
Byzantine-Resilient Federated Alternating Gradient Descent and Minimization
for Partly-Decoupled Low Rank Matrix Learning

Ankit Pratap Singh 1 Ahmed Ali Abbasi 1 Namrata Vaswani 1

Abstract
This work has two contributions. First, we intro-
duce novel provably Byzantine-resilient sample-
and communication-efficient alternating gradient
descent (GD) and minimization based algorithms
for solving the federated low rank matrix com-
pletion (LRMC) problem. This involves learn-
ing a low rank (LR) matrix from a small sub-
set of its entries. Second, we extend our ideas
to show how a simple modification of our al-
gorithms also provably solves two other partly-
decoupled vertically federated LR matrix learn-
ing problem, – LR column-wise sensing (LRCS),
also referred to as multi-task linear representa-
tion learning, and its phaseless generalization,
LR phase retrieval (LRPR). In all problems, we
consider column-wise or vertical federation, i.e.
each node observes a small subset of entries of a
disjoint column sub-matrix of the entire LR ma-
trix.

1. Introduction
Modern machine learning (ML) systems are vulnerable to
various kinds of failures. One natural and powerful attack
class is that of Byzantine attacks (Guerraoui, Rouault, et
al., 2018) This means that the adversarial nodes have com-
plete knowledge of the data at every node and of the exact
algorithm (and all its parameters) implemented by every
node, including center; and all the adversarial nodes can
collude to use this information to design the worst pos-
sible attacks. In this work we develop, and analyze, se-
cure (Byzantine resilient) algorithms for solving three dif-
ferent federated low rank matrix learning problems that
share certain common features - Low rank matrix com-
pletion (LRMC), LR column-wise sensing (LRCS), and
LR phase retrieval (LRPR). These find important applica-

1Department of Electrical and Computer Engineering, Iowa
State University, Ames IA, USA. Correspondence to: Ankit
Pratap Singh <sankit@iastate.edu>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

tions in many different modern ML and medical imaging
domains – recommender system design (Koren, Bell, &
Volinsky, 2009), multi-task representation learning for few
shot learning (Collins, Hassani, Mokhtari, & Shakkottai,
2021; Shome & Kar, 2021), federated sketching (Srinivasa,
Lee, Junge, & Romberg, 2019; Anaraki & Hughes, 2014;
Azizyan, Krishnamurthy, & Singh, 2014), accelerated dy-
namic MRI (Babu, Lingala, & Vaswani, 2023; Haldar &
Liang, 2010; Lingala, Hu, DiBella, & Jacob, 2011; Yao,
Xu, Huang, & Huang, 2018) and Fourier ptychography
(Jagatap, Chen, Nayer, Hegde, & Vaswani, 2019). All these
problems can be expressed as: learn an n × q rank r ma-
trix X∗ from measurements of the form yk := Akx

∗
k or

|Akx
∗
k|, k ∈ [q] with the matrix Ak defined differently.

For LRMC it is a 0-1 very sparse matrix, while for LRCS
and LRPR it is a random Gaussian matrix. These problems
can be federated horizontally or vertically. For LRMC,
both settings are analogous (due to row-column symmetry)
and both involves learning from data that is not identically
distributed at the different nodes. This so-called hetero-
geneous data setting is known to be more difficult to de-
sign secure (Byzantine-resilient) algorithms for. For LRCS
and LRPR, the horizontal setting is the easier homogeneous
data setting, while the vertical one involves heterogeneous
data. We consider the vertical one in this work. This is also
the practically relevant one.

Related Work. Centralized LRMC problem has been
extensively studied. Solutions consist of convex relax-
ation (Candes & Recht, 2008), which was very slow, Al-
ternating Minimization (AltMin) with a spectral initializa-
tion (Netrapalli, Jain, & Sanghavi, 2013), and gradient
descent (GD) based algorithms - Projected GD (ProjGD)
(Cherapanamjeri, Gupta, & Jain, 2017; Jain & Netrapalli,
2015) and Factorized GD (FactGD) (Yi, Park, Chen, &
Caramanis, 2016; Zheng & Lafferty, 2016). AltMin al-
gorithms for LRPR and LRCS have been introduced and
studied theoretically in the last six years (Nayer, Narayana-
murthy, & Vaswani, 2019; Nayer & Vaswani, 2021). The
works of (Nayer & Vaswani, 2023, on arXiv since Feb.
2021; Collins et al., 2021; Thekumparampil, Jain, Ne-
trapalli, & Oh, 2021; Vaswani, 2024) introduced a much
faster and novel GD-based algorithm called alternating GD
and minimization (AltGDmin). This algorithm is also

1

Byzantine-Resilient Federated Alternating Gradient Descent and Minimization for LR matrix learning

communication-efficient for federated LRCS or LRPR. In
recent work (Abbasi & Vaswani, 2024; Abbasi, Moothe-
dath, & Vaswani, 2023), an AltGDmin based solution was
introduced and analyzed for solving the federated LRMC
problem. This was as fast as AltMin or FactGD, while be-
ing the most communication-efficient.

Byzantine-resilient federated learning algorithms, primar-
ily (stochastic) GD and modifications, have been devel-
oped and studied extensively recently. Typical solutions
involve replacing the mean/sum of the gradients from the
different nodes by a different robust statistic, such as ge-
ometric median (GM) or GM of means (Chen, Su, &
Xu, 2017), coordinate-wise median or trimmed mean (Yin,
Chen, Kannan, & Bartlett, 2018), or Krum (Blanchard,
El Mhamdi, Guerraoui, & Stainer, 2017). One of the first
non-asymptotic results for Byzantine attacks is (Chen et al.,
2017). This studied GD and used the geometric median
(GM) of means to replace the regular mean/sum of the par-
tial gradients from each node. Under standard assumptions
– strong convexity, Lipschitz gradients, sub-exponential-ity
of sample gradients, and an upper bound on the fraction of
Byzantine nodes – it provided an exponentially decaying
bound on the distance between the estimate at the t-th it-
eration and the unique global minimizer. In (Yin et al.,
2018), the authors developed non-asymptotic guarantees
for coordinate-wise median and the trimmed-mean estima-
tors based GD for both convex and non-convex problems,
albeit under very strong assumptions - this work needed
bounds on variance and skewness along each dimension,
and also needed smoothness and convexity along each di-
mension. Other work is (Alistarh, Allen-Zhu, & Li, 2018;
Allen-Zhu, Ebrahimian, Li, & Alistarh, 2020). All the
above works assumed homogeneous data distributions

More recent work has explored the more difficult heteroge-
neous data distribution setting by either assuming a bound
on the amount of heterogeneity (Pillutla, Kakade, & Har-
chaoui, 2019; Data & Diggavi, 2021; Li, Xu, Chen, Gian-
nakis, & Ling, 2019; Ghosh, Hong, Yin, & Ramchandran,
2019; Allouah et al., 2023), or by assuming the existing
of a trusted dataset at the center (root dataset) and using
detection methods to remove bad nodes (Regatti, Chen, &
Gupta, 2022; Lu, Li, Chen, & Ma, 2022; Cao, Fang, Liu,
& Gong, 2020; Cao & Lai, 2019; Xie, Koyejo, & Gupta,
2019). Recently (Singh & Vaswani, 2024a, 2024b) studied
Byzantine-resiliency of LRCS using GM in the easier hor-
izontally federated setting. But the ideas presented in these
works cannot be extended for LRMC or vertically federated
LRCS/MTRL which we explain next. (He, Ling, & Chen,
2019) presents experimental results for Byzantine-resilient
LRMC, but with no theoretical guarantees. Other related
works include (Alistarh et al., 2018; Cao et al., 2020;
Allen-Zhu et al., 2020; Wu, Ling, Chen, & Giannakis,
2020; Defazio, Bach, & Lacoste-Julien, 2014; Acharya et

al., 2022; Dadras, Stich, & Yurtsever, 2024).

Contributions and Novelty. This work has two contribu-
tions. (1) Our main contribution is novel provably secure
and communication-efficient algorithms, Krum-AltGDmin
and GM-AltGDmin, for solving the federated LRMC prob-
lem. Krum is an easy to compute estimator but needs order
nrL2 time to compute. GM can only be approximated, and
the only algorithm for it that comes with a useful guaran-
tee is way too complicated to implement (even the algo-
rithm authors have not implemented it). But the guarantee
is near-linear-time, order nrL times log factors. We also
explain why use of coordinate-wise median is not useful in
this setting: its required sample complexity is very high.
This comparison is summarized in Table 1. (2) Second,
we explain how both our novel algorithm and our proof
approach can be extended directly to also solve two other
federated LR problems – LRCS and LRPR. All three prob-
lems involve solving a partly decoupled optimization prob-
lem and all three also involve dealing with heterogeneity
across nodes. We use the term “partly decoupled” to re-
fer to optimization problems in which the unknown can be
split into two subsets, and the optimization with respect to
at least one subset of variables, keeping the other fixed, is
decoupled. Heterogeneity means that the data at the differ-
ent federated nodes is not identically distributed.

The work most closely related to ours is (Singh & Vaswani,
2024b), however this deals with a much easier setting of
horizontally federated LRCS. In this case, the data, and
hence node gradients, are homogeneous, making it easier
to study. Also, LRCS only requires incoherence of right
singular vectors of the true unknown matrix, and of each
algorithm estimate. Since the columns of B (the right fac-
tor of X = UB), are updated locally at the nodes, the
analysis of this step does not require any changes for the
secure algorithm. Thirdly, it only provides guarantees for
GM, which cannot be computed exactly and theory and
practical algorithms for it are different. On the other hand,
(1) Incoherence of U : LRMC also requires assuming in-
coherence of U∗, and ensuring it for each U at each al-
gorithm iteration. This is tricky because update of U re-
quires interaction between nodes and the GM or Krum out-
put may not be incoherent. For this, we have to introduce
a novel filtering step to eliminate the non-incoherent gradi-
ents. (2) Heterogeneous gradients: It is well known in the
secure federated optimization literature that heterogeneity
makes it more difficult to design secure algorithms: if the
data at different nodes is very different, it is impossible to
distinguish a Byzantine node output from an honest node
output. Clearly, one can only handle a bounded amount
of heterogeneity. All past work for this setting assumes a
bound on the difference between gradients from different
good nodes, at each algorithm iteration (Data & Diggavi,
2023, Assumption 2), (Allouah et al., 2023, Assumption

2

Byzantine-Resilient Federated Alternating Gradient Descent and Minimization for LR matrix learning

1). This is a confusing assumption on intermediate algo-
rithm outputs and it is not clear how to satisfy it. The rea-
son it is needed is the past works consider a large class
of optimization problems. Our work only solves three LR
problems and hence a bound on the difference between the
column sub-matrices of X∗ at different nodes suffices. (3)
Guarantees for Krum: Our work provides guarantees for
both Krum and GM. In fact, our result may be the first non-
asymptotic guarantee for using the Krum estimator, which
is a simple, intuitive, and easy to compute estimator, in-
troduced in (Blanchard et al., 2017). By proving a result
for Krum that is analogous to that for GM, we show how
we can use it to replace GM. We obtain this result by care-
fully borrowing and modifying an argument embedded in
the asymptotic proof given in (Blanchard et al., 2017). This
may be of independent interest.

2. Secure Federated LRMC
Problem Setting. LRMC involves recovering a rank-r
matrix X∗ ∈ ℜn×q , where r ≪ min(n, q), from a subset
of its entries. Entry j of column k, denoted x∗

jk, is ob-
served, independently of all other observations, with prob-
ability p. Let ξjk

iid∼ Bernoulli(p) for j ∈ [n], k ∈ [q]. For
each k ∈ [q], define a diagonal 1-0 matrix Ak ∈ ℜn×n as

Ak := diag(ξjk, j ∈ [n])

Then, we can write yk = Akx
∗
k, k ∈ [q] and the data ma-

trix Y = [y1,y2, ...,yq] is of the same size as X∗ but with
unobserved entries zeroed out.

For federated LRMC, we assume that there are a total of
L nodes out of which at most Lbyz can be Byzantine. Let
Sℓ, ℓ ∈ [L] be a partition of [q] := {1, 2, . . . , q} such that
|Sℓ| ≥ q/L > r for all ℓ. Node ℓ observes a subset of
entries of X∗

ℓ := [x∗
k, k ∈ Sℓ], i.e., it has access to yk :=

Akx
∗
k. We assume that each X∗

ℓ has rank r and can be
expressed as X∗

ℓ = U∗B∗
ℓ where U∗ is an n × r . The

goal is to recover U∗ and B∗
ℓ for each ℓ ∈ [L], and thus

recover X∗ = [X∗
1 ,X

∗
2 , . . . ,X

∗
L].

Notation. We use ∥.∥F to denote the Frobenius norm and
∥.∥ without a subscript to denote the (induced) l2 norm; ⊤

denotes matrix or vector transpose. We use ek to denote the
k-th canonical basis vector (k-th column of identity matrix
I); and M † = (M⊤M)−1M⊤. For tall matrices with
orthonormal columns U1,U2, we use SDF (U1,U2) :=
∥(I −U1U1

⊤)U2∥F as the Subspace Distance (SD) mea-
sure between the column spans of the two matrices. For
any matrix M = [m1, ...,mq], we denote its sub-matrix
with q̃ = |Sℓ| = q

L columns corresponding to indices in Sℓ
by Mℓ. Thus, M = [M1, . . . ,Mℓ, . . . ,ML].

Let X∗ SVD
= U∗(Σ∗)V ∗ := U∗B∗, where U∗ ∈ ℜn×r

and has orthonormal columns and V ∗ ∈ ℜr×q with or-
thonormal rows. Also, we let B∗ := Σ∗V ∗ so that

X∗ = U∗B∗. We state guarantees in terms of κ̃ =
σ∗
max

σ∗
min

where σ∗
min = minℓ∈[L] σmin(X

∗
ℓ), and σ∗

max =

maxℓ∈[L] σmax(X
∗
ℓ). Our guarantees actually only depend

the maximum and minimum singular values over the set of
good nodes (and not all nodes). We reuse the letters c, C to
denote different numerical constants in each use with the
convention that c < 1 and C ≥ 1.

Definition 2.1 (Krum). For a set of matrices
{Z1,Z2, ...,ZL}, their Krum and the corresponding
best index Kr are defined as follows

Kr = argmin
ℓ∈[L]

(∑
ℓ−→ℓ′

∥Zℓ −Zℓ′∥2F

)
, Krum = ZKr

where the sum
∑

ℓ−→ℓ′
runs over the (L−Lbyz−2) matrices

Zℓ′ which are closest to Zℓ in Frobenius norm.

Assumptions. We need three standard assumptions. The
first is incoherence of the left and right singular vectors of
each X∗

ℓ . This is needed in all works that study LRMC so-
lutions. The second is a bound on the fraction of Byzantine
nodes, which is also always needed. For notational sim-
plicity, we assume this to be at most 40%. But any bound
that satisfies Lbyz < L−2

2 (Blanchard et al., 2017) can be
assumed. Lastly, we need a bound on the amount of het-
erogeneity, this is also needed in all past work that deals
with heterogeneous data and does not assume existence of
a trustworthy root dataset.

Assumption 1. Assume that Lbyz

L < 0.4.
Assumption 2. Assume row norm bounds on U∗:
maxj∈[n] ∥u∗j∥ ≤ µ

√
r/n, and assume that right singu-

lar vectors’ incoherence holds locally for each node, i.e.,
maxk∈Sℓ

∥b∗k∥ ≤ µ
√
r/q̃σmax(X

∗
ℓ) for a constant µ ≥ 1.

Assumption 3 (Bounded heterogeneity).

max
ℓ,ℓ′∈[L]

∥B∗
ℓ −B∗

ℓ′∥2F ≤ G2
Bσ

∗2
max

We bound GB in our guarantee. This assumption in turn
implies that, for all ℓ, ℓ′ ∈ [L],

∥X∗
ℓ −X∗

ℓ′∥2F = ∥U∗B∗
ℓ −U∗B∗

ℓ′∥2F ≤ G2
Bσ

∗2
max

2.1. Krum-AltGDmin
The complete stepwise algorithm is provided in Algorithm
1. We explain its steps below, starting with first reviewing
the basic altGDmin idea. Guarantee is provided after that.

Basic AltGDmin. We first explain the basic AltGDmin
idea. This imposes the LR constraint by expressing the
unknown matrix X as X = UB where U is an n × r
matrix and B is an r × q matrix. The goal is to min-
imize f(U ,B) :=

∑q
k=1 ∥yk − AkUbk∥2 with U be-

ing a matrix with orthonormal columns. After a careful

3

Byzantine-Resilient Federated Alternating Gradient Descent and Minimization for LR matrix learning

Methods→ Krum GM CWMed
(Blanchard et al., 2017) (Chen et al., 2017) (Yin et al., 2018)

Sample Comp for Byz-AltGDmin r2q̃ log q̃ log(1ϵ) r2q̃ log q̃ log(1ϵ) rq̃
√

n log q̃ log nr log(1ϵ)

(lower bound on nq̃p)
Communic Cost nr log(1ϵ) nr log(1ϵ) nr log(1ϵ)
Approximate Algorithm No Yes No
Compute Cost at Center - GD nr2L2 log(1ϵ) nr2L log3(L

ϵapprox
) log(1ϵ) nr2L log(L) log(1ϵ)

Compute Cost at Node - GD max(n, |Ω|
L)r2 log(1ϵ) max(n, |Ω|

L)r2 log(1ϵ) max(n, |Ω|
L)r2 log(1ϵ)

Ω is set of observed entries, E[|Ω|] = npq

Table 1: We compare Krum, Geometric Median (GM), and Coordinate wise median (CWMed) based modification of
AltGDmin. Observe that Compute cost for CWMed is smallest but its sample complexity is unreasonably high making it
useless. Krum and GM have same sample complexity. GM compute cost is slightly less than Krum but it is an approximate
algorithm i.e., we can compute GM with ϵapprox error.

Algorithm 1 Byz-AltGDmin-LRMC

1: AltGDmin Initialization:
2: Nodes ℓ = 1, ..., L
3: U00 ← top r left-singular vectors of Yℓ

4: Compute ΠU (U00): if a row of U00 has 2-norm more
than µ

√
r/n, then re-normalize the row entries so that

its norm equal the this value, else do nothing.
5: U0 ← QR(ΠU (U00)).
6: Push U0ℓ ← QR(ΠU (U00)) to center
7: Central Server
8: Define set I0 = {}
9: for ℓ = 1 to L do

10: if ∥uj
0ℓ∥ ≤ 1.5µ

√
r
n for all j ∈ [n] then

11: Add ℓ to set I0
12: end for
13: Compute PU0ℓ

← U0ℓU
⊤
0ℓ, ℓ ∈ I0

14: [Kr,PUKr
] = Krum{PU0ℓ

}ℓ∈I0

15: Push U0 = UKr to nodes.
16: AltGDmin Iterations:
17: for t = 1 to T do
18: Nodes ℓ = 1, ..., L

19: bk ← (AkUt−1)
†yk ∀ k ∈ Sℓ

20: ∇ℓ ← 2
∑

k∈Sℓ
(AkUt−1bk − yk)b

⊤
k

21: Central Server
22: Define set It = {}
23: for ℓ = 1 to L do
24: Compute Utemp ← Ut−1 − η∇ℓ

25: if ∥uj
temp∥ ≤ (1 − 0.4

κ̃2)∥uj
t−1∥ + 1.4µ

√
r
n

for all
j ∈ [n] then

26: Add ℓ to set It
27: end for
28: ∇Kr = Krum{∇ℓ}ℓ∈It

29: Compute Ut ← QR(Ut−1 − η∇Kr)
30: Push Ut to nodes.
31: end for
32: Output UT .

spectral initialization for U , at each iteration, it alterna-
tively updates B and U as follows: (1) Minimization for
B: keeping U fixed, update B by solving minB f(U ,B).
Clearly, this minimization decouples across columns, mak-
ing it a cheap least squares problem of recovering q dif-
ferent r length vectors. It is solved as bk ← (AkU)†yk

for each k ∈ [q]. (2) GD for U : keeping B fixed, up-
date U by a GD step, followed by orthonormalizing its
columns: U+ ← QR(U − η∇Uf(U ,B))). Due to the
decoupling in the minimization step, its time complexity is
only as much as that of computing one gradient w.r.t. U .
In a federated setting, AltGDmin is also communication-
efficient because each node needs to only send nr scalars
(gradient w.r.t U) at each iteration. The updating of bks is
done locally at the node where its data is available. The ini-
tialization is computed as given in line 1 and the two lines
below it in Algorithm 1. The algorithm implementation
uses special features of the LRMC problem to speed up all
computations, e.g., AkU is computed by just sub-selecting
the rows corresponding to the nonzero diagonal entries of
Ak. Sample-splitting is assumed to prove the guarantees.

AltGDmin-Krum. The resilient Krum based modifica-
tion proceeds as follows. At each iteration, node ℓ first
updates bks for k ∈ Sℓ locally using the yks. This step is
the same as in the basic case. It can also be analyzed sim-
ilarly using (Abbasi & Vaswani, 2024, Lemma 4.2, 4.3).
Next, it computes the partial gradient, denoted∇ℓ as given
in Algorithm 1, line 20. This is sent to the center.

The center does not know which received ∇ℓ, if any, is
Byzantine. To deal with this, it processes them in two
steps. First, it finds the index set of ℓs for which ∇ℓ is
such that the updated U would be sufficiently incoherent
(as needed by our proof). This filtered set is computed as
I := {ℓ : maxj∈[n] ∥[U − η∇ℓ]

j∥ ≤ (1− 0.4/κ2)∥U j∥+
1.4µ

√
r/n} See line 25. Next, we compute Krum of the

set of gradients ∇ℓ, ℓ ∈ I. The filtering is needed because
LRMC algorithms need to ensure incoherence of the up-
dated U at each iteration. While the gradients computed

4

Byzantine-Resilient Federated Alternating Gradient Descent and Minimization for LR matrix learning

by the good (honest) nodes will satisfy this w.h.p. (can be
proved), this cannot be guaranteed for Byzantine outputs.

Subspace-Krum for initialization. The initialization at
the nodes is done exactly as in the basic AltGDmin al-
gorithm (Abbasi & Vaswani, 2024). This involves com-
puting the top r singular vectors of Y ; projecting the re-
sulting matrix U00 onto space of row incoherent matrices,
i.e., computing ΠU (U00) = minŨ∈U ∥Ũ −U00∥F , where
U := {Ũ : ∥ũj∥ ≤ µ

√
r/n}; and finally computing a

QR decomposition of ΠU (U00). See line 6. This is com-
puted as given in line 4. The projection needs time nr
while the QR step needs time nr2. The nodes send their
U0ℓ to the center. The center processes these in two steps.
The first step is again a filtering step that selects only those
U0ℓs which are incoherent. See line 10. The second step
involves computing the Subspace-Krum. This is done as
follows. Observe that the received U0ℓs are subspace es-
timates. Their actual entries can be quite different. Thus
we cannot use Krum on them to get a meaningful aggre-
gate. We need a different approach that applies Krum to
subspace distances. To do this, we rely on the fact that, for
subspace basis matrices U1,U2, ∥U1U

⊤
1 − U2U

⊤
2 ∥F is

another measure of subspace distance.

Guarantee for Krum-AltGDmin. We can prove the fol-
lowing for Algorithm 1. Under the three simple assump-
tions stated earlier, and if GB is small enough, then, as long
as we observe roughly order nr2 log q̃ log(1/ϵ) matrix en-
tries at each node, w.h.p., the subspace distance between
U∗ and Ut, and hence error between X∗

ℓ = U∗B∗
ℓ and

Xt = UtBℓ decreases exponentially with iteration t un-
til either the desired error level ϵ is reached or the hetero-
geneity bound GB is reached. Convergence up to the het-
erogeneity bound is also what the other SGD works show
(Pillutla et al., 2019; Data & Diggavi, 2021; Li et al., 2019;
Ghosh et al., 2019; Allouah et al., 2023).

Theorem 2.2. (Krum-altGDmin-LRMC) Consider Algo-
rithm 1 with Krum, and sample-splitting. Let T =
Cκ̃2 log(1/ϵ), and step-size η ≤ 0.5/pσ∗2

max. Assume that
Assumption 1, 2, 3 holds and GB ≤ c

κ̃2 . If

nq̃p ≥ Cκ̃10µ2q̃r2 log q̃ log(1/ϵ),

then w.p. at least 1− 3Ln−10 − Cκ̃2 log(1/ϵ)Ln−10

SDF (U
∗,UT) ≤ max

(
ϵ, 14C1κ̃

2GB

)
and ∥XT −X∗∥F ≤ ϵσ∗

1
2. Compute and communication

cost are stated in Table 1.

2.2. GM-AltGDmin
It is possible to obtain a different algorithm and guarantee
with using GM to replace Krum. GM is theoretically, faster
to compute than Krum, although its theoretical and practi-
cal algorithms are not the same (as noted earlier). Also, its

Algorithm 2 Byz-AltGDmin-LRMC-GM
Consider Algorithm 1 with the following changes:

Replace Line 14 by [ℓbest,PUℓbest
]; ℓbest =

argminℓ∈I0
∥GM{PUℓ

}ℓ∈I0 − PUℓ
∥F

Replace Line 28 by ∇ℓbest ; ℓbest =
argminℓ∈It

∥GM{∇ℓ}ℓ∈It
−∇ℓ∥F

guarantee holds only with constant probability (the approx-
imate GM algorithm works only with this much probability.
The entire algorithm would be the same as Algorithm 1 ex-
cept for one change. After the GM step, in both initializa-
tion and GD iterations, we need to find the gradient that is
closest to the GM and use that as the output. This is needed
because the GM is not one of the entries being aggregated.
So then there is no way to prove that (U − η∇GM) will
satisfy the required incoherence. The proof technique of
Theorem 2.2 also extends to GM.

Corollary 2.3. (GM-altGDmin-LRMC) Consider Algo-
rithm 2. Assume everything in Theorem 2.2. Its conclu-
sion holds with probability at least 1 − (L + 1)n−10 −
capproxGM − Cκ̃2 log(1/ϵ)

(
Ln−10 − capproxGM

)
3. Proof Outline for Theorem 2.2
The theorem statement is a subset of the following main
claim. Let δt = SDF (Ut,U

∗) and µu = 8κ2µ. Let Jgood
denote the set of good (honest) nodes and let ℓ1 be any one
good node, i.e., any one entry of Jgood.
Claim 3.1. w.p. at least 1− 3Lp3 − t(Lp2 + 2Lp1)

(i) δt ≤ (1− 0.65ηpσ∗2
max

κ̃2
)tδ0

+ ηpσ∗2
maxC8.6GB

t−1∑
w=0

(1− 0.65ηpσ∗2
max

κ̃2
)w

(ii) ∥uj
t∥ ≤ (1− 0.3

κ̃2)
t∥uj

0∥+ 2µ
√

r/n
∑t−1

w=0(1−
0.3
κ̃2)

w,
(iii) δt ≤ δ0, and (iv) Jgood ⊆ It. Here p1 =
exp(log q̃− c pn

max(κ̃8µ2,κ̃6µu,µ)r2
) + exp(log q̃− c pn

r2κ̃4µ2
u
),

p2 = exp(log q̃ − c pn
κ̃4µ2r2), and p3 = n−10.

3.1. Proving Claim 3.1
This claim is proved using an induction argument and the
following five lemmas. Lemma 3.2 proves the base case,
while the others are used to prove the induction step. Claim
(iv) follows using Lemma 3.4. Once we have Jgood ⊆ It
Lemma 3.6, 3.7 holds. Claim (ii) follows by construction
(see Fact 3.5) and Lemma 3.7. Claim (i) follows by sub-
stituting the bounds on Err Lemma 3.6, and denomina-
tor term Lemma 3.7 in algebra Lemma 3.3. Since doing
a QR step results in a denominator term 1

σmin(Ut−1−η∇Kr)

Lemma 3.7. To obtain a bound on this term Claim (iii) is re-
quired which is a consequence of Claim (i) and GB ≤ c

κ̃2 .
Full proof is in Appendix A.

5

Byzantine-Resilient Federated Alternating Gradient Descent and Minimization for LR matrix learning

Lemma 3.2 (Initialization). Let Assumption 1, and 2 holds.
Assume p ≥ Cκ̃2r2µ log q̃/(nδ20). Let p3 = n−10. Then,

1. w.p. at least 1− Lp3, Jgood ⊆ I0

2. w.p. at least 1− 3Lp3, SDF (U0,U
∗) ≤ δ0.

3. w.p. at least 1−3Lp3, U0 is 1.5µ row-incoherent, i.e.,
∥uj

0∥ ≤ 1.5µ
√
r/n for all j ∈ [n].

Lemma 3.3 (Algebra Lemma). Let Err := ∇Kr −
E[∇ℓ1(Ut−1,Bℓ1)]. For [Ut−1 − η∇Kr]

QR
= UtR

+ we
have

SDF (U
∗,Ut) ≤

∥Ir − ηpBℓ1B
⊤
ℓ1
∥SDF (U

∗,Ut−1) + η∥Err∥F
σmin(Ut−1 − η∇Kr)

.

Lemma 3.4 (Good nodes contained in filtered set). Sup-
pose thatJgood ⊆ It−1. Then, w.p. at least 1−Lp2, at iter-
ation t, Jgood ⊆ It. Here p2 = exp(log q̃− cpn/κ̃4µ2r2).

Fact 3.5 (Incoherence of Utemp for any ℓ ∈ It). Utemp =
Ut−1 − η∇ℓ, for any ℓ ∈ It, by construction (Line 25 of
Algorithm 1) ∥uj

temp∥ ≤
(
1− 0.4

κ̃2

)
∥uj

t−1∥+ 1.4µ
√

r
n .

Fact says any gradient with index in It gives incoherent
Utemp. The set It contains all of Jgood but also can con-
tain some of the Byz gradients. Our construction of the
filtered set It guarantees that all gradients in it give inco-
herent Utemp. Thus the Krum gradient (which is one of the
gradients from It) also gives incoherent Utemp.
Lemma 3.6 (Bounding Err). Assume Jgood ⊆ It and
Assumption 1, 2, 3 holds. Let p1 = exp(log q̃ −
c ϵ2pn
max(κ̃4µ2,κ̃2µu,µ)r2

) + exp(log q̃ − c ϵ2pn
r2µ2

u
). We have w.p.

at least 1− 2Lp1,

∥∇Kr − E[∇ℓ1]∥F ≤ Cpσ∗2
max(8ϵδt−1 + 4.3GB) (1)

Lemma 3.7 (Bounding denominator). Con-
sider the setting of Lemma 3.6. If η satisfies
ηpσ∗2

max((2.5 + C8ϵ)δt−1 + C4.3GB) < 1, then
w.p. at least 1 − 2Lp1, 1

σmin(Ut−1−η∇Kr)
≤

1 + ηpσ∗2
max((5 + C16ϵ)δt−1 + C8.6GB)

The algebra lemma and the denominator lemma follow us-
ing ideas similar to those in (Abbasi & Vaswani, 2024). We
show next how to prove the others.

Bounding error in B and showing its incoherence. We
borrow this from (Abbasi & Vaswani, 2024). It does not
change because bks are updated locally at the nodes, and
thus, we do not need to worry about Byzantine resilience.
Lemma 3.8 (Lemma 4.2, 4.3 (Abbasi & Vaswani, 2024)).
For any node ℓ ∈ Jgood. Assume ∥uj∥ ≤ µu

√
r/n. Then,

w.p. at least 1− exp(log q̃ − c ϵ2pn
r2µ2

u
),

1. ∥Bℓ − Gℓ∥F ≤ ϵδt−1σ
∗
max and ∥Xℓ − X∗

ℓ ∥F ≤
2δt−1σ

∗
max

2. σmax(Bℓ) ≤ (1 + δt−1)σ
∗
max and σmin(Bℓ) ≥√

1− δ2t−1σ
∗
min − δt−1σ

∗
max. Thus, if δt−1 ≤ c/κ̃2,

then σmin(Bℓ) ≥ 0.9σ∗
min and σmax(Bℓ) ≤ 1.1σ∗

max

3. ∥bk∥ ≤ 1.1σ∗
1µ
√
r/q.

This is used in the proof of the lemmas needed for the Err
bound. It is also used to prove the ∥XT −X∗∥F bound of
the theorem.
3.2. Proof of Initialization lemma
We need to first show that each good node returns an accu-
rate enough estimate and one that is also incoherent. Item
one of Lemma 3.2 follows using second part of (Abbasi
& Vaswani, 2024, Lemma 4.1) that U0ℓ is 1.5µ row-
incoherent for all ℓ ∈ Jgood and then using union bound
over Jgood.

Next we need to analyze the proposed Subspace Krum ap-
proach. This requires using the following Krum Lemma
3.9 which we modified from (Blanchard et al., 2017) to in-
clude probabilistic argument.

Lemma 3.9 (Krum (Blanchard et al., 2017)). Let zℓ ⊆ ℜn,
for ℓ ∈ [L] and let zKr denote the vector selected by Krum
operator Kr = Krum{zℓ}Lℓ=1. For a τ < 0.4, suppose
that, for at least (1− τ)L zℓ’s,

Pr{∥zℓ − z̃∥ ≤ ϵ∥z̃∥} ≥ 1− p

Then, w.p. at least 1− 2L(1− τ)p,

∥zKr − z̃∥ ≤ 10ϵ∥z̃∥

Proof. Proof is in Appendix G

Subspace Krum is modified version of Krum for subspaces
using the idea from (Singh & Vaswani, 2024c) that the
Frobenius norm of the difference between two subspace
projection matrices is within a constant factor of the sub-
space distance between their respective subspaces. There-
fore Krum is calculated for PU = UU⊤’s where U is any
subspace with the distance metric as ∥PU1

− PU2
∥2F . We

next give Subspace Krum Lemma 3.10

Lemma 3.10 (Subspace-Krum). Consider Algorithm 1
Lines 13-15. For a τ < 0.4, suppose that, for at least
(1− τ)L Uℓ’s,

Pr(SDF (U
∗,Uℓ) ≤ δ) ≥ 1− p

then, w.p. at least 1− 2L(1− τ)p,

SDF (U
∗,Uout) ≤ 10δ.

Fact 3.11. For any ℓ ∈ I0. By construction (Line 10 of
Algorithm 1) ∥uj

0ℓ∥ ≤ 1.5µ
√

r/n for all j ∈ [n].

6

Byzantine-Resilient Federated Alternating Gradient Descent and Minimization for LR matrix learning

Item two of Lemma 3.2 follows using first part of Lemma
3.2, (Abbasi & Vaswani, 2024, Lemma 4.1), and Lemma
3.10. From (Abbasi & Vaswani, 2024, Lemma 4.1) we have
SDF (U0ℓ,U

∗) ≤ δ′ = δ0/10 w.h.p. for all ℓ ∈ Jgood.
From first part of Lemma 3.2 Jgood ⊆ I0 w.h.p. implies
using Lemma 3.10 SDF (UKr,U

∗) ≤ δ0 w.h.p.

Lemma 3.2 item three follows from Fact 3.11 as Kr ∈ I0.
3.3. Proof of Lemmas 3.4 and 3.6
First we prove Lemma 3.4. This lemma follows using mod-
ified version of second part of (Abbasi & Vaswani, 2024,
Lemma 4.6), where for Utemp = Ut−1 − η∇ℓ we have
∥uj

temp∥ ≤ (1 − 0.4/κ̃2)∥uj
t−1∥ + 1.4µ

√
r/n for all j ∈

[n] w.h.p. and then using union bound over Jgood we have
the required proof.

Once we have Jgood ⊆ It, then Lemma 3.6 is a direct
consequence of Lemma 3.9, and 3.12 which we give next.

Lemma 3.12. Assume Jgood ⊆ It, and Assumption 2, 3
holds. Then for all ℓ ∈ Jgood,

1. w.p. at least 1− exp(log q̃ − c ϵ2pn
max(κ̃4µ2,κ̃2µu,µ)r2

)

∥∇ℓ − E[∇ℓ]∥F ≤ ϵpσ∗2
maxδt−1

2. w.p. at least 1 − exp(log q̃ − c ϵ2pn
max(κ̃4µ2,κ̃2µu,µ)r2

) −
exp(log q̃ − c ϵ2pn

r2µ2
u
)

∥∇ℓ − E[∇ℓ1]∥F ≤ pσ∗2
max(8ϵδt−1 + 4.3GB)

Proof. Item one follows directly from (Abbasi & Vaswani,
2024, Lemma 4.5) which uses matrix Bernstein inequal-
ity and Lemma 3.8 in its proof. We prove item two in
Appendix B. This follows using the first item and care-
ful algebra that allows us to express ∥∇ℓ − E[∇ℓ1]∥F in
terms of ∥∇ℓ − E[∇ℓ]∥F , ∥Bℓ − Gℓ∥F , σmax(Bℓ), and
∥B∗

ℓ −B∗
ℓ1
∥F . And since Jgood ⊆ It i.e., Ut is row inco-

herent we can bound each term using (Abbasi & Vaswani,
2024, Lemma 4.5), Lemma 3.8, and Assumption 3 respec-
tively. Proof is in Appendix B.

4. Secure Federated LRCS and LRPR
In the writing below |z| and sign(z) return the element-
wise magnitude and sign of z respectively. LRCS and
LRPR involve recovering X∗ from yk := Akx

∗
k, k ∈ [q]

(LRCS) and from zk := |yk|, k ∈ [q] (LRPR), with each
yk being an m-length observed vector with m < n, and
the measurement/sketching matrices Ak ∈ ℜm×n being
known dense matrices (random Gaussian for guarantees)
that are mutually independent over k. We consider the ver-
tically federated setting, i.e., distinct subsets of columns of
Y are available at different nodes. These are completely
different problems than federated LRMC because here the
matrices Ak are dense. This means there is asymmetry, we

get dense measurements of each column but not of the dif-
ferent rows. Consequently, we only need right singular vec-
tors’ incoherence (instead of that of both). Also, because
of the use of random Gaussian matrices, the measurements
are now unbounded and we need different concentration
inequalities to analyze these problems. However, in spite
of these differences, we show how simple modifications
of our algorithm provide very similar guarantees for both
these problems as well. The following assumption replaces
Assumption 2.
Assumption 4 (right singular vectors’ incoherence).
maxk∈Sℓ

∥b∗k∥ ≤ µ
√
r/q̃σmax(X

∗
ℓ) for a constant µ ≥ 1.

Consider Algorithm 1 with the following changes: (1) the
node initialization step replaced by the LRCS initialization
from (Vaswani, 2024); and (2) remove the filtering step
from both initialization and GD.

Theorem 4.1. (Krum-AltGDmin for LRCS) Consider the
algorithm as described above. Assume that Assumptions
1, 3 and 4 hold, and GB ≤ c

κ̃2 . The conclusions of
Theorem 2.2 hold if mq̃ ≥ κ̃10µ2nr2 log

(
1
ϵ

)
, and m ≥

κ̃6 max(log q̃, r) log
(
1
ϵ

)
,

For LRPR, the algorithm for LRCS needs three simple
modifications. (1) The node initialization needs to be the
one for LRPR introduced in (Nayer & Vaswani, 2023, on
arXiv since Feb. 2021). (2) The update of bk involves
solving an r-dimensional standard phase retrieval problem,
e.g., using the RWF algorithm of (Zhang, Zhou, Liang,
& Chi, 2017). (2) We estimate the phase (sign in case
of real measurements which is what we consider here) af-
ter updating bk as sign(AkUbk) and use this to obtain
ŷk = sign(AkUbk) ⊙ zk. This is used to replace yk in
the gradient expression. Denote this gradient as ∇̂ℓ

Corollary 4.2. (Krum-AltGDmin for LRPR) Con-
sider the algorithm as described above. The
conclusions of Theorem 4.1 hold if mq̃ ≥
max

(
κ̃10µ2nr3 log

(
1
ϵ

)
, κ̃8µ2nr2 log

(
1
ϵ

))
, and

m ≥ κ̃6 max(log q̃, r) log
(
1
ϵ

)
,

LRCS needs order nr2 log(1/ϵ) samples which is also what
LRMC needs. LRPR needs r times more samples for its
initialization since it is a more difficult problem.
Remark 4.3. Both above results also hold apply for GM.

Proof. Our proof techniques introduced for LRMC apply
here with minimal changes. For LRCS, only three things
change: (i) we do not need to prove incoherence of U or
worry about the filtering step (which is removed from the
algorithm); (ii) the concentration bound lemmas change -
the bound on ∥B − U⊤X∗∥F is obtained using Lemma
3 of (Vaswani, 2024) and the gradient deviation bound in
the first part of Lemma 3.12 given above gets replaced by
Lemma 5 of (Vaswani, 2024).

7

Byzantine-Resilient Federated Alternating Gradient Descent and Minimization for LR matrix learning

For LRPR, the following additional modifications are
needed. (1) The B lemma gets replaced by Lemma 3.3
of (Nayer & Vaswani, 2023, on arXiv since Feb. 2021). (2)
The computed ∇ℓ uses ŷk defined above. Thus, in order
to obtain a bound similar to the first item of Lemma 3.11,
we need two steps: (i) We first need to bound ∥∇̂ℓ−∇ℓ∥F
with ∇ℓ being the gradient expression if the linear mea-
surement yk were available, i.e. the gradient used in case
of LRCS. ∥∇̂ℓ−∇ℓ∥F is the same as the ErrPh term that
is bounded in Lemma 5.3 of (Nayer & Vaswani, 2023, on
arXiv since Feb. 2021) (LRPR section). (ii) Next we use
Lemma 5 of (Vaswani, 2024) and triangle inequality to fi-
nally get a bound on ∥∇̂ℓ − E[∇ℓ1]∥F to replace the first
item of our 3.12.

5. Experiments
LRMC: Figure 1a. We plot the average subspace dis-
tance SDF (Ut,U

∗)/
√
r against Time in seconds over 100

Monte Carlo (MC) runs. The averaging is over the ob-
served entries of X∗, with each entry being observed in-
dependently with probability p at every MC run. The ma-
trix X∗ = U∗B∗ is generated once by letting U∗ ∈
ℜn×r be the left-singular vectors of an n × r random
i.i.d. Gaussian matrix and B∗ ∈ ℜr×q be a random
Gaussian matrix. Thus, X∗ has µ = O(1) incoher-
ence. At each iteration, Lbyz = 8 of the L = 20 gradi-
ents communicated from the nodes to the center are cor-
rupted. We consider Reverse Gradient Attack for each ex-
periment where we corrupt the Lbyz gradients by setting
∇byz = −

∑L
ℓ=1∇ℓ. This forces the GD step to move in

the reverse direction of the true gradient. We set the step-
size η = 1/p(σ∗2

max), where σ∗
max = maxℓ∈[L] σmax(X

∗
ℓ),

is estimated as σ∗
max ≃ maxℓ∈[L] σmax(Yℓ)/p. We com-

pared Krum-AltGDmin, GM-AltGDmin, and CWMedian-
AltGDmin. We use Weiszfeld’s algorithm with 1000 itera-
tions to approximate the Geometric Median (GM).

Observation from Figure 1a. Theoretically, GM-
AltGDmin has similar sample complexity to Krum-
AltGDmin, so it also converges in the experiments. CW-
Median does not converge due to its large sample complex-
ity requirement. GM-AltGDmin is slower than Krum, pos-
sibly for two reasons mentioned below:

a) We use an approximate algorithm Weiszfeld’s algorithm
(Weiszfeld, 1937; Beck & Sabach, 2015) to approximate
GM. Weiszfeld’s algorithm (Beck & Sabach, 2015, The-
orem 5.1) is known to converge, but the number of itera-
tions is not specified. In theory, GM can be faster when
using (Cohen, Lee, Miller, Pachocki, & Sidford, 2016, Al-
gorithm 1). However, that algorithm is complex and to our
best knowledge has no known experimental results.

b) As shown in Table 1, Krum has a compute cost

of nr2L2 log(1/ϵ), and GM has a compute cost of
nr2L log3(L

ϵapprox
) log(1/ϵ) when using (Cohen et al.,

2016, Algorithm 1). To see any speedup from GM in sim-
ulations, one would need to use (Cohen et al., 2016, Al-
gorithm 1) with a large L. This also requires a large q to
maintain accuracy. As a result, the total simulation time
becomes much higher.

LRCS: Figure 1b. We plot the average subspace distance
SDF (Ut,U

∗)/
√
r vs Time in seconds over 100 Monte

Carlo (MC) runs. The data generation part for X∗ remains
same as LRMC. For each Monte Carlo run we generated
matrices Ak, k ∈ [q] with each entry being i.i.d. stan-
dard Gaussian and we set yk = Akx

∗
k, k ∈ [q]. We used

η = 1/m(σ∗2
max), where σ∗

max = maxℓ∈[L] σmax(X
∗
ℓ). We

used Weiszfeld’s Algorithm with 1000 iterations to approx-
imate Geometric Median (GM).

Observation from Figure 1b. Same as LRMC observa-
tion Section 5.

Real world MovieLens 1M dataset (Real World): Fig-
ure 1c. We test our proposed algorithm on the real-world
MovieLens 1M dataset (Harper & Konstan, 2015), which
contains 1, 000, 209 ratings for about 3, 900 movies from
6, 040 users. The algorithms are compared using the rel-
ative error ∥(X∗ − X)Ω∥/∥X∗

Ω∥, shown on the y-axis,
where Ω is the set of observed entries. This is used be-
cause, in real data, unlike synthetic data, the true rank-r
U∗ is not known.

Observation from Figure 1c. We observe that our algo-
rithm, Byz-AltGDmin-LRMC, converges on the federated
MovieLens 1M dataset even with 40% Byzantine nodes
(Lbyz = 8, L = 20). We also observe that CWMedian
converges in this setting due to the large number of sam-
ples (nq̃p).

Heterogeneity Effect (LRMC): Figure 1d. We first gen-
erate B∗ as a random Gaussian matrix. Each B∗

ℓ is formed
by selecting a subset of columns k ∈ Sℓ from B∗. Then,
with L = 10 total nodes, we multiply 5 randomly cho-
sen B∗

ℓ by a factor C to introduce heterogeneity across the
datasets see Assumption 3 (Bounded heterogeneity). This
was done once (outside Monte Carlo loop). For 25 Monte
Carlo runs we did Reverse Gradient Attack and compared
‘Krum-AltGDmin’ for different values of C = 1, 4, 6.

Observations from Figure 1d. It can be seen that increas-
ing heterogeneity C means that the SDF saturates higher,
as shown in our main result Theorem 2.2.

8

Byzantine-Resilient Federated Alternating Gradient Descent and Minimization for LR matrix learning

0 2 4 6 8 10 12

Time (seconds)

10-15

10-10

10-5

100

S
u
b
s
p
a
c
e
 E

rr
o
r

Subspace Error vs Time

CWMedian

GM

Krum

(a) LRMC: SDF (Ut,U
∗)/

√
r vs Time(seconds) with n =

1000, q = 500, r = 3, L = 20, and Lbyz = 8.

0 5 10 15 20 25 30 35 40

Time (seconds)

10-15

10-10

10-5

100

S
u
b
s
p
a
c
e
 E

rr
o
r

Subspace Error vs Time

CWMedian

GM

Krum

(b) LRCS: SDF (Ut,U
∗)/

√
r vs Time(seconds) with n =

1000, m = 50, q = 1000, r = 3, L = 20, and Lbyz = 8.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

(c) Real-world MovieLens 1M dataset: ∥(X∗ −X)Ω∥/∥X∗
Ω∥

vs Iteration t with n = 6040, q = 3940, r = 3, p = 0.041902,
L = 20, and Lbyz = 8.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

10
-15

10
-10

10
-5

10
0

(d) Heterogeneity Effect (LRMC): SDF (Ut,U
∗)/

√
r vs Iter-

ation t with n = 200, q = 1000, r = 4,L = 10, Lbyz = 2,
p = 0.4, and using Krum.

6. Addressing reviewer comments
We have strengthened the experiments by adding results for
GM and for the LRCS problem. We have now also eval-
uated our algorithm on the MovieLens dataset. We have
included and compared the related works as mentioned by
the reviewer. We have also highlighted the technical differ-
ences between this work and the related ones.

9

Byzantine-Resilient Federated Alternating Gradient Descent and Minimization for LR matrix learning

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
References
Abbasi, A. A., Moothedath, S., & Vaswani, N. (2023).

Fast federated low rank matrix completion. In 2023
59th annual allerton conference on communication,
control, and computing (allerton) (pp. 1–6).

Abbasi, A. A., & Vaswani, N. (2024). Efficient feder-
ated low rank matrix completion. arXiv preprint
arXiv:2405.06569.

Acharya, A., Hashemi, A., Jain, P., Sanghavi, S., Dhillon,
I. S., & Topcu, U. (2022). Robust training in high
dimensions via block coordinate geometric median
descent. In International Conference on Artificial In-
telligence and Statistics (pp. 11145–11168).

Alistarh, D., Allen-Zhu, Z., & Li, J. (2018). Byzantine
stochastic gradient descent. Advances in Neural In-
formation Processing Systems, 31.

Allen-Zhu, Z., Ebrahimian, F., Li, J., & Alistarh, D. (2020).
Byzantine-resilient non-convex stochastic gradient
descent. arXiv preprint arXiv:2012.14368.

Allouah, Y., Farhadkhani, S., Guerraoui, R., Gupta, N.,
Pinot, R., & Stephan, J. (2023). Fixing by mixing: A
recipe for optimal byzantine ml under heterogeneity.
In International conference on artificial intelligence
and statistics (pp. 1232–1300).

Anaraki, F. P., & Hughes, S. (2014). Memory and com-
putation efficient pca via very sparse random projec-
tions. In International conference on machine learn-
ing (pp. 1341–1349).

Azizyan, M., Krishnamurthy, A., & Singh, A. (2014). Sub-
space learning from extremely compressed measure-
ments. In 2014 48th asilomar conference on signals,
systems and computers (pp. 311–315).

Babu, S., Lingala, S. G., & Vaswani, N. (2023). Fast low
rank compressive sensing for accelerated dynamic
MRI. IEEE Trans. Comput. Imag..

Beck, A., & Sabach, S. (2015). Weiszfeld’s method: Old
and new results. Journal of Optimization Theory and
Applications, 164(1), 1–40.

Blanchard, P., El Mhamdi, E. M., Guerraoui, R., & Stainer,
J. (2017). Machine learning with adversaries:
Byzantine tolerant gradient descent. Advances in
Neural Information Processing Systems, 30.

Candes, E. J., & Recht, B. (2008). Exact matrix com-
pletion via convex optimization. Found. of Comput.
Math(9), 717-772.

Cao, X., Fang, M., Liu, J., & Gong, N. Z. (2020). Fltrust:
Byzantine-robust federated learning via trust boot-
strapping. arXiv preprint arXiv:2012.13995.

Cao, X., & Lai, L. (2019). Distributed gradient descent

algorithm robust to an arbitrary number of byzantine
attackers. IEEE Transactions on Signal Processing,
67(22), 5850–5864.

Chen, Y., Chi, Y., Fan, J., Ma, C., et al. (2021). Spectral
methods for data science: A statistical perspective.
Foundations and Trends
textregistered in Machine Learning, 14(5), 566–806.

Chen, Y., Su, L., & Xu, J. (2017). Distributed statistical
machine learning in adversarial settings: Byzantine
gradient descent. Proceedings of the ACM on Mea-
surement and Analysis of Computing Systems, 1(2),
1–25.

Cherapanamjeri, Y., Gupta, K., & Jain, P. (2017). Nearly
optimal robust matrix completion. In International
conference on machine learning (pp. 797–805).

Cohen, M. B., Lee, Y. T., Miller, G., Pachocki, J., & Sid-
ford, A. (2016). Geometric median in nearly linear
time. In Proceedings of the forty-eighth annual ACM
symposium on Theory of Computing (pp. 9–21).

Collins, L., Hassani, H., Mokhtari, A., & Shakkottai, S.
(2021). Exploiting shared representations for per-
sonalized federated learning. In International con-
ference on machine learning (pp. 2089–2099).

Dadras, A., Stich, S. U., & Yurtsever, A. (2024). Per-
sonalized federated learning via low-rank matrix fac-
torization. In Opt 2024: Optimization for machine
learning.

Data, D., & Diggavi, S. (2021). Byzantine-resilient SGD
in high dimensions on heterogeneous data. In 2021
IEEE International Symposium on Information The-
ory (ISIT) (pp. 2310–2315).

Data, D., & Diggavi, S. N. (2023). Byzantine-resilient
high-dimensional federated learning. IEEE Transac-
tions on Information Theory, 69(10), 6639–6670.

Defazio, A., Bach, F., & Lacoste-Julien, S. (2014). SAGA:
A fast incremental gradient method with support for
non-strongly convex composite objectives. Advances
in neural information processing systems, 27.

Ghosh, A., Hong, J., Yin, D., & Ramchandran, K. (2019).
Robust federated learning in a heterogeneous envi-
ronment. arXiv preprint arXiv:1906.06629.

Guerraoui, R., Rouault, S., et al. (2018). The hidden vul-
nerability of distributed learning in byzantium. In
International Conference on Machine Learning (pp.
3521–3530).

Haldar, J. P., & Liang, Z.-P. (2010). Spatiotemporal imag-
ing with partially separable functions: A matrix re-
covery approach. In 2010 ieee international sympo-
sium on biomedical imaging: From nano to macro
(pp. 716–719).

Harper, F. M., & Konstan, J. A. (2015). The movielens
datasets: History and context. Acm transactions on
interactive intelligent systems (tiis), 5(4), 1–19.

He, X., Ling, Q., & Chen, T. (2019). Byzantine-robust

10

Byzantine-Resilient Federated Alternating Gradient Descent and Minimization for LR matrix learning

stochastic gradient descent for distributed low-rank
matrix completion. In 2019 ieee data science work-
shop (dsw) (pp. 322–326).

Jagatap, G., Chen, Z., Nayer, S., Hegde, C., & Vaswani,
N. (2019). Sample efficient fourier ptychography
for structured data. IEEE Transactions on Computa-
tional Imaging, 6, 344–357.

Jain, P., & Netrapalli, P. (2015). Fast exact matrix comple-
tion with finite samples. In Conference on learning
theory (pp. 1007–1034).

Koren, Y., Bell, R., & Volinsky, C. (2009). Matrix factor-
ization techniques for recommender systems. Com-
puter, 42(8), 30–37.

Li, L., Xu, W., Chen, T., Giannakis, G. B., & Ling, Q.
(2019). RSA: Byzantine-robust stochastic aggrega-
tion methods for distributed learning from heteroge-
neous datasets. In Proceedings of the AAAI Con-
ference on Artificial Intelligence (Vol. 33, pp. 1544–
1551).

Lingala, S. G., Hu, Y., DiBella, E., & Jacob, M. (2011). Ac-
celerated dynamic mri exploiting sparsity and low-
rank structure: kt slr. IEEE transactions on medical
imaging, 30(5), 1042–1054.

Lu, S., Li, R., Chen, X., & Ma, Y. (2022). Defense
against local model poisoning attacks to byzantine-
robust federated learning. Frontiers of Computer Sci-
ence, 16(6), 166337.

Nashed, M. (1968). A decomposition relative to convex
sets. Proceedings of the American Mathematical So-
ciety, 19(4), 782–786.

Nayer, S., Narayanamurthy, P., & Vaswani, N. (2019).
Phaseless pca: Low-rank matrix recovery from
column-wise phaseless measurements. In Interna-
tional conference on machine learning (pp. 4762–
4770).

Nayer, S., & Vaswani, N. (2021). Sample-efficient low rank
phase retrieval. IEEE Transactions on Information
Theory, 67(12), 8190–8206.

Nayer, S., & Vaswani, N. (2023, on arXiv since Feb.
2021, Feb.). Fast and sample-efficient federated low
rank matrix recovery from column-wise linear and
quadratic projections. IEEE Trans. Info. Th..

Netrapalli, P., Jain, P., & Sanghavi, S. (2013). Low-rank
matrix completion using alternating minimization..

Pillutla, K., Kakade, S. M., & Harchaoui, Z. (2019). Robust
aggregation for federated learning. arXiv preprint
arXiv:1912.13445.

Regatti, J., Chen, H., & Gupta, A. (2022). Byzantine Re-
silience With Reputation Scores. In 2022 58th An-
nual Allerton Conference on Communication, Con-
trol, and Computing (Allerton) (pp. 1–8).

Shome, D., & Kar, T. (2021). Fedaffect: Few-shot fed-
erated learning for facial expression recognition. In
Proceedings of the ieee/cvf international conference

on computer vision (pp. 4168–4175).
Singh, A. P., & Vaswani, N. (2024a). Byzantine resilient

and fast federated few-shot learning. In Forty-first
international conference on machine learning.

Singh, A. P., & Vaswani, N. (2024b). Byzantine-resilient
federated pca and low rank column-wise sensing.
IEEE Transactions on Information Theory.

Singh, A. P., & Vaswani, N. (2024c). Byzantine-resilient
federated principal subspace estimation. In 2024 ieee
international symposium on information theory (isit)
(pp. 2514–2519).

Srinivasa, R. S., Lee, K., Junge, M., & Romberg, J. (2019).
Decentralized sketching of low rank matrices. In (pp.
10101–10110).

Thekumparampil, K. K., Jain, P., Netrapalli, P., & Oh, S.
(2021). Statistically and computationally efficient
linear meta-representation learning. Advances in
Neural Information Processing Systems, 34, 18487–
18500.

Vaswani, N. (2024). Efficient federated low rank matrix re-
covery via alternating gd and minimization: A sim-
ple proof. IEEE Trans. Info. Th..

Weiszfeld, E. (1937). Sur le point pour lequel la somme des
distances de n points donnés est minimum. Tohoku
Mathematical Journal, First Series, 43, 355–386.

Wu, Z., Ling, Q., Chen, T., & Giannakis, G. B. (2020). Fed-
erated variance-reduced stochastic gradient descent
with robustness to byzantine attacks. IEEE Transac-
tions on Signal Processing, 68, 4583–4596.

Xie, C., Koyejo, S., & Gupta, I. (2019). Zeno: Dis-
tributed stochastic gradient descent with suspicion-
based fault-tolerance. In International Conference
on Machine Learning (pp. 6893–6901).

Yao, J., Xu, Z., Huang, X., & Huang, J. (2018). An effi-
cient algorithm for dynamic mri using low-rank and
total variation regularizations. Medical image analy-
sis, 44, 14–27.

Yi, X., Park, D., Chen, Y., & Caramanis, C. (2016).
Fast algorithms for robust pca via gradient descent.
Advances in neural information processing systems,
29.

Yin, D., Chen, Y., Kannan, R., & Bartlett, P. (2018).
Byzantine-robust distributed learning: Towards op-
timal statistical rates. In International Conference
on Machine Learning (pp. 5650–5659).

Zhang, H., Zhou, Y., Liang, Y., & Chi, Y. (2017). A
nonconvex approach for phase retrieval: Reshaped
wirtinger flow and incremental algorithms. The Jour-
nal of Machine Learning Research, 18(1), 5164–
5198.

Zheng, Q., & Lafferty, J. (2016). Convergence analysis for
rectangular matrix completion using burer-monteiro
factorization and gradient descent. arXiv preprint
arXiv:1605.07051.

11

Byzantine-Resilient Federated Alternating Gradient Descent and Minimization for LR matrix learning

A. Proof of Claim 3.1
This claim is proved using an induction argument similar to that of (Abbasi & Vaswani, 2024).

Proof. Base case: From Lemma 3.2 (i), (ii), (iii) and (iv) holds for t ≡ 0 w.p. at least 1− 3Lp3.

Induction assumption: Assume that the Claim 3.1 holds for t ≡ t− 1.

Induction proof: From Lemma 3.4 w.p. at least 1 − Lp2, Jgood ⊆ It. Hence Claim 3.1 (iv) holds for t ≡ t. Also
|Jgood| = L− Lbyz > 1 implies set It ̸= ∅. Now since Kr ∈ It implies using Fact 3.5 Utemp = Ut−1 − η∇Kr satisfies

∥uj
temp∥ ≤

(
1− 0.4

κ̃2

)
∥uj

t−1∥+ 1.4µ

√
r

n

We bound ∥uj
t∥ ≤ ∥u

j
temp∥∥(R+)−1∥, where Utemp = Ut−1 − η∇Kr

QR
= UtR

+ (Line 29 of Algorithm 1).

∥(R+)−1∥ = 1

σmin(Utemp)
=

1

σmin(Ut−1 − η∇Kr)

Since Jgood ⊆ It, we can use Lemma 3.7. With ϵ = 0.1
C16κ̃2 , δt−1 ≤ δ0 = 0.1

5.1κ̃2 , and GB ≤ 0.2·0.1
5.1·8.6Cκ̃2 we have w.p. at

least 1− 2Lp1,

1

σmin(Ut−1 − η∇Kr)
≤ 1 +

0.2ηpσ∗2
max

κ̃2
≤ 1 +

0.1

κ̃2
(2)

Above we have used η ≤ 0.5
pσ∗2

max
. Hence we get

∥uj
t∥ ≤

(
1− 0.4

κ̃2

)
∥uj

t−1∥∥(R+)−1∥+ 1.4µ

√
r

n
∥(R+)−1∥

≤
(
1− 0.4

κ̃2

)(
1 +

0.1

κ̃2

)
∥uj

t−1∥+ 1.4µ

√
r

n

(
1 +

0.1

κ̃2

)
≤
(
1− 0.3

κ̃2

)
∥uj

t−1∥+ 2µ

√
r

n

≤ (1− 0.3

κ̃2
)t∥uj

0∥ + [1 + (1− 0.3

κ̃2
)2 + · · ·+ (1− 0.3

κ̃2
)t−1]2µ

√
r

n

≤ ∥uj
0∥+

κ̃2

0.3
2µ

√
r

n
≤ (1.5µ+ 7κ̃2µ)

√
r

n

≤ µu

√
r

n

The last inequality above used the infinite geometric series bound. This shows that U is µu-row-incoherent i.e., (ii) holds
for t ≡ t. Now using Lemma 3.3 we get

SDF (U
∗,Ut) ≤

∥Ir − ηpBℓ1B
⊤
ℓ1
∥SDF (U

∗,Ut−1) + η∥Err∥F
σmin(Ut−1 − η∇Kr)

. (3)

Here Err = ∇Kr − E[∇ℓ1(Ut−1,Bℓ1)].

Again since Jgood ⊆ It, we can use Lemma 3.6 which implies w.p. at least 1− 2Lp1,

∥Err∥F ≤ Cpσ∗2
max(8ϵδt−1σ

∗
1 + 4.3GB) (4)

12

Byzantine-Resilient Federated Alternating Gradient Descent and Minimization for LR matrix learning

and from (2)
1

σmin(Ut−1 − η∇Kr)
≤ 1 +

0.2ηpσ∗2
max

κ̃2
(5)

By Lemma 3.8, σmin(Bℓ1) ≥ 0.9σ∗
min and σmax(Bℓ1) ≤ 1.1σ∗

1 . Thus, if η ≤ 0.5/pσ∗2
max then, I − ηpBℓ1B

⊺
ℓ1

is positive
semi-definite (psd) and so

∥I − ηpBℓ1B
⊺
ℓ1
∥ = λmax(I − ηpBℓ1B

⊺
ℓ1
) = 1− ηpσ2

min(Bℓ1)

≤ 1− 0.9ηpσ∗2
min = 1− 0.9ηpσ∗2

max

κ̃2
(6)

Using (6), (4), and (5) in (3) we get

SDF (U
∗,Ut) ≤ (1− 0.9ηpσ∗2

max

κ̃2
)(1 +

0.2ηpσ∗2
max

κ̃2
)δt−1

+ ηp · Cσ∗2
max(8ϵδt−1 + 4.3GB)(1 +

0.2ηpσ∗2
max

κ̃2
)

Since ϵ =
0.1

C16κ̃2
, (1 +

0.2ηpσ∗2
max

κ̃2
) ≤ 2 we have

≤ (1− 0.65ηpσ∗2
max

κ̃2
)δt−1 + ηpσ∗2

maxC8.6GB (7)

Since GB ≤
0.2 · 0.1

5.1 · 8.6Cκ̃2
, δ0 =

0.1

5.1κ̃2
, we have

≤ (1− 0.65ηpσ∗2
max

κ̃2
)δ0 + 0.1δ0

≤ 0.775δ0 (8)

Above we have used η ≤ 0.5
pσ∗2

max
. From (8) we have δt ≤ δ0 implies Claim 3.1 (iii) holds for t ≡ t, and from (7) we have

δt ≤ (1− 0.65ηpσ∗2
max

κ̃2)tδ0 + ηpσ∗2
maxC8.6GB

∑t−1
w=0(1−

0.65ηpσ∗2
max

κ̃2)w implies Claim 3.1 (i) holds for t ≡ t. Using union
bound Claim 3.1 holds for t ≡ t w.p. at least 1 − 3Lp3 − t(Lp2 + 2Lp1). By principle of mathematical induction Claim
3.1 is true.

For t ≡ T and using infinite geometric series bound

δT ≤ (1− 0.65ηpσ∗2
max

κ̃2
)T δ0 + 14Cκ̃2GB

w.p. at least 1− 3Lp3 − T (Lp2 + 2Lp1).

Setting T = Cκ̃2 log(1/ϵ), δ0 = c
κ̃2 , and if nq̃p ≥ Cκ̃10µ2q̃r2 log q̃ log(1/ϵ) then w.p. at least 1 − 3Lp3 − T (Lp2 +

2Lp1) ≥ 1− 3Ln−10 − Cκ̃2 log(1/ϵ)Ln−10

SDF (U
∗,UT) ≤ max

(
ϵ, 14Cκ̃2GB

)
.

B. Proof of Grad Concentration Lemma 3.12
Proof. Item one follows directly from (Abbasi & Vaswani, 2024, Lemma 4.5).

Bounding ∥∇ℓ − E[∇ℓ1]∥F

∥∇ℓ − E[∇ℓ1]∥F ≤ ∥∇ℓ − E[∇ℓ]∥F + ∥E[∇ℓ1]− E[∇ℓ]∥F
≤ ϵpδt−1σ

∗2
max from Lemma 3.12 item 1

+ ∥p(Xℓ1 −X∗
ℓ1)B

⊤
ℓ1 − p(Xℓ −X∗

ℓ)B
⊤
ℓ ∥F (9)

13

Byzantine-Resilient Federated Alternating Gradient Descent and Minimization for LR matrix learning

w.p. at least 1− exp(log q̃ − c ϵ2pn
max(κ̃4µ2,κ̃2µu,µ)r2

)

Bounding ∥p(Xℓ1 −X∗
ℓ1
)B⊤

ℓ1
− p(Xℓ −X∗

ℓ)B
⊤
ℓ ∥F

∥p(Xℓ1 −X∗
ℓ1)B

⊤
ℓ1 − p(Xℓ −X∗

ℓ)B
⊤
ℓ ∥F

= p∥U(Bℓ1B
⊤
ℓ1 −BℓB

⊤
ℓ)−X∗

ℓ1B
⊤
ℓ1 +X∗

ℓB
⊤
ℓ ∥F

= p∥U(Bℓ1B
⊤
ℓ1 −BℓB

⊤
ℓ)−U∗(B∗

ℓ1B
⊤
ℓ1 +B∗

ℓB
⊤
ℓ)∥F

= p∥U(Bℓ1B
⊤
ℓ1 −BℓB

⊤
ℓ)−U∗(B∗

ℓ1B
⊤
ℓ1 −B∗

ℓB
⊤
ℓ ±B∗

ℓ1B
⊤
ℓ)∥F

= p∥U(Bℓ1B
⊤
ℓ1 −BℓB

⊤
ℓ)−U∗(B∗

ℓ1(Bℓ1 −Bℓ)
⊤ − (B∗

ℓ −B∗
ℓ1)B

⊤
ℓ)∥F

= p∥U(Bℓ1B
⊤
ℓ1 −BℓB

⊤
ℓ ±Bℓ1B

⊤
ℓ)−U∗(B∗

ℓ1(Bℓ1 −Bℓ)
⊤ − (B∗

ℓ −B∗
ℓ1)B

⊤
ℓ)∥F

= p∥UBℓ1(Bℓ1 −Bℓ)
⊤ +U(Bℓ1 −Bℓ)B

⊤
ℓ −U∗B∗

ℓ1(Bℓ1 −Bℓ)
⊤ +U∗(B∗

ℓ −B∗
ℓ1)B

⊤
ℓ ∥F

≤ p
((
∥U∥∥Bℓ1∥+ ∥U∥∥B⊤

ℓ ∥+ ∥U∗∥∥B∗
ℓ1∥
)
∥Bℓ −Bℓ1∥F +GBσ

∗
1∥U∗∥∥B⊤

ℓ ∥
)

from Assumption 3

≤ p
(
(1.1σ∗

1 + 1.1σ∗
1 + σ∗

1)∥Bℓ −Bℓ1∥F + 1.1GBσ
∗2
max

)
from Lemma 3.8

Now Bounding ∥Bℓ −Bℓ1∥F

∥Bℓ −Bℓ1∥F = ∥Bℓ −Bℓ1 ±Gℓ1∥F
= ∥Gℓ1 −Bℓ1 +Bℓ −Gℓ1∥F
= ∥Gℓ1 −Bℓ1 +Bℓ −U⊤X∗

ℓ1 ±U⊤X∗
ℓ ∥F

= ∥Gℓ1 −Bℓ1 + (Bℓ −Gℓ)−U⊤(X∗
ℓ1 −X∗

ℓ)∥F
≤ ∥Gℓ1 −Bℓ1∥F + ∥Bℓ −Gℓ∥F +GBσ

∗
max

≤ 2ϵδt−1σ
∗
1 +GBσ

∗
max from Lemma 3.8

w.p. at least 1− exp(log q̃ − c ϵ2pn
r2µ2

u
)

Using this we get

∥p(Xℓ1 −X∗
ℓ1)B

⊤
ℓ1 − p(Xℓ −X∗

ℓ)B
⊤
ℓ ∥F

≤ p
(
(1.1σ∗

1 + 1.1σ∗
1 + σ∗

1)∥Bℓ −Bℓ1∥+ 1.1GBσ
∗2
max

)
≤ p
(
(3.2σ∗

1)(2ϵδt−1σ
∗
1 +GBσ

∗
max) + 1.1GBσ

∗2
max

)
= p(7ϵδt−1σ

∗2
max + 4.3σ∗2

maxGB)

w.p. at least 1− exp(log q̃ − c ϵ2pn
r2µ2

u
)

This then implies w.p. at least 1− exp(log q̃ − c ϵ2pn
max(κ̃4µ2,κ̃2µu,µ)r2

)− exp(log q̃ − c ϵ2pn
r2µ2

u
)

∥∇ℓ − E[∇ℓ1]∥F ≤ ϵpδt−1σ
∗2
max + ∥p(Xℓ1 −X∗

ℓ1)B
⊤
ℓ1 − p(Xℓ −X∗

ℓ)B
⊤
ℓ ∥F

≤ ϵpδt−1σ
∗2
max + p(7ϵδt−1σ

∗2
max + 4.3σ∗2

maxGB)

= pσ∗2
max(8ϵδt−1 + 4.3GB)

C. Proof of Lemma 3.6
Proof. From Lemma 3.12 item two for all ℓ ∈ Jgood, w.p. at least 1−exp(log q̃−c ϵ2pn

max(κ̃4µ2,κ̃2µu,µ)r2
)+exp(log q̃−c ϵ2pn

r2µ2
u
)

∥∇ℓ − E[∇ℓ1]∥F ≤ pσ∗2
max(8ϵδt−1 + 4.3GB) (10)

14

Byzantine-Resilient Federated Alternating Gradient Descent and Minimization for LR matrix learning

Using Lemma 3.9 and the fact ∥M∥F = ∥vec(M)∥2 for any matrix M we get w.p. at least 1− 2Lp1

∥∇Kr − E[∇ℓ1]∥F ≤ 10pσ∗2
max(8ϵδt−1 + 4.3GB)

D. Proof of Lemma 3.7
Proof.

1

σmin(Ut−1 − η∇Kr)

=
1

σmin(Ut−1 − η(E[∇ℓ1(Ut−1,Bℓ1)] + (∇Kr − E[∇ℓ1(Ut−1,Bℓ1)])))

≤ 1

1− η∥E[∇ℓ1(U ,Bℓ1)]∥ − η∥Err∥
Err = ∇Kr − E[∇ℓ1(Ut−1,Bℓ1)]

Using Lemma 3.6 w.p. at least 1− 2Lp1

∥Err∥F ≤ Cpσ∗2
max(8ϵδt−1 + 4.3GB) (11)

Using the bound on ∥E[∇ℓ1(U ,Bℓ1)]∥F from (Abbasi & Vaswani, 2024, Lemma 4.5) and ∥Err∥F from (11). We get

η(∥E[∇ℓ1(U ,Bℓ1)]∥+ ∥Err∥) ≤ ηpσ∗2
max((2.5 + C8ϵ)δt−1 + C4.3GB).

Above we have used the fact that ∥M∥ ≤ ∥M∥F .

Implies

1

σmin(Ut−1 − η∇Kr)
≤ 1

1− ηpσ∗2
max((2.5 + C8ϵ)δt−1 + C4.3GB)

≤ 1 + ηpσ∗2
max((5 + C16ϵ)δt−1 + C8.6GB)

Above we have used for 0 < x < 1, 1/(1− x) ≤ 1 + 2x assuming ηpσ∗2
max((2.5 + C8ϵ)δt−1 + C4.3GB) < 1

E. Proof of Lemma 3.3
Proof. Utemp = Ut−1 − η∇Kr.

Adding and subtracting ηE[∇ℓ1(Ut−1,Bℓ1)], Note E[∇ℓ1(Ut−1,Bℓ1)] = p(Xℓ1 −X∗
ℓ1
)B⊤

ℓ1

Utemp = Ut−1 − ηE[∇ℓ1(Ut−1,Bℓ1)]− η(∇Kr − E[∇ℓ1(Ut−1,Bℓ1)])

= Ut−1 − ηp(Xℓ1 −X∗
ℓ1)B

⊤
ℓ1 − ηErr

Denote Err = ∇Kr − E[∇ℓ1(Ut−1,Bℓ1)]. Multiplying both sides by P := I −U∗U∗⊤, we get

PUtemp = PUt−1 − ηpP(Xℓ1 −X∗
ℓ1)B

⊤
ℓ1 − ηPErr

= PUt−1 − ηpPUBℓ1B
⊤
ℓ1 − ηPErr

= PUt−1(Ir − ηpBℓ1B
⊤
ℓ1)− ηPErr

15

Byzantine-Resilient Federated Alternating Gradient Descent and Minimization for LR matrix learning

Taking Frobenius norm and using ∥M1M2∥F ≤ ∥M1∥F ∥M2∥ we get

∥PUtemp∥F ≤ ∥PUt−1∥F ∥Ir − ηpBℓ1B
⊤
ℓ1∥+ η∥PErr∥F (12)

Now Utemp
QR
= UtR

+ and since ∥M1M2∥F ≤ ∥M1∥F ∥M2∥, this means that SD(U∗,Ut) ≤ ∥(I −
U∗U∗T)Utemp∥F ∥(R+)−1∥. Since ∥(R+)−1∥ = 1/σmin(R

+) = 1/σmin(Utemp),

∥(R+)−1∥ = 1

σmin(Ut−1 − η∇Kr)

Combining the last two bounds gives.

SDF (U
∗,Ut) ≤

∥Ir − ηpBℓ1B
⊤
ℓ1
∥SDF (U

∗,Ut−1) + η∥Err∥F
σmin(Ut−1 − η∇Kr)

F. Why we cannot use projection step to guarantee incoherence
A natural question would be to use projection ΠU at center after each GD step to make rows of Ut incoherent. We cannot
get a very useful bound on SDF (U

∗,ΠU (Ut)) which we explain next. By Lemmas 2.5 and 2.6 of (Chen, Chi, Fan, Ma, et
al., 2021), for two n×r matrices with orthonormal columns, U1,U2, SDF (U1,U2) ≤ argminQ unitary ∥U1−U2Q∥F ≤√
2SDF (U1,U2).

Let us say you have a bound δt before projection step i.e., SDF (U
∗,Ut) ≤ δt. After the projection from you have

SDF (ΠU (Ut),U
∗) ≤ ∥ΠU (Ut) − U∗Q∥F for any Q unitary. Now the row norm clipping step can be interpreted as

projecting its input onto a convex set, U := {Ũ : ∥ũj∥ ≤ (1 − 0.4
κ̃2)∥uj

t−1∥ + 1.4µ
√

r
n}, with the projection being in

Frobenius norm. And projection onto convex sets is non-expansive, i.e., ∥ΠU (U1)−ΠU (U2)∥F ≤ ∥U1−U2∥F (Nashed,
1968, eq (9),(10)),(Yi et al., 2016). Also, ΠU (U

∗Q) = U∗Q for any r×r unitary matrix Q (since U∗ as well as U∗ times
any unitary matrix belong to U). Let Q∗,t := argminQ unitary ∥Ut − U∗Q∥F this then implies SDF (ΠU (Ut),U

∗) ≤
∥ΠU (Ut)−U∗Q∗,t∥F = ∥ΠU (Ut)−ΠU (U

∗Q∗,t)∥F ≤ ∥Ut−U∗Q∗,t∥F ≤
√
2SDF (Ut,U

∗) ≤
√
2δt. So it introduces

a factor of
√
2 after each projection, and hence for large T this will grow exponentially making sample complexity worse.

Thats why we use filtering step.

G. Proof of Lemma 3.9
Proof. Denote the Lbyz Byzantine vectors as {zB

k }
Lbyz

k=1 and L− Lbyz good vectors as {zℓ}
L−Lbyz

ℓ=1 . By ℓ −→ j we mean
vector j is the neighbor of vector ℓ. For each index (good or Byzantine) i, we denote by δg(i) (resp. δb(i)) the number of
good (resp. Byzantine) indices j such that i −→ j. We have

δg(i) + δb(i) = L− Lbyz − 2

L− 2Lbyz − 2 ≤ δg(i) ≤ L− Lbyz − 2

δb(i) ≤ Lbyz.

Let Kr is the index selected by Krum. Let ℓ1 be the index of any good vector. Now we can write

∥zKr − z̃∥ = ∥zKr − z̃ ± 1

δg(Kr)

∑
Kr−→ good j

zj∥

≤ ∥zKr −
1

δg(Kr)

∑
Kr−→ good j

zj∥+ ∥z̃ −
1

δg(Kr)

∑
Kr−→ good j

zj∥

16

Byzantine-Resilient Federated Alternating Gradient Descent and Minimization for LR matrix learning

≤ 1

δg(Kr)

∑
Kr−→ good j

∥zKr − zj∥+
1

δg(Kr)

∑
Kr−→ good j

∥z̃ − zj∥

≤ 1

δg(Kr)

∑
Kr−→ good j

∥zKr − zj∥+ max
Kr−→ good j

∥z̃ − zj∥ (13)

Analyzing the first term. There are two possibilities 1) Kr ∈ Jgood, or 2) Kr ∈ J ∁
good i.e.,

1

δg(Kr)

∑
Kr−→ good j

∥zKr − zj∥ =
1

δg(ℓ)

∑
ℓ−→ good j

∥zℓ − zj∥1Kr=ℓ∈Jgood
+

1

δg(k)

∑
k−→ good j

∥zB
k − zj∥1Kr=k∈J ∁

good

We will first analyze the case when Kr = k ∈ J ∁
good. Since Kr minimizes the score therefore there exist a good gradient

ℓ′ such that

∑
k−→ good j

∥zB
k − zj∥+

∑
k−→ byz i

∥zB
k − zB

i ∥ ≤
∑

ℓ′−→ good j

∥zℓ′ − zj∥+
∑

ℓ′−→ byz i

∥zℓ′ − zB
i ∥

Each ℓ′ has L− Lbyz − 2 neighbors, and Lbyz + 1 non-neighbors. Thus there exists a good gradient ζ(ℓ′) which is farther
from ℓ′ than any of the neighbors of ℓ′. In particular, for each Byzantine index i such that ℓ′ −→ byz i, ∥zℓ′ − zB

i ∥2 ≤
∥zℓ′ − zζ(ℓ′)∥2. Implies

∑
k−→ good j

∥zB
k − zj∥ ≤

∑
k−→ good j

∥zB
k − zj∥+

∑
k−→ byz i

∥zB
k − zB

i ∥

≤
∑

ℓ′−→ good j

∥zℓ′ − zj∥+
∑

ℓ′−→ byz i

∥zℓ′ − zB
i ∥

≤
∑

ℓ′−→ good j

∥zℓ′ − zj∥+ δb(ℓ
′)∥zℓ′ − zζ(ℓ′)∥

≤ δg(ℓ
′) max

ℓ′−→ good j
∥zℓ′ − zj∥+ δb(ℓ

′)∥zℓ′ − zζ(ℓ′)∥

Now bounding ∥zi − zj∥ for any i, j ∈ Jgood.

∥zi − zj∥ = ∥zi − zj ± z̃∥
≤ ∥zi − z̃∥+ ∥zj − z̃∥
≤ 2ϵ∥z̃∥

w.p. at least 1− 2p.

Using union bound w.p. at least 1− 2(L− Lbyz − 2)p

∑
k−→ good j

∥zB
k − zj∥ ≤ (δg(ℓ

′) + δb(ℓ
′))2ϵ∥z̃∥

≤ (L− Lbyz − 2)2ϵ∥z̃∥.

For Kr = ℓ ∈ Jgood
1

δg(ℓ)

∑
ℓ−→ good j

∥zℓ − zj∥1Kr=ℓ∈Jgood
≤ max

ℓ−→ good j
∥zℓ − zj∥

≤ 2ϵ∥z̃∥

17

Byzantine-Resilient Federated Alternating Gradient Descent and Minimization for LR matrix learning

Combining Kr ∈ Jgood and Kr ∈ J ∁
good we get

1

δg(Kr)

∑
Kr−→ good j

∥zKr − zj∥ ≤ max

(
2ϵ∥z̃∥, L− Lbyz − 2

δg(k)
2ϵ∥z̃∥

)

≤ max

(
1,

L− Lbyz − 2

L− 2Lbyz − 2

)
2ϵ∥z̃∥

This then implies

∥zKr − z̃∥ ≤ 1

δg(Kr)

∑
Kr−→ good j

∥zKr − zj∥+ max
Kr−→ good j

∥z̃ − zj∥

≤ max

(
1,

L− Lbyz − 2

L− 2Lbyz − 2

)
2ϵ∥z̃∥+ ϵ∥z̃∥

= max

(
2, 1 +

L− Lbyz − 2

L− 2Lbyz − 2

)
2ϵ∥z̃∥

≤
(
2 +

L− Lbyz − 2

L− 2Lbyz − 2

)
2ϵ∥z̃∥

≤ 10ϵ∥z̃∥ (14)

w.p. at least 1− 2(L− Lbyz)p = 1− 2L(1− τ)p. For τ =
Lbyz

L < 0.4, 2 + L−Lbyz−2
L−2Lbyz−2 ≲ 5.

18

