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ABSTRACT

We propose Adam-mini, an optimizer that achieves on-par or better performance
than AdamW with 50% less memory footprint. Adam-mini reduces memory by
cutting down the learning rate resources in Adam (i.e., 1/

√
v). By delving into the

Hessian structure of neural nets, we find Adam’s v might not function at its full
potential as effectively as we expected. We find that ≥ 99.9% of these learning
rates in v could be harmlessly removed if we (1) carefully partition the parameters
into blocks following our proposed principle on Hessian structure; (2) assign a
single but good learning rate to each parameter block. We then provide one simple
way to find good learning rates and propose Adam-mini. Empirically, we verify that
Adam-mini performs on par or better than AdamW on various language models
sized from 39M to 13B for pre-training, supervised fine-tuning, and RLHF. The
reduced memory footprint of Adam-mini also alleviates communication overheads
among GPUs, thereby increasing throughput. For instance, Adam-mini achieves
49.6% higher throughput than AdamW when pre-training Llama 2-7B on 2×
A800-80GB GPUs, which saves 33% wall-clock time for pre-training 1.

1 INTRODUCTION

Adam (Kingma & Ba, 2014) has become the de-facto optimizer for training large language models
(LLMs) (e.g., (Vaswani et al., 2017; Achiam et al., 2023; Touvron et al., 2023; Team et al., 2023)).
Despite its superior performance, Adam is expensive to use. Specifically, Adam requires the memory
for its optimizer states: the first-order momentum m, and the second-order momentum v. These
in total take at least 2× the memory of the model size 2. This memory consumption has become
a major burden in LLM training. For instance, to train a 7B model, Adam alone requires about 56
GB for m and v, and with the gradients included, a total of 86 GB is needed. This is expensive even
for cutting-edge graphics cards (e.g., A100-80GB). To support training, CPU-offload and optimizer
state sharding (Rajbhandari et al., 2020) must be used in practice, which unfortunately increases the
latency and slows down the training (Rajbhandari et al., 2021).

It is intriguing to design effective optimizers that require less memory. First, it lowers the threshold
of training LLMs and encourages participation from more diverse researchers, especially those with
limited GPU resources. Second, it requires fewer GPUs to train a model with a desired size, leading
to substantial savings in both cost and energy. Third, it can ease the burden of CPU offloading and
model sharding, which in turn, can enhance the throughput and accelerate the training process.

It is challenging to modify Adam without sacrificing its performance. One primary reason is that we
still lack understanding of the role of Adam’s m and v (Zhang et al., 2020; Kunstner et al., 2023).
It remains uncertain which components in Adam are indispensable for superior performance, and
which components could be re-designed or improved. One notable attempt is Adafactor (Shazeer
& Stern, 2018), which cuts down memory by low-rank factorization on v. However, we find that
Adafactor is not easy to tune and often performs worse than Adam (see evidence in (Luo et al., 2023)
and Section 3.4). One possible reason is that the current v in Adam is crucial and cannot be simplified.

∗: Equal contribution. †: Correspondence author.
1Our implementation of Adam-mini is available at https://github.com/zyushun/Adam-mini
2We restate the update rules of Adam and AdamW (Loshchilov & Hutter, 2017) in Appendix E.1.
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Figure 1: Results for Llama 2-7B pre-training. (a) Adam-mini takes less memory and can reach higher
throughput (# tokens per second). The throughput is tested on 2× A800-80GB GPUs. (b, c) Adam-mini
performs on-par with AdamW, but takes 33% less time to process the same # tokens.

This is possible as most existing Adam variants that attempt to modify v to varying extents have
been reported to perform worse than Adam (Orabona, 2020). Another possible reason is that there
is potential to cut down v, but Adafactor does not use the most suitable way: matrix factorization
is a generic approach that could be applied broadly, but it does not leverage much problem-specific
structure, thus it does not work well on specific neural-net tasks.

Figure 2: An illustration of Adam-mini. Adam-mini
assigns learning rates (lrs) by Hessian structure. It uses
more lrs than SGD but fewer than Adam.

In this work, we find it is possible to signifi-
cantly reduce the usage of v. Currently, Adam
assigns an individual learning rate for each pa-
rameter, i.e., i-th parameter receives learning
rate η√

vi
, where vi is the i-th component of v.

For a billion-parameter model, Adam requires
billions of learning rates. We argue that it is
possible to achieve on-par or better performance
with much fewer learning rates. We first recall
a classical result that the Hessian of neural nets
is near-block-diagonal with several dense princi-
ple sub-blocks (Collobert, 2004). We then find that, for each of these dense sub-blocks, there exists
a single high-quality learning rate that outperforms Adam, provided that we have enough resources
to search it out. Since the number of dense sub-blocks is much fewer than the number of parameters,
our findings imply that it is possible to achieve good performance with much fewer learning rates.
The remaining question is how to find them efficiently.

We then propose a cheap and simple way to find good learning rates that are sufficient to perform
on-par or better than Adam. We introduce the proposed design principle here: we first partition
the gradient vector into B sub-vectors according to the dense Hessian sub-blocks, and call it gb for
b ∈ {1, · · · , B}. For each gb, we calculate the quantity below.

vb = (1− β2) ∗ mean(gb ⊙ gb) + β2 ∗ vb, b = 1, · · ·B.

We then use η/
√
vb as the learning rate for the parameters in the block associated with gb. Such

design changes almost all Adam’s v to a negligible amount of scalars and thus reduces the memory.
We call the corresponding method Adam-mini. We provide a simple illustration in Figure 2 and
relegate the complete form later in Algorithm 2. We summarize our main contribution as follows.

• New optimizer. We propose a new optimizer called Adam-mini. First, Adam-mini partitions
the model parameters based on the principle we established upon the Hessian structure. Then,
it chooses a single learning rate for each block using the average of Adam’s v in that block.
Adam-mini has the following advantages.

– Lightweightness: By design, Adam-mini largely reduces the number of learning rates used in
Adam. For mainstream LLMs, Adam-mini could cut down ≥ 99.9% proportion of Adam’s v,
which saves 50% of the memory cost of Adam.

– Effectiveness: Despite the memory cut down, we empirically verify that Adam-mini performs
on par or even better than AdamW on various language models sized from 39M to 13B,
including pre-training, supervised fine-tuning (SFT), and reinforcement learning from human
feedback (RLHF). Adam-mini also performs similarly to Adam on non-LLM tasks such as
training diffusion models, vision models, and graph neural networks.

– Efficiency: Adam-mini can reach higher throughput than AdamW. We observe that Adam-
mini reaches 49.6% higher throughput of AdamW when pre-training Llama 2-7B on 2×
A800-80GB, which saves 33.1% wall-clock time for pre-training. The efficiency comes from
two factors. First, Adam-mini does not introduce extra computation in per-step updates.
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Second, the memory cut-down allows larger batch sizes per GPU, and at the same time, it
eases the burden of communication among GPUs, which is usually a major overhead.

• Generic partition principle. A key component in Adam-mini is the strategy for parameter partition.
We propose to partition parameters based on the smallest dense sub-block in Hessian. This principle
can apply to generic problems with block diagonal Hessian: we find that more learning rates do not
necessarily bring extra gain for these problems. In particular, for the problem associated with each
dense sub-block, a single (but good) learning rate suffices to bring better performance.

• Hessian structure and partition principle of Transformers. We empirically apply the above
principle to Transformers. We find that Transformer Hessian’s smallest dense blocks are: (1)
query, key by heads; (2) value, attn.proj and mlp by output neurons; (3) embed and
output by tokens. We emphasize that our Hessian-based partition principle is crucial, as naive or
default partitions (e.g. partitioning by layers) would cause training instability on LLMs.

2 METHOD

2.1 MOTIVATIONS AND OBSERVATIONS

Now we discuss our observations that motivate the design of Adam-mini. 3 We start by investigating
the role of Adam’s v and explore possibilities for improvement. In Adam, v provides an individual
learning rate for each parameter, i.e., i-th parameter receives the learning rate η√

vi
, where vi is the

i-th component of v. Very recently, Zhang et al. (2024) pointed out that such design is crucial for
modern architectures such as Transformers. This is because these models often exhibit Hessian-block
heterogeneity, i.e., the Hessian of different parameter blocks have dramatically different eigenvalue
distributions (We restate their findings in Appendix E.2). This phenomenon suggests that different
parameter blocks need different learning rates. This can be provided by Adam’s v.

The findings in (Zhang et al., 2024) suggest that it is necessary to use a different learning rate for
each block. Nonetheless, Adam does much more than that: it assigns an individual learning rate not
just for each block, but for each parameter. Note that the number of parameters is much larger than
the number of blocks. This begs the question:

(Q1) Is it necessary to use a customized learning rate for each parameter?
If not, how much can we save?

(a) Hessian of a MLP
(Collobert, 2004)
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(c) Hessian of a MLP
at 50% step
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(d) Hessian of a MLP
at 100% step

Figure 3: The near-block-diagonal Hessian structure of neural nets. (a) is the Hessian of an MLP after 1
training step reported in (Collobert, 2004). (b,c,d): the Hessians of a 1-hidden-layer MLP on CIFAR-100. The
near-block-diagonal structure maintains throughout training, where each block corresponds to one neuron.

To answer (Q1), we delve into the Hessian structures of neural networks. First, we recall an important
(but often overlooked) result: the Hessian of neural nets is near-block-diagonal. This is an old result
that has been reported for two decades; see (Collobert, 2004, Section 7). The authors also provided
theoretical explanations. We restate their analysis in Appendix C. We now provide some case studies.

Case study I: random quadratic problems. With the above observation in mind, we now explore
(Q1) on generic optimization problems with block-diagonal Hessian. We consider the random
quadratic minimization problem minw

1
2w

⊤Hw where the Hessian H is a random positive definite
(PD) matrix and is visualized in Figure 4 (a). We compare the coordinate-wise learning-rate method,
i.e., Adam, with the single-learning-rate method, i.e., gradient descent (GD). We choose quadratic
minimization because the optimal learning rate has a close form. We have the following findings.

• (1): as shown in Figure 4 (a) and (b), Adam outperforms the optimal single-learning-rate method.
This is expected since Adam deploys different learning rates to different parameters.

3All experimental details in Section 2 are shown in Appendix F.2.
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(a) Hessian matrix
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Figure 4: (a): The Hessian of a three-block random quadratic problem. (b): Training curves for the problem
associated with the full Hessian in (a). The optimal single (blockwise) learning rate is chosen based on the
full (blockwise) Hessian in (a). (c): The 1st dense Hessian sub-blocks in (a). (d): Training curves for the new
problem associated with the Hessian in (c).

• (2): as shown in Figure 4 (c) and (d), we consider a new problem whose Hessian is a dense
sub-block of (a). We consider the optimal single learning-rate method for this new problem and find
it outperforms Adam, even though Adam assigns much more learning rates. Similar phenomena
apply to all the three sub-blocks of (a).

• (3): If we collect these optimal learning rates in (2) and apply them to a “blockwise” version of
GD, it would be faster than Adam on the original problem (the green line in Figure 4 (b)).

In summary, for generic problems with block-diagonal Hessian, we find that more learning rates
do not necessarily bring extra gain. In particular, for each dense sub-block, a single (but good)
learning rate suffices to bring better performance than using tens or hundreds more.

More discussions on case study I. Why would this happen? We provide one possible explanation
from a linear algebra perspective. Adam can be viewed as a diagonal preconditioned method , i.e., at
the t-th step:

wt+1 = wt − ηtDtmt, (1)

where Dt = Diag(1/
√
vt) is a diagonal matrix, mt is the 1st-order momentum, wt and ηt are model

parameters and learning rate. However, Adam may not be an optimal preconditioner and thus cannot
effectively reduce the condition number of the dense sub-matrix. In the field of optimization, the
effectiveness of a diagonal preconditioner D is often measured by “how much is κ(DH) reduced
over κ(H)”, where H usually refers to the Hessian matrix and κ(·) is the condition number (smaller
is better). Unfortunately, there is no guarantee of κ(DH) ≤ κ(H) and this inequality often requires
strict assumptions on both D and H . For instance, κ(DH) would be small if H is close to diagonal
and D is a cleverly designed compressor of H (Forsythe & Straus, 1955; Young, 1954; Sun & Ye,
2021; Qu et al., 2022).

Here, we numerically explore the effectiveness of Adam’s preconditioner within each dense Hessian
sub-block. We generate a random dense PD matrix Hb ∈ Rd×d and use it as a proxy for the dense
Hessian sub-block of neural nets in Figure 3. We define DAdam = Diag(1/

√
v), where v = g ⊙ g,

g = Hbx ∈ Rd, and each entry xi ∼ N (0, 1/
√
d) follows Xavier initialization. We explore the

interplay between the following two metrics:

τ =

∑
i |Hb,i,i|∑

i,j |Hb,i,j |
, r =

κ(DAdamHb)

κ(Hb)
, (2)

where τ ∈ [0, 1] is the “diagonal-over-off-diagonal ratio”, and we use it to measure how dense Hb is
(Hb is pure diagonal when τ = 1). r ≥ 0 measures the effectiveness of Adam’s preconditioner DAdam
when operating on the Hessian-block Hb (the smaller the better). We investigate the change of r when
changing the structure of Hb, including changing τ , dimension d, and also κ(Hb). We emphasize
that for a fixed d or κ(Hb), we change τ by only rotating the eigenvectors, but not changing the
eigenvalues of Hb. This ensures τ is the only changing factor in the experiments.

We summarize the key findings in Figure 5: for Hb with most dimension d and κ(Hb), r decreases as
τ → 1. That is, DAdam is effective when Hb is close to diagonal, and DAdam is not so effective when
Hb is dense. This aligns with the convergence rates in Figure 4. It is intriguing to provide a lower
bound on κ(DAdamHb) to ground the observation in Figure 5, and we are not aware of any existing
lower bound of this kind. Note that it is rather difficult to characterize κ(DAdamH), partially because
the extreme eigenvalues are neither sub-additive nor sub-multiplicative (Kittaneh, 2006). We leave it
as an important but challenging future direction. To summarize, for the dense Hessian-blocks, it is
possible to outperform Adam with only one good learning rate.

Case study II: Transformers. The above analysis suggests there is room to cut down the number
of learning rates. We also observe similar phenomena in Transformers. We consider a 4-layer
Transformer and under the PyTorch default partition, and we randomly choose one parameter block as
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(a) r v.s. dimension d
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(b) r v.s. dimension κ(Hb)
Figure 5: The effectiveness of Adam’s preconditioner DAdam on different matrix structures of Hb. (a): for most
dimension d, r is large when τ is small ( r and τ are defined in Eq. (2)). This indicates that Adam might not be
so effective when Hb is dense. We fix κ(Hb) = 500 here. (b): We use the same setups as (a), except that we fix
the dimension d = 50 and change the x-axis to κ(Hb).

the “left-out” block and change the coordinate-wise learning rate to a single-learning rate counter-part.
We use Adam for the rest of the blocks. We grid-search the learning rate for the left-out block and
apply the cosine decay schedule like the rest of the blocks. We report the best result and call this
method “Adam (leave-one-out)”. Figure 6 shows that Adam (leave-one-out) can achieve similar or
better performance than Adam. A similar phenomenon is also observed when we randomly leave out
up to three blocks and search three learning rates. We do not explore the possibility of leaving more
blocks out since the cost of grid search grows exponentially.

To summarize this section, we find that it is possible to reach similar or better performance with
much fewer learning rates than Adam. The remaining issue is how to find them without grid-search.
In the next part, we propose a simple and effective method called Adam-mini, which could bring
comparable or even better performance than Adam, but with 99.9% fewer learning rates.

2.2 PROPOSED METHOD: ADAM-MINI

We now introduce Adam-mini. We will first state the “general principled form” of Adam-mini
and then introduce the “the realization” of Adam-mini on specific architectures. In this section,
we present the general form of Adam-mini in Algorithm 1. Following this general principled form,
Adam-mini will have different realizations on different architectures, and the concrete example on
Transformers is shown in Appendix B. As shown in Algorithm 1, Adam-mini contains two steps.

Algorithm 1 Adam-mini (General form)

1: Input weight-decay coefficient λ and
current step t

2: Partition params into param_blocks
by Principle 1 in Section 2.3

3: for param in param_blocks do
4: g = param.grad
5: param = param - ηt ∗ λ∗ param
6: m = (1− β1) ∗ g+ β1 ∗ m
7: m̂ = m

1−βt
1

8: v = (1−β2)∗mean(g⊙g)+β2 ∗v
9: v̂ = v

1−βt
2

10: param = param - ηt * m̂√
v̂+ϵ

11: end for

Step 1 Partition the model parameters into
blocks by Hessian structure. We discuss Prin-
ciple 1 later in Section 2.3. For different
architectures, the principle will be realized
in different forms; see Algorithm 3: “Parti-
tion for non-Transformers”. and Algorithm
3: “Partition for Transformers”.

Step 2. For each parameter block, we use
a single learning rate. To efficiently choose
a suitable learning rate in each block, Adam-
mini simply replaces g⊙g in vanilla Adam by
its mean value. We adopt the moving average
on these mean values as in Adam.

A simple example of Adam-mini. We use a simple example to illustrate the key design of Adam-
mini. For a problem with 5 parameters w ∈ R5, Adam and Adam-mini both perform w = w−u⊙m,
where m is the 1st-order momentum and u has different forms as follows:

• For Adam: uAdam =
(

η√
v1
, η√

v2
, η√

v3
, η√

v4
, η√

v5

)
.

• For Adam-mini: suppose the partition is (1, 2, 3) and (4, 5) then

umini =
(

η√
(v1+v2+v3)/3

, η√
(v1+v2+v3)/3

, η√
(v1+v2+v3)/3

, η√
(v4+v5)/2

, η√
(v4+v5)/2

)
.

Note that the number of effective elements umini equals the number of blocks, which could be
significantly smaller than that of uAdam, which equals the number of parameters. For LLMs, this will
free ≥ 99.9% elements in v.
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Figure 6: (a) (b) (c) Adam (leave-x-out) can reach a similar or better performance than Adam for all randomly
picked left-out blocks. x = 1, 2, 3. (d) The performance gap between Adam and Adam (leave-one-out) for all
possible blocks. We find Adam (leave-one-out) always performs on par with Adam, and for most blocks, Adam
(leave-one-out) performs better. It seems possible to perform well with much fewer learning rates than Adam.

2.3 PRINCIPLE FOR THE PARTITION STRATEGY

We now discuss how to choose the parameter partition for Adam-mini. A straightforward way is to
use PyTorch default partition. Unfortunately, we find that the PyTorch default partition does not work
well on larger-scaled tasks. In particular, we find that Adam-mini encounters training instability on
1B models (see Figure 7 (i)). We suspect this is because the default PyTorch partition did not fully
capture the Hessian structure. We propose a general principle in Principle 1 below.

Principle 1: We should partition parameters into blocks, such that each parameter block is associated
with the smallest dense sub-block in Hessian.

Principle 1 comes from the analysis in Section 2.1: it is possible to harmlessly reduce the number of
Adam’s learning rates within each dense Hessian block. However, if the partition is too coarse and
violates Principle 1, we might accidentally remove some crucial learning rates and oversimplify the
problem, causing training failure. It is important to follow Principle 1 since it is necessary to use (at
least) one distinct learning rate for each Hessian block (as evident in Appendix E.2).

Does the PyTorch default partition follow Principle 1? To find out, we explore the Hessian of a small
Transformer as in Figure 7. Under the default PyTorch partition, we compute the Hessian for each
parameter block after 1 training step. We find four classes of Hessian sub-blocks.

• Class 1: query and key. The Hessian of query and key have near-block-diagonal structures. .
The number of blocks equals the number of heads.

• Class 2: attn.proj and MLPs. The Hessian of attn.proj and MLPs have block-diagonal
structures. The number of blocks equals the number of output neurons.

• Class 3: value. For value, the structure of Hessian seems less clear. It seems to have the
hint of 16 diagonal blocks (16 is the number of output neurons), but the pattern is less obvious.
This Hessian structure is significantly different from that of query and key, although they all
consist of four heads. The Hessian entries of value are also about 106 larger than those of query
and key 4. One possible reason is that value is positioned outside the softmax operator in the
self-attention design, while query and key are not.

• Class 4: embed and output. For these two layers, the Hessian sub-block has a near-block-
diagonal structure and the number of blocks equals the number of tokens.

Based on the above findings, we find that the PyTorch default partition is indeed not the best fit for
Transformers. By Principle 1, query and key should be further partitioned by heads; value,
attn.proj, and MLPs should be partitioned by output neurons; embed and output should be
partitioned by tokens. As for value, the Hessian shows the hint of 16 diagonal blocks (where 16 is
the number of output neurons), but the pattern is less clear. Our experiments show that “partition
value by output neurons” works well in general, yet there are also some special cases where it is
better to “treat value as a whole” (see discussions in Appendix D.6). By default, we will partition
value by output neurons.

We then introduce the resulting Algorithm 3: “Partition for Transformers” in Appendix B. As shown
in Figure 7 (i). This strategy indeed stabilizes the training and boosts the performance.

2.4 SOME CHARACTERISTICS OF ADAM-MINI AND DISCUSSIONS

Memory cut down. Adam-mini reduces the number of learning rates from the number of model
parameters to the number of total number of blocks by our partition strategies. As a result, Adam-mini
cuts down more than 99.9% of Adam’s v, which saves 50% of Adam’s memory.

4This might be one source of the heterogeneity of Hessian eigenvalues as reported by (Zhang et al., 2024).
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Figure 7: (a-h): The Hessian of different parameter blocks in a small Transformer at 1% training step. Here,
neuron refers to the “output neuron". We find that these Hessian sub-blocks have near-block-diagonal structure
and consists of smaller dense matrices. Different parameter blocks have different numbers of small dense
matrices. (i) Training curves on Llama 2-1B. When using the PyTorch default partition, Adam-mini could suffer
loss spikes. The spike disappears when we use the partition strategy in Algorithm 3.

Table 1: Memory cost of AdamW v.s. Adam-mini.
Calculation is based on float32, which is a standard
choice for optimizer states.

Model Optimizer Memory (GB)
GPT-2-1.5B AdamW 12.48
GPT-2-1.5B Adam-mini 6.24 (50% ↓)
Llama 2-1B AdamW 8.80
Llama 2-1B Adam-mini 4.40 (50% ↓)
Llama 2-7B AdamW 53.92
Llama 2-7B Adam-mini 26.96 (50% ↓)
Llama 3-8B AdamW 64.24
Llama 3-8B Adam-mini 32.12 (50% ↓)
Llama 2-13B AdamW 104.16
Llama 2-13B Adam-mini 52.08 (50% ↓)

Table 2: Throughput (↑) test on 2× A800-80GB GPUs
for Llama 2-7B pre-training. ✗means out of memory.
GPU hours (↓) to pre-train Llama 2-7B with the optimal
token amount by Chinchila’s law.

Optimizer bs_per_GPU total_bs Throughput (↑)
Adam-mini 4 256 5572.19 (↑ 49.6%)

AdamW 2 256 ✗
AdamW 1 256 3725.59

Optimizer # Tokens (B) GPU hours (h) (↓)
AdamW 1 74.56

Adam-mini 1 49.85 (↓ 33.1%)
AdamW 70 5219.16

Adam-mini 70 3489.55 (↓ 33.1%)
AdamW 140 10438.32

Adam-mini 140 6979.10 (↓ 33.1%)

Higher throughput. Adam-mini can reach a higher throughput than AdamW, especially under limited
GPU resources. There are two reasons. First, Adam-mini does not introduce extra computation in
its update rules. The averaging operation in Algorithm 1 incurs negligible cost and it significantly
reduces the number of vector-square-root and vector-division operations in AdamW. Second, thanks
to the memory cut-down, Adam-mini can support larger batch sizes per GPU. It also reduces the
communication among GPUs, which is known to be a major overhead (Rajbhandari et al., 2021).
We report evidence in Table 2. When pre-training Llama 2-7B on 2× A800-80GB GPUs, we find
Adam-mini could reach 49.6% higher throughput than AdamW. This translates to 33.1% reduction
of wall-clock time on processing the same amount of tokens for pre-training.

Why using mean(v) as learning rates. Due to limited space, we move the discussions to Appendix C.

Has room to improve. Adam-mini designs the learning rate for each dense Hessian sub-block using
the average of Adam’s v in that block. Such a design achieves cheap computation, but it might not be

7



Published as a conference paper at ICLR 2025

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Tokens (billion)

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

Va
lid

at
io

n 
Lo

ss

AdamW
Adam-mini
Adam-mini (PyTorch default partition)
Adafactor
SM3
LAMB

(a) GPT-2-125M

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Tokens (billion)

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

Va
lid

at
io

n 
Lo

ss

AdamW-330M
AdamW-1.5B
Adam-mini-330M
Adam-mini-1.5B

(b) GPT-2-330M and 1.5B
Figure 8: For GPT-2 series pre-training, Adam-mini performs similarly to AdamW with 50% less memory,
while other methods perform worse.

optimal. We believe there is great room to improve the learning rate design. As shown in Figure 4,
we can reach much faster convergence if we utilize more information in the dense block to design
the learning rate (e.g., using eigenvalues of each block), However, such a design requires expensive
computation. We leave it as an important future direction.

3 EXPERIMENTS
We now verify the efficacy of Adam-mini on two types of neural-net tasks: (1) LLM tasks including
pre-training, supervised fine-tuning (SFT), and reinforcement learning from human feedback (RLHF).
(2) Non-LLM tasks including vision, graph, and diffusion model training. Due to the limited space,
we primarily focus on LLM tasks in this section, and we relegate the non-LLM tasks to Appendix
D.5. All LLM experiments are conducted on four NVIDIA A800-80GB GPUs and the rest are
conducted on four V100 GPUs. All the experimental details are explained in Appendix F.1.

3.1 PRE-TRAINING

Setups. We pre-train LLMs including GPT-2 series and Llama series. We train these models on
mainstream English Corpus from scratch. In particular, We train GPT-2 (Radford et al., 2019) series
(125M to 1.5B) on Openwebtext (Gokaslan et al., 2019). We train Llama series (20M to 13B)
(Touvron et al., 2023) on C4 (Raffel et al., 2020). We compare Adam-mini with AdamW (Loshchilov
& Hutter, 2017) as well as popular memory-efficient methods including Adafactor (Shazeer & Stern,
2018), CAME (Luo et al., 2023), and SM3 (Anil et al., 2019). For Adafactor and SM3, we incorporate
momentum with β1 = 0.9 to ensure a fair comparison with other methods. We tune the learning rate
for all methods, using the same tuning budget for each, and report the best performance.

GPT-2 series. Figure 8 shows the results for GPT-2 series pre-training. We find that Adam-mini
performs similarly to AdamW with 50% less memory, while other methods perform worse. In Figure
8 (a), we run Adam-mini (PyTorch default partition), which partition parameters by PyTorch default
partition. We find that Adam-mini (PyTorch default partition) performs poorly. We stop the trial since
it shows clear unstable behavior. In Figure 9, we further present the training loss curves. We find that
the loss curves of Adam-mini closely resemble those of AdamW.
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Figure 9: (a): The training loss curves of Adam-mini closely resemble those of AdamW. (b): The trajectory of
Adam-mini stays close to the trajectory of AdamW (in terms of the ℓ-2 distance of model checkpoints).

Llama series. Figure 10 shows the results for pre-training Llama series. We also train Llama 2-7B as
shown in Figure 1 (c) in Section 1. We find that Adam-mini performs on par with AdamW, while
other methods do not. Further, Adam-mini’s loss curves closely resemble the curves by AdamW.

Trajectory comparison. On a small Transformer, Adam-mini generates similar trajectories to that of
AdamW, while other methods cannot. This can be seen in Figure 9 (b) and the detailed description is
in Appendix F. This might be because Adam-mini makes fewer modifications over AdamW.

Sensitivity analysis. On GPT-2-125M pre-training task, we test the sensitivity of Adam-mini to
hyperparameters. We report the validation loss after training with 2.5B tokens (by Chinchilla’s law).
As shown in Figure 12 (c), Adam-mini seems not overly sensitive to hyperparameters.
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Figure 10: (a, b): Loss curves of pre-training Llama series from 1B to 13B. Adam-mini performs on par
or better than AdamW with 50% less memory, while other methods perform worse. Further, loss curves of
Adam-mini closely resemble the curves by AdamW.
3.2 SCALING LAWS OF ADAM-MINI

We now show the efficacy of Adam-mini through scaling law experiments. We use C4 dataset to
pre-train the Llama 2 architecture from 39M to 1B. For the model with size nparam, we train the
model with about 20 ∗ nparam tokens, which is suggested to be the optimal amount by Chinchilla’s
law (Hoffmann et al., 2022). The largest-scaled experiment we conducted is Llama 2-1B pre-training
with 26.2B tokens, which takes about 170 GPU hours on 4× A800-80GB GPUs. The total running
time for the scaling law experiments is about 300 GPU hours.
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Figure 11: (a, b): Scaling laws of Adam-mini. We pre-train Llama 2 architectures by Chinchilla’s law. For all
models sized from 39M to 1B, Adam-mini’s loss curves are consistently similar to AdamW, but Adam-mini uses
50% less memory. Further, as shown in (b), Adam-mini reaches a lower final loss than AdamW for all models.
The fitted lines in (b) suggest that Adam-mini can be scaled up to larger models (if the scaling law holds).
As shown in Figure 11, Adam-mini’s loss curves are consistently similar to AdamW. We also
present the final validation perplexity and find that Adam-mini reaches a slightly lower perplexity
than AdamW for all models (see Figure 11 (b), also see Table 4 in Appendix D). The fitted lines in
Figure 11 (b) suggest that Adam-mini can be scaled up to larger models (if the scaling law holds).

Another advantage of Adam-mini is its ability to reduce computational costs for scaling law
experiments. Scaling law experiments are typically used to predict the optimal configurations for
large-scale models by fitting the performance of smaller-scale proxy models. To accelerate the
development of large-scale models, it is crucial to minimize costs during the fitting process (Hägele
et al., 2024). Adam-mini achieves this by delivering the same scaling results while using significantly
less memory and time cost (e.g., 33% less GPU hours, as shown in Figure 1).

3.3 SUPERVISED FINE-TUNING AND RLHF
We now test Adam-mini on SFT and RLHF. We use the Llama 2-7B pretrained model (Touvron et al.,
2023) for our study. We use the ultrafeedback dataset and implement the RLHF workflow from
(Ouyang et al., 2022). We use ReMax (Li et al., 2023), a memory-efficient alternative to PPO
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Figure 12: (a, b): SFT, and RLHF when aligning Llama 2-7B. Adam-mini reaches better performance (smaller
perplexity, higher reward) than AdamW with 50% less memory. (c) Sensitivity analysis of Adam-mini on
GPT-2-125M pre-training (by Chinchilla’s law). Adam-mini seems not overly sensitive to hyperparameters.
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Figure 13: (a, b): Training curves of Adafactor & Adafactor-Zhai-version on Llama 2-20M & Llama 2-1B
pre-training. We find these two methods consistently underperform Adam-mini. (c): On Llama 2-1B, Adam-mini
achieves 40% higher throughput than Adafactor (tested on 2× A800-80GB GPUs).

(Schulman et al., 2017), to optimize the preference reward. As shown in Figure 12, Adam-mini
performs on par or better than AdamW. Adam-mini also achieves better alignment performance on
MT-Bench using GPT-4 as a judge. The results are shown later in Table 5 in Appendix D.4.

3.4 DETAILED COMPARISON WITH ADAFACTOR

We now carefully compare Adam-mini and the popular memory-efficient optimizer Adafactor.
Besides the original Adafactor, we also consider a modified version in (Zhai et al., 2022), which we
call “Adafactor-Zhai-version”. For both versions, we use momentum with β1 = 0.9.

We first conduct learning rate grid-search on Llama 2-20M and train it following Chinchilla’s law.
As shown in Figure 13 (a), we find that Adafactor-Zhai-version improves over the original version,
but both versions of Adafactor are still consistently worse than Adam-mini. We further sweep over
other hyperparameters including (1) β2 = 0.95; (2) ϵ = {10−30, 10−16, 10−8, 10−6}; (3) warm-up
steps = {1%, 2%, 3%, 4%, 5%, 10%} total steps. The results are shown in Appendix D.7. We find
that the change of hyperparameters does not significantly boost the performance of Adafactor, and
both versions still underperform Adam-mini.

We further sweep hyperparameters on Llama 2-1B. In contrast to the case of Llama 2-20M, we find
that the Adafactor-Zhai-version now suffers from training instability and the original version performs
better. Nevertheless, they still underperform Adam-mini. In Appendix D.8, we conduct a similar
hyperparameter search for Lion (Chen et al., 2024b) and we find it also underperforms Adam-mini.

About hyperparameter tuning. We acknowledge that it might be possible to improve these methods
if we spend more resources on grid search (as claimed by a recent work (Zhao et al., 2024b)).
However, based on our experience so far, it is not easy to tune these methods, and to our knowledge,
there is no much open-source guidance. Recall that there are 9 tunable hyperparameters in
Adafactor, so it is rather non-trivial to find the correct combination. In contrast, Adam-mini is much
easier to use. In all our experiments, Adam-mini performs well using the same hyperparameters as
AdamW (including learning rate, β1, β2, ϵ, etc.).

Throughput comparison. Besides the performance comparison, we further find that Adafactor
has a higher latency than Adam-mini (Figure 13 (c)). This is primarily due to two reasons. First,
Adam-mini only requires computing the mean by rows of the weight matrix, whereas Adafactor
needs to sum across both the rows and the columns. Second, the dimension of v in Adam-mini equals
the output dimension or the number of heads, which is significantly smaller than the dimension
of v in Adafactor, which equals the product of the input and output dimension. Note that similar
latency issues also apply to other variants of Adafactors such as CAME. In contrast, Adam-mini saves
computation when taking the square root of v. As such, Adam-mini reaches a higher throughput.

Summary of Section 3. Finally, we summarize three key observations from all the experiments
above. For all the models we tried, we observed that:

1. Adam-mini performs on par with AdamW with 50% less memory.

2. Adam-mini performs well using the same hyperparameters as AdamW.

3. Adam-mini’s loss curves closely resemble those of AdamW.

4 CONCLUDING REMARKS

We proposed Adam-mini, an optimizer that saves 50% memory of Adam. We remark that there
is great room to improve the design of Adam-mini: currently Adam-mini uses a simple and cost-
effective way to design a learning rate for each dense Hessian sub-block, but it might not be an
optimal way. We leave the development of stronger designs as a future direction.

10



Published as a conference paper at ICLR 2025

ACKNOWLEDGEMENT

Yushun Zhang would like to sincerely thank Less Wright, Andrew Gu, and other open-source
contributors for their invaluable support in integrating Adam-mini into the mainstream codebases. The
work of Ruoyu Sun was supported by NSFC (No. 12326608); Hetao Shenzhen-Hong Kong Science
and Technology Innovation Cooperation Zone Project (No. HZQSWS-KCCYB-2024016), together
with Tian Ding; University Development Fund UDF01001491, the Chinese University of Hong
Kong, Shenzhen; Guangdong Provincial Key Laboratory of Mathematical Foundations for Artificial
Intelligence (2023B1212010001). The work of Z.-Q. Luo was supported by the Guangdong Major
Project of Basic and Applied Basic Research (No.2023B0303000001), the Guangdong Provincial Key
Laboratory of Big Data Computing, and the National Key Research and Development Project under
grant 2022YFA1003900. The work of Tian Ding is also supported by Internal Project of Shenzhen
Research Institute of Big Data under Grant J00220240005.

BROADER IMPACT

This work designs a new algorithm to reduce the training cost for LLMs. Our algorithm can help the
community better train large AI models. However, it could be a potential threat if the AI models are
used for illegal usage.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Kwangjun Ahn, Zhiyu Zhang, Yunbum Kook, and Yan Dai. Understanding adam optimizer via online
learning of updates: Adam is ftrl in disguise. In Forty-first International Conference on Machine
Learning.

Rohan Anil, Vineet Gupta, Tomer Koren, and Yoram Singer. Memory efficient adaptive optimization.
Advances in Neural Information Processing Systems, 32, 2019.

Anonymous authors. Deconstructing what makes a good optimizer for language models.
https://openreview.net/pdf?id=zfeso8ceqr, 2024.

Pratik Chaudhari, Anna Choromanska, Stefano Soatto, Yann LeCun, Carlo Baldassi, Christian Borgs,
Jennifer Chayes, Levent Sagun, and Riccardo Zecchina. Entropy-sgd: Biasing gradient descent
into wide valleys. Journal of Statistical Mechanics: Theory and Experiment, 2019(12):124018,
2019.

Junyu Chen, Han Cai, Junsong Chen, Enze Xie, Shang Yang, Haotian Tang, Muyang Li, Yao Lu, and
Song Han. Deep compression autoencoder for efficient high-resolution diffusion models. arXiv
preprint arXiv:2410.10733, 2024a.

Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. Training deep nets with sublinear
memory cost. arXiv preprint arXiv:1604.06174, 2016.

Xiangning Chen, Chen Liang, Da Huang, Esteban Real, Kaiyuan Wang, Hieu Pham, Xuanyi Dong,
Thang Luong, Cho-Jui Hsieh, Yifeng Lu, et al. Symbolic discovery of optimization algorithms.
Advances in neural information processing systems, 36, 2024b.

Ronan Collobert. Large scale machine learning. Technical report, Université de Paris VI, 2004.

Ganqu Cui, Lifan Yuan, Ning Ding, Guanming Yao, Wei Zhu, Yuan Ni, Guotong Xie, Zhiyuan Liu,
and Maosong Sun. Ultrafeedback: Boosting language models with high-quality feedback, 2023.

André Belotto Da Silva and Maxime Gazeau. A general system of differential equations to model
first-order adaptive algorithms. The Journal of Machine Learning Research, 21(1):5072–5113,
2020.

11



Published as a conference paper at ICLR 2025

Rudrajit Das, Naman Agarwal, Sujay Sanghavi, and Inderjit S Dhillon. Towards quantifying the
preconditioning effect of adam. arXiv preprint arXiv:2402.07114, 2024.

Yann N Dauphin, Atish Agarwala, and Hossein Mobahi. Neglected hessian component explains
mysteries in sharpness regularization. arXiv preprint arXiv:2401.10809, 2024.

Aaron Defazio, Harsh Mehta, Konstantin Mishchenko, Ahmed Khaled, Ashok Cutkosky, et al. The
road less scheduled. arXiv preprint arXiv:2405.15682, 2024.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Tim Dettmers, Mike Lewis, Sam Shleifer, and Luke Zettlemoyer. 8-bit optimizers via block-wise
quantization. In International Conference on Learning Representations, 2021.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of machine learning research, 12(7), 2011.

George E Forsythe and Ernst G Straus. On best conditioned matrices. Proceedings of the American
Mathematical Society, 6(3):340–345, 1955.

Behrooz Ghorbani, Shankar Krishnan, and Ying Xiao. An investigation into neural net optimization
via hessian eigenvalue density. In International Conference on Machine Learning, pp. 2232–2241.
PMLR, 2019.

Boris Ginsburg, Patrice Castonguay, Oleksii Hrinchuk, Oleksii Kuchaiev, Vitaly Lavrukhin, Ryan
Leary, Jason Li, Huyen Nguyen, Yang Zhang, and Jonathan M Cohen. Training deep networks
with stochastic gradient normalized by layerwise adaptive second moments. 2019.

Aaron Gokaslan, Vanya Cohen, Ellie Pavlick, and Stefanie Tellex. Openwebtext corpus, 2019.

Guy Gur-Ari, Daniel A Roberts, and Ethan Dyer. Gradient descent happens in a tiny subspace. arXiv
preprint arXiv:1812.04754, 2018.

Alexander Hägele, Elie Bakouch, Atli Kosson, Loubna Ben Allal, Leandro Von Werra, and Martin
Jaggi. Scaling laws and compute-optimal training beyond fixed training durations. arXiv preprint
arXiv:2405.18392, 2024.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al.
Training compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Adam Ibrahim, Benjamin Thérien, Kshitij Gupta, Mats L Richter, Quentin Anthony, Timothée Lesort,
Eugene Belilovsky, and Irina Rish. Simple and scalable strategies to continually pre-train large
language models. arXiv preprint arXiv:2403.08763, 2024.

Kaiqi Jiang, Dhruv Malik, and Yuanzhi Li. How does adaptive optimization impact local neural
network geometry? Advances in Neural Information Processing Systems, 36, 2023.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

12



Published as a conference paper at ICLR 2025

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
In International Conference on Learning Representations, 2016.

Fuad Kittaneh. Spectral radius inequalities for hilbert space operators. Proceedings of the American
Mathematical Society, pp. 385–390, 2006.

Frederik Kunstner, Jacques Chen, Jonathan Wilder Lavington, and Mark Schmidt. Noise is not the
main factor behind the gap between sgd and adam on transformers, but sign descent might be.
arXiv preprint arXiv:2304.13960, 2023.

Frederik Kunstner, Robin Yadav, Alan Milligan, Mark Schmidt, and Alberto Bietti. Heavy-tailed
class imbalance and why adam outperforms gradient descent on language models. arXiv preprint
arXiv:2402.19449, 2024.

Bingrui Li, Jianfei Chen, and Jun Zhu. Memory efficient optimizers with 4-bit states. Advances in
Neural Information Processing Systems, 36, 2024.

Ziniu Li, Tian Xu, Yushun Zhang, Yang Yu, Ruoyu Sun, and Zhi-Quan Luo. Remax: A simple, effec-
tive, and efficient method for aligning large language models. arXiv preprint arXiv:2310.10505,
2023.

Zhenyu Liao and Michael W Mahoney. Hessian eigenspectra of more realistic nonlinear models.
Advances in Neural Information Processing Systems, 34:20104–20117, 2021.

Hong Liu, Zhiyuan Li, David Hall, Percy Liang, and Tengyu Ma. Sophia: A scalable stochastic
second-order optimizer for language model pre-training. arXiv preprint arXiv:2305.14342, 2023.

Yang Liu, Jeremy Bernstein, Markus Meister, and Yisong Yue. Learning by turning: Neural
architecture aware optimisation. In International Conference on Machine Learning, pp. 6748–
6758. PMLR, 2021a.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the
IEEE/CVF international conference on computer vision, pp. 10012–10022, 2021b.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Qijun Luo, Hengxu Yu, and Xiao Li. Badam: A memory efficient full parameter training method for
large language models. arXiv preprint arXiv:2404.02827, 2024.

Yang Luo, Xiaozhe Ren, Zangwei Zheng, Zhuo Jiang, Xin Jiang, and Yang You. Came: Confidence-
guided adaptive memory efficient optimization. arXiv preprint arXiv:2307.02047, 2023.

Kai Lv, Hang Yan, Qipeng Guo, Haijun Lv, and Xipeng Qiu. Adalomo: Low-memory optimization
with adaptive learning rate. arXiv preprint arXiv:2310.10195, 2023a.

Kai Lv, Yuqing Yang, Tengxiao Liu, Qinghui Gao, Qipeng Guo, and Xipeng Qiu. Full parameter
fine-tuning for large language models with limited resources. arXiv preprint arXiv:2306.09782,
2023b.

Sadhika Malladi, Tianyu Gao, Eshaan Nichani, Alex Damian, Jason D Lee, Danqi Chen, and Sanjeev
Arora. Fine-tuning language models with just forward passes. Advances in Neural Information
Processing Systems, 36:53038–53075, 2023.

James Martens and Roger Grosse. Optimizing neural networks with kronecker-factored approximate
curvature. In International conference on machine learning, pp. 2408–2417. PMLR, 2015.

Francesco Orabona. Neural networks (maybe) evolved to make adam the best
optimizer. 2020. URL https://parameterfree.com/2020/12/06/
neural-network-maybe-evolved-to-make-adam-the-best-optimizer/.

13

https://parameterfree.com/2020/12/06/neural-network-maybe-evolved-to-make-adam-the-best-optimizer/
https://parameterfree.com/2020/12/06/neural-network-maybe-evolved-to-make-adam-the-best-optimizer/


Published as a conference paper at ICLR 2025

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in neural information processing systems, 35:27730–
27744, 2022.

Yan Pan and Yuanzhi Li. Toward understanding why adam converges faster than sgd for transformers.
arXiv preprint arXiv:2306.00204, 2023.

Vardan Papyan. The full spectrum of deepnet hessians at scale: Dynamics with sgd training and
sample size. arXiv preprint arXiv:1811.07062, 2018.

Vardan Papyan. Measurements of three-level hierarchical structure in the outliers in the spectrum of
deepnet hessians. arXiv preprint arXiv:1901.08244, 2019.

Vardan Papyan. Traces of class/cross-class structure pervade deep learning spectra. The Journal of
Machine Learning Research, 21(1):10197–10260, 2020.

Barak A Pearlmutter. Fast exact multiplication by the hessian. Neural computation, 6(1):147–160,
1994.

William Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pp. 4195–4205, 2023.

Zhaonan Qu, Wenzhi Gao, Oliver Hinder, Yinyu Ye, and Zhengyuan Zhou. Optimal diagonal
preconditioning: Theory and practice. arXiv preprint arXiv:2209.00809, 2022.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,
Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified
text-to-text transformer. Journal of Machine Learning Research, 21(140):1–67, 2020. URL
http://jmlr.org/papers/v21/20-074.html.

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. Zero: Memory optimizations
toward training trillion parameter models. In SC20: International Conference for High Performance
Computing, Networking, Storage and Analysis, pp. 1–16. IEEE, 2020.

Samyam Rajbhandari, Olatunji Ruwase, Jeff Rasley, Shaden Smith, and Yuxiong He. Zero-infinity:
Breaking the gpu memory wall for extreme scale deep learning. In Proceedings of the international
conference for high performance computing, networking, storage and analysis, pp. 1–14, 2021.

Nicolas Roux, Pierre-Antoine Manzagol, and Yoshua Bengio. Topmoumoute online natural gradient
algorithm. Advances in neural information processing systems, 20, 2007.

Levent Sagun, Leon Bottou, and Yann LeCun. Eigenvalues of the hessian in deep learning: Singularity
and beyond. arXiv preprint arXiv:1611.07476, 2016.

Levent Sagun, Utku Evci, V Ugur Guney, Yann Dauphin, and Leon Bottou. Empirical analysis of the
hessian of over-parametrized neural networks. arXiv preprint arXiv:1706.04454, 2017.

Adepu Ravi Sankar, Yash Khasbage, Rahul Vigneswaran, and Vineeth N Balasubramanian. A deeper
look at the hessian eigenspectrum of deep neural networks and its applications to regularization. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pp. 9481–9488, 2021.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Noam Shazeer and Mitchell Stern. Adafactor: Adaptive learning rates with sublinear memory cost.
In International Conference on Machine Learning, pp. 4596–4604. PMLR, 2018.

Naichen Shi, Dawei Li, Mingyi Hong, and Ruoyu Sun. Rmsprop converges with proper hyper-
parameter. In International Conference on Learning Representations, 2020.

14

http://jmlr.org/papers/v21/20-074.html


Published as a conference paper at ICLR 2025

Ruoyu Sun and Yinyu Ye. Worst-case complexity of cyclic coordinate descent: O (nˆ 2) o (n 2) gap
with randomized version. Mathematical Programming, 185:487–520, 2021.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu, Radu
Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family of highly capable
multimodal models. arXiv preprint arXiv:2312.11805, 2023.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.
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A RELATED WORKS

Understanding of Adam. There is an active line of works trying to understand why Adam works
well (Zhang et al., 2019b; Wu et al., 2020; Shi et al., 2020; Zhang et al., 2022; Wang et al., 2022; Pan
& Li, 2023; Jiang et al., 2023; Kunstner et al., 2023; Zhang et al., 2024; Ahn et al.; Kunstner et al.,
2024). In contrast to these works, we point out that Adam’s v might not function at its full potential
as effectively as we expected: sometimes fewer learning rates can reach the same or better results
(due to the dense Hessian sub-blocks). Our findings might motivate stronger optimizers that better fit
the neural-net Hessian structure.

Similarly to in our Section 2.1, a recent work (Das et al., 2024) also explores the effectiveness of
Adam’s preconditioner DAdam from a linear algebra perspective. They focus on (a variant of) Adam
and prove the following result: First, for diagonal dominant (DD) matrix Hb when the dimension d is
less than κ1/3, their modified version of Adam exhibits a faster convergence rate compared to gradient
descent (GD); Second, for non-DD matrix, the constant terms in Adam’s upper bound can be much
larger than that of GD. Their results take a valuable and important step towards understanding DAdam.
However, these results cannot fully support our numerical findings in Figure 5. This is because they
only provide an upper bound for the non-DD case, while we need a lower bound. We note that it is
rather difficult to derive the desired lower bound, and we leave it as a future direction.

On the Hessian of Neural Nets. Hessian matrix is crucial for the behaviors of gradient methods.
There are several important attempts to study the Hessian of MLPs and CNNs (Collobert, 2004;
Roux et al., 2007; Martens & Grosse, 2015; Sagun et al., 2016; 2017; Chaudhari et al., 2019; Papyan,
2020; Wu et al., 2020; Liao & Mahoney, 2021; Papyan, 2018; 2019; Sankar et al., 2021; Gur-Ari
et al., 2018; Yao et al., 2018; Zhang et al., 2019a; Ghorbani et al., 2019; Yao et al., 2020; Dauphin
et al., 2024). Inspired by these works, we explore the Hessian structure of Transformers and connect
it to the behaviors of Adam. We then find room to improve and propose to slim down Adam into
Adam-mini.

Lightweight optimizers for general tasks. There are several attempts to reduce the memory cost
of Adam. Adafactor (Shazeer & Stern, 2018) and its variant CAME (Luo et al., 2023) conduct
nonnegative low-rank factorization over Adam’s v. SM3 (Anil et al., 2019) is a lightweight version
of AdaGrad (Duchi et al., 2011). SM3 chooses the learning rate of the i-th parameter by taking
the minimal value in a certain candidate set, and each element in the candidate set is related to the
maximal squared gradient under a predetermined cover. All these aforementioned methods could
release almost all memory for v and save about 48% of Adam’s memory. However, we find that their
performance degenerate in various experiments, while Adam-mini maintains as effective as AdamW
(as shown in Section 3).

After completing this work, we noticed two methods that share some of the ideas of Adam-mini:
BAGM (Zheng & Kwok, 2019) and NovoGrad (Ginsburg et al., 2019). Both of them use block-wise
or layer-wise adaptive learning rates to achieve robust performance and better generalization. We
summarize their key differences with Adam-mini. BAGM partitions parameters to reach minimal-
norm solutions and achieve provable robustness. In particular, their theory in Proposition 1 states that
layer-by-layer parameter partition can lead to minimum ℓ-2 norm solutions. Aligning with the theory,
they find that the PyTorch default partition (BAGM-B.1) indeed brings overall the best performance
on both CIFAR-10 and ImageNet. Although the PyTorch default partition may have benefits on
robustness, we find that it overlooks the Hessian structure and oversimplifies the training problem for
Transformers (as we discussed in Section 2.3). As a result, the PyTorch default partition will lead
to training instability in large-scale LLMs, and this is evident in our failed preliminary versions of
Adam-mini in Figure 7 and 8. We then propose a new partition strategy Algorithm 3 which partition
parameters by the smallest dense Hessian sub-blocks. For Transformers, Algorithm 3 uses different
strategies for different building blocks (e.g., partition the embedding layer by tokens, and partition
Query by heads) and we find that Algorithm 3 is necessary to stabilize the training.

As for NovoGrad, it also uses a layer-wise learning rate design (by PyTorch default partition) and
thus face the same training instability issues as BAGM. Further, NovoGrad introduces a different
design to 1st-order momentum: instead of performing weighted-sum on the past gradients, it performs
weighted-sum on “the current gradient divided by the 2nd-order momentum". Such design is largely
different from AdamW and Adam-mini. It remain unclear whether this design can work on large-scale
tasks like LLMs.
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Besides algorithmic design, our work also provides new understandings of Adam, and particularly,
how Adam behaves on generic optimization problems with near-block-diagonal Hessian. We also
provide new findings on the Hessian structure of Transformers and provide new principles for
designing better algorithms.

Other orthogonal methods. The idea of Adam-mini can be orthogonally combined with various
existing methods. We list two most relevant examples here.

1. GaLore (Zhao et al., 2024a) is a new memory-efficient optimizer for LLMs. Given a gradient
matrix g, GaLore calculates a low-rank gradient estimator ĝ and then calculates m and v based on
this ĝ. Adam-mini can potentially be combined with GaLore to reach further memory reduction on
v. The combined method, e.g., “GaLore-mini", can further reduce about 40% memory on GaLore
and about 81% on AdamW in total.5 Additionally, GaLore-mini can ease the offload burden and
enhance the throughput of GaLore, especially when training on customer-level GPUs with limited
memory.

2. Sophia (Liu et al., 2023) is another recent diagonal preconditioned optimizer. Just as Adam, Sophia
requires memory for m and v. It is possible to combine Adam-mini and Sophia to get “Sophia-
mini", which saves up to 50% of memory in Sophia. Sophia-mini can also enhance throughput and
further speed up Sophia on wall-clock time as in Table 2.

We list more potential combinations here. LoRA (Hu et al., 2021) is a memory-efficient method
for SFT tasks. This method fine-tunes the model via additive low-rank adaptors and uses Adam to
update these adaptors. Note that the Adam steps in LoRA can be replaced by Adam-mini. As a
result, Adam-mini brings better performance (Figure 22). In parallel to our work, BAdam (Luo et al.,
2024) conducts SFT in a block-coordinate-descent (BCD) fashion. This method requires repeated
Adam steps to solve the sub-problem in BCD. Similarly as in LoRA, the Adam steps in BAdam
can be replaced by Adam-mini to further reduce memory. Nero optimizer (Liu et al., 2021a) also
cuts down the memory of Adam. It removes the 1st-order momentum and uses a neuron-specific
projected gradient-style update. According to (Liu et al., 2021a), their design imposes constraints
on weight matrices and has the advantage of “balanced excitation and inhibition". Such design can
potentially be combined with Adam-mini to further boost performance. To save the memory cost
for fine-tuning LLMs, MeZO (Malladi et al., 2023) uses zeroth-order methods to approximate the
gradient information. It is possible to combine this idea with Adam-mini to further save memory
for SFT. Adam-mini can also potentially be combined with other diagonal preconditioned methods
(such as AdaGrad (Duchi et al., 2011) and Adan (Xie et al., 2022)) as well as recent schedule-free
optimizers such as SchedulefreeAdamW (Defazio et al., 2024).

There are several other tricks that ease GPU memory burden but are orthogonal to optimizer design.
These tricks include gradient checkpointing (Chen et al., 2016), model offloading and sharding
(Rajbhandari et al., 2020; 2021), quantization (Dettmers et al., 2021; Li et al., 2024), and fused update
(Lv et al., 2023a;b). Adam-mini can be implemented upon these tricks.

Finally, we discuss another popular adaptive optimizer called LAMB (You et al., 2019) (see Algo-
rithm 7 in Appendix E.1). LAMB might be misunderstood as a similar optimizer to Adam-mini, but
actually, it is not. We emphasize that Adam-mini is significantly different from LAMB. First, LAMB
still keeps the same coordinate-wise learning-rate design 1/

√
v as in Adam. Second, in addition to

this 1/
√
v, LAMB re-scales the parameters in a layer-by-layer fashion. This re-scaling design is often

known as the “layer-wise learning rates", but to be precise, it is actually an additional “layer-wise
scaling" besides the “coordinate-wise learning rates 1/

√
v". As a result, LAMB does not save

memory over Adam and its overall design is quite different from Adam-mini. This is understandable
because LAMB is designed for large-batch training, not for memory saving. Numerically, we find
that LAMB performs worse than Adam-mini on GPT2 pre-training (Figure 10).

5These results are calculated based on (Zhao et al., 2024a, Table 1). We consider Llama 2-7B and r = 1024
in GaLore.
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B THE COMPLETE FORM OF ADAM-MINI

We now present the specific realization of Adam-mini on Transformers and other architectures. To be
precise, Algorithm 3 should be renamed as “Partition for CNNs, Diffusion models, and Graph Neural
Networks", since we have only tested Algorithm 3 on these models. In the future, it is possible
that we will have more complicated non-Transformer architectures on which Algorithm 3 fails. In
those cases, we need to investigate the Hessian structure of these new architectures (like what we did
for Transformers) and then develop the concrete partition algorithms following our Principle 1 in
Section 2.2.

Algorithm 2 Adam-mini in Pytorch style

1: Input weight-decay coefficient λ and
current step t

2: Choose param_blocks from
Algorithm 3 or 3

3: for param in param_blocks do
4: g = param.grad
5: param = param - ηt ∗ λ∗ param
6: m = (1− β1) ∗ g+ β1 ∗ m
7: m̂ = m

1−βt
1

8: v = (1−β2)∗mean(g⊙g)+β2 ∗v
9: v̂ = v

1−βt
2

10: param = param - ηt * m̂√
v̂+ϵ

11: end for

Algorithm 3 Partition for non-Transformers
1: param_blocks = {}
2: for name, param in parameters do
3: param_blocks[name]=param
4: end for
5: return param_blocks

Algorithm 3 Partition for Transformers
1: param_blocks = {}
2: for name, param in parameters do
3: if ’embed’ or ’output’ in name then
4: Partition param by tokens
5: for i = 0...tokens-1 do
6: param_blocks[name+i]=param[i]
7: end for
8: else if ’query’ or ’key’ in name then
9: Partition param by heads

10: for i = 0...heads-1 do
11: param_blocks[name+i]=param[i]
12: end for
13: else if ’value’, ’attn.proj’, or ’mlp’

in name then
14: Partition param by output neurons
15: for i = 0...output_neurons-1 do
16: param_blocks[name+i]=param[i]
17: end for
18: else
19: param_blocks[name]=param
20: end if
21: end for
22: return param_blocks

C MORE DISCUSSIONS

Analysis in (Collobert, 2004). We now briefly restate the analysis in (Collobert, 2004) on “why
does the Hessian of neural networks exihibts near-block-diagonal structure?". Consider a standard
supervised learning problem: minimizing ℓ(f(θ, x), y) where ℓ(·, ·) is the Cross-Entropy (CE) loss,
f(θ, x) =

∑n
i=1 viϕ(w

⊤
i x) is an 1-hidden-layer neural net with input x ∈ Rd, weight wi ∈ Rd,

vi ∈ R, and label y ∈ {0, 1}, then the off-diagonal-block Hessian elements would contain

∂2ℓ(f(θ, x), y)

∂wi∂wj
= p(x) (1− p(x))vivjϕ

′
(
w⊤

i x
)
ϕ′

(
w⊤

j x
)
xx⊤ for i ̸= j, (3)

where p(x) = 1/(1+exp(−yf(θ, x))) and ϕ′(·) is the derivative of ϕ(·). Since the training objective
is to maximize p(x), the term p(x) (1− p(x)) will quickly shrink to zero. This term will push the
Hessian to near-block-diagonal structure where each block corresponds to one output neuron. The
authors report that this can happen just after 1 training step, as restated in Figure 3 (a). We also
numerically reproduce this result on a small MLP on CIFAR-100 in Figure 3 (b,c,d), and show that
the near-block-diagonal Hessian structure maintains along training.

Finally, we note that this analysis is rather informal. We leave a more rigorous theoretical study is
left for future work.

Why using average v as learning rates. In Line 9 of Algorithm 1, we use the average of v in a
block as the learning rate for that block. We choose such a design due to the following reasons.
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• First: grid-search is too expensive. Optimal blockwise learning rates can be powerful (as evident
in Figure 6), but they are too expensive to search. Such a searching procedure is not scalable.

• Second: average of v can be borrowed from Adam. Compared to searching all the learning rates
from scratch, it is much easier to "borrow" them from the current design of Adam. The average of
v is the most natural quantity to "borrow" and it performs the best among other candidates such as
the maximum of v (see the ablation studies in Appendix D.2). We find that the average of v helps
Adam-mini to be as effective as Adam (though not significantly surpassing it).

• Third: average of v keeps us close to Adam. For neural nets, we find that the average of v is
a good representative for the whole v in the block, and can help Adam-mini keep close to Adam.
The reason comes from backpropagation (BP) rule: for one data sample, the gradient of the weight
matrix W ∈ Rd×d can be expressed as G := ∂ℓ

∂W = ez⊤ ∈ Rd×d, where e is certain BP error
vector and z is the input feature to the current weight. For all entries in the i-th row of G, they
all share the same BP error term ei, which is usually non-negligible when G ̸= 0. Therefore, G
usually has similar entries within a row (which associates with the same output neuron), and its
mean value can be a good representative of the whole row. As a result, we find that Adam-mini’s
trajectory closely resembles that of Adam (see the curves in Figure 8 and Figure 10). One resulting
advantage is that Adam-mini can maintain the scaling laws of LLMs trained by Adam, while
substantially saving the training cost (see evidence in Figure 11).

D MORE EXPERIMENTAL RESULTS

D.1 MORE RESULTS FOR MOTIVATION

In Section 2, we showed that “Adam’s v is redundant on dense Hessian subblock". We provide
experiments on random quadratic functions to support the claim. Here, we conduct the following new
experiments on a 1-layer Transformer. We will show that "using single learning rate per block" is
also sufficient for Transformers.

The following Exp 1 and 2 extend the random quadratic experiments in Figure 4 and 5 to Trans-
formers.

Exp 1: Adam’s learning rate is redundant on the dense Hessian subblock. We take some small
dense blocks in the Hessian of 1-layer Transformer and denoted as H . We compare κ(H) and
κ(DAdamH) as in the paper. We find Adam is not effective in reducing the kappa of these blocks,
and many lrs in Adam can be redundant.

Table 3: Comparison of κ(H) and κ(DAdamH) for the dense blocks in the Hessian of 1-layer
Transformer.

Hessian Block κ(H) κ(DAdamH)
1st head in Query 103.80 176.88
1st head in Key 103.46 213.82
1st head in Value 165.66 332.76
1st neuron in attn.proj 39.92 94.56
1st neuron in MLP_fc1 22.04 70.92
1st neuron in MLP_c_proj 63.85 236.71

Exp 2: Single learning rate per block is sufficient. We conduct the "block-wise GD" and we
grid-search the learning rate for each block. The result is shown in the following figure. We find that
block-wise GD outperforms AdamW. This extends the setting from the random quadratic problem in
Figure 4.

Combining Exp 1 and 2, we can see that Adam is redundant on the dense Hessian subblocks (Exp 1),
and a single lr for each block can work well (Exp 2). These experiments show that our conclusions
on random quadratic problems can be extended to Transformers.
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Figure 14: On a 1-layer Transformer, we conduct the "blockwise GD" and we grid-search the learning
rate for each block. We find that blockwise GD outperforms AdamW.

D.2 ABLATION STUDIES ON THE DESIGN OF ADAM-MINI

We here provide more reasons why we choose mean(v) as the blockwise learning rates. We
conduct ablation studies on different choices of quantities that we can borrow from Adam, including
2-norm(v), 1-norm(v), max(v), and min(v). we found that all these candidates perform worse
than mean(v) in Adam-mini.
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Figure 15: Ablation studies on the design of Adam-mini. We find that mean(v) performs better than
other candidates. The blue curve does not show because the algorithm diverges and the curve is out
of range.

D.3 MORE RESULTS ON THE SCALING LAW EXPERIMENTS

The complete loss curves of Llama 2-1B. We here present the complete validation loss curve of
Llama 2-1B, training on 20B tokens, which corresponds to the rightmost curve in the scaling law
experiments in Figure 11 (a). We note that this is a complete pre-training run under the definition
of Chinchila’s law (Hoffmann et al., 2022). We find that Adam-mini’s loss curves closely resemble
those of AdamW.

The final validation perplexity. In Table 4, we present the final validation perplexity for all models
after training on the token amount suggested by Chinchilla’s law (Hoffmann et al., 2022). For all
models from 39M to 1B, we find that Adam-mini reaches a lower validation perplexity than AdamW.

D.4 GPT-4 EVALUATION SCORE OF SFT AND RLHF

On the pre-trained Llama 2-7B (released by Meta (Touvron et al., 2023)), we run Adam-mini on
downstream tasks including SFT and RLHF. We evaluate the alignment performance in terms of
chat ability using the MT-Bench (Zheng et al., 2024), where GPT-4 assesses multi-turn chatting
capabilities and assigns a score from 0 to 10 (higher is better). Our results, presented in Table 5,
demonstrate that Adam-mini can outperform AdamW.
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Figure 16: Loss curves of pre-training Llama 2-1B on 26B tokens. This is a complete pre-training
run under the definition Chinchila’s law. We find that Adam-mini performs similarly to AdamW
throughout the training, but with 50% less memory.

Table 4: Final validation perplexity for all models pre-trained by Adam and Adam-mini. The token
amount follows Chinchila’s law. After pre-training, Adam-mini reaches a lower validation perplexity
than AdamW.

Model size 39M 67M 102M 162M 271M 1B
Total tokens 1.02B 1.76B 2.67B 4.25B 7.10B 26.21B

AdamW 40.795 29.319 24.670 20.360 17.178 12.452
Adam-mini 40.407 29.014 24.192 20.172 17.035 12.372

Table 5: Averaged GPT-4 evaluation score (↑) of SFT and RLHF on the MT-Bench.

SFT (LoRA) SFT RLHF

AdamW Adam-mini AdamW Adam-mini AdamW Adam-mini

MT-Bench 4.23 4.41 5.37 5.40 5.54 5.68

D.5 NON-LLM TASKS

We now evaluate Adam-mini on non-LLM tasks. Table 6 shows the results for the training of
ResNet18(He et al., 2016), Swin-Transformer (Liu et al., 2021b), DiT-XL-2 (Peebles & Xie, 2023),
DC-AE-Diffusion (Chen et al., 2024a) on ImageNet, DDPM diffusion model (Ho et al., 2020) on
CelebA, a Graph Convolution Net (GCN) (Kipf & Welling, 2016), and a Graph Attention Net (GAT)
(Veličković et al., 2017) on OGB-arxiv. The training curves are shown in Figure 17 and 18. We find
the performance of Adam-mini to be comparable or better than AdamW, but with less memory.

Table 6: On popular non-LLM tasks, Adam-mini performs on par or better than AdamW.

Domain Model Optimizer Metric 25% steps 50% steps 75% steps 100% steps
Vision DDPM AdamW Train loss (↓) 0.0529 0.0497 0.0420 0.0394
Vision DDPM Adam-mini Train loss (↓) 0.0525 0.0495 0.0416 0.0388
Vision ResNet18 AdamW Val acc (↑) 0.6149 0.6478 0.6613 0.6669
Vision ResNet18 Adam-mini Val acc (↑) 0.6140 0.6501 0.6629 0.6667
Vision Swin-Transformer AdamW Val acc (↑) 0.6290 0.6940 0.7180 0.7310
Vision Swin-Transformer Adam-mini Val acc (↑) 0.6230 0.6960 0.7160 0.7300
Vision DiT-XL-2 AdamW Train loss (↓) 0.1605 0.1696 0.1607 0.1431
Vision DiT-XL-2 Adam-mini Train loss (↓) 0.1601 0.1693 0.1605 0.1430
Vision DC-AE-Diffusion AdamW Train loss (↓) 0.2860 0.2820 0.2800 0.2780
Vision DC-AE-Diffusion Adam-mini Train loss (↓) 0.2860 0.2830 0.2800 0.2780
Graph GAT AdamW Val acc(↑) 0.7277 0.7367 0.7399 0.7421
Graph GAT Adam-mini Val acc (↑) 0.7378 0.7394 0.7403 0.7429
Graph GCN AdamW Val acc (↑) 0.7347 0.7428 0.7379 0.7374
Graph GCN Adam-mini Val acc (↑) 0.7406 0.7427 0.7380 0.7423
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In Table 7, we further evaluate the image quality from the model trained by Adam-mini. We find that
the Adam-mini performs on par with AdamW.

Table 7: Evaluation scores: Adam-mini performs on par with AdamW.

Domain Model Optimizer FID (↓) Inception Score (↑)
Vision DiT-XL-2 AdamW 91.83 12.38
Vision DiT-XL-2 Adam-mini 88.20 13.90
Vision DC-AE-Diffusion AdamW 34.72 41.79
Vision DC-AE-Diffusion Adam-mini 33.15 44.38
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Figure 17: The training curves of Swin-Transformer, DiT-XL-2, and DC-AE-Diffusion. We find that
Adam-mini performs on par with AdamW
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Figure 18: The training curves of ResNet-18 and DDPM diffusion model. We find that Adam-mini
performs on par with AdamW.

D.6 MORE DISCUSSIONS ON THE PARTITION STRATEGIES OF VALUE

As shown in Figure 7, the Hessian structure of value is less clear compared to other blocks: it
shows the hint of 16 diagonal blocks (where 16 is the number of output neurons), but the pattern is
not that clear. This gives rise to two potential partition strategies: (I) partition by output neuron; (II)
treat as a whole. Numerically, we find that strategy (I) works well when the number of total training
steps is large. This includes most of our experiments such as GPT-2 in Figure 8 (with more than
50k total steps) and the scaling law experiments of Llama models in Figure 11 (e.g., Llama 2-1B is
trained with more than 200k total steps). On the other hand, we find that strategy (II) works better
when the number of total training steps is small. This includes our Llama experiments with 10k total
steps in Figure 10.

Based on these findings, we recommend using strategy (I) when the total number of training steps is
large, and using strategy (II) if otherwise. Note that strategy (II) can be used simply by adding one
line of code after creating the optimizer: optimizer.wv_names = {}.

D.7 DETAILED COMPARISON WITH ADAFACTOR

In this section, we conduct a more hyperparameter search for Adafactor on Llama 2-20M pre-training.
We will focus on tuning Adafactor-Zhai-version since it performs better than the original Adafactor
(see Figure 13). We consider the following three setups.
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• Setup 1: We change the default β2 = 0.999 to β2 = 0.95 and sweep over learning rates.
• Setup 2: We use learning rate = 5e-3, β2 = 0.95 and sweep over warm-up step =
{1%, 2%, 3%, 4%, 5%, 10%} total steps.

• Setup 3: We use learning rate = 5e-3, β2 = 0.95 and warm-up step = 1% total steps and sweep
over ϵ = {10−30, 10−16, 10−8, 10−6}.
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Figure 19: The training curves of Adafactor-Zhai-version on Llama 2-20M pre-training. (a,b,c)
corresponds to the aforementioned Setup 1, 2, 3, respectively. We find that Adafactor consistently
underperforms Adam-mini.

The results are shown in Figure 19. In all these cases, Adafactor-Zhai-version consistently underper-
forms Adam-mini and the change of hyperparameters does not help much.

D.8 DETAILED COMPARISON WITH LION

We now conduct the hyperparameter grid search over Lion. We find that Lion is not easy to tune and
we have not managed to make Lion work. We consider the following settings.

Tuning strategies in (authors, 2024). authors (2024) carefully tune Lion on Llama models (150M,
300M, 600M, 1.2B). We will adopt their optimal tuning strategies in (authors, 2024, Table 1) 6. We
here summarize their key messages.

• Message 1: The optimal learning rate (lr) of Lion is usually 10 times smaller than AdamW.
• Message 2: The magical number lr = 3.16e-4 works the best for most models (Llama 150M, 300M,

600M).
• Message 3: β1 = {0.95, 0.9} perform similarly and perform significantly better than other β1

candidates including β1 = {0.99, 0.98, 0.8, 0.5, 0}.
• Message 4: β2 = {0.99, 0.98, 0.95} perform similarly and perform significantly better than other
β2 candidates including β2 = {0.9999, 0.999, 0.995, 0.9, 0.8}.

In the following, we will use the above messages to tune the hyperparameters of Lion.

Architecture. We consider Llama 2-20M, which is the same architecture as the ones investigated in
(authors, 2024), but with different model size. We also consider GPT-2-125M, which is a task that
Lion is not tested before (neither in (authors, 2024) nor in other literatures to our knowledge).

Our tuning strategies. Following the above Message 1 and 2 from (authors, 2024), we will use the
following tuning strategies for Lion on Llama 2-20M and GPT-2-125M.

• Learning rate for Llama 2-20M: The standard lr is 5e-3, so we try lr = [5e-4, 6e-4, 7e-4, 8e-4,
9e-4, 1e-3, 2e-3, 3e-3, 4e-3, 5e-3]. For completeness, we also investigate lr = [4e-4, 3.16e-4, 2e-4,
1e-4].

• Learning rate for GPT-2-125M: The standard lr is 6e-4, so we try lr = [6e-5, 7e-5, 8e-5, 9e-5,
1e-4, 2e-4, 0.000316, 4e-4, 5e-4, 6e-4]

As for (β1, β2), we will use (β1, β2) = (0.95, 0.98). We use these hyperparameters for two reasons.
First, they are the optimal choice among other candidates by Message 3 and 4. Second, (β1, β2) =

6We would like to mention that (authors, 2024) is a concurrent work to us, and their tuning strategies in is not
public available by the time we submitted this script.
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(0.95, 0.98) is recommended by the authors of Lion to be "helpful in mitigating instability during
training" 7.
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Figure 20: The training curves of Lion on Llama 2-20M and GPT-2-125M pre-training. The
hyperparameters are chosen under the optimal strategies by (authors, 2024). We find that Lion
consistently underperforms Adam-mini on Llama 2-20M, and it encounters loss spikes on GPT-2-
125M.
The results are shown in Figure 20. After using the above tuning strategies, we find that Lion still
underperforms Adam-mini and AdamW on Llama 2-20M and GPT-2-125M. In particular, Lion
encounters loss spikes on GPT-2-125M for all the learning rate candidates above.

We summarize our findings on Lion below.

• First: worse performance. With all the effort above, we haven’t managed to make Lion work, and
we haven’t been able to reproduce (authors, 2024) on Llama 2-20M and GPT-2-125M (different
model size and architectures from (authors, 2024)). One possible reason is that Lion might work
under their specific setup (dataset, architecture, batch size, etc.), but the effectiveness is not easily
transferable.

• Second: no general tuning guidance. We find that there are no general tuning strategies for Lion.
We emphasize that authors (2024) only focuses on Llama architectures, and their resulting tuning
strategy seems not robust and transferable to other architectures. In particular, their optimal strategy
on Llama causes loss spikes on GPT-2. To our knowledge, Table 1 in (authors, 2024) is the only
public tuning strategy for Lion, so it seems unclear how to tune Lion in general.
In contrast, Adam-mini is much easier to use. In all our experiments (a wide range of tasks and
models), Adam-mini performs on par with Adam using the same hyperparameters as AdamW
(including learning rate, β1, β2, ϵ, etc.). We believe that "easy adaptation of the hyperparameters"
can serve as one advantage of Adam-mini over Lion, apart from the performance superiority.

• Third: Adam-mini is more principled and explainable. We emphasize that Lion is designed by
symbolic search, and its design principle is largely unclear. In contrast, the Design principle of
Adam-mini is much more understandable: we remove the redundant lrs in Adam according to the
Hessian structure. We believe Adam-mini is more "white-box" than Lion and more explainable to
users.

D.9 ADDITIONAL FINDINGS ON GPT-2-330M

In Figure 21, we report some unexpected results on GPT-2-330M. When using the recommended
learning rate 3e-4 by (Liu et al., 2023), we find that AdamW encounters loss spikes, while Adam-mini
does not. The loss spike of AdamW can be mitigated by changing ϵ from 1e-8 to 1e-6. We have
not fully understood the cause of the loss spike and how Adam-mini prevents it in this experiment.
We are not sure whether such benefit of Adam-mini maintains on larger models. We leave more
investigation as an interesting future direction.

D.10 COMBINING WITH LORA

We note that Adam-mini can be combined with LoRA (Hu et al., 2021): we can change the Adam
steps in LoRA by Adam-mini. The results are shown in Figure 22. We find that such changes with

7https://github.com/lucidrains/lion-pytorch
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Figure 21: On GPT-2-330M, AdamW encounters loss spikes, while Adam-mini does not. The loss
spike of AdamW can be mitigated by changing ϵ from 1e-8 to 1e-6.

boost performance. We grid-search learning rates for both methods and report the best performance.
The detailed learning rate configuration is shown in Section F.
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Figure 22: Training curves of SFT (LoRA). We find that LoRA performs better when replacing the
Adam steps by Adam-mini.

D.11 SAMPLE RESPONSES FROM LLMS TRAINED BY ADAM-MINI

The sample response in shown in Figure 23.

Prompt: Compose an engaging travel blog post about a recent trip to Hawaii, highlighting cultural
experiences and must-see attractions.

AdamW: Sure! Here’s a travel blog post about a recent trip to Hawaii: ...... Whether you’re interested in
history, nature, or simply soaking up the sun, Hawaii has something for everyone. Until next time, Aloha!
Adam-mini: Sure! Here’s a travel blog post about a recent trip to Hawaii: ...... I highly recommend
visiting this beautiful archipelago for a truly unforgettable adventure.

Prompt: Rewrite your previous response. Start every sentence with the letter A.

AdamW: A trip to Hawaii is a must-visit destination for any traveler, offering a variety of cultural experiences
and must-see attractions. From the Polynesian Cultural Center to the USS Arizona Memorial, and from
Lanikai Beach to the lively night markets, every corner of the islands reveals a new surprise and a new way
to connect with the spirit of Hawaii.
Adam-mini: A trip to Hawaii is a must-do for any travel enthusiast. A trip to the beautiful Hawaiian
Islands is a paradise on earth. A visit to Oahu is a great way to start your adventure. A helicopter tour of
the island is both educational and breathtaking. A visit to Maui is a must-see. A visit to Haleakala National
Park is a highlight of your trip. A visit to the Polynesian Cultural Center is a great way to learn about the
history and traditions of the islands. A traditional luau is a must-attend event. Overall, a trip to Hawaii is
an unforgettable experience.

Figure 23: Response Sample of Llama 2-7B finedtuned by AdamW and Adam-mini to the #81 test
question from the MT-Bench (Zheng et al., 2024) dataset. Since there is little information in the first
round response, we omit the answers from the models.
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E SOME PRELIMINARY RESULTS

E.1 PRELIMINARIES ON ADAM, ADAMW AND LAMB

We introduce Adam, AdamW, and LAMB in Algorithm 5, 6, and 7. These methods need to track m
and v along the training. Both m and v are vectors of the same size as # model parameter.

Algorithm 5 Adam in Pytorch style

1: Let λ be the weight decay coefficient
2: for param in parameter_blocks do
3: g = param.grad
4: if λ > 0 then
5: g = g+ λ ∗ param
6: end if
7: param = param - ηt ∗ λ∗ g
8: m = (1− β1) ∗ g+ β1 ∗ m
9: m̂ = m

1−βt
1

10: v = (1− β2) ∗ g⊙ g+ β2 ∗ v
11: v̂ = v

1−βt
2

12: param = param - ηt * m̂√
v̂+ϵ

13: end for

Algorithm 6 AdamW in Pytorch style

1: Let λ be the weight decay coefficient
2: for param in parameter_blocks do
3: g = param.grad
4: param = param - ηt ∗ λ∗ g
5: m = (1− β1) ∗ g+ β1 ∗ m
6: m̂ = m

1−βt
1

7: v = (1− β2) ∗ g⊙ g+ β2 ∗ v
8: v̂ = v

1−βt
2

9: param = param - ηt * m̂√
v̂+ϵ

10: end for

Algorithm 7 LAMB in Pytorch style

1: Let λ be the weight decay coefficient, let ϕ be a scaling function.
2: for param in all_layers do
3: g = param.grad
4: param = param - ηt ∗ λ∗ g
5: m = (1− β1) ∗ g+ β1 ∗ m
6: m̂ = m

1−βt
1

7: v = (1− β2) ∗ g⊙ g+ β2 ∗ v
8: v̂ = v

1−βt
2

9: r = m̂√
v̂+ϵ

10: param = param - ηt * ϕ(∥param∥)
∥r+λ∗param∥ * r

11: end for

E.2 PRELIMINARY RESULTS IN (ZHANG ET AL., 2024)

We here restate (Zhang et al., 2024, Figure 3). This figure shows that: for Transformers, different
parameter blocks have different Hessian eigenvalue distributions, while for CNNs, the eigenvalue
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distributions are similar among blocks. This suggests that Transformers need different learning rates
for different blocks to handle the heterogeneity in eigenvalue distributions.

(a) VGG16 (b) BERT

Figure 24: Figure 3 in (Zhang et al., 2024). The eigenvalues distribution are similar among blocks for
CNNs, while they differ significantly across blocks for Transformers. This indicates Transformers
need different learning rates for different blocks to handle the heterogeneity in eigenvalues.

F EXPERIMENTAL DETAILS

F.1 TRAINING CONFIGURATIONS FOR SECTION 3

Unless mentioned otherwise, we choose the model configurations by their standard protocols. We
choose the learning rates by the recommendation from open-source platforms if applicable. For
instance, for GPT2 series, we use the recommended learning rates by (Liu et al., 2023), which are
reported to be optimal by grid search. Unless mentioned otherwise, Adam-mini, Adafactor, CAME,
SM3, and LAMB use the same learning rate as the recommended ones of AdamW. If there is no
public recommended learning rate for AdamW, we tune the learning rate for all optimizers within the
same computational budget and report the best performance. For other hyperparameters, we follow
the recommendation from open-source platforms or by their default setting. For SM3 and Adafactor,
we incorporate momentum with β1 = 0.9 to offer a fair comparison with other optimizers and the
rest of the hyperparameters are set as default. The detailed configurations are explained as follows.

GPT2 pre-training. We use the nanoGPT codebase8 to train GPT2 sized 125M (small), 330M
(medium), and 1.5B (XL) on Openwebtext. For all models, we use seq_len = 1024, batch size
= 480, weight decay coefficient λ = 0.1, ϵ = 1e-8, β1 = 0.9, β2 = 0.95. We use cosine-decay
learning rate schedule with 2000 iterations of warm-up. For GPT2-small and medium, we use the
recommended peak learning rate by (Liu et al., 2023), which are reported to be the optimal ones
found by grid search. For GPT2-XL, we use the recommended peak learning rate by the Levanter9.
The chosen peak learning rates are 6e-4, 3e-4, 1e-4 for GPT2-small, medium, XL, respectively. The
minimal learning rate is chosen as 3e-5, 6e-5, 1e-5 for these models.

Llama pre-training. For all experiments on the Llama series (from 20M to 13B), we use the
Torchtitan codebase10 and C4 dataset (Raffel et al., 2020). For all experiments, we use weight decay
coefficient λ = 0.1, ϵ = 1e-8, β1 = 0.9, β2 = 0.95. For Llama 2-1B, Llama 3-8B, we use learning
rate = 3e-4. For Llama 2-13B, we use learning rate = 1e-4. As for the learning rate schedule, we use
warm-up step = 1% total step and use linear decay schedule after the warm-up (this is the default
setting in the Torchtitan codebase). For Figure 10 (a) and all the experiments of Adafactor and Lion,
we use seq_len = 512 and batch size = 128. For Figure 10 (b), we use seq_len = 2048 and
batch size = 8. For Figure 10 (b), we shrink the batch size due to the limited hardware. For all the
scaling law experiments, we use seq_len = 512 and batch size = 256. We summarize the detailed
setups for the scaling law experiments in later paragraphs.

8https://github.com/karpathy/nanoGPT/tree/master
9https://github.com/stanford-crfm/levanter/blob/e183ec80ec5971b12d4a3fb08a160268de342670/

config/gpt2_xl.yaml
10https://github.com/pytorch/torchtitan
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SFT and RLHF. We use the Llama 2-7B pretrained model (Touvron et al., 2023) for our study.
We use the ultrafeedback dataset 11. The implementation of SFT and RLHF code is based on
the ReMax codebase12. Specifically, we train a SFT model with 40% of the chosen data and train
a reward model using the remaining 60%. Then, we apply the reinforcement learning algorithm
ReMax (Li et al., 2023), a memory-efficient alternative to PPO (Schulman et al., 2017), to optimize
the preference reward.

We use DeepSpeed ZeRO-2 in our training. GPT-4 evaluation template in Table 5 is from the
codebase13. In the reward optimization stage, We use ReMax, a memory-efficient alternative to PPO.
We use UltraFeedback dataset Cui et al. (2023) and use 40% data for SFT and 60% data for ReMax.

SFT. We use 80 samples in a batch and train the model for 3 epochs. For the full parameter
tuning, we search the learning rate from {1e-6, 2e-6, 3e-6, 4e-6, 5e-6, 1e-5, 2e-5} based on validation
loss, and we use 2e-6 with cosine annealing for both AdamW and Adam-mini. For LoRA, We apply
LoRA for all layers except the embedding layer. The rank of LoRA is set to 128. After selecting
the learning rate from the same set as the full parameter tuning, we use 2e-5 for both AdamW
and Adam-mini when LoRA is applied. The weight decay coefficient is set to 0 as recommended
by LlamaFactory14. The rest of the hyperparameters of AdamW and Adam-mini are ϵ = 1e-8,
β1 = 0.9, β2 = 0.95.

ReMax. We use 48 samples in a batch and train the model for 1 epoch. By searching the
peak learning rate from {5e-7, 1e-6, 2e-6} based on validation reward, AdamW uses 1e-6 while
Adam-mini selects 5e-7 as the peak learning rate. The weight decay coefficient is set to 0. The rest of
the hyperparameters of AdamW and Adam-mini are ϵ = 1e-8, β1 = 0.9, β2 = 0.95.

ResNet. We use the PyTorch official implementation codebase15 to train ResNet18 (He et al., 2016)
on ImageNet (Deng et al., 2009). We use cosine-decay learning rate, epoch =90, β1 = 0.9, β2 =
0.999, ϵ =1e-8. For ResNet18, we use batch size = 256, peak learning rate = 0.005. For ViT-base, we
use batch size = 128, peak learning rate = 0.0001. These configurations are used for both Adam-mini
and AdamW.

DDPM. We use the codebase16 to train DDPM diffusion models (Ho et al., 2020). The image size
is 64 and the training objective is to predict the noise as in (Ho et al., 2020). We use the default U-Net
archiecture hyper-parameters and the dimension multiply in U-Net is (1, 2, 4, 8). We use the CelebA
dataset17 and train the diffusion model with a learning rate 5× 10−5 with cosine decay. The batch
size is 128 and the training epoch is 50.

Swin-Transformers. We use the official implementation18 of Swin-Transformers (Liu et al., 2021b)
on ImageNet. All configurations as default. For both Adam-mini and AdamW, we use the default
learning rate = 5e-4.

DiT-XL-2. We use the official implementation19 of DiT-XL-2 (Peebles & Xie, 2023) on ImageNet.
All configurations as default. For both Adam-mini and AdamW, we use the default learning rate =
1e-4.

DC-AE-Diffusion. We use the official implementation20 of DC-AE-Diffusion (Chen et al., 2024a)
on ImageNet. All configurations as default. For both Adam-mini and AdamW, we use the default
learning rate = 2e-4.

11https://huggingface.co/datasets/argilla/ultrafeedback-binarized-preferences-cleaned
12https://github.com/liziniu/ReMax
13https://github.com/lm-sys/FastChat/tree/main/fastchat/llm_judge
14https://github.com/hiyouga/LLaMA-Factory
15https://github.com/pytorch/examples/blob/main/imagenet/main.py
16https://github.com/lucidrains/denoising-diffusion-pytorch
17https://cseweb.ucsd.edu/~weijian/static/datasets/celeba/
18https://github.com/microsoft/Swin-Transformer
19hhttps://github.com/facebookresearch/DiT
20https://github.com/mit-han-lab/efficientvit/blob/master/applications/

dc_ae/README.md
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Graph Neural Networks. We use the DGL implementation21 of Graph Convolution Networks
(GCN) (Kipf & Welling, 2016) and Graph Attention Networks (GAT) (Velickovic et al., 2017) for
OGBN-arxiv22 dataset. All configurations as default. For both Adam-mini and AdamW, we use the
default learning rate = 0.005 for GCN and the default learning rate = 0.002 for GAT.

Scaling law experiments. We use the codebase Torchtitan23 to train Llama models of different
sizes. All the model configurations are shown in Table 8 and all the training configurations are shown
in Table 9. The experimental setups are inspired by (Hägele et al., 2024). In all experiments, we fix
the warm-up steps to be 1% of the total steps, as suggested by (Ibrahim et al., 2024).

Model Size dmodel nlayers nheads seq_len
39M 384 8 6 512
67M 512 10 8 512

102M 640 12 10 512
162M 768 16 12 512
271M 1024 16 16 512

1B 2048 18 16 512

Table 8: The model configurations in the scaling law experiments.

Model LR Batch size (# tokens) Steps Tokens Token/Params Ratio
39M 6e-4 0.13M 7.8K 1.02B 26.15
67M 6e-4 0.13M 13.4K 1.76B 26.27

102M 6e-4 0.13M 20.4K 2.67B 26.17
162M 6e-4 0.13M 32.4K 4.25B 26.23
271M 6e-4 0.13M 54.2K 7.10B 26.21

1B 2e-4 0.13M 200K 26.21B 26.21

Table 9: Training configurations for the scaling law experiments.

Trajectory comparison in Figure 10 (c). We train a 8-layer Transformer sized 11M on Openwebtext
and launch AdamW, Adam-mini, and other memory-efficient optimizers under the same random seed
and same learning rate 1e-5. We save the model weights for every 250 iterations and compare their
Euclidean distance to the weights along AdamW’s trajectory.

F.2 DETAILED SETUP FOR OTHER EXPERIMENTS

Configurations for Figure 3. We train a 1-hidden-layer MLP with 8 neurons on CIFAR-100. We use
Adam with 1e-4 learning rate with Cosine decay schedule. We train the network with 128 batch size
and 20 epochs (i.e., about 7900 total training steps). With the help of auto-differentiation framework,
we calculate the Hessian with two passes of backpropagation (Pearlmutter, 1994) and the calculation
is exact.

Configurations for Figure 4. For each dense sub-block Hl, l = 1, 2, 3, we use random positive
definite matrices. We fix the choose the eigenvalues of each Hl as follows: for l = 1, we independently
sample from {1,2,3} for 30 times; for l = 2, we repeat this procedure for {99,100,101}; for l = 3,
we repeat this procedure for {4998 ,4999, 5000}. For the single (blockwise) learning rate method,
we use GD with optimal constant learning rate 2/(L+ µ), where L, µ are the largest and smallest
eigenvalue of the (blockwise) Hessian. We use Adam with β1 = 0. This helps us focus on the effect
of coordinatewise learning rate in Adam. We also set β2 = 1 to the time-varying learning rate. This
is necessary because, for any β2 < 1, Adam with constant learning rate will oscillate on quadratic
functions. This is theoretically proved in (Da Silva & Gazeau, 2020, Proposition 12, Figure 1) and
empirically observed in (Zhang et al., 2024, Section 3.3).

21https://github.com/dmlc/dgl/tree/master/examples/pytorch/ogb/
ogbn-arxiv

22https://ogb.stanford.edu/docs/nodeprop/
23https://github.com/pytorch/torchtitan
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Configurations for Figure 5. To generate a positive definite matrix Hb, we first uniformly sample
d(d−1)

2 independent angles θi,j from the interval [−π
2 ,

π
2 ], where i < j. Starting with the identity

matrix, we perform a rotation of the i-th and j-th rows by the angle θi,j for each sampled pair. Through
d(d−1)

2 rotation operations, we obtain the orthogonal matrix Q. We define Λ = diag(κ, 1, . . . , 1), and
the matrix Hb is generated using the expression Hb = QΛQT . The python code for Hb generation is
listed as follows:

1 def generate_Hb(theta, kappa, d):
2 Q = np.eye(d)
3 for i in range(d):
4 for j in range(i+1,d):
5 P = np.eye(d)
6 P[i,i] = math.cos(theta[i,j])
7 P[i,j] = math.sin(theta[i,j])
8 P[j,i] = -math.sin(theta[i,j])
9 P[j,j] = math.cos(theta[i,j])

10 Q = P @ Q
11 Lambda = np.eye(d)
12 Lambda[0,0] = kappa
13 return Q @ Lambda @ Q.transpose()

We note that as θ approaches 0, the diagonal-over-off-diagonal ratio of the matrix Q decreases. For
the sampled values of θ, we utilize Rθ to produce Hb with varying ratios, where R ∈ { k

50 |k =
0, 1, . . . , 50}. For each matrix, we sample 100 initial points from the Xavier initialization distribution
to compute the resulting κ of Adam algorithm. For each pair of d and κ, we sample 40 different θ
values. By averaging the results obtained, we plot the Figure 5.

Configurations for Figure 7. We use the codebase24. We enlarge the vocabulary size from 2 to
8, and we change the objective function to the standard pre-training objective function (i.e., predict
the next token). We consider a 1-layer Transfomer with n_emb = 16, n_head = 4, and the width (i.e.,
the number of output neurons) of mlp.fc_1 equals 32. The Hessian calculation follows the same
procedure as in Figure 3.

It is worth mentioning that the weight matrices might have different shapes depending on the different
codebases. For instance, the weight matrix W in one codebase might be implemented as W⊤ in
another codebase (this can happen for the embedding layer), and the same W might also be stretched
into an one-dimensional vector (this can happen for all weight matrices). In these cases, some extra
re-ordering is needed. For all the Hessian calculations in Figure 7, we re-order the Hessian rows &
columns such that the block-diagonal structure is visible.

Throughput Comparison in Table 2. The results are tested on 2× A800-80GB GPUs. We did not
turn on CPU offload. We report the throughput from the summary file of the Wandb log.

24https://colab.research.google.com/drive/1SiF0KZJp75rUeetKOWqpsA8clmHP6jMg?
usp=sharing
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