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ABSTRACT

The exploding gradient problem was one of the main barriers to training deep
neural networks. It is widely believed that this problem can be solved by tech-
niques like careful weight initialization and normalization layers. However, we
find that exploding gradients still exist in deep plain networks eve with these tech-
niques applied. Our theory shows that the nonlinearity of activation layers are the
source of such exploding gradients, and the gradient of a plain network increases
exponentially with the number of nonlinear layers.

1 INTRODUCTION

For a long period of time, the vanishing and exploding gradient problem was a major barrier for
training large networks. Many methods are proposed to solve this problem: gradient clipping (Allen-
Zhu et al., 2019), careful weight initialization (Glorot & Bengio, 2010; He et al., 2015) and most
importantly, adding normalization layers (Ioffe & Szegedy, 2015) to the network. People generally
believe that the vanishing/exploding gradient has been largely addressed, especially with the help of
normalization layers. For example, in the residual network (He et al., 2016) paper, authors believed
the gradient problem is not the cause of the optimization difficulty of deep plain network.

However, we check the gradients of layer weights in a plain network (a sequential network with
batch normalization (Ioffe & Szegedy, 2015), but without any kinds of skip connections/shortcuts),
and the gradient of the first layer increases exponentially as the network goes deep. Figure 1 (left)
shows this. See Section 2 for details.

Figure 1: Left: The gradient norm of layer weights against layer indexes for a PlainNet20 and a
ResNet20 with BatchNorm and standard initialization. Right: BatchNorm layers’ running variance

(square rooted) against layer indexes from VGG19 trained checkpoints.

Existing studies cannot explain this phenomenon: 1) the gradients in the plain network explode
regardless of the activation choice, e.g., ReLU (Nair & Hinton, 2010) or SELU (Klambauer et al.,
2017); 2) all weights in the network are properly initialized (He et al. (2015) or Glorot & Bengio
(2010)); 3) the batch normalization layer is added after every weight layer, thus the forward of the
network is stable. We argue that the nonlinearity property of the activation is the cause of the
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exploding problem when the network is carefully initialized and used normalization layers.
An intuitive explanation is the different variance propagation behaviour of activations in forward
and backward. For example ReLU(x) decrease the variance of a Gaussian input by 1

2 (1 − 1
π ), but

during back propagation, the variance is decrease by 1/2 when passing ReLU. As this difference
accumulates, gradient exploding happens.

2 EVIDENCE OF EXPLODING GRADIENT

Let xi be the i-th element of x, and Wij be the i-th row, j-th column of W . Let Var[x] be the

average element variance: Var[x] =
1

d

∑
i

Var[xi]. Let x(0) ∈ Rd0 be the input to neural net-

works, and x(k) ∈ Rdk be the output of k-th layer. We first go into details for the aforementioned
PlainNet20 and ResNet20 networks in Section 1. For PlainNet20, the k-th (0 < k ≤ 20) layer is
a stack of a fully-connected layer with weights W (k) ∈ Rdk−1×dk initialized by He et al. (2015):
W

(k)
ij ∼ N (0, 2/dk), a BatchNorm layer B(k) and a ReLU activation layer σ(x) = max(x, 0):

k=0, 1, · · · 19, x(k+1)= σ(B(k)(W (k)x(k))).

For simplicity, we use the same hidden dimension dk=d=256 for every k. The only difference for
ResNet20 is a skip connection. We follow the Basic Block design (He et al., 2016) and add the skip
connection every two layers:

k=0, 2, · · · 18, x(k+1)= σ(B(k)(W (k)x(k))), x(k+2)= σ(B(k)(W (k)x(k+1)) + x(k)).

We sample a batch of 128 inputs from normal distribution x0 ∼ N (0, Id), and simulate the cor-

responding derivative on top of the networks with normal distribution
∂ℓ

∂x(20)
∼ N (0,

1

d
Id). We

do the back propagation with PyTorch’s automatic differentiation to get the gradients of all fully-
connected layer weights for two networks. The experiments are repeated 4096 times and we use
the average gradient norm to plot the gradient curve. We also provide evidence from a pre-trained
weights as shown in Figure 1 (right). See Appendix A for details and and C for more evidences.

3 THEORY OF EXPLODING GRADIENTS

Let y = π(x) be an arbitrary operator in the network. Let
∂ℓ

∂x
and

∂ℓ

∂y
be the derivative of the

network loss ℓ with respect to the operator input and output:
∂ℓ

∂x
= π′(x)

∂ℓ

∂y
. Define the forward

and backward scaling ratio Rf (π) and Rb(π) as

Rf (π) =
Var[y]
Var[x]

, Rb(π) = Var[
∂ℓ

∂x
]
/

Var[
∂ℓ

∂y
],

where the variances are computed over the distribution of the input x and the output derivative
∂ℓ

∂y
.

Proposition B.4 and B.8 shows that the two ratios are roughly equal for carefully initialized linear
layers and batch normalization layers. Proposition B.12 shows that Rf (π) ≤ Rb(π) for nonlinear
operators, and the equation holds if and only if π is linear. As the result, Corollary B.15 shows that
for a network f , Rb(f)/Rf (f) = Ω(cL) where c > 1 is determined by the nonlinear activation and
L is the number of activation layers. Thus gradient exploding would happen in plain networks. See
Appendix B for proof details and how residual networks could solve this problem.

4 CONCLUSION

This paper argues that the long-held idea that batch normalization solves the gradient explosion
problem while skip connections is not working on this is not correct and provide empirical and
mathematical evidences towards it.
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A CIRCUMSTANTIAL EVIDENCE OF EXPLODING GRADIENT

In the PlainNet, x(k) is activated from the output of a BatchNorm layer, thus should always have
a stable variance. The output variance of the fully-connected layer, i.e., Var[W (k)x(k)] is mainly
determined by the magnitude of W (k). With a careful initialization, this term should also be sta-
ble. However, if exploding gradient happens, the gradients in shallow layers are much larger than
those in deep layers, making larger updates to the weights in shallow layers. The variance term
Var[W (k)x(k)] can be exponential large in the shallow layers of a plain network.

The output variance of the fully-connected layer is recorded by the next BatchNorm layer with the
“running variance” parameter, which can be used to verify whether exploding gradients happen in a
trained network. We consider the VGG19-BN network (Simonyan & Zisserman, 2015), a classical
19-layer plain convolution network. We check the final model of VGG19 (with BatchNorm) trained
on ImageNet classification. The checkpoint is provided by PyTorch1 (Paszke et al., 2019). Specif-
ically, for a BatchNorm layer with input dimension d, there are d running variances for each input

dimension. We use the square root of the average as the metric: σ =
√

1
d

∑d
i=1(running variance)i.

Figure 1 (right) shows the metric σ, square rooted average of running variance, in BatchNorm layers
from the trained checkpoint (still read the figure from right to left). In the final model, the metric
σ increases at most layer indexes except for some layers. The overall trend is that the metric grows
exponentially as back propagation goes from deep layers to shallow layers. An exploding gradient
explains for this exploding running variance.

B THEORY OF EXPLODING GRADIENTS

Proof strategy. For every operator (e.g., linear/activation layers) in a network, we study how it
scales the forward and backward signals. We define two scaling ratios:

Definition B.1. Let y = π(x) be an arbitrary operator in the network with input x ∈ Rd and output

y ∈ RD. Let
∂ℓ

∂x
and

∂ℓ

∂y
be the derivative of the network loss ℓ with respect to the operator input

and output:
∂ℓ

∂x
= π′(x)

∂ℓ

∂y
. Denote the forward scaling ratio Rf (π) and backward scaling ratio

Rb(π) by

Rf (π) =
Var[y]
Var[x]

, Rb(π) = Var[
∂ℓ

∂x
]
/

Var[
∂ℓ

∂y
],

where the variances are computed over the distribution of the input x and the output derivative
∂ℓ

∂y
.

Remark B.2. Some existing work on variance propagation computes the variance over the distribu-
tion of the inputs and the network parameters (He et al., 2015; Zhang et al., 2019; De & Smith,
2020), which we think is not proper. The network we study or verify is always an initialized network
with fixed parameters. The randomness of parameters should not be used for computing the expec-
tation and variance. In our setting, the variance is computed with respect to the input distribution
and is a function of the fixed parameters, if any. Then the distribution of the parameters can be used
to estimate the computed variance.

The two ratios describes how signal variance flows during network forward and backward.

1https://pytorch.org/vision/stable/models.html#torchvision.models.
vgg19_bn
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B.1 SCALING RATIOS OF COMMON OPERATORS

We first discuss two linear operators: fully-connected layers and BatchNorm layers (large enough
batch size). Convolution layers are a special case of fully-connected layers. The results for linear
operators may not be new, however we still state them here for completeness.

Assumption B.3. For the studied operator, dimensions of the input to x, or dimensions of the output

derivative
∂ℓ

∂y
, are independent and identically distributed.

Proposition B.4. Under Assumption B.3, for a linear layer πW with weights W ∈ RD×d: y =

Wx, the forward and backward scaling ratios are Rf (πW ) =
∥W ∥2F

D
,Rb(πW ) =

∥W ∥2F
d

, where

∥W ∥F denotes the Frobenius norm.

Proof of Proposition B.4 Note that the entries of x are independent and identically distributed,
let Var[xi] = σ2 for all i. Then Var[x] = σ2.

Var[yi] = Var[
∑
j

Wijxj ] =
∑
j

W 2
ijVar[xj ] = σ2

∑
j

W 2
ij .

Then Var[y] =
1

D

∑
i

Var[yi] =
σ2

D

∑
i

∑
j

W 2
ij =

∥W∥2F
D

σ2 =
∥W∥2F
D

Var[x]. The backward

pass is similar.
Remark B.5. Assumption B.3 is widely used in many existing studies, but not likely to be true in
generally. However, Proposition B.4 matches the real case quite well, e.g., He initialization. We also
verified this in Figure 2.

BatchNorm is done for each dimension of the input independently. Thus it is equivalent to analysis

one-dimensional data. For a batch of data {xi}Bi=1, let µx =
1

B

B∑
i=1

xi, σ
2
x =

1

B

B∑
i=1

(xi − µx)
2 de-

note the batch mean and batch variance respectively, the output of the BatchNorm is yi =
xi − µx

σx
.

Let Var[
∂ℓ

∂x
] and Var[

∂ℓ

∂y
] denotes the sample variance of { ∂ℓ

∂xi
}Bi=1 and { ∂ℓ

∂yi
}Bi=1 respectively. We

need the following assumption and corollary to further analyse Var[
∂ℓ

∂x
] :

Assumption B.6. For any neuron in the network, the forward signal x and the backward signal
∂ℓ

∂x
are independent.

Corollary B.7. Under Assumption B.6, any neuron before the last BatchNorm layer in a network

has zero expectation derivative, i.e., E
∂ℓ

∂x
= 0.

Proof of Corollary B.7 Let {xi}Bi=1 is a batch of data with batch size B and yi is the normalized
results:

µx =
1

B

B∑
i=1

xi, σx =

√√√√ 1

B

B∑
i=1

(xi − µx), yi =
xi − µx

σx

The backward derivative for the batch normalization layer is:
∂ℓ

∂xi
=

1

σx
[
∂ℓ

∂yi
− yi

B

B∑
j=1

∂ℓ

∂yj
yj −

1

B

B∑
j=1

∂ℓ

∂yj
]. Refer to Ioffe & Szegedy (2015) for the proof of this result. Note that

B∑
i=1

yi = 0, we
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have:
B∑
i=1

∂ℓ

∂xi
=

1

σx
[

B∑
i=1

∂ℓ

∂yi
−

B∑
i=1

yi
B

B∑
j=1

∂ℓ

∂yj
yj −

B∑
i=1

1

B

B∑
j=1

∂ℓ

∂yj
]

=
1

σx
[

B∑
i=1

∂ℓ

∂yi
− 1

B

(
B∑
i=1

yi

) B∑
j=1

∂ℓ

∂yj
yj

−
B∑

j=1

∂ℓ

∂yj
]

=
1

σx
[

B∑
i=1

∂ℓ

∂yi
−

B∑
j=1

∂ℓ

∂yj
] = 0,

which means the sample mean of the batch normalization layer input derivative is 0, thus E
∂ℓ

∂x
= 0

where x is the input to the batch normalization layer.

Let y = f(x) be the previous layer of the last batch normalization layer, i.e., the output of f is the

input of the last batch normalization layer. We have E
[
∂ℓ

∂y

]
= 0 since y is the input to the batch

normalization layer. Further E
[
∂ℓ
∂x

]
= E

[
∂ℓ
∂yf

′(x)
]
= E

[
∂ℓ
∂y

]
E [f ′(x)] = 0 during Assumption 2.

We can continue to prove for all layers before the last batch normalization recursively.

Proposition B.8. Under Assumption B.6, for a BatchNorm layer B, the forward scaling ratio is

Rf (B) =
1

σ2
where σ2 is the input batch variance. The backward scaling ratio is Rb(B) =

1

σ2
(1−

z

B
) where B is the batch size and z is a positive random variable that Ez = 1,Var[z] = 2.

Proof of Proposition B.8 Recall the backward for the batch normalization layer:
∂ℓ

∂xi
=

1

σx
[
∂ℓ

∂yi
− yi

B

B∑
j=1

∂ℓ

∂yj
yj −

1

B

B∑
j=1

∂ℓ

∂yj
] and

B∑
i=1

∂ℓ

∂xi
= 0, we have:

Var[
∂ℓ

∂x
] =

1

B

B∑
i=1

(
∂ℓ

∂xi

)2

=
1

Bσ2
x

B∑
i=1

( ∂ℓ
∂yi

− 1

B

B∑
j=1

∂ℓ

∂yj
)− yi

B

B∑
j=1

∂ℓ

∂yj
yj

2

=
1

Bσ2
x

 B∑
i=1

(
∂ℓ

∂yi
− 1

B

B∑
j=1

∂ℓ

∂yj
)2 − 1

B
(

B∑
j=1

∂ℓ

∂yj
yj)

2


=

1

σ2
x

Var[
∂l

∂y
]− 1

B2
(

B∑
j=1

∂ℓ

∂yj
yj)

2


Let si =

∂ℓ

∂yi
/

√
Var[

∂l

∂y
], we have Var[

∂ℓ

∂x
] =

1

σ2
x

Var[
∂ℓ

∂y
](1 − 1

B2
(

B∑
j=1

siyi)
2) where si and yi

are independent and Esi = Eyi = 0,Es2i = Ey2i = 0. Let z =
1

B
(

B∑
j=1

siyi)
2. Expand the

equation, we have E[z] = 1,E[z2] = 3 + O( 1
B ), and Var[z] ≈ 2. Thus the backward scaling

ratio is Rb(B) =
1

σ2
(1 − z

B
) where B is the batch size and z is a positive random variable that

Ez = 1,Var[z] = 2.

With a properly large batch size, the forward and backward scaling ratios are approximately the
same for BatchNorm layers. Thus the gradient exploding problem is not likely to happen is a plain
network that only consists fully-connected operators and BatchNorm operators.
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Remark B.9. Assumption B.6 is widely used (Yang & Schoenholz, 2017). In fact our proof only
need non-correlation. Even if the network inputs and targets are correlated, non-linearity will reduce
the correlation greatly between a neuron and its derivative in a deep network.

Nonlinear operators We study element-wise activations that operate on each neuron indepen-
dently. Similarly, we just consider one dimensional data.
Assumption B.10. Let g be the element-wise nonlinear activation with input x ∈ R and output
y ∈ R: y = g(x). Assume g is absolutely continuous and Var[g(x)] exists.

For activation g, the forward scaling ratio is Rf (g) = Var[g(x)]/Var[x], and the backward scaling

ratio is Rb(g) = Var[
∂ℓ

∂x
]/Var[

∂ℓ

∂y
]. Recall assumption B.6 and Corollary B.7, we have:

Var[
∂ℓ

∂x
] = Var[

∂ℓ

∂y

dy
dx

] = E
[
(
∂ℓ

∂y
)2[g′(x)]2

]
(because

∂ℓ

∂x
has a zero mean)

= E
[
∂ℓ

∂y

2]
E[g′(x)2] = Var[

∂ℓ

∂y
]E[g′(x)2].

The backward scaling ratio is E[g′(x)2]. Both two scaling ratios are related to the input distribution.
We discuss with different assumptions on the input distribution.
Assumption B.11. The input to the activation is Gaussian.

Many existing studies (Klambauer et al., 2017) make this assumption.
Proposition B.12. Under Assumption B.10 and B.11, Var[g(x)]/Var[x] ≤ E[g′(x)2]. The equality
holds if and only if g(x) = ax+ b for some a and b.

Please refer to Chernoff (1981) for the proof of Proposition B.12. With proposition B.12, the back-
ward scaling ratio is larger than the forward scaling ratio for nonlinear activations. Specifically, for

ReLU activation σ(x) = max(x, 0), Rf (σ) =
1

2
(1− 1

π
), Rg(σ) =

1

2
.

Some people may find the Gaussian assumption is too strong. For ReLU activation, we can use
weaker assumptions:
Assumption B.13. The input to the activation layer follows a symmetric distribution centered at
zero: p(x) = p(−x) where p(x) denotes the density function of x.

Without loss of generality, we can let Var[x] = 1 for ReLU since σ(x) = s ·σ(x/s) where s denotes
the standard deviation of x and Var[x/s] = 1.

Proposition B.14. Under Assumption B.13 and Var[x] = 1, Var[σ(x)] ≤ E[σ′(x)2]− 1

8
[E(|x|)]2.

Proof of Proposition B.14 Since the distribution of x is symmetric centered at zero, we have

• E[σ2(x)] = E[x2|x > 0] =
1

2
E[x2] =

1

2

• E[σ′(x)2] = E[1|x > 0] = P (x > 0) =
1

2

• E[σ(x)] = E[|x|
∣∣x > 0] =

1

2
E(|x|)

Thus
Var[σ(x)] = E[σ2(x)]− (E[σ(x)])2

=
1

2
− (

1

2
E(|x|))2 =

1

2
− 1

4
[E(|x|)]2

= E[σ′(x)2]− 1

4
[E(|x|)]2

≤ E[σ′(x)2]− 1

8
[E(|x|)]2
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Proposition B.14 describes the state of activation layers in the “linear-BN-ReLU” architecture at
initialization precisely. The inputs to ReLU is standardized by the BatchNorm. Recall that the
forward and backward scaling ratios are Var[σ(x)] and E[σ′(x)2] respectively in this case. The
backward scaling ratio is strictly larger than the forward scaling ratio in a “linear-BN-ReLU” plain
network at initialization.

To summarize, under some assumptions, the forward scaling ratio Rf and the backward scaling
rate Rb are approximately the same for linear operators. However for the nonlinear activations,

Rb(g) ≥ Rf (g)+ ϵ for some ϵ =
1

8
[E(|x|)]2 > 0. Note that the two ratios are positive and bounded

for a single operator in a real network, it is equivalent to say Rb(g) ≥ c ·Rf (g) for some c > 1.

Corollary B.15. Suppose a plain network is a stack of linear layers, batch normalization layers
and nonlinear activations. Let L denote the number of activation layers in the network and c =

min
g

Rb(g)

Rf (g)
for every nonlinear activation g in the network. Let Rf (π) and Rb(π) be the forward

and backward scaling ratios of the entire network respectively, Rb(π)/Rf (π) = Ω(cL).

Careful initialization or normalization methods make the forward signals’ variance stable in the plain
network, i.e., Rf (π) is bounded, However, the backward scaling ratio Rb(π) is exponential large,
thus the first layer derivative is exponential larger than the output derivative.

Remark B.16. Although the two ratios are not equal for fully-connected operators as in proposition
B.4, it does not lead to gradient exploding in practice. The ratio between the maximum hidden layer
dimension and the minimum hidden layer dimension is bounded and independent with the network
depth.

In Figure 1 (right), the running variance decreases every time passing a downsample (max-pooling)
layer, which is different than the curve trend. The max-pooling layer (kernel size 2, stride 2) right
before each of the mentioned layers could be the reason. Max-pooling operation is nonlinear but
does not apply to our previous analysis since it is not an element-wise operation. It takes as input
some neighbor pixels in the same feature map y = max(x1, x2, x3, x4), which are obviously not
independent. Thus we can only give an informal intuition with an imprecise assumption.

We assume x1, x2, x3, x4 are independent standard Gaussian distributions. Under this assumption,

easy to know the backward scaling ratio for the max pooling operation is
1

4
, and the forward scaling

ratio is 0.492 by numerical simulation. The backward scaling ratio is smaller than the forward
scaling ratio, making the derivative variance decrease.

According to our propositions, the exponential rate of the exploding gradient for the network defined
above should only determined on the types of the activations, specifically the square root of r(σ)
defined in Equation 1 (since we are plotting the gradient norm not the square of gradient norm). For
ReLU activation, the exponential rate is α =

√
π

π−1 . Figure 2 how close the gradient norm curve
matches the exponential function. Although some of our assumptions may not be the real case, our
conclusions still match the read case quite well.

B.2 HOW DO RESNETS SOLVE THE PROBLEM

As in Figure 1 (left), the gradient of ResNets grow slowly as backward signals pass from deep
layers to shallow layers, without the problem of exploding gradient. In fact, the vanilla ResNets also
has the problem of exploding gradient caused in another reason discussed by Zhang et al. (2019).
A zero-gamma initialization (Goyal et al., 2017) or a 1/

√
L initialization (Balduzzi et al., 2017)

are used solve the problem stated by Zhang et al. (2019). Interestingly, this method also solve the
problem stated in this paper.

A ResNet is a stack of multiple residual blocks. We analyse the two scaling ratios of a residual block
y = x+F(x), where F is the residual branch. The residual branch is typically a 2 ∼ 3-layer plain

8
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Figure 2: The actual gradient norm and the predicting gradient norm.

network. The 1/
√
L initialization use 1/

√
L to multiply the residual branch2 where L is the number

of residual blocks: y = x+
1√
L
F(x).

Proposition B.17. Let Rf (F), Rb(F), Rf (R), Rb(R) denote the forward and backward scaling
ratios of the residual branch, the forward and backward scaling ratios of the residual block respec-

tively. We have: Rf (R) = 1 +
1

L
Rf (F), Rb(R) = 1 +

1

L
Rb(F).

Although Rb(F) and Rf (F) are not equal due to nonlinearity, note that the residual branch is a
shallow network with 2 ∼ 3 layers, both two ratios are in the same order and can be considered

bounded. When the ResNet is deep, both Rb(F) − 1 and Rf (F) − 1 are O(
1

L
) order. When

considering the entire network, the two ratios are both O
(
(1 +

1

L
)L
)

order which is independent

with the network depth.

C NUMERICAL SIMULATIONS OF EXPLODING GRADIENT

In Section 2 we show that plain ReLU networks with batch normalization have the exploding gra-
dient problem. Now we show that neither the type of activation layers nor the existence of batch
normalization layers is the key of this problem. The existence of nonlinear activation layers is the
culprit. We still use the plain network as in Section 2, but replace the activation layers with SELU
3 or Tanh4. We also study the case when batch normalization layers are removed from the net-
work. We use normal distribution N (0, 1/d),N (0, 2/d),N (0, 2/d) to initialize the layer weights
of SELU, Tanh and ReLU networks respectively so that the forward pass is stable. As shown in Fig-
ure 3, different activations have different exponential rate, but they all have the exploding gradient
problems regardless of the type of activation layers nor the existence of batch normalization layers.

2The 1/
√
L initialization actually uses 1/

√
L to initialize the weight of the last BatchNorm layer in the

residual branch. However it is equivalent to write in this form to analyse the variance.
3https://pytorch.org/docs/stable/generated/torch.nn.SELU.html
4https://pytorch.org/docs/stable/generated/torch.nn.Tanh.html
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Figure 3: The gradient norm against layer index for SELU, Tanh, and ReLU with/without batch
normalization layers. Different activations have different exponential rate.

We can see that SELU has the smallest exponential rate and ReLU has the largest exponential rate.
As we analysed in Section e, this exponential rate is predictable (if can we assume the hidden layer
distribution is asymptotic normal). The exponential rate for activation σ is approximately:

X ∼ N (0, 1), r(σ) =
E[σ′(X)]2

Var[σ(X)]
(1)

The exponential rates are 1.072, 1.178, and 1.467 for SELU, Tanh, and ReLU respectively. Huang
et al. (2020) train a 50-layer plain network without skip connections by using SELU, but provides
no explanations about why such a deep plain network is trainable. Our work can provide some
insights, and the maximum trainable depth (of plain networks) is larger for SELU than that for
ReLU. Yang et al. (2019) also find the exploding gradients in plain networks, but ascribe it to batch
normalization layers. Figure 3 shows that it may not be the case. However, batch normalization
layers indeed increase the exponential rates. This is because batch normalization layers rescale the
hidden distributions to the most non-linear regime of the activations.
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