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Abstract

Large Language Models (LLMs) have demonstrated outstanding performance
in mathematical reasoning capabilities. However, we argue that current large-
scale reasoning models primarily rely on scaling up training datasets with diverse
mathematical problems and long thinking chains, which raises questions about
whether LLMs genuinely acquire mathematical concepts and reasoning principles
or merely remember the training data. In contrast, humans tend to break down
complex problems into multiple fundamental atomic capabilities. Inspired by this,
we propose a new paradigm for evaluating mathematical atomic capabilities. Our
work categorizes atomic abilities into two dimensions: (1) field-specific abilities
across four major mathematical fields, algebra, geometry, analysis, and topology,
and (2) logical abilities at different levels, including conceptual understanding,
forward multi-step reasoning with formal math language, and counterexample-
driven backward reasoning. We propose corresponding training and evaluation
datasets for each atomic capability unit, and conduct extensive experiments about
how different atomic capabilities influence others, to explore the strategies to elicit
the required specific atomic capability. Evaluation and experimental results on
advanced models show many interesting discoveries and inspirations about the
different performances of models on various atomic capabilities and the interactions
between atomic capabilities. Our findings highlight the importance of decoupling
mathematical intelligence into atomic components, providing new insights into
model cognition and guiding the development of training strategies toward a more
efficient, transferable, and cognitively grounded paradigm of “atomic thinking”.

1 Introduction

In recent years, as Large Language Models (LLMs) have achieved remarkable performance in lan-
guage understanding [118]], visual perception [9H16], complex reasoning [[17H22] agentic intelligence
[23H26] and honesty [27H30], mathematical reasoning has emerged as a key focus for LLM cognitive
abilities [31H34]]. Mathematics, as a fundamental reasoning task, offers both verifiable answers and a
wide range of difficulty levels, drawing increasing research attention [35H37]]. Recent studies, particu-
larly those involving reasoning models such as OpenAI’s ol and DeepSeek-R1, have demonstrated
strong mathematical performance, achieving impressive results on many challenging benchmarks
[38-40].
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3. How do advanced models perform
at each atomic capability?

2. What atomic capabilities
are worth exploring?

1. What are the advantages of atomic
thinking compared with chain of thought?

Question:
Prove that if two angles of a triangle are

equal, then the triangle is isosceles.
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Figure 1: This figure illustrates an overview of our atomic thinking. It compares thought chains and
atomic thinking, highlighting the efficiency of atomic thinking. Next, it shows the atomic capabilities
we focus on. Finally, it provides the performance of advanced models in every atomic capability.

Current approaches enhance mathematical performance by scaling up training data, incorporating
diverse mathematical problems, and complex reasoning paradigms [41} 42, 32]]. WizardMath [33]]
synthesizes complex multi-field data via varied math instructions, while models like OpenAl ol
train extended chains of thought to perform higher-level reasoning. As the complexity of mathe-
matical problems increases, some studies, such as Lean4 [43] and Lean-STaR [44], leverage formal
mathematical languages to mitigate ambiguity in natural language multi-step reasoning, as well as
enhancing the reward model for problem-solving process [45-47]. However, as model size and data
scale approach saturation, these training paradigms are facing challenges:

* Do models truly grasp mathematical concepts and inference patterns, or are they merely
memory problems by chain of thought reasoning training?

e [s there a more fundamental cognitive atom that can break through the current paradigm,
and what are the advantages of this atomic thinking compared with the chain of thought?

Figure [I|compares the differences between the two paradigms. Existing math reasoning strategies,
such as chain-of-thought and tree-of-thought, tend to rely heavily on sequential context [35] 48
50]]. This not only leads to inefficient use of computational resources but also introduces noise
through excessive self-correction in long reasoning chains. In contrast, human reasoning typically
decomposes complex problems into atomic problems, solving them incrementally and integrating
only the essential information for subsequent steps, which is referred to as atomic thinking [51]].
This atomic thinking paradigm promotes flexible and structural reasoning, enabling more efficient
problem-solving like data probe [52-54]. Thus, decoupling the mathematical atomic abilities of
LLMs is not only essential for assessing their cognitive depth but also key to transitioning from the
current “question drilling” paradigm to a “atomic thinking” framework. So we wonder what atomic
capabilities are worth exploring?

Current mathematical benchmarks mostly assess models’ accuracy in end-to-end problem solving
[55H57], offering little insight into a systematic assessment of atomic capabilities. To address this,
we propose a novel framework for exploring mathematical atomic abilities, encompassing both field
and logical reasoning capabilities, with an emphasis on ensuring minimal overlap between different
atomic units while maintaining broad coverage of mathematical tasks. For field atomic abilities, we
draw inspiration from modern mathematics and construct four foundational fields: algebra, geometry,
analysis, and topology. For logical reasoning abilities, we reference cognitive psychology in math
reasoning to define three core capabilities: (1) Conceptual Understanding, which grasps math
definitions and axioms; (2) Forward Reasoning with Formal Math Language, which conducts
rigorous, multi-step reasoning using symbolic systems; (3) Counterexample-driven Backward
Reasoning, requiring constructing counter-examples and leveraging backward reasoning. For each
atomic ability, we construct training and testing data, ensuring interpretability and isolating cross-



ability. We conduct the evaluation experiments as shown in Figure[I|to explore: how do advanced
models perform at each atomic capability?

Beyond decoupled atomic capability evaluation, we also conduct composite experiments across
reasoning levels and varied atomic abilities to investigate how atomic abilities influence each other.
Our findings on all the results reveal several key insights:

* Field-level performance: LLMs perform better in algebra and analysis, while struggling
in geometry and topology. Interestingly, models exhibit atypical behavior in topology,
performing worse on easier tasks yet better on harder ones.

* Logical reasoning abilities: Larger LLMs exhibit stronger conceptual understanding, likely
due to superior pretraining memory. However, even advanced commercial models struggle
with constructing counterexamples, indicating a gap in backward reasoning skills.

* Cross-field interaction: Training on low-difficulty data can hinder high-level skill expres-
sion in some fields. Notably, activating algebraic abilities significantly improves performance
in other fields, which is often more than direct training in the target field.

* Cross-Logic interaction: Conceptual understanding enhances other reasoning abilities and
field atomic abilities. Surprisingly, training solely on definition completion tasks suffices
to stimulate high-level ability, outperforming models trained on more complex data. This
reveals the supporting value of conceptual understanding in mathematical training.

2 Related work

Mathematics-enhanced large language models Mathematical reasoning has become a key focus
in exploring the upper bounds of LLMs’ cognitive capabilities [58, [59]. Unlike general-purpose
models such as GPT-4 [38]] and Gemini [31]], math-enhanced LLMs emphasize field-specific strategies,
including data augmentation, pretraining, fine-tuning [60], and reinforcement learning on large-scale
mathematical corpora [37]. WizardMath [33] synthesizes diverse math data through instruction
generation and leverages RLHF and process supervision. NuminaMath [61]] adopts Tool-Integrated
Reasoning (TIR) to generate math data, including questions with fine-grained solutions. Qwen2.5-
Math [32] fine-tunes Qwen2.5 on proprietary high-quality math data. InternLM2-Math [36]
enhances logical rigor by integrating formal mathematical language, code interpreters, and theorem
proving in Lean4. Deepseek-Math-rl [35]] focuses on data engineering and efficient RL training.

Mathematical benchmarking Due to their objective correctness and structured difficulty [62] 63],
math tasks are ideal for evaluating LLMs [55} 164! 65, 156} |57]]. Benchmarks like MATH [66] and
GSMSK [67] test high school and elementary-level reasoning and have become standard. To meet
the demands of advanced models, more challenging datasets such as OlympiadBench [68] target
competition-level exams. Formal theorem proving benchmarks like [69] Putnam Bench, CoqGym
[64], and MiniF2F [[65]] further assess logical reasoning with tools like Coq and Lean. However,
most benchmarks assess end-to-end question-solving performance without decomposing tasks into
atomic reasoning abilities. Our work aims to decouple and analyze these atomic abilities and their
interactions to support finer-grained reasoning evaluation and lightweight but effective training.

3 Atomic capability decoupling and interaction

Inspired by the atomization of human cognition, we propose decoupling the mathematical capabilities
of LLMs into atomic abilities. We categorize atomic capabilities into two major types, ensuring that
each capability is disentangled from the others while jointly covering a wide range of mathematical
tasks. We construct corresponding training and test sets to evaluate the model performance of
different atomic abilities. Beyond evaluating individual capabilities, we further investigate their
interactions. Specifically, we explore how stimulating one atomic capability may affect others,
offering insights into how such interactions can be leveraged to enhance targeted atomic abilities and
promote compositional problem-solving strategies.
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Figure 2: This figure illustrates our data construction procedure.

3.1 Atomic capability design

Field atomic capabilities We refer to the core field division of modern mathematics. It is worth
noting that if we divide the capabilities too finely (e.g., dividing them into more than ten types),
the atomic units will be too loose and the interaction between atomic abilities will be too complex,
which may not be a particularly significant correlation. Therefore, we finally divide the field’s atomic
abilities into Algebra, Geometry, Analysis, and Topology. To analyze the influence of difficulty
levels in a more fine-grained aspect, we further divide each field into low difficulty (level 1) and high
difficulty (level 2). Similarly, we divide it into two difficulty levels to avoid complex interactions.

Logical reasoning atomic capabilities For logic reasoning atomic ability, we refer to the human
cognitive mode, deconstruct the general process of complex reasoning, and identify core abilities:

1. Conceptual understanding is a fundamental, which includes definition identification and
attribute description. The definition identification task requires the LLM to complete the
name of the corresponding definition in a statement. The property description task requires
completing the detailed description in a mathematical definition, including the premises, the
conditions, the key words, and parameters.

2. Forward reasoning with formal language: With reference to human cognitive processes,
we designate forward multi-step reasoning as a higher-level logical atomic ability. Since
natural language reasoning is often confronted with vague proofs and uncritical assumptions,
we emphasize the forward reasoning using formal mathematical language.

3. Backward reasoning with counterexamples: In addition to step-by-step forward multi-step
reasoning, backward reasoning with counterexamples is also a very important ability in
mathematical reasoning. By skillfully constructing appropriate counterexamples, proofs can
be effectively accomplished that are difficult to perform directly with forward reasoning.

It is worth noting that we do not consider computational abilities. This is because we are mainly
concerned with the logical reasoning ability of mathematical reasoning. Computational capability is
difficult to decouple from the reasoning process. In addition, when computations are needed, LLM
invoking relevant mature computational tools would be more efficient and accurate.

3.2 Data construction for capability evaluation

To decouple each atomic capability, we construct the training and testing data, which contributes to
evaluation and further exploration of the interaction. The overview of our data construction is shown
in Figure[2| More data statistics and examples can be found in Appendix

For field capabilities, we collect data from current benchmarks such as MATH [66], GSMS8K [67],
Gaokao-Bench [70], OlympiadBench [68], AIME, MMLU [71], and DeepMath [/2]. Using a
combination of template matching and LLM-assisted annotation, we reclassify problems into four
fields. When there are original field labels in the raw data, LLM takes more account of the primitive
labels to better align with human thinking. Difficulty annotation is done by template matching. We
take into account the data sources of the original questions (e.g., primary and secondary school
questions or Olympiad questions), the original difficulty labeling information, and we emphasize
aligning the difficulty classifications of different fields. After that, we randomly sample the data to
ensure that the number of each field is relatively balanced. Finally, we randomly divide the training
set and test set with a ratio of 3:1. For conceptual understanding, we extract math definitions and
axioms from NaturalProofs [[73|] and generate fill-in-the-blank questions. For forward reasoning, we



collect questions and proofs with formal language such as LeanWorkbook, and filter the questions with
definite answers. For backward reasoning, we use a counterexample-driven reasoning statement
from CounterMath [74]]. Given data scarcity, we maintain a 1:1 train-test split for logic atomic
capability to ensure evaluation robustness.

3.3 Atomic capability interaction

In addition to decoupling individual atomic capabilities, we also try to explore the correlation and
interaction between atomic capabilities. One of the most basic strategies is trying to stimulate a
certain atomic capability and observe whether it has an impact on other atomic capabilities. This
will provide insight for subsequent research on how to specifically stimulate the required atomic
capabilities. Therefore, we explore the following atomic capability interactions:

* Cross-difficulty Interaction: We investigate how training on Level 1 or Level 2 tasks
within a field affects performance at the other level.

¢ Cross-field Interaction: We train on tasks from one field and evaluate transfer effects to
others, particularly among related or complementary fields.

* Logical Capability Interactions: We examine whether conceptual understanding can
support high-level ability, improving forward or backward reasoning, and whether forward
and backward reasoning mutually reinforce each other. Additionally, we assess whether
high-level reasoning enhances foundational understanding.

* Reasoning-to-field Interaction: Given the abstract nature of some fields (e.g., topology and
analysis), we test whether improving logical reasoning capabilities can enhance performance
in field-specific tasks, especially those requiring conceptual abstraction.

4 Experimental settings

4.1 Decoupled atomic capability evaluation

Baselines We evaluate a diverse set of LLMs with a focus on mathematical reasoning. Open-
source models include Deepseek-Math-7B-RL [35], Eurus-2-7B-PRIME [75]], Qwen2.5-Math-
7B-Instruct [32], NuminaMath-7B-TIR [61], InternLM2-Plus-7B/20B [36], Abel-7B/13B [37],
WizardMath-7B [33]], Mathstral-7BE], MetaMath-Mistral-7B [41], Xwin-Math-7B/13B [42],
QwQ-32B]| For proprietary models, we use GPT-40, OpenAl 01| Deepseek-R1| Claude3.7-
sonnetﬂ and Gemini2.5-pr(ﬂ This selection spans varied training paradigms, data sources, architec-
tures, and origins (academic vs industrial). Open-source evaluations are conducted on 4 x L20 48GB
GPUs, while proprietary models are accessed via official APIs.

Prompts and metrics We adopt default Chain-of-Thought (CoT) prompting, instructing models to
enclose answers in \boxed{} for extraction. Accuracy is computed via exact match with reference
answers. For Conceptual Understanding, models complete missing definitions. Forward Rea-
soning requires multi-step derivations using formal mathematical language. Accuracy is used for
both. For Backward Reasoning, we refer to previous work CounterMATH [74]]: (1) F-1 score on the
statement judgement, and (2) Example, Strict, Loose metric to evaluate whether the model constructs
valid counterexamples. Detailed description of our prompts and metrics can be found in Appendix

4.2 Training for atomic capability interaction

To examine interactions among atomic abilities, we fine-tune Qwen2.5-Math-Instruct-7B using
supervised LoRA training [76] on 4 xL20 48GB GPUs, with a learning rate of 1.0e-5. Training about

*https://mistral.ai/news/mathstral/
*https://qwenlm.github.io/blog/quq-32b-preview/
*https://cdn.openai.com/ol-system-card-20241205.pdf
Shttps://api-docs.deepseek.com/news/news250120
"https://www.anthropic.com/claude/sonnet
%https://deepmind.google/technologies/gemini/pro/
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Table 1: Model performance on field atomic capabilities. We bold the optimal and underline
the suboptimal of models. The low and high difficulty levels correspond to level 1 and level 2,
respectively.

Field Algebra Geometry Analysis Topology
Difficulty Level Low High Low High Low High Low High

Open-source models

InternLM2-math-plus-7b 492 359 330 314 419 415 272 370

Deepseek-math-r1-7b 520 338 355 393 446 376 226 337
Eurus-2-7B-PRIME 50.7 339 365 323 454 320 365 233
NuminaMath-7B-TIR 524 282 399 3211 468 33.6 264 251
MetaMath-Mistral-7B 59.6 414 424 377 452 379 206 258

Model<7B Mathstral-7B-v1.0 423 333 364 281 329 298 241 37.1
= Abel-7B-002 46.7 329 36.1 352 329 263 256 315
Xwin-Math-7B 526 373 383 351 453 329 197 225
Qwen2.5-math-Instruct-7b 80.5 652 573 519 677 665 521 534

Abel-13B 63.4 473 427 41.8 404 356 302 246

Model > 7B Xwin-Math-13B 783 51.6 49.5 46.7 557 548 467 383
IntwenLM2-Math-Plus-20B  67.8 49.6 493 46.1 543 478 454 389
QwQ-32B-Preview 851 663 59.6 538 723 672 549 46.1

Commercial models

OpenAl ol 936 871 663 623 593 469 529 494

GPT-40 693 50.5 485 363 551 532 530 494

Deepseek-rl 83.6 809 768 780 703 682 77.7 82.7
Claude3.7-sonnet 835 720 580 390 803 68.1 560 58.6
Gemini2.5-pro 80.5 796 702 731 675 638 681 66.2

different interactions adheres to a unified hardware setup and consistent hyperparameters. After
training, evaluation follows Section[4.1]to ensure comparability across settings.

S Analysis and discussion

5.1 Experimental analysis of field atomic capabilities

We evaluate several advanced models by assessing their performance across decoupled atomic abilities
in distinct mathematical fields. The detailed results are presented in Table|l} We observe that:

Larger models exhibit stronger atomic capabilities Model performance varies significantly
across scales. In general, larger models perform better, benefiting from greater capacity and more
extensive training data. Among 7B-scale models, Qwen2.5-math-Instruct achieves notably superior
results across all evaluated fields, even outperforming some larger models such as InternLM2-Math-
Plus-20B. Analysis of its outputs shows that it generates longer reasoning chains, facilitating deeper
logical inference and enhancing its problem-solving capabilities.

Algebra and analysis perform better Models tend to exhibit stronger mathematical atomic abil-
ities in Algebra and Analysis, while performance in Geometry and especially Topology remains
weaker. Since we analyze the training data of the open-sourced models we have evaluated, the results
reveal that Geometry and Topology are significantly underrepresented in the training data. Moreover,
although geometric problems are textually presented, they often require spatial or visual reason-
ing—an area where LLMs typically struggle. Consequently, current models demonstrate limited
atomic capabilities in these fields. Improving performance in underrepresented areas, particularly
Topology and Geometry, is a pressing research challenge. For example, the low performance on
topology-related tasks may reflect a lack of understanding of abstract mathematical structures. A
promising direction is to integrate core mathematical concepts during training to stimulate relevant
atomic skills. We explore such cross-ability interactions in Section[5.3]



Table 2: Model performance on logic atomic capabilities, where Attr. and Def. are short names of the
Attribute description and definition task. We bold the optimal and underline the suboptimal results.

Concept Forward Rea. Backward Rea.
Attr. (Acc.) Def. (Acc.) Acc. F-1  Example(%) Strict(%) Loose(%)
Open-source models
InternLM2-math-plus-7b 43.2 46.2 23.7 339 36.6 9.0 9.5
Deepseek-math-11-7b 394 46.5 27.6 322 65.9 18.9 20.6
Eurus-2-7B-PRIME 23.1 27.9 414 37.5 64.8 28.5 32.0
NuminaMath-7B-TIR 22.8 273 30.2 304 54.1 13.0 13.7
Model<7B  MetaMath-Mistral-7B 19.6 25.6 28.6 31.0 26.5 0.4 0.7
Mathstral-7B-v1.0 21.7 29.8 329 28.2 38.9 7.5 7.9
Abel-7B-002 20.9 31.0 33.7 344 66.1 16.0 17.9
Xwin-Math-7B 18.8 26.3 26.4 28.1 31.3 1.2 1.7
Qwen2.5-math-Instruct-7b 344 50.3 344 38.3 74.2 30.2 33.2
Abel-13B 31.2 48.0 37.2 22.4 24.4 0.8 0.8
Model > 7B Xwin-Math-13B 29.8 459 33.1 30.2 31.3 1.2 1.7
InternLM2-Math-Plus-20B 38.3 52.9 37.8 18.4 28.8 84 9.5
QwQ-32B 62.7 74.6 42.6 39.9 70.0 38.6 43.8
Commercial models
OpenAl ol 68.9 78.6 58.7 60.1 55.8 39.8 40.9
GPT-40 38.1 48.3 377 59.0 44.7 19.7 21.3
Deepseek-rl 76.4 84.5 55.6 80.7 86.8 542 65.3
Claude3.7-sonnet 45.8 60.7 56.8 64.8 78.0 45.0 52.5
Gemini2.5-pro 48.6 60.4 56.7 77.0 90.8 65.1 75.7

Internal difficulty-level analysis We further examine model performance across different difficulty
levels within each field. In Algebra, models often experience sharp drops in accuracy on high-difficulty
problems, indicating a gap in advanced atomic capabilities. In contrast, performance degradation
in Geometry and Analysis is less severe. This suggests the need for training paradigms that better
balance basic and advanced skill acquisition to ensure robust generalization. An interesting anomaly
arises in Topology, where models sometimes perform better on harder problems than on easier ones.
‘We hypothesize that this is due to mismatches between the models’ training distributions and our
evaluation data: some high-difficulty problems may incidentally align with abstract patterns the
models have implicitly learned. This counterintuitive result shows that what humans find hard may not
be hard for LLMs, which encourages deeper exploration into the field atomic ability decomposition.

Further results in Appendix show that training data difficulty significantly affects model perfor-
mance. Notably, excessively low-difficulty training data may degrade accuracy across difficulty levels.
Thus, balancing training data difficulty is essential for fostering generalizable atomic capabilities.

5.2 Experimental analysis of mathematical logical reasoning atomic capabilities

We evaluate several state-of-the-art mathematical models across multiple dimensions of logical
reasoning. Detailed results are shown in Table[2] From these results, there are some insights that:

Models recognize definitions but struggle with deeper conceptual understanding All models
perform better at recognizing definitions than completing missing properties, indicating a surface-
level grasp of mathematical rigor. This suggests that while models can identify known concepts,
they often lack precise internal representations. Larger commercial models significantly outperform
smaller open-source ones; for example, deepseek-r1 scores 84.5 in definition recognition and
76.4 in property completion. This disparity reflects the importance of pretraining, where larger
models benefit from superior long-range memory and MoE (mixture-of-experts) mechanisms that
mitigate knowledge forgetting. Current math models emphasize problem-solving over conceptual
understanding, contributing to the gap between basic concept recognition and advanced reasoning or
proof tasks. Section[5.4] provides further case studies.

Structured reasoning with formal language remains a challenge for smaller models Since
large-scale commercial models show better performance with the best accuracy of 58.7, the models
with smaller parameters struggle with both understanding the questions with formal math language
and applying formal mathematical language to reason, despite performing reasonably well in natural-
language-based reasoning. This suggests that intensive “problem-drilling” may promote pattern



Table 3: Performance comparison after stimulating various field atomic capabilities. We color the
positive? / negative] influence as green / red .

Field Algebra Analysis Geometry Topology
Difficulty Level Low High Low High Low High Low High
Qwen-base 80.5 65.2 67.7 66.5 52.1 53.4 52.1 53.4

Qwen-train-Algebra 802 (10.3) 69.7 (14.5) 758 (18.1) 71.5(15.0) 657 (113.6) 57.5(14.1) 56.0(13.9) 62.3 (18.9)
Qwen-train-Analysis ~ 81.3 (10.8) 664 (11.2) 71.8 (14.1) 64.9([1.6) 582(16.1) 55.8(12.4) 46.1 (16.0) 54.1(10.7)
Qwen-train-Geometry ~ 79.6 (10.9) 68.1 (12.9) 69.8 (12.1) 59.5(17.0) 57.3(15.2) 56.0(12.6) 52.8(10.7) 60.9 (17.5)
Qwen-train-Topology ~ 79.7 (10.8) 64.4(10.8) 71.5(13.8) 592 (17.3) 61.7(19.6) 55.6(12.2) 53.7(11.6) 59.1 (15.7)

Table 4: Performance comparison after stimulating various field atomic capabilities that are trained
on InternLM2-math-plus-7B.

Field Algebra Analysis Geometry Topology
Difficulty Level Low High Low High Low High Low High
InternLM2-math-plus-7B 49.2 35.9 33.0 314 41.9 41.5 27.2 37.0

InternLM2-train-Algebra  48.1 (J1.1) 37.8(11.9) 358 (12.8) 33.6(122) 43.1(11.2) 42.1(10.6) 27.8(10.6) 37.9(10.9)
InternLM2-train-Geometry ~ 48.6 (10.6) 36.3 (10.4) 32.2(J0.8) 30.5(}0.8) 443 (12.4) 44.0(12.5) 28.7(fL5) 38.8 (1L8)

memorization over structured formal reasoning. Some models attempt to bridge this gap by generating
code-like representations to aid multi-step deduction. Notably, reasoning-oriented models such as
ol and DeepSeek-R1, equipped with stronger long-range inference and self-reflection, achieve
outstanding results in this category.

Limited counterexample abilities reveal the limits of problem-solving training For the ability
to judge the truth value of mathematical statements, open-source models average around 30 F-1
points, and even advanced models like QWQ-32B reach only 39.9, while Deepseek-R1, optimized for
mathematical reasoning, scores 80.7. In generating counterexamples, the Qwen series performs partic-
ularly well, sometimes surpassing commercial models like o1. Conversely, models like MetaMath
succeed in only 26.5% of such tasks. Although the best model Gemini2.5-pro demonstrates superior
performance across various metrics when it constructs counter-examples, the performance of the
other models on example consistency is still relatively low, with almost none exceeding 50%. This
reflects the limitations of training paradigms overly focused on direct problem-solving, which hinders
higher-level abstraction and conceptual reasoning.

5.3 Experimental analysis of interactions between atomic abilities
5.3.1 Influence between atomic abilities across different fields

We investigate the influence between fields among field atomic abilities, as summarized in Table 3]
In particular, atomic abilities in algebra consistently exhibit positive effects across all other fields,
with particularly strong gains observed in Analysis and Geometry. In some cases, Algebra training
even yields greater improvements than in-field training. For instance, when evaluating Geometry
atomic abilities, in-field training improved performance by 6.1 and 2.4 points at Levels 1 and 2,
respectively, whereas activating Algebraic abilities led to larger gains of 13.6 and 4.2 points. This
suggests a complementary relationship among atomic abilities, likely because algebraic problem-
solving emphasizes fundamental reasoning skills that underpin more abstract fields, and our case
study in Section demonstrates that. These findings highlight the potential of leveraging diverse,
field-specific atomic abilities to enhance target capabilities more effectively. However, we also
observe negative transfer effects. Strengthening atomic abilities in Topology led to performance
declines in Algebra and Analysis, with the largest drops reaching 0.8 and 7.3 points on Level 2. This
may be due to substantial data distribution divergence. We have provided a visualization result in
Appendix [E] To further validate our conclusions, we have now included InternLM2-math-plus-7B
as an additional baseline for training and evaluation, aiming to further strengthen our claims. The
results, shown in Table E], are consistent with our observations on Qwen2.5-math-instruct and provide
a strong complement to our previous findings. These findings underscore the need to consider that,



Table 5: Performance comparison after stimulating various logic atom capabilities.

Atom Capability Concept Formal language Counter example
Attribute  Definition Acc. F-1
Qwen-base 34.4 50.3 34.4 30.2
Qwen-train-Concept 34.8 (10.4) 53.7(13.4) 53.5(119.1) 40.1 (19.9)
Qwen-train-Backward ~ 30.3 (J4.1) 46.3 (]4.0) 50.3 (115.9) 41.1 (110.9)
Qwen-train-Forward 25.1(19.3) 44.4(15.9) 53.7 (119.3) 40.2 (110.0)

Table 6: Performance comparison after stimulating conceptual understanding of atomic capabilities.

Field Algebra Analysis Geometry Topology
Difficulty Level Low High Low High Low High Low High
Qwen-base 80.5 65.2 67.7 66.5 52.1 534 52.1 53.4

Qwen-train-Concept ~ 81.3 (10.8)  66.1 (10.9)  69.7 (12.0) 72.3 (15.8) 62.3 (110.2) 59.8 (16.4) 55.6(13.5) 57.2(13.8)

when trying to stimulate one, interactions between fields can significantly impact performance in
unintended ways.

5.3.2 Interactions among logical reasoning atomic abilities

We also explore the interaction among logical reasoning atomic abilities as shown in Table
Our findings indicate that conceptual understanding plays a fundamental role in supporting two
higher-level reasoning abilities. Training solely on fill-in-the-blank tasks that activate conceptual
comprehension atomic ability results in substantial improvements of 19.1 and 9.9 in forward and
backward reasoning. This aligns with our earlier analysis: current mathematical models, especially
those with limited parameter capacity, exhibit significant deficiencies in conceptual understanding,
which constrain the model’s capacity to develop more advanced reasoning skills. Furthermore,
forward reasoning and counterexample construction appear to mutually reinforce each other, indi-
cating the potential for bidirectional enhancement between forward and backward reasoning atomic
abilities. However, enhancing high-level atomic abilities alone can lead to a decline in conceptual
understanding, revealing that overemphasis on solving complex problems may lead to forgetting
of basic mathematical concepts.

5.3.3 Influence of conceptual understanding on field-specific atomic abilities

We also study the impact of logical atomic abilities on different fields. Particularly, we investigated
how conceptual understanding supports field atomic abilities. The results in Table[6]|show signif-
icant performance improvements, particularly in fields that rely on abstract reasoning, such as
Analysis and Geometry. It is worth noting that activating conceptual understanding ability produces
better outcomes than direct training on field-specific tasks. These results further confirm the crucial
role of conceptual understanding as a foundational atomic ability, which highlights the need for fu-
ture research to focus more on fostering deep mathematical reasoning and concept-based learning,
rather than relying on question repetition or difficulty escalation.

5.4 Case study

To better understand the deficiencies of the model in some atomic capabilities and the impact of
stimulating one atomic capability on another atomic capability, we conduct a case study. Specifically,
we compare model predictions before and after stimulating algebra ability on a geometry task. As
shown in Figure|3| before training, the model produces an incorrect result due to a flawed geometric
assumption. After training, the model correctly applies knowledge of central angles and isosceles
triangles, demonstrating the correlation from algebraic reasoning to geometric analysis.



s

Error Case in Topology

Question: Determine the number of spanning trees of the
complete graph \( K 9\) such that vertex 1 has degree 4.

Error Case in Conceptual Understanding

Question: Let SAS be a Noetherian ring. We say SASisa "'
""" if all of its local rings are complete intersections.

~

Answer: 143360 Answer: complete intersections
Model prediction: 8750 X

Model output: ......4 neighbors for vertex 1 (from 8 vertices),
computed \(\binom{8}4} = 70\), and then assumed the

rest formed a \(K_5\), giving \(5/{3} = 125\), so 70 x 125 =
8750.

Model prediction: complete intersection ring X

Model output: ...... a Noetherian ring \\( A \\) is called a
complete intersection ring ... we say \\( A \\) is a complete
intersection ring.

Comparison of the difference in geometric ability before and after stimulating algebraic ability
Question: The following diagonal is drawn in a regular decagon, creating an octagon and a quadrilateral. What is the measure of $x?
import markers;\nfor(int i=0; i <=10; ++i) {\ndraw(dir(360*i/10+90)--dir(360*(i+1)/10+90));\n}N\npair A = dir(360*0/10+90......
Answer: 36

Model prediction before: 45 X

Model output: ......The internal angle of a regular decagon is
144° 144M\circl44- ...the angle at vertex F is half of that,
50 x=72/2=45x =72 / 2 = \boxed{45}x=72/2=45 ....

-

Figure 3: Case study about the error cases in Topology and Conceptual Atomic ability and the
comparison of stimulating one atomic capability on another atomic capability.

Model prediction after: 36

Model output: ......The central angle between A and F is
216° ... triangle AFG is isosceles with angles at G and A
equal... so angle at F is (180-72)/2=36° (180-72)/2 =36

6 Conclusion, limitation, and future directions

In our work, we focus on decoupling the mathematical reasoning ability of LLM into atomic abilities
and exploring the interactions between atomic abilities. We design field atomic capabilities and
logical reasoning atomic capabilities with data. The evaluation results and analysis of decoupled
atomic abilities on advanced models highlight the limited performance of some abilities. We further
explore the interactions, for which we observe whether other atomic capabilities are affected when
one atomic capability is stimulated. This process provides very interesting inspirations, including the
facilitating role of algebraic abilities and the supporting of conceptual comprehension ability, both
on logical and field atomic abilities. However, we have not explored more advanced strategies to
stimulate a specific atomic capability, such as curriculum learning or reinforcement learning. Our
findings will encourage exploring how to better stimulate the required atomic abilities and utilize
multiple atomic abilities to solve complex mathematical tasks.
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1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Our main claims well reflect the motivation and contribution of this paper and
provides inspiration for subsequent research.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations and future directions in Section
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: Our work mainly explores the atomic capabilities of LLM mathematics
reasoning from an experimental perspective as an empirical study, and does not conduct
theoretical research.
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* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide the models, hardware information, prompt design, etc. used for
training and evaluation in Section @ and the Appendix [B] and provide our data and code in
the supplementary materials for review. We will further disclose the relevant data and code
to facilitate subsequent researchers to reproduce our results.
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* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide our data and code in the supplementary materials for review. We
will further disclose the relevant data and code in GitHub and Huggingface to facilitate
subsequent researchers to reproduce our results.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

 Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide the models, hardware information, prompt design, etc. used for
training and evaluation in Section ] and the Appendix B}

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: Due to the limitation of experimental resources (especially for expensive
commercial models) and considering that these studies cannot support the main claims, we
did not study the error bars, confidence intervals and other statistical data in our experiments.
In addition, we have provided sufficient experimental details, data, and codes to ensure the
reproducibility and credibility of the results.

Guidelines:

* The answer NA means that the paper does not include experiments.
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* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Details of the compute resources used to conduct the experiments are provided
in Section 4

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: We promise that we strictly follow the code of ethics of NeurIPS 2025.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We describe our impact in the Section [T ] and[6] and declare that our research
has no conflicts of interest and will not cause negative impact.
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* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We have not released models and data with high risk of abuse. All the models
and data used in our research have been strictly risk-controlled and open-source.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The models and data we use are all official open source, or call the official API.
All use complies with their license.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.
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* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: All the data and codes we processed are organized and documented, and
submitted together with the supplementary materials for review. We will further open source
these data and codes to allow more researchers to participate in the exploration.

Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.

Guidelines:
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* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in our research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Additional details about data

After our data construction process, we collected the data corresponding to each decoupled atomic
capability and divided it into training set and test set. The specific statistical results are as following
Table [7]and Table 8t

Table 7: Data statistics of FIELD atomic capabilities.

Algebra Geometry Analysis Topology
Level 1 Level 2 Level 1 Level 2 Level 1 Level 2 Level 1 Level 2
Train/Test  3813/1277 4517/1505 3351/1117  3391/1331 3276/1092 4077/1358 3336/1112 3176/1058

Field Cap.

Table 8: Data statistics of LOGICAL atomic capabilities.

Logic Cap Conceptual Understanding Forward Reasoning Backward Reasoning
Attribute Description  Definition = Formal Language Counter-example
Train/Test 1225/1217 1683/1661 1061/1032 1225/1217

In addition, we provide data examples of our logical atomic capabilities as shown in Figure 4} to help
readers better understand the different logical reasoning atomic tasks.

s
Attribute Description Task in Conceptual Understanding Atmoic Abilities h

"title": "fields-definition-linearly-disjoint"
"question": "Consider a diagram of fields as in equation-inside-omega. We say that $SK$ and SLS are "' """ if the map $$ K
\\otimes_k L \\longrightarrow KL,\\quad \\sum x_i \\otimes y_i \\longmapsto \\sum x_i y_i $$ is injective.",

"final_answer": ["linearly disjoint over $k$ in $\\Omega$"]}

Definition Task in Conceptual Understanding Atmoic Abilities
"title": "Definition:Reciprocal",

"final_answer": ["reciprocal of $x$"]

Formal Language Multi-step Reasoning in Forward Reasoning Atmoic Abilities

"question":"(a: N >R )(a0:a0=1)(al:al=2)(a_rec:Vna(n+2)=4*a(n+1)+an): 3 fF:N >R,V nan=fn := by
sorry",

"solution": [......use a\nintros n\nsimp [a_rec, a0, a1]", "use a\nsimp [a0, a1, a_rec]", "use fun n = a n\nintro n\ninduction' n with n
IH\nsimp [a0]\nsimp [a_rec, IH]", "refine' ( a, funn=>_) \ninduction n <;>simp [a_rec, a0, al, *]", "refine ( a,?_) \nintro
n\ninduction n <;> simp [a_rec, *]", "use a\nintro n\ninduction n <;> simp [a_rec, *]", "use fun n => a n\nintro n\ninduction n <;>

simp [a0, a1, a_rec, *]", "refine' ( a,_) \nintro n\ninduction' n with n IH\nsimp [a0]\nsimp [a1, a_rec, IH]", "use fun n ~ a n\nintro
n\nrfl", "letf: N > R :=funn+ an\nrefine'( f,funn~ rfl) ..

Counter-example-driven Reverse Reasoning Atmoic Abilities
"question": "$Sa”{m}$ is not necessarily the smallest positive power of square of $\\left(a*{m}\\right)$ in terms of a.",

\_ "solution": "For example, in the 6-element cyclic group $G=(a)$, we have $(a)=\\left(a*{5\\right)S$." )

Figure 4: The figure presents data examples in logical atomic capability, including property de-
scriptions, definition recognition, formal mathematical language-driven forward reasoning, and
counterexample-driven backward reasoning.
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B Additional details about the experimental prompts and metrics

Prompt used for experiments The used prompts are summarized as follows. For field atomic
capability, we use the same default chain of thought prompt:

Prompt for Field Atomic Capability

Please think step by step to solve the following question, and put your final answer within \ \boxed( }.
{question}

For conceptual understanding atomic capability, wo prompt the LLMs to fill in the blank:

Prompt for conceptual understanding Capability

393 93

Please think step by step to fill in the blank in
within \ \boxed(}.
{question}

of following statement, and put your final answer

For forward multi-step reasoning, we prompt the model to use formal math language to solve the
question:

Prompt for forward reasoning capability

Please think step by step to solve the following question by formal math language, and put your final
answer within \ \boxed{}.
{question}

For counter-example-driven backward reasoning, we prompt the model to judge the statement true or
false, which is the same setting of counter-math:

Counter-example backward reasoning prompt

{statement }
Please think step by step about whether the above statement is True or False, and put your final answer
within \ \boxed{}.

Evaluation metrics of counter-example based backward reasoning In the evaluation of
counterexample-driven backward reasoning, we go beyond computing the F1 score for judging
the truthfulness of a given statement. Inspired by the CounterMATH framework, we also assess
GPT-40’s capability to generate examples within its reasoning output. This is achieved through
Example Extraction, which detects and retrieves instances where the model explicitly introduces or
references counterexamples to support its claims. Alignment Assessment then determines whether
each extracted example is consistent with a predefined Reference Example in terms of logical rea-
soning pattern, problem decomposition strategy, and goal relevance. Notably, since a proposition
may have multiple valid counterexamples, exact replication of the reference is not mandatory for
determining consistency. Instead, the reference serves as a guiding benchmark for GPT-40, mitigating
the risk of fully autonomous evaluations that may diverge from human-aligned reasoning standards.

Specifically, the Examples metric indicates the percentage of problems where the model incorporates
examples in its solution process. Strict Align represents the fraction of model-generated examples
that fully match the reference in reasoning alignment, while Loose Align captures the proportion of
cases where at least one example aligns with the reference example.
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C Additional experiment and analysis of impact of atomic abilities across
difficulty levels within the same field

C.1 Additional Results in Field Interaction

We run each experiment multiple times with different seeds and report means and standard deviations
as shown in Table [0

Table 9: Performance comparison across various mathematical fields.

Field Algebra Analysis Geometry Topology
Level Low High Low High Low High Low High
Qwen-base 80.5 65.2 67.7 66.5 52.1 534 52.1 534

Qwen-train-Algebra 80.2 (+£04) 69.7(£0.5) 758 (£0.6) 71.5(£0.7) 65.7(£0.3) 57.5(£0.6) 56.0(+0.5) 62.3(4+0.9)
Qwen-train-Geometry ~ 79.6 (£0.5) 68.1 (£0.4) 69.8 (£0.6) 59.5 (£0.8) 57.3 (£0.6) 56.0(£0.5) 52.8(£0.4) 60.9 (£0.3)

C.2 Difficulty Interaction in Field Atomic Ability

We conduct comparative experiments within each mathematical field to investigate how training
on datasets of varying difficulty levels affects the development of atomic abilities. The results in
Table |1 I|demonstrate that models trained on high-difficulty data exhibit performance improvements
on both easy and hard test, with particularly notable gains on the easier tasks. This indicates that
mastering complex knowledge not only activates high-level atomic abilities but also facilitates the
co-activation of lower-level atomic abilities. However, training solely on low-difficulty data can
negatively affect performance on harder tasks. This phenomenon is especially evident in fields such
as Algebra, Analysis, and Topology, where models trained on easier data show a performance decline
when evaluated on more difficult tasks. These findings suggest the need for careful balancing of
difficulty distribution in training datasets to stimulate atomic abilities across the full spectrum and
prevent knowledge forgetting.

Table 10: Performance comparison of different training levels across various mathematical fields. We
color the positive?T / negative] influence as green / red .

Field Algebra Analysis Geometry Topology
Level Low High Low High Low High Low High
Qwen-base 80.5 65.2 67.7 66.5 52.1 53.4 52.1 53.4

Qwen-train-12  832(12.7) 683 (13.1) 76.8(19.1) 66.4(10.1) 59.6 (17.5) 57.7(14.3) 53.1(11.0) 53.8 (10.4)
Qwen-train-1l 79.5 (L1.0) 64.9(10.3) 70.5(12.8) 622(143) 589 (16.8) 57(13.6) 522(10.1) 52.1(1.3)
Qwen-train-all 80 (0.5)  69.7 (14.5) 718 (14.1) 64.9(11.6) 57.4(153) 56.1(127) 53.7(1L6) 59.1 (15.7)

Table 11: Performance comparison of different training levels across various mathematical fields. We
color the positiveT / negative] influence as green / red .

Field Algebra Analysis Geometry Topology
Level Low High Low High Low High Low High
Qwen-base 80.5 65.2 67.7 66.5 52.1 53.4 52.1 53.4

Qwen-train-12  832(12.7) 683 (13.1) 76.8(19.1) 66.4(10.1) 59.6 (17.5) 57.7(14.3) 53.1(1L.0) 53.8 (10.4)
Qwen-train-1l 79.5 (L1.0) 64.9(10.3) 70.5(12.8) 622(143) 58.9(16.8) 57(13.6) 522(10.1) 52.1([1.3)
Qwen-train-all 80 (10.5)  69.7 (14.5) 718 (14.1) 64.9(11.6) 57.4(153) 56.1(127) 53.7(1L6) 59.1 (15.7)

D Human Evaluation

We conduct a human evaluation on a sample of the data during the initial phase of our experiments in
order to verify the accuracy of our automatic evaluation metrics. To do this, we selected two models,
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Gemini and Qwen, and sampled 20 problems from each dataset for manual review. Furthermore,
since the majority of the problems are calculation-based, the final answers have a relatively fixed
format. This, combined with our constraint that the answer must be in the

boxed format, greatly simplified the validation process and made it easier to check for accuracy. The
table below shows the number of cases (out of 20) where the automatic evaluation aligned with the
human evaluation for each model and dataset.

Table 12: The human evaluation category-wise scores.

Model Algebra Geometry Analysis Topology Attr.  Def. Forward Rea.
11 12 11 12 11 12 11 12

Qwen2.5-Math-Instruct-7B ~ 20/20  20/20 20/20 20/20 20/20 20/20 19/20 19/20 18/20 20/20 20/20

Gemini2.5-pro 20/20 20/20 20/20 20/20 19/20 20/20 20/20 20/20 19/20 20/20 20/20

E Visualization results of field atomic ability interaction

We have provided a heat map in Figure [5that represents the correlation between atomic capabilities
in the field, providing a more intuitive result.

Performance Change (&) per Model on Different Ability

Stimulated Field Ability (Model)

o
Influenced Field Ability

Figure 5: This figure shows the impact of stimulating one ability on the remaining abilities, where
deeper colors indicate a greater positive facilitation effect, while lighter colors indicate a greater
negative impact.
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