
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

IMPLICIT DYNAMICAL FLOW FUSION (IDFF) FOR GEN-
ERATIVE MODELING

Anonymous authors
Paper under double-blind review

ABSTRACT

Conditional Flow Matching (CFM) models can generate high-quality samples from
a non-informative prior, but they can be slow, often needing hundreds of network
evaluations (NFE). To address this, we propose Implicit Dynamical Flow Fusion
(IDFF); IDFF learns a new vector field with an additional momentum term that
enables taking longer steps during sample generation while maintaining the fidelity
of the generated distribution. Consequently, IDFFs reduce the NFEs by a factor of
ten (relative to CFMs) without sacrificing sample quality, enabling rapid sampling
and efficient handling of image and time-series data generation tasks. We evaluate
IDFF on standard benchmarks such as CIFAR-10 and CelebA for image generation,
where we achieve likelihood and quality performance comparable to CFMs and
diffusion-based models with fewer NFEs. IDFF also shows superior performance
on time-series datasets modeling, including molecular simulation and sea surface
temperature (SST) datasets, highlighting its versatility and effectiveness across
different domains.

1 INTRODUCTION

Diffusion models have emerged as powerful tools for modeling complex, high-dimensional data
by iteratively transforming random noise into meaningful information (Cachay et al., 2023; Myers
et al., 2022). These models have demonstrated remarkable success in various domains, including
high-quality image generation (Song et al., 2020a) and text production (Liu et al., 2024; Kim et al.,
2019). However, their training process remains computationally intensive, often requiring hundreds
of function evaluations (NFEs) to achieve high-quality results (Ho et al., 2020). While techniques
such as DPM-solver (Lu et al., 2022a;b) and Denoising Diffusion Implicit Models (DDIMs) (Song
et al., 2020b) have made strides in reducing NFEs for diffusion-based generative models, significant
computational challenges persist.

In contrast to diffusion models, which parameterize the dynamics of noise-to-data transformation,
Conditional Flow Matching (CFMs) directly parameterize vector fields governing this transformation
(Liu et al., 2022; Albergo and Vanden-Eijnden, 2022; Albergo et al., 2023). CFMs leverage the change
of variable theory in statistics to define conditional probability paths, enabling faster convergence
during training compared to diffusion models (Lipman et al., 2022). However, generating high-quality
samples with CFMs still requires hundreds of NFEs, making the process computationally expensive
(Dao et al., 2023) and limiting the extension of CFM models to time-series data modeling, as NFEs
scale with sequence length.

To address these challenges, we introduce a novel method to enhance the efficiency of CFMs, allowing
for longer sampling steps without compromising the fidelity of the target distribution. Our approach
draws inspiration from Hamiltonian Monte Carlo (HMC) algorithms (Neal, 2012a; Neal et al., 2011),
which utilize the conservation properties of Hamiltonian dynamics to couple target and momentum
variables. The key contributions of our work are as follows:

1. We propose Implicit Dynamical Flow Fusion (IDFF), which integrates a momentum term into
the vector field of conditional flow models. Similar to how HMC reduces the number of samples
required to reach the target distribution (Neal, 2012a; Neal et al., 2011), IDFF reduces the
NFE by a factor of 10 compared to traditional CFMs while maintaining identical marginal

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 1: Image generation using IDFF (with NFE=10) applied to multiple datasets: CIFAR10,
CelebA-64, ImageNet-64, LSUN-Bedroom, LSUN-Church, and CelebA-HQ. The quality of the
generated images demonstrates IDFF’s ability to capture and reproduce realistic visuals across
varying levels of complexity and resolution. Additional samples and further analysis can be found in
Appendix A.6.

distributions. Additionally, we introduce a training objective that directly aligns generated
samples with actual data rather than solely focusing on matching conditional flows.

2. We validate IDFF through extensive experiments on image generation using datasets such as
CIFAR-10 and CelebA. Additional results on ImageNet-64, CelebA-HQ, LSUN-Church, and
LSUN-Bedroom are presented in Figure 1. Our models achieve a superior balance between
computational cost and sample quality compared to both traditional diffusion models (e.g.,
DDPM (Ho et al., 2020), DDIM (Song et al., 2020b)) and current CFMs.

3. We demonstrate that reducing NFEs makes IDFF practical for other generation tasks, such
as time-series modeling. We showcase IDFF’s effectiveness in capturing complex dynamical
systems, including 3D attractors, molecular dynamics (MD), and sea surface temperatures (SST).
Our results indicate that IDFF surpasses other methods in sample quality for MD and SST
datasets while maintaining computational efficiency, with NFE ≤ 5 for each generated sample.

2 BACKGROUND

Score-based generative models. Let pdata = {x1,x2, . . . ,xN}, where xi iid∼ p(x) and xi ∈ Rd

for all i = 1, 2, . . . , N . We aim to build a generative model for this dataset given empirical samples.
Moving forward, we suppress the superscript on each xi.

Score-based models (Song and Ermon, 2019) represent a broad class of diffusion models that describe
a continuous-time stochastic process characterized by a stochastic process xt, which is governed by
the following Itô stochastic differential equation (SDE):

dxt = f(xt, t)dt+ g(t)dw, (1)

where t ∈ [0, 1], f(·, t) : Rd → Rd is the drift coefficient, g(·) : R → R is the diffusion coefficient of
xt, and w ∈ Rd is a standard Wiener process.

The time-reversed version of this diffusion process, derived from the Fokker–Planck equations (Song
and Ermon, 2019), is also a diffusion process. This reverse-time SDE is defined as:

dxt =
(
f(xt, t)− g(t)2∇xt

log pt(xt)
)
dt+ g(t)dw̄, (2)

where w̄ is a standard Wiener process. Equation 2 produces the same marginal distributions as the
forward diffusion process defined by Equation 1.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Equation 2 must be solved to generate samples from this model. The score-matching approach
simplifies this process by redefining f(xt, t) = h(t)xt, where h : R → R typically assumes an affine
form, such as f(xt, t) = xt. Moreover, g(·), which governs the noise intensity added to the process,
often follows a linear or exponential schedule in time.

This reformulation enables a simplification of solving Equation 2 by focusing solely on learning
∇x log pt(xt) for all t. With this approach, and initializing with random noise, e.g., x0 ∼ N (0, I),
the process gradually converges to the data distribution pdata, reaching it at t = 1.

(Conditional) Flow Matching (CFM). Flow-matching (FM) transforms a simple prior distribution
into a complex target distribution. FM is defined by a time-dependent vector field vt, which governs
the dynamics of an ordinary differential equation (ODE):

d

dt
(xt) = vt(xt) (3)

The solution to this ODE, represented by ϕ(xt), evolves along the vector field vt from time 0 to
time 1, producing x1 ∼ p1. As samples move along the vector field vt, pt(xt) changes over time,
described by the continuity equation.

∂pt
∂t

= −∇ · (ptvt) (4)

where pt(xt) is determined by vt(xt), ∇· is the divergence operator, with p1 ≈ pdata.

If the probability path pt(xt) and the vector field vt(xt) are given, and if pt(xt) can be efficiently
sampled, we can then define a parameterized vector field v̂t(xt;θ) using a neural network with
weights θ. This parameterized vector field approximates vt(xt), and our goal is to learn how to
generate samples from the ODE defined in equation 3. The parameters of the neural network are
trained using the following objective: LFM(θ) := Et∼U(0,1),xt∼pt(xt)∥v̂t(xt;θ)− vt(xt)∥2 to solve

the ODE defined in equation 3. Here, vt(xt) can be defined as vt(xt) := Eq(z)

[
vt(xt|z)pt(xt|z)

pt(z)

]
with some conditional variable z with distribution q(z); refer to Theorem 3.1 in Tong et al. (2023a)
for more details.

However, this learning objective becomes intractable for general source and target distributions. To
mitigate this, we can focus on cases where the conditional probability paths pt(xt|x1) and vector
fields vt(xt|x1) associated with pt(xt) and vt(xt) are known and have simple forms (Tong et al.,
2023b). In such cases, we can recover the vector field vt(xt) using an unbiased stochastic objective
known as the Conditional Flow Matching (CFM) loss, defined as:

LCFM(θ) := Et,x1,xt
∥v̂t(xt|x1;θ)− vt(xt)∥2 (5)

where t ∼ U [0, 1], x1 ∼ pdata, and xt ∼ pt(xt|x1). The training objective in Equation 5 ensures
that the marginalized vector field v̂t(xt|x1;θ), denoted as v̂t(xt), generates pt(xt), similar to FM
models.

CFMs vs Diffusion Models. CFMs share similarities with diffusion models; both rely on defining
continuous probability paths over time. However, diffusion models use stochastic processes to
transform data distributions, typically governed by an SDE. However, CFMs utilize a vector field to
directly map an initial prior distribution to the target distribution via a deterministic process (Equation
4). Diffusion models, such as denoising score matching models, rely on stochastic diffusion paths to
approximate the data distribution. CFMs bypass this stochastic process by constructing a conditional
vector field and sampling from the ODE defined in Equation 3.

Optimal Transport CFMs (OT-CFMs). The CFM objective defined in Equation 5 appears simple.
However, it is nearly intractable due to the absence of prior knowledge regarding an appropriate
mapping that links between the initial (p0) and target (pdata) distributions. To address this challenge,
optimal transport (OT) (Tong et al., 2020) is used to couple the initial and target distributions.
This approach seeks a mapping from p0 to p1 that minimizes the displacement cost between these
two distributions, resulting in flows that can be integrated accurately. This CFM variant is known
as Optimal Transport CFMs (OT-CFMs), and the conditional vector field corresponds to this is

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

v̂t(xt|x1) =
x1−xt

1−t . While OT improves training efficiency in CFMs, traditional sampling methods
for CFMs require over a hundred function evaluations (NFE) to produce high-quality samples (Tong
et al., 2023a). The lack of flexibility in sampling steps during training further limits their ability to
efficiently generate samples, often resulting in a high NFE.

Additionally, the OT-CFM vector field, which can be reformulated as v̂t(xt|x1) = x1−x0 Pooladian
et al. (2023), focuses on exactly transporting all points x0 to x1 along straight-line paths. This
implies that all points along the path from 0 to t means that the transport map shares the same
regression weights when training with the LCFM(θ) objective. However, this uniform weighting
across the trajectory may overlook that points closer to t = 1 need finer attention to detail and,
consequently, a more complex flow; this may limit the model’s ability to effectively represent
complex structures in the final generated samples. Furthermore, the deterministic sample generation
in CFMs, xt = xt−∆t +∆tv̂t(xt;θ) (see Figure 2.B for visualization), may restrict the flexibility
of CFM, as it prevents the introduction of stochasticity that could otherwise enhance the diversity
and richness of generated samples. This might manifest in a lack of expressiveness when generating
fine-grained or high-dimensional data. These limitations underscore the need for new approaches to
sample diversity and NFE of CFMs. Our paper tackles these limitations by proposing an alternative
vector field that better balances deterministic transport with elements of stochasticity to improve
sample quality.

Figure 2: A) Comparison of trajectory sampling between IDFF and OT-CFMs: The figure displays
4096 final samples generated by IDFF. As shown, IDFF takes larger steps toward the target distribution,
guided by the momentum term. While OT-CFM follows a nearly straight path to reach the target
distribution, it requires a higher number of function evaluations (NFEs). B) OT-CFMs sampling
process. C) IDFF sampling process. In this process, x̂1(.) approximates the data sample x1, ϵ̂(.)
approximates the scores associated with ξt, and wt(.) is the calculated vector field by equation 7.
For further details, see Algorithm 2. The key difference between IDFF and OT-CFMs is that instead
of directly generating the vector field with, IDFF generates x̂1(.) and ϵ̂(.), and then reconstructs the
vector field, following it. Additionally, IDFF uses a Gaussian distribution to sample xt rather than
calculating it deterministically.

Hamiltonian Monte Carlo (HMC). HMC is a powerful sampling algorithm designed to improve ef-
ficiency in exploring complex probability distributions by introducing auxiliary momentum variables.
In HMC, particle dynamics are simulated in a potential field using Hamiltonian dynamics, which
describe the total energy of a system through the Hamiltonian function H(x,p) = U(x) +K(p).
x represents the position, p represents momentum, U(x) represents the potential energy related to
the target distribution, and K(p) = 1

2p
TM−1p is the kinetic energy, with M being the mass matrix.

The dynamics of this system evolve according to:

dx

dt
= ∇pH(x,p) = M−1p,

dp

dt
= −∇xH(x,p) = −∇U(x).

These dynamics preserve the system’s total energy, enabling efficient exploration of the probability
space. HMC achieves this by leveraging momentum to facilitate directed movement, reducing random
walk behavior, and overcoming local energy barriers. These properties lead to faster convergence to

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

the target distribution with fewer function evaluations. HMC generates a sample from some target
distributions by following Hamiltonian dynamics in an extended state space (x,p). IDFF attempts to
design a flow-matching procedure with a similar intuition.

3 IMPLICIT DYNAMICAL FLOW FUSION MODEL (IDFF)

IDFF aims to improve sampling efficiency while enhancing sample quality of OT-CFMs through
two key innovations: (1) the incorporation of a learnable Hamiltonian momentum term, ξt, into the
conditional vector field, which enhances sampling efficiency; and (2) the proposal of a new objective
function that learns the IDFF’s vector field in input space.

3.1 LEARNING CFMS WITH MOMENTUM

To improve sampling efficiency while preserving distribution accuracy in CFMs, we introduce a
learnable Hamiltonian momentum term, ξt, integrated with the original vector field vt(xt). This
integration yields a new, more flexible vector field:

ṽt(xt) =
√

1− σ2
t vt(xt) + σ2

t ξt, (6)

where σt is a time-dependent interpolation factor balancing vt and ξt.

Interpolating the vector field: We define the interpolation factor σt as σt = σ0

√
t(1− t), where σ0

is a hyperparameter that controls the overall influence of the momentum term. While the IDFF vector
field converges to OT-CFMs in either limit, outside of it, it enables the flow to leverage the momentum
variables to guide the flow based on the momentum variables. Our empirical results demonstrate that
this approach significantly improves sampling efficiency by substantially reducing the NFEs required.
Our approach also overcomes the limitations of uniform weighting across trajectories by prioritizing
samples near t = 0, 1, allowing finer attention to complex structures; see Figure 2.A.

Designing momentum variables: The term ξt is designed to guide the new vector field toward the
correct probability flow for the next time step, ensuring its role in accurately modeling the distribution.
There are many potential choices to make here. Still, we take inspiration from Hamiltonian Monte
Carlo, which showcases how to leverage momenta to sample complex multi-modal posterior distribu-
tions rapidly Neal (2012b). A potential design for ξt is ξt = γ∇x log pt(xt), which aligns with the
gradient of the log probability of the samples xt. If pt(xt | x1) is a Gaussian with variance σ2

t , ξt
can be simplified to − ϵ0

σt
, where ϵ0 ∼ N (0, I). ξt directs the flow similarly to HMC’s momentum,

promoting efficient exploration of complex distributions. The theoretical connection between HMC
and IDFF can be understood through their respective probability flows. HMC generates samples by
following Hamiltonian dynamics in an extended state space (x,p). In contrast, IDFF’s probability
flow operates directly in the sample space while incorporating momentum-like behavior through
ξt. Both methods use auxiliary variables to enhance sampling efficiency and preserve the desired
target distribution. Alternatively, higher-order choices for momentum terms could capture even more
complex interactions in the flow. ξt = γ∇x log pt(xt) drives the vector field toward regions of high
probability, thereby improving the accuracy of the generated samples. γ serves as a weighting factor
that controls the influence of this term.

To maintain the same probability path as the original CFM, the vector field must satisfy the continuity
constraint defined in equation 4. By incorporating ṽt(xt) into the continuity equation 4 (detailed in
Appendix A.1.1), we derive the IDFF probability flow ODE:

wt(xt) = ṽt(xt)−
σ2
t

2
∇ log pt(xt) =

√
1− σ2

t vt(xt) +
(2γ − 1)

2
σ2
t∇ log pt(xt), (7)

To ensure that our new marginal vector field wt(xt) converges to the standard vt(xt) at the start
and end points of the process, σt must approach zero as t → 0, 1. This convergence is crucial for
maintaining consistent marginal distributions at these points.

Therefore, wt(xt) now replaces the vector field v(xt) in the probability flow ODE (equation 3),
enabling the construction of a new generative process that follows the same probability path pt(xt).
This process starts with x0 ∼ N (0, I) and follows pt(xt) to produce x1. The resulting model thus
implicitly models the score function using flow matching which motivates the name Implicit Diffusion
Flow Fusion.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Lemma 1. Given that vt(xt) generates pt(xt) and σt approaches 0 for t ∈ 0, 1, the IDFF probability
flow ODE (Eq. 7) follows the same marginal distribution as the CFMs with the ODE defined in
equation 3.

Proof Schema for Lemma 1. Our goal is to show that the IDFF probability flow ODE shares the same
marginal distribution as CFMs when σt is small for t ∈ 0, 1.

• Step 1: Define the vector fields. We introduce ṽt(xt) governed by the ξt and vt(xt) from
the original CFM.

• Step 2: Apply the continuity equation. By substituting ṽt(xt) into the continuity equation,
we derive the IDFF ODE, wt(xt).

• Step 3: Analyze boundary conditions. We show that at t = 0 and t = 1, where σt

approaches 0, the IDFF ODE converges to the CFM-ODE, ensuring the same marginal
distributions.

Appendix A.1.1 provides the complete proof. This lemma and its proof establish the consistency of
IDFF concerning existing CFMs. The approach showcases how to design a new flow augmented with
momentum variables with an interpolant that guarantees that it matches OT-CFM in the limit. In what
follows, we discuss how to parameterize and learn such a flow.

3.2 LEARNING FLOWS IN INPUT SPACE

One of the challenges in our formalism is learning wt. This challenge arises because vt operates in
vector space while ξt remains in the input space. Rather than training one part of the model in vector
space and the other in input space, we define a new objective defined entirely within the input space
to address this. Learning the vector field in the input space implies optimizing the vector itself, which
is the reasoning behind naming the IDFF model an implicit model of dynamical flows. We begin by
defining an OT path pt(xt|x1), which acts as a probability bridge between x0 and x1. This path is a
stochastic interpolator between the source x1 and target x0, as follows:

pt(xt|x1) = N (xt | tx1 + (1− t)x0, σ
2
t I), σt = σ0

√
t(1− t) (8)

The corresponding conditional vector field is given by:

v̂t(xt|x1) =
x1 − xt

1− t
(9)

This definition aligns with the conditional OT paths between x1 and x0. For large datasets, computing
this OT map can be challenging. We employ a minibatch approximation of OT to address this, similar
to (Fatras et al., 2021). While this introduces some errors compared to the exact OT solution, it
has proven effective in numerous applications such as domain adaptation and generative modeling
(Genevay et al., 2018).

Current CFM objectives typically use a loss function (defined in equation 5) that optimizes the
prediction of the vector field. We propose an alternative approach: defining a denoising neural
network x̂1(xt, t; θ) and reparameterizing v̂t(xt | x1; θ) as follows:

v̂t(xt | x1; θ) =
x̂1(xt, t; θ)− xt

1− t
(10)

Since both x̂1(xt, t; θ) and pt(xt|x1) are easy to sample, we use a single neural network with two
separate output heads: the first head, x̂1(xt, t; θ), to approximate the data samples, and the second,
ϵ̂(xt, t; θ), to approximate the score function. The network generates these outputs simultaneously.
The score function ∇xt

log pt(xt | x1), using a Gaussian pt(xt | x1), can be simplified to − ϵ0
σt

,
where ϵ0 ∼ N (0, I). The neural network can be trained using the following loss function:

LIDFF(θ) = Et,x0,x1,xt

[
β(t)2|x̂1(xt, t; θ)− x1|2 + λ(t)2 |ϵ̂(xt, t; θ)−∇x log pt(xt|x1)|2

]
(11)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Where t ∼ U(0, 1),x0 ∼ N (0, I),x1 ∼ pdata,xt ∼ pt(xt|x1). Here λ(·), β(·) are two sets of posi-
tive weights.

Our proposed loss function comprises two terms: The first term optimizes the denoising model
x̂1(xt, t; θ), with xt as the noisy input. The second term represents a scoring model that approximates
∇x log pt(xt|x1). The first term of the loss incorporates a β(t) weighting schedule, which emphasizes
the quality of samples as they approach t = 1. For more details about the loss function, please refer
to Appendix A.1.2. The complete training process is described in Algorithm 1.

Sampling After training x̂1(.; θ) and ϵ(.; θ), we can generate samples from IDFF by solving an
SDE starting from the source samples x0. Refer to Figure 2.C for visualization. This procedure
is outlined in Algorithm 2. The SDE is defined as dxt = wtdt + σtdw, with initial samples x0

and target samples x1 at t = 1. Therefore, we can draw samples from p(x0), run them through the
SDE, and obtain the final samples x1. First, we draw x0 ∼ N (0, I), then compute x̂1(x0, 0, k; θ).
Next, we calculate v̂t using equation 10, followed by the computation of wt. After calculating wt

and using the SDE, we compute the mean for the next time step as µt+∆t = (xt + wt∆t), and
finally draw a sample from a small neighborhood of it: xt+∆t ∼ N (xt +wt∆t, σ2

t∆tI). The ∆t
is determined by the NFE as ∆t = 1

NFE , where smaller NFE results in finer time discretization and
tighter neighborhoods.

Likelihood calculation. To evaluate the likelihood of data under IDFFs, we can leverage the change
in the probability density as the sample xt evolves according to the velocity field wt as described by
the continuity equation 4, which gives the time evolution of the probability density under the learned
flow Lipman et al. (2022):

log p1(x1) = log p0(x0)−
∫ 1

0

∇ ·wt(xt) dt (12)

This integral is numerically approximated, often using Monte Carlo methods.

3.3 IDFF TIME-SERIES ADAPTATION

To use IDFF for time-series applications, we need to modify the training and sampling algorithms for
IDFF as shown in Algorithms 4 and 3, respectively. To accomplish that, we define another random
variable, k, which is a discrete variable and can take values of 1, ...,K with equal probability, where
K is the length of a time series. Therefore, k represents the index of the data sample in a time series.
We also have t as a continuous time variable interpolated between two subsequent values of k (i.e.,
k and k − 1). Therefore we have ∀k ∈ 1, ...,K → p(t | k) ∼ U(0, 1). This conditioning does not
change the original assumption over t since k can take any values up to the time-series length with the
same probability. With this in hand, we can directly pass the k as additional inputs to ϵ̂1(xt, t, k; θ)
and x̂1(xt, t, k; θ) and suggest Algorithm 1 for training and Algorithm 2 for sampling time-series
data with IDFF. Note that for static data, the sequence length (K) equals one; otherwise, it equals the
time series length.

4 RELATED WORK

Recent advancements in CFMs include Schrödinger bridge-based methods (Richter et al., 2023)
and conjugate/splitting-based integrators (Pandey et al., 2023), both aimed at improving sampling
efficiency. However, these methods still struggle to significantly reduce the NFEs, which remains a
critical factor for computational efficiency.

In diffusion models, denoising diffusion implicit models (DDIMs) (Song et al., 2020b) were intro-
duced to address the issue of large NFEs by offering a more efficient sampling process. DDIMs
deterministically generate samples from latent variables, unlike DDPMs, which rely on Langevin
dynamics. By employing a variational approach, DDIMs accelerate sampling while preserving
output quality. Other approaches to enhance sampling in diffusion-based generative models include
distillation frameworks such as Flash (Kohler et al., 2024), which generate diverse samples in fewer
steps by mitigating training-inference discrepancies.

A distinguishing feature of IDFF is its ability to jointly learn an implicit flow from the generated
samples alongside the scoring model. This sets it apart from models like DDIM, which focuses solely

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Algorithm 1 IDFF training algorithm.

Input: dataset distribution p1(x1), initial distribution p0(x0),
bandwidth σ0, a set of positive weights λ(.) and β(.), initialized
networks x̂1(.; θ) and ϵ̂(.; θ),
while Training do

x1 ∼ p1(x1), x0 ∼ p0(x0)
π ← OT(x1,x0)
(x0,x1) ∼ π
t ∼ U(0, 1)
µt ← tx1 + (1− t)x0

σt ← σ0

√
t(1− t)

xt ∼ N (µt, σ
2
t I)

LIDFF(θ) ← β(t)2∥x̂1(xt, t, k; θ) − x1∥2 +

λ(t)2 ∥ϵ(xt, t; θ)−∇x log pt(xt|x1)∥2
θ ← Update(θ,∇θL(θ))

end while
return {x̂1(.; θ), ϵ̂(.; θ)}

Algorithm 2 IDFF Sampling algorithm

Input: x̂1(.; θ) and ϵ̂(.; θ), bandwidth σ0,
time step size ∆t, and γ.
x0
0 ∼ N (0, I)

for t in [0, 1/∆t) do
σt ← σ0

√
t(1− t)

wt ←
√

(1− σ2
t)

x̂1(xt,t;θ)−xt

1−t
+

2γ−1
2

σtϵ̂(xt, t; θ)

xt+∆t ∼ N (xt +wt∆t, σ2
t∆tI)

end for
return Samples {x1}

on learning a scoring function. By leveraging OT to couple samples between t = 0 and t = 1, IDFF
accelerates convergence during training while maintaining a low NFE and improving sample quality.

Our image generation experiments, presented in Tables 1 and 2, demonstrate IDFF’s superior
performance. Compared to [SF]2M (Tong et al., 2023b), OT-CFM(Pooladian et al., 2023), DDPM
(Ho et al., 2020), DDIM (Song et al., 2020b), EDM (Karras et al., 2022), and DPM-Solver (Lu et al.,
2022a) (designed to reduce NFEs in diffusion models), IDFF consistently outperforms these models
in both efficiency and quality.

Table 1: Comparison of Likelihood (BPD),
FID, and NFE between IDFF and various
methods on the CIFAR-10 dataset. Additional
results are provided in Table 7

Model NLL↓ FID↓ NFE↓
DDPM 3.12 7.48 274
EDM – 16.57 10
DDIM – 6.84 20
DDIM – 13.36 10
DPM-Solver – 6.03 12
Score Matching 3.16 19.94 242
ScoreFlow 3.09 20.78 428
OT-CFM 2.99 6.35 142
OT-CFM – 11.87 10
[SF]2M – 10.13 10
FM – 14.36 10
IC-CFM – 13.68 10
IDFF (Ours) 3.09 5.87 10

In summary, IDFF combines conditional flow and
score-based learning, providing an efficient frame-
work for generative modeling that reduces computa-
tional costs while achieving high-quality samples in
training iterations, much fewer than diffusion-based
models and comparable to CFM (see Appendix A.3
for details). The next section elaborates on these
comparisons.

5 EXPERIMENTS

We conducted two general classes of experiments to
demonstrate the effectiveness of IDFF in generative
modeling on static data, such as images and time-
series data, including simulated chaotic systems (e.g.,
attractors), molecular dynamics, and sea surface tem-
perature forecasting. The anonymous code for our
implementation is accessible at Anonymous Repository.

5.1 IMAGE GENERATION

Table 2: Comparison of FID and NFE metrics
between IDFF and various methods on the CelebA
(64× 64) dataset.

Model FID↓ NFE↓
DDPM 45.20 100
DDIM 13.73 20
DDIM 17.33 10
FastDPM 12.83 50
IDFF (Ours) 11.83 10

IDFFs exhibit superior performance compared
to CFMs in image generation. We trained
IDFF models on datasets such as CIFAR-10
and CelebA (additional results for ImageNet-
64, CelebA-HQ, LSUN Bedrooms, and LSUN
Church are available in Appendix A.6). We uti-
lized a CNN-based UNet (Dhariwal and Nichol,
2021) to simultaneously model both x̂1(., t; θ)
and ϵ(., t; θ) from Equation 11 for all image data
except ImageNet-64. For ImageNet-64, we em-
ployed a DiT architecture (’DiT-L/4’)(Peebles

8

https://anonymous.4open.science/r/IDFF-D2E5/README.md

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

and Xie, 2022). To implement this, we doubled the input channels of the networks and fed the
augmented input, (xt,xt), into the network. The outputs were then split into (x̂1(., t; θ), ϵ(., t; θ)).

To ensure a fair comparison with other models, we used commonly employed metrics to evaluate
CFMs’ performance, including negative log-likelihood (NLL) using equation 12 measured in bits per
dimension (BPD) Lipman et al. (2022), sample quality as measured by the Frechet Inception Distance
(FID), and the average NFE required for the reported FID and NLL, averaged over 50k samples, to
assess the computational efficiency of our method. We generate 50k images to calculate the FID
against the corresponding reference statistics of each dataset. All models use the same architecture,
with specific details provided in Appendix A.5.

We also examined the effect of σ0 on sample quality for both CIFAR-10 and CelebA datasets in
Appendix A.2, finding that a value of σ0 = 0.6 achieved the best FID for both datasets, as shown in
Table 1 and Table 2. IDFF achieves comparable FID scores with ten times fewer NFEs than CFM
and DDPM on the CIFAR-10 and CelebA datasets. IDFF’s qualitative results are provided in Figure
1 (additional samples are available in Appendix A.6).

Figure 4 (A) displays the FID score for the initial 50k generated samples plotted against NFEs for
both the CIFAR-10 and CelebA datasets. Sample quality improves rapidly when the NFE exceeds
4, highlighting the significantly lower sampling cost of IDFF compared to traditional CFMs and
diffusion-based models.

5.2 TIME SERIES GENERATION

To assess the performance of IDFF in modeling time series data, we evaluated IDFF on three distinct
tasks: 3D-attractor generation (see Appendix A.7), molecular dynamics simulation, and sea surface
temperature forecasting.

5.2.1 MOLECULAR DYNAMICS SIMULATION

Table 3: MAE, RMSE, and CC between true and
predicted trajectories for the MD simulation.

Method MAE↓ RMSE ↓ CC (%)↑
SRNN 82.6±28 91.9±25 10.2±0.27

DVAE 78.1±27 88.1±25 30.4±0.35

NODE 25.3±6.3 28.8±6.2 10.5±0.41

OT-CFM
NFE=50 13.3±1.1 16.3±2.4 86.1±0.1

NFE=10 15.5±1.3 19.2±2.7 82.4±0.2

IDFF
NFE=5 10.3±1.3 14.9±2.7 93.2±0.05

NFE=12 9.5±1.1 13.4±2.8 95.2±0.1

IDFFs can predict dynamics for complex com-
binatorial structures such as molecules. Molec-
ular dynamics simulation is a crucial tool in
quantum mechanics for understanding the dy-
namics of molecular behavior at the atomic level
(Cazorla and Boronat, 2017). Here, we simu-
lated a fully extended polyalanine structure for
400 picoseconds in a vacuum environment at
a temperature of T = 300K. This molecular
structure consists of 253 atoms with 46 dihedral
angles. We trained an IDFF model to accurately
generate the dihedral angles for the polyalanine
structure from scratch. The distributions of the
actual and generated dihedral angles for all 46
angles are presented in Figure 3 (A) and (B), respectively. Figure 3 (C) illustrates the dihedral angles
for one of the alanine molecules and its associated dihedral angles. A complete trajectory showcasing
a pair of actual and generated dihedral angles is depicted in Figure 3 (D).

To assess the performance of IDFF in the MD simulation, we utilized several evaluation metrics,
including root mean squared error (RMSE), mean absolute error (MAE), and correlation coefficients
(CC) between the generated and actual trajectories of dihedral angles. We benchmarked IDFF against
well-known dynamical models for time series, including dynamical VAE models such as SRNNs
(Fraccaro et al., 2016), VRNNs (Chung et al., 2015), and Neural ODEs (NODEs) (Garnelo et al.,
2018). As shown in Table 3, IDFF outperforms the baselines by a large margin, indicating its potential
for simulating molecular dynamics from scratch.

5.2.2 SEA SURFACE TEMPERATURE FORECASTING

IDFFs can predict spatiotemporal dynamics for sea-surface temperature. This experiment centers
on forecasting sea surface temperature (SST) (Worsfold et al., 2024). Using the NOAA OISSTv2
dataset, which contains daily high-resolution SST images spanning from 1982 to 2021 (Cachay et al.,

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

2023), we partitioned the data to predict SST intervals from 1 to 7 days ahead. To achieve this, we
strategically subsampled eleven grid tiles of size 60 × 60 (latitude × longitude) from the eastern
tropical Pacific region (Huang et al., 2021).

Figure 3: (A) True and (B) generated dihedral
angles. (C) The dihedral angles for an alanine
molecule. (D) True and generated dihedral angle
trajectories using IDFF.

We used a class-conditional UNet for the SST
experiment, with the class encoder part encod-
ing the long-range time dependencies (i.e., for
encoding the days) to allow continuous fore-
casting using the UNet. See Appendix A.5 for
the experiment’s network structure and hyper-
parameter settings. We used the training 4 and
sampling 3 algorithms suggested for time-series
data. We evaluated the performance of IDFF us-
ing the best validation continuous ranked prob-
ability score (CRPS) (Matheson and Winkler,
1976) and mean squared error (MSE) on fore-
casts up to 7 days. CRPS is a proper scoring rule
and a popular metric in probabilistic forecasting
literature (Gneiting and Katzfuss, 2014). We
calculate the CRPS by generating a 20-member
ensemble and the MSE on the ensemble mean
predictions in Table 4.

To assess IDFF’s performance, we compared it
against various baseline approaches, including
DDPM, DDPM with enabled dropout (Dropout) (Gal and Ghahramani, 2016), DDPM with random
perturbation for the initial values (Perturbation) (Pathak et al., 2022), MCVD (Voleti et al., 2022),
Dyffusion (Cachay et al., 2023), and OT-CFM (with NFE = 40) as shown in Table 4. The results for
all the baselines are with NFE = 1000. These baselines provide a robust framework for evaluating
the IDFF framework in time-series forecasting. The results show that IDFF (with NFE = 5)
outperforms the baselines in SST forecasting across both metrics, demonstrating great potential for
weather forecasting applications. See samples of the forecasting results in Figure 14.

6 CONCLUSION AND DISCUSSION

Table 4: Results for sea surface temperature fore-
casting of 1 to 7 days ahead, averaged over the
evaluation horizon.

Method CRPS↓ MSE↓
Perturb. 0.281 ± 0.004 0.180 ± 0.011
Dropout 0.267 ± 0.003 0.164 ± 0.004
DDPM 0.246 ± 0.005 0.177 ± 0.005
MCVD 0.216 0.161
Dyffusion 0.224 ± 0.001 0.173 ± 0.001
OT-CFM 0.231 ± 0.005 0.175 ± 0.006
IDFF (Ours) 0.180 ± 0.024 0.105 ± 0.029

IDFF models represent a significant advance-
ment in generative modeling, particularly for
time series data. By offering superior compu-
tational efficiency compared to traditional flow
models like CFMs, IDFF achieves a favorable
balance between computational cost and sam-
ple quality. This makes IDFF a compelling
choice for tasks requiring efficient and high-
quality sample generation. There are myriad
future possibilities for the application of IDFF
in domains such as music generation (Briot et al.,
2017), speech synthesis (Yu and Deng, 2016),
and modeling biological time-series data (Anu-
manchipalli et al., 2019; Golshan et al., 2020;
Rezaei et al., 2021; 2023; Gracco et al., 2005).

Limitations and Future Work: Computing the OT map for large datasets can be challenging. To
address this, we use a minibatch approximation of OT; however, increasing the batch size results in
longer training times for larger batches. Second, our experiments primarily utilized a CNN-based
UNet structure (Dhariwal and Nichol, 2021) as the backbone of the models. We anticipate that some
of these limitations may be mitigated by utilizing new neural network structures (Peebles and Xie,
2023).

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Salva Rühling Cachay, Bo Zhao, Hailey James, and Rose Yu. Dyffusion: A dynamics-informed
diffusion model for spatiotemporal forecasting. arXiv preprint arXiv:2306.01984, 2023.

Catherine E Myers, Alejandro Interian, and Ahmed A Moustafa. A practical introduction to using
the drift diffusion model of decision-making in cognitive psychology, neuroscience, and health
sciences. Frontiers in Psychology, 13:1039172, 2022.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. arXiv preprint
arXiv:2011.13456, 2020a.

Yixin Liu, Kai Zhang, Yuan Li, Zhiling Yan, Chujie Gao, Ruoxi Chen, Zhengqing Yuan, Yue Huang,
Hanchi Sun, Jianfeng Gao, et al. Sora: A review on background, technology, limitations, and
opportunities of large vision models. arXiv preprint arXiv:2402.17177, 2024.

Dong Wook Kim, Hye Young Jang, Kyung Won Kim, Youngbin Shin, and Seong Ho Park. De-
sign characteristics of studies reporting the performance of artificial intelligence algorithms for
diagnostic analysis of medical images: results from recently published papers. Korean journal of
radiology, 20(3):405–410, 2019.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
Neural Information Processing Systems, 33:6840–6851, 2020.

Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver: A fast
ode solver for diffusion probabilistic model sampling in around 10 steps. Advances in Neural
Information Processing Systems, 35:5775–5787, 2022a.

Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver++: Fast
solver for guided sampling of diffusion probabilistic models. arXiv preprint arXiv:2211.01095,
2022b.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. arXiv
preprint arXiv:2010.02502, 2020b.

Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and
transfer data with rectified flow. arXiv preprint arXiv:2209.03003, 2022.

Michael S Albergo and Eric Vanden-Eijnden. Building normalizing flows with stochastic interpolants.
arXiv preprint arXiv:2209.15571, 2022.

Michael S Albergo, Nicholas M Boffi, and Eric Vanden-Eijnden. Stochastic interpolants: A unifying
framework for flows and diffusions. arXiv preprint arXiv:2303.08797, 2023.

Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
for generative modeling. arXiv preprint arXiv:2210.02747, 2022.

Quan Dao, Hao Phung, Binh Nguyen, and Anh Tran. Flow matching in latent space. arXiv preprint
arXiv:2307.08698, 2023.

Radford M Neal. Bayesian learning for neural networks, volume 118. Springer Science & Business
Media, 2012a.

Radford M Neal et al. Mcmc using hamiltonian dynamics. Handbook of markov chain monte carlo,
2(11):2, 2011.

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
Advances in neural information processing systems, 32, 2019.

Alexander Tong, Nikolay Malkin, Guillaume Huguet, Yanlei Zhang, Jarrid Rector-Brooks, Kilian
Fatras, Guy Wolf, and Yoshua Bengio. Improving and generalizing flow-based generative models
with minibatch optimal transport. arXiv preprint arXiv:2302.00482, 2023a.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Alexander Tong, Nikolay Malkin, Kilian Fatras, Lazar Atanackovic, Yanlei Zhang, Guillaume Huguet,
Guy Wolf, and Yoshua Bengio. Simulation-free schr\" odinger bridges via score and flow matching.
arXiv preprint arXiv:2307.03672, 2023b.

Alexander Tong, Jessie Huang, Guy Wolf, David Van Dijk, and Smita Krishnaswamy. Trajectorynet:
A dynamic optimal transport network for modeling cellular dynamics. In International conference
on machine learning, pages 9526–9536. PMLR, 2020.

Aram-Alexandre Pooladian, Heli Ben-Hamu, Carles Domingo-Enrich, Brandon Amos, Yaron Lipman,
and Ricky Chen. Multisample flow matching: Straightening flows with minibatch couplings. arXiv
preprint arXiv:2304.14772, 2023.

Radford M Neal. Mcmc using hamiltonian dynamics. arXiv preprint arXiv:1206.1901, 2012b.

Kilian Fatras, Thibault Séjourné, Rémi Flamary, and Nicolas Courty. Unbalanced minibatch optimal
transport; applications to domain adaptation. In International Conference on Machine Learning,
pages 3186–3197. PMLR, 2021.

Aude Genevay, Gabriel Peyré, and Marco Cuturi. Learning generative models with sinkhorn diver-
gences. In International Conference on Artificial Intelligence and Statistics, pages 1608–1617.
PMLR, 2018.

Lorenz Richter, Julius Berner, and Guan-Horng Liu. Improved sampling via learned diffusions. arXiv
preprint arXiv:2307.01198, 2023.

Kushagra Pandey, Maja Rudolph, and Stephan Mandt. Efficient integrators for diffusion generative
models. arXiv preprint arXiv:2310.07894, 2023.

Jonas Kohler, Albert Pumarola, Edgar Schönfeld, Artsiom Sanakoyeu, Roshan Sumbaly, Peter Vajda,
and Ali Thabet. Imagine flash: Accelerating emu diffusion models with backward distillation.
arXiv preprint arXiv:2405.05224, 2024.

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
based generative models. Advances in neural information processing systems, 35:26565–26577,
2022.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. Advances
in neural information processing systems, 34:8780–8794, 2021.

W Peebles and S Xie. Scalable diffusion models with transformers. arxiv e-prints, art. arXiv preprint
arXiv:2212.09748, 2022.

Claudio Cazorla and Jordi Boronat. Simulation and understanding of atomic and molecular quantum
crystals. Reviews of Modern Physics, 89(3):035003, 2017.

Marco Fraccaro, Søren Kaae Sønderby, Ulrich Paquet, and Ole Winther. Sequential neural models
with stochastic layers. Advances in neural information processing systems, 29, 2016.

Junyoung Chung, Kyle Kastner, Laurent Dinh, Kratarth Goel, Aaron C Courville, and Yoshua Bengio.
A recurrent latent variable model for sequential data. Advances in neural information processing
systems, 28, 2015.

Marta Garnelo, Jonathan Schwarz, Dan Rosenbaum, Fabio Viola, Danilo J Rezende, SM Eslami, and
Yee Whye Teh. Neural processes. arXiv preprint arXiv:1807.01622, 2018.

Mark Worsfold, Simon Good, Chris Atkinson, and Owen Embury. Presenting a long-term, reprocessed
dataset of global sea surface temperature produced using the ostia system. Remote Sensing, 16
(18), 2024. ISSN 2072-4292. doi: 10.3390/rs16183358. URL https://www.mdpi.com/
2072-4292/16/18/3358.

Boyin Huang, Chunying Liu, Viva Banzon, Eric Freeman, Garrett Graham, Bill Hankins, Tom Smith,
and Huai-Min Zhang. Improvements of the daily optimum interpolation sea surface temperature
(doisst) version 2.1. Journal of Climate, 34(8):2923–2939, 2021.

12

https://www.mdpi.com/2072-4292/16/18/3358
https://www.mdpi.com/2072-4292/16/18/3358

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

James E Matheson and Robert L Winkler. Scoring rules for continuous probability distributions.
Management science, 22(10):1087–1096, 1976.

Tilmann Gneiting and Matthias Katzfuss. Probabilistic forecasting. Annual Review of Statistics and
Its Application, 1:125–151, 2014.

Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing model
uncertainty in deep learning. In international conference on machine learning, pages 1050–1059.
PMLR, 2016.

Jaideep Pathak, Shashank Subramanian, Peter Harrington, Sanjeev Raja, Ashesh Chattopadhyay,
Morteza Mardani, Thorsten Kurth, David Hall, Zongyi Li, Kamyar Azizzadenesheli, et al. Fourcast-
net: A global data-driven high-resolution weather model using adaptive fourier neural operators.
arXiv preprint arXiv:2202.11214, 2022.

Vikram Voleti, Alexia Jolicoeur-Martineau, and Chris Pal. Mcvd-masked conditional video diffusion
for prediction, generation, and interpolation. Advances in Neural Information Processing Systems,
35:23371–23385, 2022.

Jean-Pierre Briot, Gaëtan Hadjeres, and François-David Pachet. Deep learning techniques for music
generation–a survey. arXiv preprint arXiv:1709.01620, 2017.

Dong Yu and Li Deng. Automatic speech recognition, volume 1. Springer, 2016.

Gopala K Anumanchipalli, Josh Chartier, and Edward F Chang. Speech synthesis from neural
decoding of spoken sentences. Nature, 568(7753):493–498, 2019.

Hosein M Golshan, Adam O Hebb, and Mohammad H Mahoor. Lfp-net: A deep learning framework
to recognize human behavioral activities using brain stn-lfp signals. Journal of neuroscience
methods, 335:108621, 2020.

Mohammad Reza Rezaei, Kensuke Arai, Loren M Frank, Uri T Eden, and Ali Yousefi. Real-time
point process filter for multidimensional decoding problems using mixture models. Journal of
neuroscience methods, 348:109006, 2021.

Mohammad R Rezaei, Haseul Jeoung, Ayda Gharamani, Utpal Saha, Venkat Bhat, Milos R Popovic,
Ali Yousefi, Robert Chen, and Milad Lankarany. Inferring cognitive state underlying conflict
choices in verbal stroop task using heterogeneous input discriminative-generative decoder model.
Journal of Neural Engineering, 20(5):056016, 2023.

Vincent L Gracco, Pascale Tremblay, and Bruce Pike. Imaging speech production using fmri.
Neuroimage, 26(1):294–301, 2005.

William Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pages 4195–4205, 2023.

Alexia Jolicoeur-Martineau, Rémi Piché-Taillefer, Rémi Tachet des Combes, and Ioannis Mitliagkas.
Adversarial score matching and improved sampling for image generation. arXiv preprint
arXiv:2009.05475, 2020.

Ajay Jain, Pieter Abbeel, and Deepak Pathak. Locally masked convolution for autoregressive models.
In Conference on Uncertainty in Artificial Intelligence, pages 1358–1367. PMLR, 2020.

Wenliang Zhao, Lujia Bai, Yongming Rao, Jie Zhou, and Jiwen Lu. Unipc: A unified predictor-
corrector framework for fast sampling of diffusion models. Advances in Neural Information
Processing Systems, 36, 2024.

Kaiwen Zheng, Cheng Lu, Jianfei Chen, and Jun Zhu. Dpm-solver-v3: Improved diffusion ode
solver with empirical model statistics. Advances in Neural Information Processing Systems, 36:
55502–55542, 2023.

A APPENDIX

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

CONTENTS

1 Introduction 1

2 Background 2

3 Implicit Dynamical Flow Fusion Model (IDFF) 5

3.1 Learning CFMs with Momentum . 5

3.2 Learning Flows in Input Space . 6

3.3 IDFF time-series adaptation . 7

4 Related Work 7

5 Experiments 8

5.1 Image Generation . 8

5.2 Time Series Generation . 9

5.2.1 Molecular Dynamics Simulation . 9

5.2.2 Sea Surface Temperature Forecasting . 9

6 Conclusion and Discussion 10

A Appendix 13

A.1 Proofs . 15

A.1.1 Continuity proof for Lemma 1 . 15

A.1.2 Training objective derivations . 15

A.2 Balancing the IDFF flow . 16

A.3 On Convergence Speed of IDFF . 16

A.4 IDFF training and sampling algorithms for time series 18

A.5 Implementation details . 18

A.6 Additional results for image generation experiment 19

A.7 3D-attractors . 20

A.8 SST forecasting visualization . 21

A.9 2D-simulated static data and time-series . 21

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A.1 PROOFS

A.1.1 CONTINUITY PROOF FOR LEMMA 1

We define a vector field as follows:

ṽt(xt) =
√
1− σ2

t vt(xt) + σ2
t ξt, ξt = γ∇ log pt(xt) (13)

where γ is a coefficient controlling the contribution of the momentum term ξt.

Consider a Stochastic Differential Equation (SDE) of the standard form:

dxt = ṽt(xt) dt+ σt dw (14)

with time parameter t, drift ṽt, diffusion coefficient σt, and dw representing the Wiener process.

The solution xt to the SDE is a stochastic process with probability density pt(xt), characterized by
the Fokker-Planck equation:

∂pt(xt)

∂t
= −∇ · (ṽt(xt)pt(xt)) +

σ2
t

2
∆pt(xt) (15)

where ∆ represents the Laplace operator in xt.

We can rewrite this equation in the form of the continuity equation:

∂pt(xt)

∂t
= −∇ ·

(
ṽt(xt)pt(xt)−

σ2
t

2

∇pt(xt)

pt(xt)
pt(xt)

)
(16)

= −∇ ·
((

ṽt(xt)−
σ2
t

2
∇ log pt(xt)

)
pt(xt)

)
(17)

= −∇ · (wtpt(xt)) (18)

where the vector field wt is defined as:

wt(xt) = ṽt(xt)−
σ2
t

2
∇ log pt(xt) =

√
1− σ2

t vt(xt) +
2γ − 1

2
σ2
t∇ log pt(xt) (19)

As t approaches 0 or 1, σt → 0, causing ṽt(xt) to converge to v̂t(xt). This ensures that the continuity
equation is satisfied with the probability path pt(xt) for the original equation.

A.1.2 TRAINING OBJECTIVE DERIVATIONS

As described in Theorem 2 of (Lipman et al., 2022), the FM loss is defined as:

LFM(θ) = Et,x1,pt(xt|x1)

∥∥vt(xt)− v̂t(xt)
∥∥2 (20)

The CFM loss, as defined in equation 5, is equivalent to the FM loss up to a constant value, implying
that LFM(θ) = LCFM(θ). Based on this equivalence, we can express the training objective for
approximating the vector field in equation 7, f̂(xt, t | x1,x0; θ), as:

L1
IDFF(θ) = Et,x1,pt(xt|x1)

∥∥v̂t(xt | x1; θ)− vt(xt|x1)
∥∥2 (21)

To recover unbiased samples, we replace û(.) with equation 10 and v̂t(xt|x1,x0) with equation 9,
resulting in:

L1
IDFF(θ) = Et,x1,pt(xt|x1)

[∥∥∥∥ x̂1(xt, t; θ)− xt

1− t
− x1 − xt

1− t

∥∥∥∥2] (22)

= Et,x1,pt(xt|x1)

[
β(t)2

∥∥x̂1(xt, t; θ)− x1

∥∥2] (23)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Figure 4: IDFF performance against A) the number of function evaluations (NFEs) and B) the
hyperparameter σ0 (the flow and score model mixing term) with fixed NFE=10 for the CIFAR-10
dataset. Similar analysis for CelebA-64 is shown in Figure5

where β(t) = 1
1−t . Therefore, we have:

L1
IDFF(θ) = Et,x1,pt(xt|x1)

[
β(t)2

∥∥x̂1(xt, t; θ)− x1

∥∥2] (24)

To approximate ∇x log pt(xt|x1), we can employ a time-dependent score-based model, ϵ(xt, t; θ),
using a continuous loss function with a weighting schedule λ(t). Since ∇x log pt(xt|x1) approaches
infinity as t tends to 0 or 1, it is necessary to standardize the loss to maintain consistency over
time. We set λ(t) such that the target has zero mean and unit variance, predicting the noise added
in sampling xt before multiplying by σt = σ0

√
t(1− t). This leads to λ(t) = σt = σ0

√
t(1− t),

ensuring that the regression target for ϵ̂ is distributed as N (0, I). Notably, this loss function is
independent of the γ value, allowing us to use the same model with different γ values during the
sampling process without altering the minima. The loss is defined as:

L2
IDFF(θ) = Et,x1,pt(xt|x1)

[
λ(t)2 ∥ϵ̂(xt, t; θ)−∇x log pt(xt|x1)∥2

]
(25)

where λ(·) is a set of positive weights. With a proper choice of λ(t), this loss is equivalent to
the original DDPM loss up to a constant value, according to Theorem 1 of (Song et al., 2020b).
Combining the two components, the IDFF loss function is defined as:

LIDFF(θ) = L1
IDFF(θ) + L2

IDFF(θ) (26)

Which leads to the final objective function:

LIDFF(θ) = Et,x1,pt(xt|x1)

[
β(t)2∥x̂1(xt, t; θ)− x1∥2 + λ(t)2 ∥ϵ(xt, t; θ)−∇x log pt(xt|x1)∥2

]
(27)

A.2 BALANCING THE IDFF FLOW

IDFF consists of a scoring model and an implicit flow component coupled with a parameter σ0 to
generate flow w(.). We examine the effect of σ0 on sample quality for the CIFAR-10 and CelebA
datasets, with the NFE fixed at 10. As shown in Figure 4 (B), a value of σ0 = 0.6 achieves the
best balance between the diffusion and flow components regarding sample quality for both datasets.
This plot also demonstrates that sample quality is susceptible to σ0, particularly for diffusion-based
models like DDPMs, compared to CFMs, especially at small NFEs, which is already noticed in some
research(Jolicoeur-Martineau et al., 2020; Jain et al., 2020).

A.3 ON CONVERGENCE SPEED OF IDFF

IDFF introduces a momentum term that slightly increases training complexity compared to CFMs.
However, this added complexity is offset by a significant reduction in the number of sampling steps
required during inference. Leveraging the strengths of its underlying CFM models, IDFF achieves
high-quality sample generation (FID < 10) within just 500K training iterations, as demonstrated in
Figure 6, while maintaining competitive performance with CFMs.

Figure 6 shows the FID curves during IDFF training in the CIFAR-10 dataset with a batch size of
128, emphasizing its superior efficiency compared to conventional diffusion models. This efficiency

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Figure 5: IDFF performance against A) the number of function evaluations (NFEs) and B) the
hyperparameter σ0 (the flow and score model mixing term) with fixed NFE=10, for CelebA-64
dataset.

Figure 6: IDFF performance against the number of training iterations with fixed NFE=10 for the
CIFAR-10 dataset.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

marks a substantial improvement over the millions of iterations typically required by diffusion-based
models to generate high-quality images, which entail considerable computational costs. In contrast,
as depicted in Figure 6, IDFF retains the training efficiency of CFMs, achieving faster convergence
and significant computational savings.

A.4 IDFF TRAINING AND SAMPLING ALGORITHMS FOR TIME SERIES

Algorithm 3 IDFF sampling algorithm for time-series data.

Input: x̂1(.; θ) and ϵ̂(.; θ), maximum sequence length K, bandwidth σ0, time step size ∆t, and γ.
for k in {1, ...,K} do

if k == 1 then
x0
0 ∼ N (0, I)

else
xk
0 ∼ N (xk−1

1 , σ0I)
end if
for t in [0, 1/∆t) do

σt ← σ0

√
t(1− t)

wk
t ←

√
(1− σ2

t)
x̂1(xt,t,k;θ)−xk

t
1−t

+ 2γ−1
2

σtϵ̂(xt, t, k; θ)

xk
t+∆t ∼ N (xk

t +wk
t ∆t, σ2

t∆tI)
end for

end for
return Samples {xk

1}k=K
k=1

Algorithm 4 IDFF training algorithm for time-series data.

Input: dataset distribution p1(x1), initial distribution p0(x0), maximum sequence length K, bandwidth σ0, a
set of positive weights λ(.) and β(.), initialized networks x̂1(.; θ) and ϵ̂(.; θ),
while Training do

if K == 1 then
k = 1
x1 ∼ p1(x1), x0 ∼ p0(x0)

else
k ∼ {1, ...,K} with equal probability
x1 ∼ p1(x

k
1), x0 ∼ p1(x

k−1
1)

end if
π ← OT(x1,x0)
(x0,x1) ∼ π
t ∼ U(0, 1)
µt ← tx1 + (1− t)x0

σt ← σ0

√
t(1− t)

xt ∼ N (µt, σ
2
t I)

LIDFF(θ)← β(t)2∥x̂1(xt, t, k; θ)− x1∥2 + λ(t)2 ∥ϵ(xt, t; θ)−∇x log pt(xt|x1)∥2
θ ← Update(θ,∇θL(θ))

end while
return {x̂1(.; θ), ϵ̂(.; θ)}

A.5 IMPLEMENTATION DETAILS

Network configuration: We adopt UNet (ADM) for our image generation and SST forecasting
experiments. Table 5 shows detailed configurations of the ADM network on different datasets.

Training hyper-params. In Table 6, we provide training hyperparameters for unconditional image
generation on ADM and SST forecasting datasets.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Table 5: ADM network configuration for different datasets.

CIFAR-10 CelebA64 CelebA 256 Church & Bed SST

of ResNet blocks 2 2 2 2 2
Base channels 128 128 128 256 128
Channel multiplier 1,2,2,4 1,2,2,4,4 1,1,2,2,4,4 1,1,2,2,4,4 1,2,4
Attention resolutions 16 16 16 16 16
Label dimensions 1 1 1 1 10
Params (M) 65.6 102.14 453.45 108.41 55.39

Table 6: Hyper-parameters of ADM network.

ImageNet-64 CIFAR-10 CelebA64 CelebA 256 Church & Bed SST

lr 1e-4 1e-4 1e-5 1e-5 1e-5 1e-4
Batch size 64 128 128 16 16 8
of iterations 3M 700K 1.2M 1.5M 1.5M 700K
of GPUs 4 1 1 1 1 1

A.6 ADDITIONAL RESULTS FOR IMAGE GENERATION EXPERIMENT

We also assesd IDFF performance in generating images against fast diffusion process models with
MFE=5. As Table7 IDFF achieves a significantly better FID score (10.97) compared to UniPC (23.52)
and DPM-Solver-v3 (12.21), while also boasting the fastest wall-clock time (0.34 seconds) among all
solvers. This highlights IDFF’s ability to generate high-quality samples with minimal computational
overhead, making it ideal for real-time applications. Even at NFE=10, where UniPC slightly edges
out in FID (2.85) alongside DPM-Solver-v3 (2.91), IDFF remains competitive with a reasonable FID
(5.87) and the fastest wall-clock time (0.52 seconds), demonstrating its efficiency and scalability.
These results suggest that IDFF hits a balance between sample quality and computational speed that
lends itself to speed.

Table 7: Comparison of FID↓ performance and sampling times (Wall-clock) between IDFF and fast
diffusion sampling methods for NFE=5 and NFE=10, evaluated on 50k samples.

Method FID (NFE=5) Wall-clock (sec, NFE=5) FID (NFE=10) Wall-clock (sec, NFE=10)

UniPC (Zhao et al., 2024) 23.52 0.62 2.85 1.05
DPM-Solver-v3 (Zheng et al., 2023) 12.21 0.49 2.91 0.92
IDFF 10.97 0.34 5.87 0.52

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Figure 7: Generated samples for CelebA64 (64× 64) dataset with different σ0s and NFE = 10.

Figure 8: Generated samples for CIFAR-10 (32× 32) dataset with different σ0s and NFE = 10.

A.7 3D-ATTRACTORS

In this experiment, we assess IDFF’s performance in generating trajectories of chaotic systems from
scratch. We generate trajectories with K = 2000 samples in each trajectory from 3D attractors,
specifically the Lorenz and Rössler attractors, which are chaotic systems with nonlinear dynam-
ics. The parameters for the Lorenz and Rössler models are set to σ = 10, ρ = 28, β = 8/3 and
a = .2, b = .2, c = 5.7, respectively, to produce complex trajectories in 3D space. We then train the
IDFF model based on these trajectories. To model each attractor, we use an MLP with two hidden
layers of 128 dimensions and two separate heads for x̂1(., t, k; θ) and ϵ(xt, t, k; θ). Additionally, we
incorporate two separate embedding layers for embedding t and k, which are directly concatenated
with the first hidden layer of the MLP. The optimized IDFF successfully generates samples of these

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Figure 9: Generated samples for CelebA-HQ (256× 256) dataset with σ0 = 0.2 and NFE = 10.

trajectories from scratch. The generated trajectories are shown in Figure 13. The quality of the results
demonstrates that IDFF can successfully simulate the behaviors of highly nonlinear and nonstationary
systems such as attractors.

A.8 SST FORECASTING VISUALIZATION

A.9 2D-SIMULATED STATIC DATA AND TIME-SERIES

Additional results for 2D simulations for both static and time-series generation are shown in Figure16.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Figure 10: Generated samples for ImageNet64 dataset with σ0 = 0.2 and NFE = 10.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Figure 11: Generated samples for LSUN-church (256× 256) dataset with different σ0s and NFE =
10.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Figure 12: Generated samples for LSUN-bed (256× 256) dataset with different σ0s and NFE = 10.

Figure 13: Time-series simulation. IDFF trajectory generation for the chaotic systems.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Figure 14: SST forecasting result conditioned on day 1st for 9 days with σ0 = 0.2 and fixed
NFE = 5. Same results for different σ0s is shown in Figure15

Figure 15: SST forecasting result conditioned on day 1st for 9 days for different values of σ0 and
fixed NFE = 5.

Figure 16: 2D synthetic simulation.

25

	Introduction
	Background
	Implicit Dynamical Flow Fusion Model (IDFF)
	Learning CFMs with Momentum
	Learning Flows in Input Space
	IDFF time-series adaptation

	Related Work
	Experiments
	Image Generation
	Time Series Generation
	Molecular Dynamics Simulation
	Sea Surface Temperature Forecasting

	Conclusion and Discussion
	Appendix
	Proofs
	Continuity proof for Lemma 1
	Training objective derivations

	Balancing the IDFF flow
	On Convergence Speed of IDFF
	IDFF training and sampling algorithms for time series
	Implementation details
	Additional results for image generation experiment
	3D-attractors
	SST forecasting visualization
	2D-simulated static data and time-series

