can be implemented upon these tricks.

Finally, we discuss another popular adaptive optimizer called LAMB (You et al., 2019) (see Algo-
rithm 7 in Appendix D.1). LAMB might be misunderstood as a similar optimizer to Adam-mini, but
actually, it is not. We emphasize that Adam-mini is significantly different from LAMB. First, LAMB
still keeps the same coordinate-wise learning-rate design 1/

√
v as in Adam. Second, in addition to

this 1/
√
v, LAMB re-scales the parameters in a layer-by-layer fashion. This re-scaling design is often

known as the “layer-wise learning rates", but to be precise, it is actually an additional “layer-wise
scaling" besides the “coordinate-wise learning rates 1/

√
v". As a result, LAMB does not save

memory over Adam and its overall design is quite different from Adam-mini. This is understandable
because LAMB is designed for large-batch training, not for memory saving. Numerically, we find
that LAMB performs worse than Adam-mini on GPT2 pre-training (Figure 10 (b)).

4These results are calculated based on (Zhao et al., 2024a, Table 1). We consider Llama 2-7B and r = 1024
in GaLore.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

B THE COMPLETE FORM OF ADAM-MINI

We now present the specific realization of Adam-mini on Transformers and other architectures. To be
precise, Algorithm 3 should be renamed as “Partition for CNNs, Diffusion models, and Graph Neural
Networks", since we have only tested Algorithm 3 on these models. In the future, it is possible
that we will have more complicated non-Transformer architectures on which Algorithm 3 fails. In
those cases, we need to investigate the Hessian structure of these new architectures (like what we did
for Transformers) and then develop the concrete partition algorithms following our Principle 1 in
Section 2.2.

Algorithm 2 Adam-mini in Pytorch style

1: Input weight-decay coefficient λ and
current step t

2: Choose param_blocks from
Algorithm 3 or 3

3: for param in param_blocks do
4: g = param.grad
5: param = param - ηt ∗ λ∗ param
6: m = (1− β1) ∗ g+ β1 ∗ m
7: m̂ = m

1−βt
1

8: v = (1−β2)∗mean(g⊙g)+β2 ∗v
9: v̂ = v

1−βt
2

10: param = param - ηt * m̂√
v̂+ϵ

11: end for

Algorithm 3 Partition for non-Transformers
1: param_blocks = {}
2: for name, param in parameters do
3: param_blocks[name]=param
4: end for
5: return param_blocks

Algorithm 3 Partition for Transformers
1: param_blocks = {}
2: for name, param in parameters do
3: if ’embed’ or ’output’ in name then
4: Partition param by tokens
5: for i = 0...tokens-1 do
6: param_blocks[name+i]=param[i]
7: end for
8: else if ’query’ or ’key’ in name then
9: Partition param by heads

10: for i = 0...heads-1 do
11: param_blocks[name+i]=param[i]
12: end for
13: else if ’value’, ’attn.proj’, or ’mlp’

in name then
14: Partition param by output neurons
15: for i = 0...output_neurons-1 do
16: param_blocks[name+i]=param[i]
17: end for
18: else
19: param_blocks[name]=param
20: end if
21: end for
22: return param_blocks

C MORE EXPERIMENTAL RESULTS

C.1 MORE RESULTS FOR MOTIVATION

In Section 2, we showed that “Adam’s v is redundant on dense Hessian subblock". We provide
experiments on random quadratic functions to support the claim. Here, we conduct the following new
experiments on a 1-layer Transformer. We will show that "using single learning rate per block" is
also sufficient for Transformers.

The following Exp 1 and 2 extend the random quadratic experiments in Figure 4 and 5 to Trans-
formers.

Exp 1: Adam’s learning rate is redundant on the dense Hessian subblock. We take some small
dense blocks in the Hessian of 1-layer Transformer and denoted as H . We compare κ(H) and
κ(DAdamH) as in the paper. We find Adam is not effective in reducing the kappa of these blocks,
and many lrs in Adam can be redundant.

Exp 2: Single learning rate per block is sufficient. We conduct the "block-wise GD" and we
grid-search the learning rate for each block. The result is shown in the following figure. We find that
block-wise GD outperforms AdamW. This extends the setting from the random quadratic problem in
Figure 4.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Table 4: Comparison of κ(H) and κ(DAdamH) for the dense blocks in the Hessian of 1-layer
Transformer.

Hessian Block κ(H) κ(DAdamH)
1st head in Query 103.80 176.88
1st head in Key 103.46 213.82
1st head in Value 165.66 332.76
1st neuron in attn.proj 39.92 94.56
1st neuron in MLP_fc1 22.04 70.92
1st neuron in MLP_c_proj 63.85 236.71

0 20 40 60 80 100
Iteration

1.0

1.2

1.4

1.6

1.8

Va
lid

at
io

n
Lo

ss

Results on a 1-layer Transformer

Adam
Adam_mini
Blockwise_GD

Figure 14: On a 1-layer Transformer, we conduct the "blockwise GD" and we grid-search the learning
rate for each block. We find that blockwise GD outperforms AdamW.

Combining Exp 1 and 2, we can see that Adam is redundant on the dense Hessian subblocks (Exp 1),
and a single lr for each block can work well (Exp 2). These experiments show that our conclusions
on random quadratic problems can be extended to Transformers.

C.2 ABLATION STUDIES ON THE DESIGN OF ADAM-MINI

We here provide more reasons why we choose mean(v) as the blockwise learning rates. We
conduct ablation studies on different choices of quantities that we can borrow from Adam, including
2-norm(v), 1-norm(v), max(v), and min(v). we found that all these candidates perform worse
than mean(v) in Adam-mini.

0 500 1000 1500 2000 2500 3000 3500 4000
Iteration

4.0

4.2

4.4

4.6

4.8

5.0

Va
lid

at
io

n
lo

ss

Llama 2-20M Pre-training

Adam-mini (1-norm(v))-5e-3
Adam-mini (2-norm(v))-5e-3
Adam-mini (max(v))-5e-3
Adam-mini (min(v))-5e-3
Adam-mini-5e-3

Figure 15: Ablation studies on the design of Adam-mini. We find that mean(v) performs better than
other candidates. The blue curve does not show because the algorithm diverges and the curve is out
of range.

C.3 MORE RESULTS ON THE SCALING LAW EXPERIMENTS

The complete loss curves of Llama 2-1B. We here present the complete validation loss curve of
Llama 2-1B, training on 20B tokens, which corresponds to the rightmost curve in the scaling law

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

experiments in Figure 12 (a). We note that this is a complete pre-training run under the definition
of Chinchila’s law (Hoffmann et al., 2022). We find that Adam-mini’s loss curves closely resemble
those of AdamW.

0 25000 50000 75000 100000 125000 150000 175000 200000
Iteration

2.5

3.0

3.5

4.0

4.5

Va
l l

os
s

AdamW-2e-4-1B
Adam-mini-2e-4-1B

Figure 16: Loss curves of pre-training Llama 2-1B on 26B tokens. This is a complete pre-training
run under the definition Chinchila’s law. We find that Adam-mini performs similarly to AdamW
throughout the training, but with 50% less memory.
The final validation perplexity. In Table 5, we present the final validation perplexity for all models
after training on the token amount suggested by Chinchilla’s law (Hoffmann et al., 2022). For all
models from 39M to 1B, we find that Adam-mini reaches a lower validation perplexity than AdamW.

Table 5: Final validation perplexity for all models pre-trained by Adam and Adam-mini. The token
amount follows Chinchila’s law. After pre-training, Adam-mini reaches a lower validation perplexity
than AdamW.

Model size 39M 67M 102M 162M 271M 1B
Total tokens 1.02B 1.76B 2.67B 4.25B 7.10B 26.21B

AdamW 40.795 29.319 24.670 20.360 17.178 12.452
Adam-mini 40.407 29.014 24.192 20.172 17.035 12.372

C.4 NON-LLM TASKS

We now evaluate Adam-mini on non-LLM tasks. Table 6 shows the results for training ResNet18(He
et al., 2016), Swin-Transformer (Liu et al., 2021b), DiT-XL-2 (Peebles & Xie, 2023), DC-AE-
Diffusion (Chen et al., 2024a) on ImageNet, DDPM diffusion model (Ho et al., 2020) on CelebA, a
Graph Convolution Net (GCN) (Kipf & Welling, 2016), and a Graph Attention Net (GAT) (Veličković
et al., 2017) on OGB-arxiv. The training curves are shown in Figure 17 and 18. We find the
performance of Adam-mini to be comparable or better than AdamW, but with less memory.

Table 6: On popular non-LLM tasks, Adam-mini performs on par or better than AdamW.

Domain Model Optimizer Metric 25% steps 50% steps 75% steps 100% steps
Vision DDPM AdamW Train loss (↓) 0.0529 0.0497 0.0420 0.0394
Vision DDPM Adam-mini Train loss (↓) 0.0525 0.0495 0.0416 0.0388
Vision ResNet18 AdamW Val acc (↑) 0.6149 0.6478 0.6613 0.6669
Vision ResNet18 Adam-mini Val acc (↑) 0.6140 0.6501 0.6629 0.6667
Vision Swin-Transformer AdamW Val acc (↑) 0.6290 0.6940 0.7180 0.7310
Vision Swin-Transformer Adam-mini Val acc (↑) 0.6230 0.6960 0.7160 0.7300
Vision DiT-XL-2 AdamW Train loss (↓) 0.1605 0.1696 0.1607 0.1431
Vision DiT-XL-2 Adam-mini Train loss (↓) 0.1601 0.1693 0.1605 0.1430
Vision DC-AE-Diffusion AdamW Train loss (↓) 0.2860 0.2820 0.2800 0.2780
Vision DC-AE-Diffusion Adam-mini Train loss (↓) 0.2860 0.2830 0.2800 0.2780
Graph GAT AdamW Val acc(↑) 0.7277 0.7367 0.7399 0.7421
Graph GAT Adam-mini Val acc (↑) 0.7378 0.7394 0.7403 0.7429
Graph GCN AdamW Val acc (↑) 0.7347 0.7428 0.7379 0.7374
Graph GCN Adam-mini Val acc (↑) 0.7406 0.7427 0.7380 0.7423

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

In Table 7, we further evaluate the image quality from the model trained by Adam-mini. We find that
the Adam-mini performs on par with AdamW.

Table 7: Evaluation scores: Adam-mini performs on par with AdamW.

Domain Model Optimizer FID (↓) Inception Score (↑)
Vision DiT-XL-2 AdamW 91.83 12.38
Vision DiT-XL-2 Adam-mini 88.20 13.90
Vision DC-AE-Diffusion AdamW 34.72 41.79
Vision DC-AE-Diffusion Adam-mini 33.15 44.38

0 20 40 60 80 100
Epoch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Va
lid

at
io

n
Ac

cu
ra

cy

Swin-Transformer

AdamW-5e-4
Adam-mini-5e-4

(a) Swin-Transformer

0 10000 20000 30000 40000 50000
Iteration

0.100

0.125

0.150

0.175

0.200

0.225

0.250

0.275

0.300

Tr
ai

n
Lo

ss

DiT-XL-2 (675M)

AdamW-1e-4
Adam-mini-1e-4

(b) DiT-XL-2

0 25 50 75 100 125 150 175
Iterations (K)

0.25

0.30

0.35

0.40

0.45

0.50

0.55

Tr
ai

ni
ng

 L
os

s

DC-AE-Diffusion

AdamW-2e-4
Adam-mini-2e-4

(c) DC-AE-Diffusion

Figure 17: The training curves of Swin-Transformer, DiT-XL-2, and DC-AE-Diffusion. We find that
Adam-mini performs on par with AdamW

0 10 20 30 40 50 60 70 80 90
Epoch

0.2

0.3

0.4

0.5

0.6

0.7

Va
lid

at
io

n
Ac

cu
ra

cy

ResNet-18 on ImageNet

AdamW-5e-3
Adam-mini-5e-3

(a) ResNet-18

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Iteration 1e6

0.035

0.040

0.045

0.050

0.055

0.060

0.065

0.070

Tr
ai

ni
ng

 L
os

s

AdamW
Adam-mini

(b) DDPM

Figure 18: The training curves of ResNet-18 and DDPM diffusion model. We find that Adam-mini
performs on par with AdamW.

C.5 MORE DISCUSSIONS ON THE PARTITION STRATEGIES OF VALUE

As shown in Figure 7, the Hessian structure of value is less clear compared to other blocks: it
shows the hint of 16 diagonal blocks (where 16 is the number of output neurons), but the pattern is
not that clear. This gives rise to two potential partition strategies: (I) partition by output neuron; (II)
treat as a whole. Numerically, we find that strategy (I) works well when the number of total training
steps is large. This includes most of our experiments such as GPT-2 in Figure 9 (with more than
50k total steps) and the scaling law experiments of Llama models in Figure 12 (e.g., Llama 2-1B is
trained with more than 200k total steps). On the other hand, we find that strategy (II) works better
when the number of total training steps is small. This includes our Llama experiments with 10k total
steps in Figure 10.

Based on these findings, we recommend using strategy (I) when the total number of training steps is
large, and using strategy (II) if otherwise. Note that strategy (II) can be used simply by adding one
line of code after creating the optimizer: optimizer.wv_names = {}.

C.6 DETAILED COMPARISON WITH ADAFACTOR

In this section, we conduct a more hyperparameter search for Adafactor on Llama 2-20M pre-training.
We will focus on tuning Adafactor-Zhai-version since it performs better than the original Adafactor
(see Figure 13). We consider the following three setups.

• Setup 1: We change the default β2 = 0.999 to β2 = 0.95 and sweep over learning rates.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

• Setup 2: We use learning rate = 5e-3, β2 = 0.95 and sweep over warm-up step =
{1%, 2%, 3%, 4%, 5%, 10%} total steps.

• Setup 3: We use learning rate = 5e-3, β2 = 0.95 and warm-up step = 1% total steps and
sweep over ϵ = {10−30, 10−16, 10−8, 10−6}.

0 500 1000 1500 2000 2500 3000 3500 4000
Iteration

4.00

4.25

4.50

4.75

5.00

5.25

5.50

5.75

6.00

Va
lid

at
io

n
lo

ss

Adam-mini-5e-3
Adafactor-Zhai-version(beta2=0.95)-1e-5
Adafactor-Zhai-version(beta2=0.95)-5e-5
Adafactor-Zhai-version(beta2=0.95)-1e-4
Adafactor-Zhai-version(beta2=0.95)-5e-4
Adafactor-Zhai-version(beta2=0.95)-1e-3
Adafactor-Zhai-version(beta2=0.95)-5e-3
Adafactor-Zhai-version(beta2=0.95)-1e-2

(a) Llama 2-20M

0 500 1000 1500 2000 2500 3000 3500 4000
Iteration

4.00

4.25

4.50

4.75

5.00

5.25

5.50

5.75

6.00

Va
lid

at
io

n
lo

ss

Adam-mini-5e-3
Adafactor-Zhai-version(beta2=0.95)-5e-3-warmup-40
Adafactor-Zhai-version(beta2=0.95)-5e-3-warmup-80
Adafactor-Zhai-version(beta2=0.95)-5e-3-warmup-120
Adafactor-Zhai-version(beta2=0.95)-5e-3-warmup-160
Adafactor-Zhai-version(beta2=0.95)-5e-3-warmup-200
Adafactor-Zhai-version(beta2=0.95)-5e-3-warmup-400

(b) Llama 2-20M

0 500 1000 1500 2000 2500 3000 3500 4000
Iteration

4.00

4.25

4.50

4.75

5.00

5.25

5.50

5.75

6.00

Va
lid

at
io

n
lo

ss

Adam-mini-5e-3
Adafactor-Zhai-version(beta2=0.95)-5e-3-eps-1e-30
Adafactor-Zhai-version(beta2=0.95)-5e-3-eps-1e-16
Adafactor-Zhai-version(beta2=0.95)-5e-3-eps-1e-8
Adafactor-Zhai-version(beta2=0.95)-5e-3-eps-1e-6

(c) Llama 2-20M

Figure 19: The training curves of Adafactor-Zhai-version on Llama 2-20M pre-training. (a,b,c)
corresponds to the aforementioned Setup 1, 2, 3, respectively. We find that Adafactor consistently
underperforms Adam-mini.

The results are shown in Figure 19. In all these cases, Adafactor-Zhai-version consistently underper-
forms Adam-mini and the change of hyperparameters does not help much.

C.7 DETAILED COMPARISON WITH LION

We now conduct the hyperparameter grid search over Lion. We find that Lion is not easy to tune and
we have not managed to make Lion work. We consider the following settings.

Tuning strategies in (authors, 2024). authors (2024) carefully tune Lion on Llama models (150M,
300M, 600M, 1.2B). We will adopt their optimal tuning strategies in (authors, 2024, Table 1) 5. We
here summarize their key messages.

• Message 1: The optimal learning rate (lr) of Lion is usually 10 times smaller than AdamW.

• Message 2: The magical number lr = 3.16e-4 works the best for most models (Llama 150M,
300M, 600M).

• Message 3: β1 = {0.95, 0.9} perform similarly and perform significantly better than other
β1 candidates including β1 = {0.99, 0.98, 0.8, 0.5, 0}.

• Message 4: β2 = {0.99, 0.98, 0.95} perform similarly and perform significantly better than
other β2 candidates including β2 = {0.9999, 0.999, 0.995, 0.9, 0.8}.

In the following, we will use the above messages to tune the hyperparameters of Lion.

Architecture. We consider Llama 2-20M, which is the same architecture as the ones investigated in
(authors, 2024), but with different model size. We also consider GPT-2-125M, which is a task that
Lion is not tested before (neither in (authors, 2024) nor in other literatures to our knowledge).

Our tuning strategies. Following the above Message 1 and 2 from (authors, 2024), we will use the
following tuning strategies for Lion on Llama 2-20M and GPT-2-125M.

• Learning rate for Llama 2-20M: The standard lr is 5e-3, so we try lr = [5e-4, 6e-4, 7e-4,
8e-4, 9e-4, 1e-3, 2e-3, 3e-3, 4e-3, 5e-3]. For completeness, we also investigate lr = [4e-4,
3.16e-4, 2e-4, 1e-4].

• Learning rate for GPT-2-125M: The standard lr is 6e-4, so we try lr = [6e-5, 7e-5, 8e-5,
9e-5, 1e-4, 2e-4, 0.000316, 4e-4, 5e-4, 6e-4]

As for (β1, β2), we will use (β1, β2) = (0.95, 0.98). We use these hyperparameters for two reasons.
First, they are the optimal choice among other candidates by Message 3 and 4. Second, (β1, β2) =

5We would like to mention that (authors, 2024) is a concurrent work to us, and their tuning strategies in is not
public available by the time we submitted this script.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

(0.95, 0.98) is recommended by the authors of Lion to be "helpful in mitigating instability during
training" 6.

0 500 1000 1500 2000 2500 3000 3500 4000
Iteration

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

Va
lid

at
io

n
lo

ss

Llama 2-20M Pre-training
Adam-mini-5e-3
Lion-5e-3
Lion-4e-3
Lion-3e-3
Lion-2e-3
Lion-1e-3
Lion-9e-4
Lion-8e-4
Lion-7e-4
Lion-6e-4
Lion-5e-4
Lion-4e-4
Lion-3.16e-4
Lion-2e-4
Lion-1e-4

(a) Llama 2-20M

102 103 104

Iteration

101

3 × 100

4 × 100

6 × 100

Tr
ai

n
Lo

ss

GPT-2-125M Pre-training

AdamW-6e-4
Adam-mini-6e-4
Lion-6e-4
Lion-5e-4
Lion-4e-4
Lion-3.16e-4
Lion-2e-4
Lion-1e-4
Lion-9e-5
Lion-8e-5
Lion-7e-5
Lion-6e-5
Lion-5e-5

(b) GPT-2-125M

Figure 20: The training curves of Lion on Llama 2-20M and GPT-2-125M pre-training. The
hyperparameters are chosen under the optimal strategies by (authors, 2024). We find that Lion
consistently underperforms Adam-mini on Llama 2-20M, and it encounters loss spikes on GPT-2-
125M.
The results are shown in Figure 20. After using the above tuning strategies, we find that Lion still
underperforms Adam-mini and AdamW on Llama 2-20M and GPT-2-125M. In particular, Lion
encounters loss spikes on GPT-2-125M for all the learning rate candidates above.

We summarize our findings on Lion below.

• First: worse performance. With all the effort above, we haven’t managed to make Lion
work, and we haven’t been able to reproduce (authors, 2024) on Llama 2-20M and GPT-2-
125M (different model size and architectures from (authors, 2024)). One possible reason is
that Lion might work under their specific setup (dataset, architecture, batch size, etc.), but
the effectiveness is not easily transferable.

• Second: no general tuning guidance. We find that there are no general tuning strategies
for Lion. We emphasize that authors (2024) only focuses on Llama architectures, and
their resulting tuning strategy seems not robust and transferable to other architectures. In
particular, their optimal strategy on Llama causes loss spikes on GPT-2. To our knowledge,
Table 1 in (authors, 2024) is the only public tuning strategy for Lion, so it seems unclear
how to tune Lion in general.
In contrast, Adam-mini is much easier to use. In all our experiments (a wide range of tasks
and models), Adam-mini performs on par with Adam using the same hyperparameters
as AdamW (including learning rate, β1, β2, ϵ, etc.). We believe that "easy adaptation of
the hyperparameters" can serve as one advantage of Adam-mini over Lion, apart from the
performance superiority.

• Third: Adam-mini is more principled and explainable. We emphasize that Lion is
designed by symbolic search, and its design principle is largely unclear. In contrast, the
Design principle of Adam-mini is much more understandable: we remove the redundant lrs
in Adam according to the Hessian structure. We believe Adam-mini is more "white-box"
than Lion and more explainable to users.

C.8 SAMPLE RESPONSES FROM LLMS TRAINED BY ADAM-MINI

The sample response in shown in Figure 21.

D SOME PRELIMINARY RESULTS

D.1 PRELIMINARIES ON ADAM, ADAMW AND LAMB

We introduce Adam, AdamW, and LAMB in Algorithm 5, 6, and 7. These methods need to track m
and v along the training. Both m and v are vectors of the same size as # model parameter.

6https://github.com/lucidrains/lion-pytorch

23

https://github.com/lucidrains/lion-pytorch

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Prompt: Compose an engaging travel blog post about a recent trip to Hawaii, highlighting cultural
experiences and must-see attractions.

AdamW: Sure! Here’s a travel blog post about a recent trip to Hawaii: Whether you’re interested in
history, nature, or simply soaking up the sun, Hawaii has something for everyone. Until next time, Aloha!
Adam-mini: Sure! Here’s a travel blog post about a recent trip to Hawaii: I highly recommend
visiting this beautiful archipelago for a truly unforgettable adventure.

Prompt: Rewrite your previous response. Start every sentence with the letter A.

AdamW: A trip to Hawaii is a must-visit destination for any traveler, offering a variety of cultural experiences
and must-see attractions. From the Polynesian Cultural Center to the USS Arizona Memorial, and from
Lanikai Beach to the lively night markets, every corner of the islands reveals a new surprise and a new way
to connect with the spirit of Hawaii.
Adam-mini: A trip to Hawaii is a must-do for any travel enthusiast. A trip to the beautiful Hawaiian
Islands is a paradise on earth. A visit to Oahu is a great way to start your adventure. A helicopter tour of
the island is both educational and breathtaking. A visit to Maui is a must-see. A visit to Haleakala National
Park is a highlight of your trip. A visit to the Polynesian Cultural Center is a great way to learn about the
history and traditions of the islands. A traditional luau is a must-attend event. Overall, a trip to Hawaii is
an unforgettable experience.

Figure 21: Response Sample of Llama 2-7B finedtuned by AdamW and Adam-mini to the #81 test
question from the MT-Bench (Zheng et al., 2024) dataset. Since there is little information in the first
round response, we omit the answers from the models.

Algorithm 5 Adam in Pytorch style

1: Let λ be the weight decay coefficient
2: for param in parameter_blocks do
3: g = param.grad
4: if λ > 0 then
5: g = g+ λ ∗ param
6: end if
7: param = param - ηt ∗ λ∗ g
8: m = (1− β1) ∗ g+ β1 ∗ m
9: m̂ = m

1−βt
1

10: v = (1− β2) ∗ g⊙ g+ β2 ∗ v
11: v̂ = v

1−βt
2

12: param = param - ηt * m̂√
v̂+ϵ

13: end for

Algorithm 6 AdamW in Pytorch style

1: Let λ be the weight decay coefficient
2: for param in parameter_blocks do
3: g = param.grad
4: param = param - ηt ∗ λ∗ g
5: m = (1− β1) ∗ g+ β1 ∗ m
6: m̂ = m

1−βt
1

7: v = (1− β2) ∗ g⊙ g+ β2 ∗ v
8: v̂ = v

1−βt
2

9: param = param - ηt * m̂√
v̂+ϵ

10: end for

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Algorithm 7 LAMB in Pytorch style

1: Let λ be the weight decay coefficient, let ϕ be a scaling function.
2: for param in all_layers do
3: g = param.grad
4: param = param - ηt ∗ λ∗ g
5: m = (1− β1) ∗ g+ β1 ∗ m
6: m̂ = m

1−βt
1

7: v = (1− β2) ∗ g⊙ g+ β2 ∗ v
8: v̂ = v

1−βt
2

9: r = m̂√
v̂+ϵ

10: param = param - ηt * ϕ(∥param∥)
∥r+λ∗param∥ * r

11: end for

D.2 PRELIMINARY RESULTS IN (ZHANG ET AL., 2024)

We here restate (Zhang et al., 2024, Figure 3). This figure shows that: for Transformers, different
parameter blocks have different Hessian eigenvalue distributions, while for CNNs, the eigenvalue
distributions are similar among blocks. This suggests that Transformers need different learning rates
for different blocks to handle the heterogeneity in eigenvalue distributions.

(a) VGG16 (b) BERT

Figure 22: Figure 3 in (Zhang et al., 2024). The eigenvalues distribution are similar among blocks for
CNNs, while they differ significantly across blocks for Transformers. This indicates Transformers
need different learning rates for different blocks to handle the heterogeneity in eigenvalues.

E EXPERIMENTAL DETAILS

E.1 TRAINING CONFIGURATIONS FOR SECTION 3

Unless mentioned otherwise, we choose the model configurations by their standard protocols. We
choose the learning rates by the recommendation from open-source platforms if applicable. For
instance, for GPT2 series, we use the recommended learning rates by (Liu et al., 2023), which are
reported to be optimal by grid search. Unless mentioned otherwise, Adam-mini, Adafactor, CAME,
SM3, and LAMB use the same learning rate as the recommended ones of AdamW. If there is no
public recommended learning rate for AdamW, we tune the learning rate for all optimizers within the
same computational budget and report the best performance. For other hyperparameters, we follow
the recommendation from open-source platforms or by their default setting. For SM3 and Adafactor,
we incorporate momentum with β1 = 0.9 to offer a fair comparison with other optimizers and the
rest of the hyperparameters are set as default. The detailed configurations are explained as follows.

GPT2 pre-training. We use the nanoGPT codebase7 to train GPT2 sized 125M (small), 330M
(medium), and 1.5B (XL) on Openwebtext. For all models, we use seq_len = 1024, batch size
= 480, weight decay coefficient λ = 0.1, ϵ = 1e-8, β1 = 0.9, β2 = 0.95. We use cosine-decay
learning rate schedule with 2000 iterations of warm-up. For GPT2-small and medium, we use the

7https://github.com/karpathy/nanoGPT/tree/master

25

https://github.com/karpathy/nanoGPT/tree/master

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

recommended peak learning rate by (Liu et al., 2023), which are reported to be the optimal ones
found by grid search. For GPT2-XL, we use the recommended peak learning rate by the Levanter8.
The chosen peak learning rates are 6e-4, 3e-4, 1e-4 for GPT2-small, medium, XL, respectively. The
minimal learning rate is chosen as 3e-5, 6e-5, 1e-5 for these models.

Llama pre-training. For all experiments on the Llama series (from 20M to 13B), we use the
Torchtitan codebase9 and C4 dataset (Raffel et al., 2020). For all experiments, we use weight decay
coefficient λ = 0.1, ϵ = 1e-8, β1 = 0.9, β2 = 0.95. For Llama 2-1B, Llama 3-8B, we use learning
rate = 3e-4. For Llama 2-13B, we use learning rate = 1e-4. As for the learning rate schedule, we use
warm-up step = 1% total step and use linear decay schedule after the warm-up (this is the default
setting in the Torchtitan codebase). For Figure 10 (a) and all the experiments of Adafactor and Lion,
we use seq_len = 512 and batch size = 128. For Figure 10 (b), we use seq_len = 2048 and
batch size = 8. For Figure 10 (b), we shrink the batch size due to the limited hardware. For all the
scaling law experiments, we use seq_len = 512 and batch size = 256. We summarize the detailed
setups for the scaling law experiments in later paragraphs.

SFT and RLHF. We use the Llama 2-7B pretrained model (Touvron et al., 2023) for our study.
We use the ultrafeedback dataset 10. The implementation of SFT and RLHF code is based on
the ReMax codebase11. Specifically, we train a SFT model with 40% of the chosen data and train
a reward model using the remaining 60%. Then, we apply the reinforcement learning algorithm
ReMax (Li et al., 2023), a memory-efficient alternative to PPO (Schulman et al., 2017), to optimize
the preference reward.

We use DeepSpeed ZeRO-2 in our training. GPT-4 evaluation template in Table 3 is from the
codebase12. In the reward optimization stage, We use ReMax, a memory-efficient alternative to PPO.
We use UltraFeedback dataset Cui et al. (2023) and use 40% data for SFT and 60% data for ReMax.

SFT. We use 80 samples in a batch and train the model for 3 epochs. For the full parameter
tuning, we search the learning rate from {1e-6, 2e-6, 3e-6, 4e-6, 5e-6, 1e-5, 2e-5} based on validation
loss, and we use 2e-6 with cosine annealing for both AdamW and Adam-mini. For LoRA, We apply
LoRA for all layers except the embedding layer. The rank of LoRA is set to 128. After selecting
the learning rate from the same set as the full parameter tuning, we use 2e-5 for both AdamW
and Adam-mini when LoRA is applied. The weight decay coefficient is set to 0 as recommended
by LlamaFactory13. The rest of the hyperparameters of AdamW and Adam-mini are ϵ = 1e-8,
β1 = 0.9, β2 = 0.95.

ReMax. We use 48 samples in a batch and train the model for 1 epoch. By searching the
peak learning rate from {5e-7, 1e-6, 2e-6} based on validation reward, AdamW uses 1e-6 while
Adam-mini selects 5e-7 as the peak learning rate. The weight decay coefficient is set to 0. The rest of
the hyperparameters of AdamW and Adam-mini are ϵ = 1e-8, β1 = 0.9, β2 = 0.95.

ResNet. We use the PyTorch official implementation codebase14 to train ResNet18 (He et al., 2016)
on ImageNet (Deng et al., 2009). We use cosine-decay learning rate, epoch =90, β1 = 0.9, β2 =
0.999, ϵ =1e-8. For ResNet18, we use batch size = 256, peak learning rate = 0.005. For ViT-base, we
use batch size = 128, peak learning rate = 0.0001. These configurations are used for both Adam-mini
and AdamW.

Diffusion models. We use the codebase15 to train diffusion models. The image size is 64 and the
training objective is to predict the noise as in (Ho et al., 2020). We use the default U-Net archiecture

8https://github.com/stanford-crfm/levanter/blob/e183ec80ec5971b12d4a3fb08a160268de342670/
config/gpt2_xl.yaml

9https://github.com/pytorch/torchtitan
10https://huggingface.co/datasets/argilla/ultrafeedback-binarized-preferences-cleaned
11https://github.com/liziniu/ReMax
12https://github.com/lm-sys/FastChat/tree/main/fastchat/llm_judge
13https://github.com/hiyouga/LLaMA-Factory
14https://github.com/pytorch/examples/blob/main/imagenet/main.py
15https://github.com/lucidrains/denoising-diffusion-pytorch

26

https://github.com/stanford-crfm/levanter/blob/e183ec80ec5971b12d4a3fb08a160268de342670/config/gpt2_xl.yaml
https://github.com/stanford-crfm/levanter/blob/e183ec80ec5971b12d4a3fb08a160268de342670/config/gpt2_xl.yaml
https://github.com/pytorch/torchtitan
https://huggingface.co/datasets/argilla/ultrafeedback-binarized-preferences-cleaned
https://github.com/liziniu/ReMax
https://github.com/lm-sys/FastChat/tree/main/fastchat/llm_judge
https://github.com/hiyouga/LLaMA-Factory
https://github.com/pytorch/examples/blob/main/imagenet/main.py
https://github.com/lucidrains/denoising-diffusion-pytorch

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

hyper-parameters and the dimension multiply in U-Net is (1, 2, 4, 8). We use the CelebA dataset16

and train the diffusion model with a learning rate 5× 10−5 with cosine decay. The batch size is 128
and the training epoch is 50.

Graph Neural Networks. We use the DGL implementation17 of Graph Convolution Networks
(GCN) (Kipf & Welling, 2016) and Graph Attention Networks (GAT) (Velickovic et al., 2017) for
OGBN-arxiv18 dataset. All configurations as default. For both Adam-mini and AdamW, we use the
default learning rate = 0.005 for GCN and the default learning rate = 0.002 for GAT.

Scaling law experiments. We use the codebase Torchtitan19 to train Llama models of different
sizes. All the model configurations are shown in Table 8 and all the training configurations are shown
in Table 9. The experimental setups are inspired by (Hägele et al., 2024). In all experiments, we fix
the warm-up steps to be 1% of the total steps, as suggested by (Ibrahim et al., 2024).

Model Size dmodel nlayers nheads seq_len
39M 384 8 6 512
67M 512 10 8 512

102M 640 12 10 512
162M 768 16 12 512
271M 1024 16 16 512

1B 2048 18 16 512

Table 8: The model configurations in the scaling law experiments.

Model LR Batch size (# tokens) Steps Tokens Token/Params Ratio
39M 6e-4 0.13M 7.8K 1.02B 26.15
67M 6e-4 0.13M 13.4K 1.76B 26.27

102M 6e-4 0.13M 20.4K 2.67B 26.17
162M 6e-4 0.13M 32.4K 4.25B 26.23
271M 6e-4 0.13M 54.2K 7.10B 26.21

1B 2e-4 0.13M 200K 26.21B 26.21

Table 9: Training configurations for the scaling law experiments.

Trajectory comparison in Figure 10 (c). We train a 8-layer Transformer sized 11M on Openwebtext
and launch AdamW, Adam-mini, and other memory-efficient optimizers under the same random seed
and same learning rate 1e-5. We save the model weights for every 250 iterations and compare their
Euclidean distance to the weights along AdamW’s trajectory.

E.2 DETAILED SETUP FOR OTHER EXPERIMENTS

Configurations for Figure 3. We use a synthetic binary classification dataset with 100 samples using
the data generation process as shown below. We use a 1-hidden-layer network with an input dimension
of 64, and a width of 16, and with Tanh activation function. We train the model for 500 steps using
Adam with learning rate of 1e-4, and the model reaches 100% classification accuracy. With the help
of auto-differentiation framework, we calculate the Hessian with two passes of backpropagation
(Pearlmutter, 1994) and the calculation is exact.

1 def generate_data(n_samples_per_class, n_classes, input_dim):
2 # Generate synthetic data for specified dimensions
3 X = []

16https://cseweb.ucsd.edu/~weijian/static/datasets/celeba/
17https://github.com/dmlc/dgl/tree/master/examples/pytorch/ogb/

ogbn-arxiv
18https://ogb.stanford.edu/docs/nodeprop/
19https://github.com/pytorch/torchtitan

27

https://cseweb.ucsd.edu/~weijian/static/datasets/celeba/
https://github.com/dmlc/dgl/tree/master/examples/pytorch/ogb/ogbn-arxiv
https://github.com/dmlc/dgl/tree/master/examples/pytorch/ogb/ogbn-arxiv
https://ogb.stanford.edu/docs/nodeprop/
https://github.com/pytorch/torchtitan

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

4 y = []
5 for i in range(n_classes):
6 center = np.random.rand(input_dim) * 10 # Random class center
7 class_samples = np.random.randn(n_samples_per_class, input_dim) *

0.5 + center # Add some noise
8 X.append(class_samples)
9 y.extend([i] * n_samples_per_class)

10

11 X = np.vstack(X) # Combine all class samples
12 y = np.array(y) # Convert labels to a NumPy array
13 return X, y

Configurations for Figure 4. For each dense sub-block Hl, l = 1, 2, 3, we use random positive
definite matrices. We fix the choose the eigenvalues of each Hl as follows: for l = 1, we independently
sample from {1,2,3} for 30 times; for l = 2, we repeat this procedure for {99,100,101}; for l = 3,
we repeat this procedure for {4998 ,4999, 5000}. For the single (blockwise) learning rate method,
we use GD with optimal constant learning rate 2/(L+ µ), where L, µ are the largest and smallest
eigenvalue of the (blockwise) Hessian. We use Adam with β1 = 0. This helps us focus on the effect
of coordinatewise learning rate in Adam. We also set β2 = 1 to the time-varying learning rate. This
is necessary because, for any β2 < 1, Adam with constant learning rate will oscillate on quadratic
functions. This is theoretically proved in (Da Silva & Gazeau, 2020, Proposition 12, Figure 1) and
empirically observed in (Zhang et al., 2024, Section 3.3).

Configurations for Figure 5. To generate a positive definite matrix Hb, we first uniformly sample
d(d−1)

2 independent angles θi,j from the interval [−π
2 ,

π
2], where i < j. Starting with the identity

matrix, we perform a rotation of the i-th and j-th rows by the angle θi,j for each sampled pair. Through
d(d−1)

2 rotation operations, we obtain the orthogonal matrix Q. We define Λ = diag(κ, 1, . . . , 1), and
the matrix Hb is generated using the expression Hb = QΛQT . The python code for Hb generation is
listed as follows:

1 def generate_Hb(theta, kappa, d):
2 Q = np.eye(d)
3 for i in range(d):
4 for j in range(i+1,d):
5 P = np.eye(d)
6 P[i,i] = math.cos(theta[i,j])
7 P[i,j] = math.sin(theta[i,j])
8 P[j,i] = -math.sin(theta[i,j])
9 P[j,j] = math.cos(theta[i,j])

10 Q = P @ Q
11 Lambda = np.eye(d)
12 Lambda[0,0] = kappa
13 return Q @ Lambda @ Q.transpose()

We note that as θ approaches 0, the diagonal-over-off-diagonal ratio of the matrix Q decreases. For
the sampled values of θ, we utilize Rθ to produce Hb with varying ratios, where R ∈ { k

50 |k =
0, 1, . . . , 50}. For each matrix, we sample 100 initial points from the Xavier initialization distribution
to compute the resulting κ of Adam algorithm. For each pair of d and κ, we sample 40 different θ
values. By averaging the results obtained, we plot the Figure 5.

Configurations for Figure 7. We use the nanoGPT codebase and Openwebtext dataset. We
consider a 1-layer Transfomer with n_emb = 16, n_head = 4, and the width (i.e., the number of output
neuron) of mlp.fc_1 equals 32.

Throughput Comparison 2. The results on throughput are tested on 2× A800-80GB GPUs. We
did not turn on CPU offload. We report the throughput from the summary file of the Wandb log.

28

	Introduction
	Method
	Motivations and Observations
	Proposed Method: Adam-mini
	Principle for the Partition Strategy
	Some Characteristics of Adam-mini and Discussions

	Experiments
	Pre-training
	Supervised Fine-tuning and RLHF
	Scaling Laws of Adam-mini
	Detailed Comparison with Adafactor

	Concluding Remarks
	Related works
	The Complete Form of Adam-mini
	More Experimental Results
	More Results for Motivation
	Ablation Studies on the Design of Adam-mini
	More Results on the Scaling Law Experiments
	Non-LLM Tasks
	More Discussions on the Partition Strategies of Value
	Detailed Comparison with Adafactor
	Detailed Comparison with Lion
	Sample Responses from LLMs trained by Adam-mini

	Some Preliminary Results
	Preliminaries on Adam, AdamW and LAMB
	Preliminary results in zhang2024transformers

	Experimental Details
	Training configurations for Section 3
	Detailed Setup for Other Experiments

