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Abstract

Text-Attributed Graphs (TAGs) are crucial for modeling interconnected data in numerous
real-world applications. Graph Neural Networks (GNNs) excel at efficiently capturing
global structural information across TAGs, while Large Language Models (LLMs) offer
strong capabilities in local semantic understanding. Despite the recent development of
integrating GNNs and LLMs for TAG analysis, these approaches often fail to fully exploit their
complementary strengths by relying primarily on a single architecture. Furthermore, LLM-
based multi-agent collaboration systems have shown promising potential across diverse fields.
However, their integration with GNNs for graph analytical tasks remains underexplored. To
this end, we introduce GMAgent, a novel graph-oriented multi-agent collaboration framework
that effectively and flexibly interacts between diverse GNN-based and LLM-based graph
agents, facilitating comprehensive TAG analysis. First, we deploy multiple GNNs as graph
agents to perform conflict evaluation, identifying conflict scenarios for further multi-agent
collaboration. Then, we repurpose LLMs as graph agents via graph-driven instruction
tuning and adopt a role-play expert recruiting strategy, thereby generating LLM graph
experts’ initial analyses for conflict scenarios. Finally, we conduct a graph-oriented multi-
agent collaboration to effectively and efficiently guide collaborative self-reflection on graph
experts and the final answer selection. Extensive experimental results on five datasets
demonstrate significant improvements, showcasing the potential of our GMAgent in improving
the effectiveness, interoperability, and flexibility of comprehensive TAG analysis.

1 Introduction

Text-Attributed Graphs (TAGs), where each node can be associated with textual attributes, are common
across various real-world applications. Due to their rich semantics and complex structures, TAGs have been
widely used in diverse domains, such as social networks, academic networks, e-commerce networks, and web
page analytics Pan et al. (2024); Ren et al. (2024). To accurately handle TAGs, Graph Neural Networks
(GNNs) have been commonly adopted for capturing the global structural information of graphs Wang et al.
(2024c); Zhu et al. (2021). However, GNNs often struggle to fully integrate the rich semantics embedded
in textual attributes. Inspired by the successes of Large Language Models (LLMs), some researchers have
explored LLMs for accurately capturing contextual semantics of graph attributes Tang et al. (2024); Fang
et al. (2024); Huang et al. (2024a), while their limited input tokens hinder the processing of large-scale graphs.
Although these efforts have been made to combine GNNs and LLMs, they generally rely on either GNNs or
LLMs as the primary backbone, limiting their abilities to comprehensively exploit the strengths of both.

Recently, LLMs’ advanced task understanding and self-planning capabilities have led to the development of
LLM-based multi-agent collaboration systems across diverse fields Chen et al. (2025); Fan et al. (2025); Tang
et al. (2023). Nevertheless, the integration of LLMs and GNNs within multi-agent collaboration frameworks
for graph analytical tasks remains largely underexplored. Figure 1 illustrates the potential of a multi-agent
collaboration framework that combines the global structural patterns captured by GNNs with the local
semantic understandings provided by LLMs. In this multi-agent framework, GNNs and LLMs can work
together as complementary backbones, learning from each other and collaborating to improve graph analytical
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tasks (e.g., node classification, link prediction, and graph classification). To achieve these goals, we further
address the following three key technical challenges.
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Figure 1: An illustrative toy example of the potential for a multi-
agent collaboration framework that can simultaneously harness the
global structural learning power of GNNs and the local semantic
richness of LLMs for TAG analysis.

Challenge I: How to effectively utilize
GNNs as graph agents for interacting with
other graph agents? GNNs excel in captur-
ing global structural information across
the whole TAG via message-passing and
aggregation mechanisms, especially pro-
viding a clear computational advantage
in large-scale graph analysis. While de-
ploying GNNs as graph agents can sig-
nificantly enhance the understanding of
TAGs, the inherent architectures of GNNs
limit their interpretability when interact-
ing with other graph agents.

Challenge II: How to repurpose LLMs
as graph agents to accurately understand
complex graph data and execute graph an-
alytical tasks? To fully exploit the po-
tential of LLMs for graph analysis, an
essential obstacle is the accurate under-
standing and reasoning capabilities of
LLMs given graph data with abundant
attributes and flexible structures. Despite
LLMs’ strengths in understanding seman-
tics, they still struggle to precisely understand graph structures and the information needs of different graph
analytical tasks.

Challenge III: How to properly perform multi-agent collaboration with GNN-based and LLM-based graph
agents for comprehensive TAG analysis? The effectiveness of multi-agent collaboration largely depends on
how to integrate the strengths of multiple agents for facilitating comprehensive TAG analysis. Balancing
the global structural learning power of GNN-based graph agents with the local semantic comprehension of
LLM-based graph agents presents a significant challenge in robustly improving the accuracy and efficiency of
graph-oriented multi-agent collaboration.

To tackle these challenges, we propose a Graph-oriented Multi-Agent collaboration framework for text-
attributed graph analysis (GMAgent), which consists of three key steps: (i) Deploying GNNs as Graph Agents,
where we perform conflict evaluation based on multiple trained GNN models to identify conflicting scenarios for
further multi-agent collaboration; (ii) Repurposing LLMs as Graph Agents, where we obtain an LLM-powered
graph agent via graph-driven instruction tuning and adopt a role-play expert recruiting strategy, collecting
LLM graph experts’ initial analyses for conflicting scenarios; (iii) Graph-oriented Multi-agent Collaboration,
where we enable advanced LLMs (e.g., GPT-4o) to assign a confidence score for each LLM graph expert
and generate a summary report, along with all GNN and LLM experts’ analyses, to guide collaborative
self-reflection of LLM experts and final answer selection.

Our overall contributions are summarized as follows:

• Formulation of the Graph-oriented Multi-agent Framework. We establish a first multi-agent framework
that effectively and flexibly engages interactions between diverse GNN-based and LLM-based graph agents,
facilitating comprehensive TAG analysis.

• Effective Model Designs. We design and implement a set of models and mechanisms, including conflict
evaluation, graph-driven instruction tuning, role-play expert recruiting, summary report generation, and
collaborative self-reflection, constituting a robust graph-oriented multi-agent collaboration framework for
comprehensive TAG analysis.
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• Extensive Experiments across Graph Analytical Tasks and Datasets. We conduct thorough experiments to
validate our proposed approach with five real-world datasets, demonstrating its superiority over existing
state-of-the-art methods and highlighting its effective, interpretable, and flexible abilities in enhancing
TAG analysis.

2 Related Work

2.1 Text-attributed Graph Analysis

Graph analysis methods, especially Graph Neural Networks (GNNs), have shown effectiveness in capturing
structural information for graph data Zeng et al. (2025); Wang et al. (2024c); Zhu et al. (2021). Traditional
GNNs, such as Graph Convolutional Networks (GCNs) Kipf & Welling (2017) and Graph Attention Networks
(GATs) Veličković et al. (2018), are widely used for learning node and edge representations in graphs, excelling
in extracting structural relationships. However, when it comes to processing rich textual attributes associated
with nodes or edges, these models face limitations Tan et al. (2023); Wang et al. (2024c); Fang et al. (2024);
He et al. (2024); Zhao et al. (2022).

Recently, the emergence of Large Language Models (LLMs), with their robust semantic understanding, offers
a way to incorporate textual information into Text-Attributed Graph (TAG) learning Fang et al. (2024);
Tan et al. (2023). For instance, GraphGPT Tang et al. (2024) demonstrated how LLMs can process and
understand complex graph structures by combining text-based knowledge with graph structural information.
Pan et al. Pan et al. (2024) distilled knowledge from LLMs for learning on TAGs. While LLMs excel at
interpreting and representing text, they are insufficient for capturing the global structural patterns that
GNNs handle so well, highlighting the need for a more integrated approach Li et al. (2023b).

Building on the complementary strengths of GNNs and LLMs, recent research has explored two main categories
of integrated approaches, based on whether the backbone is a GNN or an LLM. In the first category, GNNs
serve as the backbone, with LLMs providing additional semantic context. Methods such as ConGraT Brannon
et al. (2023) and GRENADE Li et al. (2023a) align node embeddings generated by GNNs with representations
from LLMs, effectively combining the structural information from TAGs with the textual understanding
of LLMs. In the second category, LLMs are used as the backbone, and GNNs are incorporated to infuse
structural graph information into LLMs. Approaches like DGTL Qin et al. (2023) and GraphAdapter Huang
et al. (2024b) co-train transformer layers in LLMs alongside graph neural layers, enabling LLMs to better
capture the structural dependencies in TAGs. Despite the progress made by both categories, a key limitation
remains: these models typically rely on either GNNs or LLMs as the primary backbone, which restricts their
ability to fully leverage the strengths of both. As a result, they fail to simultaneously harness the structural
learning power of GNNs and the semantic richness of LLMs.

2.2 Multi-Agent Systems

Multi-agent systems have been explored across a wide range of applications and domains Chen et al. (2025);
Liu et al. (2024b); Chen et al. (2023), demonstrating their capability to efficiently handle complex tasks
through agent coordination. For example, AutoGen Wu et al. (2023) has focused on automating multi-agent
collaboration in diverse tasks, such as math problem-solving, group chat, and coding. BadAgents Yang et al.
(2024b) formulated a framework for agent backdoor attacks, which can introduce malicious behavior in the
intermediate reasoning process while keeping the final output correct. These approaches demonstrate the
potential of multi-agent systems to scale and efficiently solve problems through agent coordination.

In recent years, LLM-based multi-agent systems have emerged as a powerful tool, primarily divided into
two categories: collaboration and competition Wang et al. (2024b). The first category involves collaborative
multi-agent systems, where multiple LLM-based agents work together toward a common goal. These systems
have proven effective in areas like cooperative decision-making Piatti et al. (2024), majority voting Chen
et al. (2024), medical domains Fan et al. (2025); Tang et al. (2023), and code generation Islam et al. (2024).
For example, GOVSIM Piatti et al. (2024) represented the LLM’s strategic interaction and cooperative
decision-making capability. The second category includes adversarial multi-agent systems, where agents have
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Figure 2: The overall of our GMAgent framework, consisting of three key steps, which are ① Deploying GNNs
(e.g., GCN and GAT) as Graph Agents, ② Repurposing LLMs (e.g., Qwen2-7B) as Graph Agents, and ③
Graph-oriented Multi-agent Collaboration.

conflicting objectives. These methods have been applied in competitive environments, such as games Feng
et al. (2024), debate Liu et al. (2024c), and evaluation Chan et al. (2023). For example, GroupDebate Liu et al.
(2024c) involved dividing all agents into multiple debate groups, enhancing the performance and efficiency in
the multi-agent debate system.

Despite the wide-ranging success of multi-agent LLM systems in these fields, their application in graph
analytical tasks remains relatively unexplored. In this domain, multi-agent systems using GNNs have
primarily modeled agent interactions and coordination Zhang et al. (2024); Duan et al. (2024). For example,
VillagerAgent Dong et al. (2024) introduced a directed acyclic graph framework to manage task assignments
and track agent states, while CAG-ODE Huang et al. (2024c) employed a GNN as the ordinary differential
equations function to model continuous agent interactions. GraphAgent-Reasoner Hu et al. (2024) further
extended LLM-based multi-agent collaboration for graph reasoning, though its application remains limited to
this specific task. As closest to us, Wu et al. (2024) made progress by integrating GNNs and LLMs within a
multi-agent framework to enhance graph learning for task planning, but their approach did not incorporate
multi-agent collaboration. Although both LLMs and GNNs have shown individual success in multi-agent
tasks, there has been little exploration of their integration within multi-agent systems, leaving significant
potential for deeper investigation and development in this area.

3 The GMAgent Framework

3.1 Problem Formulation and GMAgent Overview

Given Text-Attributed Graphs (TAG) G and multiple graph analytical τi (e.g., node classification τ1), the
goal of GMAgent is to develop a multi-agent collaboration framework that flexibly integrates the strengths of
various Graph Neural Network (GNN) graph agents {GNNg}MG

g=1 and Large Language Model (LLM) graph
agents {LLMl}ML

l=1, improving graph analytical task performances on τi. Specifically, we denote the TAG as
G = (V, E , X , S), where each node vn ∈ V is associated with textual attribute xn ∈ X and shallow feature
sn ∈ S, and each edge em ∈ E .
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(a) Accuracy Results (b) Inference Time Results

Figure 3: (a) Accuracy of GCN and GAT on validations of three datasets. “GCN + GAT” represents the
accuracy on samples where both models make consistent predictions. (b) Inference efficiency comparison
among GCN, LLaMA3-8B, and Qwen2-7B.

To achieve this goal, we first deploy multiple GNNs trained on the specific TAG dataset as graph agents,
performing conflict evaluation to identify conflict scenarios for multi-agent collaboration. Then, we generate
an LLM-powered graph agent via graph-driven instruction tuning, integrating CoT-based instructions from
advanced LLMs (e.g., GPT-4o) with task-specific instructions. Adopting a role-play expert recruiting strategy,
diverse LLM graph experts provide initial analyses for conflict scenarios. Finally, we introduce a graph-oriented
multi-agent collaboration between GNN and LLM experts, where advanced LLMs (e.g., GPT-4o) assign a
confidence score to each LLM expert and generate a summary report to guide collaborative self-reflection on
LLM experts and final answer selection. The overall framework of our GMAgent is shown in Figure 2.

3.2 Deploying GNNs as Graph Agents

GNNs demonstrate strong performance on multiple training tasks and datasets. They effectively enhance node
representations with structural information via message-passing and aggregation patterns, considering the
global information across the whole TAG Pan et al. (2024); Wang et al. (2024c); Zhu et al. (2021). As shown
in Figure 3(a), GNN models, like GCN Kipf & Welling (2017) and GAT Veličković et al. (2018), can achieve
the average accuracy rates of 73.08% and 73.79%, respectively. Notably, when both models provide consistent
predictions (i.e., “GCN + GAT”), the accuracy improves further, demonstrating that GNNs are capable of
making reliable and accurate inferences. In addition to their accuracy, GNNs offer a clear computational
advantage when dealing with large-scale graphs. Compared with LLMs that accurately capture contextual
semantic understanding within limited input tokens, GNNs can efficiently process large-scale graph structures
utilizing their architecture’s inherent parallel message-passing mechanism Yang et al. (2020a). As shown in
Figure 3(b), we compare the inference efficiency (seconds per response) of GCN, LLaMA3-8B Dubey et al.
(2024), and Qwen2-7B Yang et al. (2024a) across three datasets, where LLMs like LLaMA3-8B and Qwen2-7B
have significantly higher inference times compared to GNNs.

To this end, we propose to deploy GNNs as graph agents within our multi-agent framework for TAG analysis,
which balances effectiveness and computational efficiency. Specifically, we first train multiple GNNs (e.g.,
GCN and GAT) tailored for specific datasets and graph analytical tasks (e.g., node classification). Then, we
introduce a conflict evaluation to identify conflict scenarios based on each GNN-based graph agent’s inference
results. These results for conflict scenarios are used for further multi-agent collaboration.

3.2.1 GNN-based Graph Agents Training

To obtain the GNN-based graph agent, we train each GNN on the TAG dataset G = (V, E , X , S) for a graph
analytical task τi. Each node vn ∈ V has an initial node embedding, hvn,0 = svn , based on its shallow feature
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svn
. Then, the GNN adopts message-passing and aggregation patterns to learn structure-aware embedding

for node vn via exploring the global context across all nodes as follows:

hvn,k = UPD
(
hvn,k−1, AGG

(
{MSG (hvn,k−1, hvm,k−1)}vm∈N (vn)

))
, (1)

where hvn,k denotes the embedding of node vn in the k-th layer of the GNN and N (vn) denotes the neighbor
nodes set of vn. The MSG function receives from each neighbor node’s message, the AGG function is used
for aggregating the neighbor node embeddings, and the UPD function updates the embedding of vn based on
the aggregated neighbor node embeddings.

After obtaining the last layer’s node embedding hvn,K via Eq. 1, we apply the predictor and the objective
function tailored to the graph analytical task τi for training the GNN, where we take node classification τ1 as
an example:

ŷτ1,vn = Softmax (MLPτ1 (hvn,K)) , (2)

Lτ1 = Evn∈VCE (ŷτ1,vn
|yτ1,vn

) , (3)

where CE(·, ·) is the cross-entropy loss between the prediction ŷτ1,vn
and the ground-truth label yτ1,vn

for
node vn. K is the total number of GNN layers.

3.2.2 Conflict Evaluation via GNN-based Graph Agents Inference

Different GNN-based graph agents may generate inconsistent results for the same scenario on the TAG
dataset, due to variations in architecture. To fully integrate the opinions of various GNN experts, we propose
a conflict evaluation mechanism. This filters out scenarios consistently agreed upon by all experts and takes
each expert’s same inference results as the final answers for these scenarios. For conflict scenarios, where
experts hold inconsistent opinions, we identify them along with each expert’s inference results used for further
multi-agent collaboration. In particular, we automatically textualize each GNN expert’s characteristic and
inference result on the conflict scenario via a simplified template as follows:

A simplified opinion template for GNN expert GNNg

GNN Role: GNNg is a graph analysis expert, depending on . . . to form the node representations.
Answer: {For node classification τ1, “Category Name”.}

This mechanism balances effectiveness with computational efficiency based on multiple GNN-based graph
agents, reducing the number of scenarios requiring further multi-agent collaboration. Meanwhile, it also
ensures that each GNN expert’s opinion can interact with other agents for the multi-agent framework.

3.3 Repurposing LLMs as Graph Agents

TAGs with abundant attributes and flexible structures pose significant challenges for LLMs Tang et al. (2024);
Ye et al. (2024), where LLMs as graph agents may struggle to precisely understand these unfamiliar graph
structures and process new graph analytical tasks. This leads to potential inaccuracies and limited reasoning
capabilities on various datasets. Instruction tuning enables LLMs to understand and perform well a wide
range of graph analytical tasks on multiple datasets and contexts Wang et al. (2023b;c). The effectiveness of
such tuning for LLMs largely depends on how the instructions are structured. However, manually constructing
these task-specific instructions is often time-consuming and requires excessive resources.

To address these challenges, we repurpose LLMs as graph agents. We first generate an LLM-powered graph
agent via graph-driven instruction tuning, where we integrate CoT-based instructions from advanced LLMs
(e.g., GPT-4o Achiam et al. (2023)) with task-specific instructions (e.g., node classification) as the training
corpus. Additionally, we employ the role-play expert recruiting strategy to gather diverse LLM graph experts
into the multi-agent framework, and then obtain their initial analyses of conflict scenarios (c.f., Section 3.2.2).
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3.3.1 Generating LLM-powered Graph Agent

To help LLMs understand complex TAGs and execute graph analytical tasks, it is crucial to construct an
effective training corpus specific to TAG data. Inspired by traditional graph analysis techniques, such as
neighbors Kipf & Welling (2017); Hamilton et al. (2017); Yang et al. (2020b) and random walks Li et al.
(2021b); Ivanov & Burnaev (2018), we propose an effective graph description textualization mechanism to
describe graphs via these concepts. Specifically, we extract the key information from TAGs and convert it
into a textual graph description for each node, consisting of multiple one-hop neighbors and three random
walks. A simplified example of an effective graph description is given below:

A simplified effective graph description example

The effective graph description of v1 is listed as follows:
Ego Graph Node: {v1: v1’s text attribute x1, v2: v2’s . . . }
One-hop Neighbor: {v2, v3, v4, v5}
Random Walk: {(1) v1 → v2 → v6 → v7 → v8;. . . }

Based on this graph description, we then construct the task-specific instructions (e.g., node classification).
To further improve LLM reasoning capabilities on unfamiliar graph structures or new tasks, we leverage the
Chain-of-Thought (CoT) methodology Wei et al. (2022). This allows GPT-4o to reason step-by-step based on
the graph descriptions for different graph analytical tasks, generating answers accordingly. We then integrate
these outputs from GPT-4o into CoT-based instructions for fine-tuning LLMs.

For fine-tuning, we adopt a general LLM Qwen2-7B with LoRA Hu et al. (2022) as the starting point, which
can be flexibly replaced with other powerful LLMs. Then, we utilize the negative log-likelihood loss as the
fine-tuning objective as follows:

pθ (Yj,k|Ij , Yj,<k) = LLMθ (Ij , Yj,<k) , (4)

LF T = −
|Yj |∑
k=1

log pθ (Yj,k|Ij , Yj,<k), (5)

where θ is the learnable parameters of the LLM, the instruction Ij ∈ I is the input of LLM, and Yj is the
output of LLM. After obtaining the fine-tuned LLM for TAG analysis, we can repurpose it as the graph agent
for accurately analyzing and executing graph analytical tasks.

3.3.2 Graph Expert Recruiting

LLMs often produce similar answers when given the same prompts due to their homogeneity Lu et al. (2024);
Padmakumar & He (2024). This hinders discussions and decision-making in the multi-agent framework.
To mitigate this issue, we introduce the role-play expert recruiting strategy. Here, we assign distinct roles
to the graph agent from Section 3.3.1 as LLM graph experts. These roles focus on different perspectives,
such as analyzing random walks or one-hop neighbors. In this way, we gather diverse analyses of conflict
scenarios identified in Section 3.2.2. Specifically, given a conflict scenario Pci and a role prompt RLLMl

, we
can generate the analysis from each LLM graph expert:

ALLMl
= LLMθ (Pci

, RLLMl
) . (6)

We can obtain initial analyses from all LLM graph experts A = {ALLM1 , ALLM2 , . . . , ALLMML
}, where ML

is the total number of LLM graph experts. Then, we combine each analysis with the corresponding LLM
expert’s characteristics via the following template:
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A simplified opinion template for LLM expert LLMl

LLM Role: LLMl is a graph analysis expert, specializing in . . . . Its task is to evaluate . . . based on
the given . . . .
Answer: {For node classification τ1, “Category Name”.}
Analysis: {ALLMl

.}

3.4 Graph-oriented Multi-agent Collaboration

With LLMs demonstrating strong abilities in task understanding and self-planning, an emerging research
direction is to build LLM-based multi-agent systems for graph analytical tasks Ren et al. (2024); Hu et al.
(2024); Wang et al. (2023a). Recently, GraphAgent-Reasoner Hu et al. (2024) applied LLM-based collaboration
for graph reasoning, handling graphs with over 1,000 nodes. However, how to integrate both GNN-based
graph agents and LLM-based graph agents into the multi-agent collaboration for effectively and efficiently
handling graph analytical tasks (e.g., node classification) remains unknown.

To address the issue, we propose a novel graph-oriented multi-agent collaboration method that fully leverages
the strengths of GNN and LLM experts. This allows flexible interactions between diverse GNN-based and
LLM-based graph agents, enhancing the accuracy of graph analytical tasks. Specifically, we propose to utilize
advanced LLMs (e.g., GPT-4o) to assign a confidence score for each LLM expert and generate a summary
report. This report, along with all experts’ analyses from GNN experts and LLM experts, guides collaborative
self-reflection among LLM experts and facilitates the final answer selection.

3.4.1 Summary Report Generation

Different LLM experts may offer varying answers based on their analytical perspectives (e.g., from random
walks or one-hop neighbors). LLM-based graph agents often struggle to detect and correct their own mistakes,
leading to potential misguidance during multi-agent collaboration Chih-Yao Chen et al. (2024); Wang et al.
(2024a). To this end, we utilize GPT-4o to assign a confidence score from 1 to 5 for each LLM expert based on
their current analyses and generate a summary report by extracting key insights and a global summary (shown
in Figure 2). With billions of parameters, GPT-4o, efficiently summarizes LLM expert insights Tang et al.
(2023); Yeh et al. (2024). This summary guides LLM graph agents in prioritizing their considerations based
on the reliability of each expert’s analysis. Since GNN experts focus on structure but lack interpretability,
GPT-4o only processes LLM analyses for scoring and summarization.

3.4.2 Collaborative Self-Reflection Optimization

After generating the summary report, LLM experts iteratively refine their analyses through self-reflection,
combining insights from other experts and the report. To measure the degree of agreement among the experts,
we define the agreement across expert predictions based on the concept of entropy Shannon (1948) as follows:

CONSTi
= −

N∑
j=1

FRETi,aj
· log(FRETi,aj

), (7)

where N is the total number of candidate answers provided by experts and FRETi,aj
is the frequency of each

candidate answer aj appearing across experts’ analyses at the current iteration Ti. In each iteration, LLM
experts reflect on their previous analyses, where they also consider the summary report and insights from
other experts to decide whether to revise their answers and analyses. We then leverage GPT-4o to generate a
new summary report based on experts’ revised analyses for the next iteration. Note that, this collaboration
cycle is repeated until either CONSTi

> CONSTi−1 , or the maximum iterations |Tmax| are reached.
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Finally, we compute the final score for each predicted answer based on its frequency (c.f., Eq. 7) and each
expert’s confidence score CONFTc,k, selecting the highest-scoring answer as final answer:

âfinal = argmax
N∑

j=1

M∑
k=1

CONFTc,k · FRETc,aj , (8)

where M is the total number of all experts, consisting of MG GNN-based graph agents and ML LLM-based
graph agents. |Tc| is the iterations at which the collaboration cycle concludes. Each LLM expert’s confidence
score is derived from the summary report at the iteration Tc. Notably, since GNN-based graph agents
capture the global and structural information across the whole TAG, they are always assigned the highest
confidence score of 5 by default. This graph-oriented multi-agent collaboration flexibly integrates the global
and local insights from both GNN-based and LLM-based experts, effectively resolving conflicting scenarios.
Furthermore, employing CONSTi

, as a criterion for determining when collaboration should stop, improves
the efficiency of multi-agent collaboration.

3.5 Complexity Analysis

We analyze the time complexity of the proposed GMAgent framework by three major components: Deploying
GNNs as Graph Agents, Repurposing LLMs as Graph Agents, and Graph-oriented Multi-agent Collaboration.

• Deploying GNNs as Graph Agents. For each GNN agent, the time complexity per layer is O(|V|d + |E|d),
where |V| and |E| denote the number of nodes and edges in the graph, and d is the dimension of node
feature. With K layers and MG GNN agents, the total cost is O(MG · K · (|V| + |E|)d), which scales linearly
with graph size and is efficient due to the parallelizable message passing.

• Repurposing LLMs as Graph Agents. Given ML LLM agents, each inference time on a textualized graph
description is O(TL · L′), where TL is the LLM’s generation steps and L′ is the input prompt length.
Instruction tuning is a one-time offline step with standard LLM fine-tuning complexity. Since LLMs process
each conflict scenario independently, the per-scenario cost is O(ML · TL · L′).

• Graph-oriented Multi-agent Collaboration. In each self-reflection iteration, all ML LLM experts revise their
outputs based on the summary report derived from GPT-4o. GPT-4o performs scoring and summarization
with cost O(TS · L′′), where TS is the generation steps and L′′ is the combined input length. Suppose
the number of iterations is bounded by Tmax, the total collaboration complexity per conflict scenario is
O(Tmax · (ML · TL · L′ + TS · L′′)).

In general, our proposed GMAgent balances accuracy and computational efficiency for graph analytical tasks,
where the GNN-based agent deployment ensures low cost on large-scale graphs, while LLM-based agent
collaboration is selectively applied only to conflict scenarios, reducing the frequency of LLM invocations.

4 Experiment

In this section, our research undertakes multiple experiments to confirm GMAgent’s effectiveness and efficiency
in diverse conditions, addressing essential research inquiries:

• RQ1: How does our proposed GMAgent framework perform in comparison to the representative graph-
oriented methods?

• RQ2: How does GMAgent perform when integrating different GNN-based graph agents?

• RQ3: How is the performance of GMAgent affected by the choice of LLM-based graph agents?

• RQ4: How do different multi-agent collaboration strategies (e.g., number of agents, choices of summary
agents, and self-reflection strategies) affect the performance of GMAgent?

9



Under review as submission to TMLR

Table 1: Statistics of the used datasets.

Task Node Classification Link Prediction
Dataset Arxiv Cora IMDB PubMed DBLP
# Nodes 169,343 2,708 21,420 63,109 18,405
# Edges 1,116,243 5,429 86,642 244,986 67,946

# Node Type 1 1 4 4 3
# Link Type 1 1 6 10 4
# Features 1,433 128 3,489 200 334

4.1 Experimental Setup

4.1.1 Datasets

To comprehensively evaluate the effectiveness and efficiency of our GMAgent, we utilize three real-world
datasets for node classification (i.e., ogbn-arxiv (abbr. Arxiv1), Cora2, and IMDB3), two for link prediction
(i.e., PubMed4 and DBLP5). The detailed statistics are shown in Table 1. We provide further details for the
datasets in Appendix A.1.

4.1.2 Evaluation Protocols

For node classification, we adopt different ratios of 54%/18%/28% for Arxiv, 60%/20%/20% for Cora, and
24%/6%/70% for IMDB, which is consistent with Hu et al. (2020a); He et al. (2024); Lv et al. (2021). For link
prediction, we train all methods using the randomly selected 80% of links and evaluate them on the remaining
20% held-out links for PubMed, and employ the ratio of 80%/10%/10% for DBLP, following Yang et al.
(2020a); Nguyen et al. (2023). We use two commonly adopted evaluation metrics for node classification Yang
et al. (2020a); Lv et al. (2021); Tan et al. (2023): Macro-F1 (across all labels) and Micro-F1 (across all nodes).
The F1 score is a metric of the model’s accuracy in binary and multi-class classification tasks, which considers
both precision and recall. For link prediction, we compute the AUC and Accuracy (abbr. ACC) metrics as
suggested in Yang et al. (2020a); Tan et al. (2023); Liu et al. (2024a). AUC indicates the model’s ability to
distinguish between positive and negative classes across thresholds, while ACC represents the proportion of
correctly classified instances overall.

4.1.3 Methods for Comparison

The following 13 characteristic baseline methods can be classified into two categories:

• GNN-based method: GCN Kipf & Welling (2017), GAT Veličković et al. (2018), RevGNN Li et al.
(2021a), GraphSAGE Hamilton et al. (2017), HGT Hu et al. (2020b), HINormer Mao et al. (2023), and
TAPE He et al. (2024).

• LLM-based method: Baichuan2-7B Yang et al. (2023), Qwen2-7B Yang et al. (2024a), LLaMA3-
8B Dubey et al. (2024), GPT-3.5 Ouyang et al. (2022), GPT-4 Achiam et al. (2023), and GraphGPT Tang
et al. (2024).

For more details of the compared baselines, please refer to Appendix A.2.

1https://ogb.stanford.edu/
2http://www.cora.justresearch.com/lander
3https://www.kaggle.com/karrrimba/movie-metadatacsv
4https://www.ncbi.nlm.nih.gov/pubmed/
5https://dblp.uni-trier.de
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Table 2: Experimental results (%) on three datasets for node classification, where * denotes a significant
improvement according to the Wilcoxon signed-rank test Woolson (2007). The best performances are
highlighted in boldface and the second runners are underlined.

Dataset Arxiv Cora IMDB
Method Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1

GCN 71.73±0.24 51.12±0.65 81.87±0.55 81.29 ±0.76 64.35 ±0.73 58.17 ±1.45
GAT 72.24±0.31 52.30 ±0.54 81.50 ±0.68 81.42 ±0.53 64.31 ±0.94 58.94 ±1.30

RevGNN 72.76 ±0.28 51.38 ±0.62 84.19 ±0.42 82.21 ±0.90 65.89 ±0.81 59.90 ±1.21
GraphSAGE 71.45 ±0.57 50.75 ±0.86 84.53 ±0.36 83.68 ±0.41 62.34 ±0.79 53.57 ±1.96

HGT 71.25 ±0.52 51.39 ±0.75 82.61 ±0.31 81.05 ±0.64 67.12 ±0.65 63.38 ±1.57
HINormer 71.08 ±0.49 51.77 ±0.81 82.84 ±0.57 81.28 ±0.87 67.47 ±0.58 64.09 ±1.09

Baichuan2-7B 2.43 ±1.23 1.98 ±1.09 8.90 ±2.12 5.04 ±2.55 40.55 ±2.41 39.14 ±2.06
Qwen2-7B 40.25 ±2.84 18.56 ±2.41 58.54 ±1.35 48.35 ±1.83 64.48 ±2.69 61.27 ±2.28

LLaMA3-8B 23.16 ±2.57 11.26 ±2.15 14.76 ±2.06 8.49 ±1.98 37.65 ±1.90 34.86 ±2.83
GPT-3.5 43.23 ±2.30 32.28 ±2.59 65.30 ±1.14 55.34 ±1.52 55.49 ±1.47 54.14 ±2.03
GPT-4 51.21 ±1.95 43.40 ±2.07 67.72 ±1.89 56.14 ±1.35 59.57 ±1.19 58.18 ±2.55

GraphGPT 31.48 ±1.52 17.62 ±2.30 24.47 ±2.06 15.16 ±2.41 44.25 ±1.58 43.51 ±2.69
GMAgent 78.72* ±0.91 59.30* ±0.85 85.97* ±0.89 85.61* ±1.02 74.36* ±1.03 66.82* ±1.24

4.1.4 Implementation Details

For our GMAgent, we utilize AutoGen6 and FastChat7 to enable collaboration among multiple agents. By
default, we select fine-tuned Qwen2-7B as the foundation model for our LLM-based graph agent and
employ GCN and GAT for our GNN-based graph agents. The LLMs are further fine-tuned using LLaMA-
Factory Zheng et al. (2024). Most of the GNN-based methods are trained and evaluated using CogDL Cen
et al. (2023) or HGB Lv et al. (2021). For LLM-based methods, we load the checkpoint of LLM from
HuggingFace8 or call official API from OpenAI9 for evaluation. All experiments are conducted using two
NVIDIA GTX 3090 Ti GPUs. Notably, due to the need for manually customized prompts for each dataset,
we only use publicly available TAPE features on the Cora and Arxiv datasets10. Therefore, the results for
TAPE He et al. (2024) are excluded from Table 2. However, we did incorporate TAPE into the GNN graph
agents variation comparison in Section 4.3 on the Arxiv and Cora datasets, using feature files sourced from
the TAPE repository. The code will be made available upon acceptance11.

4.2 Overall Performance (RQ1)

In this subsection, we provide a comprehensive performance analysis of our proposed GMAgent framework
across various graph analytical tasks and datasets, comparing it with the state-of-the-art baselines. This
evaluation focuses on both node classification and link prediction tasks, assessing the model’s ability to
understand and predict using Text-Attributed Graphs (TAGs).

Overall, our proposed GMAgent demonstrates superior performance, attributed to its unique integration of
GNNs for capturing global information and LLMs for interpreting textual attributes. As shown in Table 2
and Figure 4, our GMAgent consistently surpasses all baseline models in every evaluation metric. By efficiently
assigning simpler tasks to GNNs and utilizing LLMs to handle complex, text-heavy scenarios, GMAgent
achieves optimal resource allocation and high accuracy across five datasets. In addition, the comprehensive
performance analyses of GMAgent on link prediction are presented in Appendix A.3.

4.2.1 Comparison with GNN-based Methods

6https://github.com/microsoft/autogen
7https://github.com/lm-sys/FastChat
8https://huggingface.co
9https://platform.openai.com

10https://github.com/XiaoxinHe/TAPE
11https://anonymous.4open.science/r/AgentGraph-36CD
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Figure 5: Influence of devoloping different GNNs as graph agents in our GMAgent on Arxiv and Cora datasets.
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Figure 4: ACC results (%) on two datasets for link
prediction.

Generally, our proposed GMAgent consistently out-
performs GNN-based methods across all tasks and
datasets, showcasing its precise understanding of
graph data (shown in Table 2 and Figure 4). GMAgent
achieves significant performance gains in node classi-
fication and link prediction with an average of 6.67%
and 3.58%, respectively. Notably, our framework
achieves an average improvement of 8.84% over stan-
dard GCN and GAT metrics. While approaches like
RevGNN excel in node classification and HGT in
link prediction, both struggle to fully utilize the rich
attributed text in TAGs for challenging scenarios. In
contrast, GMAgent capitalizes on the LLMs’ ability to
understand semantic content, boosting performance
in challenging scenarios where traditional GNN-based models fall short.

4.2.2 Comparison with LLM-based Methods

As illustrated in Table 2 and Figure 4, GMAgent also surpasses all LLM-based methods with significant
improvements on various tasks and datasets, highlighting GMAgent ’s superior capabilities in TAG analysis.
Compared to Qwen2-7B, GMAgent achieves an overall average improvement of 221.87% in node classification
and link prediction. Despite GPT-4o’s robust generalization abilities based on extensive parameter sets, it
faces difficulties when dealing with complex graph structures and struggles with fine-tuning on unfamiliar
datasets. By considering both efficiency and cost, GMAgent utilizes fine-tuned Qwen and LLaMA series models,
yet surpasses GPT-4o with both GNNs’ global structural insights and the LLMs’ semantic understanding.

4.3 Varying GNN-based Graph Agents (RQ2)

Figure 5 illustrates the impact of various combinations of GNN-based graph agents (GCN, GAT, GraphSAGE,
and TAPE (GCN)) on the Arxiv and Cora datasets. Each combination is evaluated to determine its influence
on performance in the GMAgent framework.

On both datasets, we observe that certain combinations of GNN graph agents yield significant performance
differences. For instance, integrating GCN with GAT consistently shows strong results across both datasets,
as GCN focuses on the global graph structure, while GAT excels at learning node-level attention. Note that,
single TAPE, which focuses on rich node attributes based on a GCN-based architecture, achieves the best
as a standalone model on Cora. This suggests that on certain datasets with simpler or more structured
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Table 3: Influence of different LLM-based graph agents.

Dataset Arxiv Cora
Metric Micro-F1 Macro-F1 Micro-F1 Macro-F1
LLaMA3-8B 73.84 54.68 80.51 79.64
Qwen2-7B 75.53 55.09 81.29 80.92
LLaMA3-8BF T 77.19 58.45 83.47 82.85
Qwen2-7BF T 78.72 59.30 85.97 85.61

(a) Arxiv (b) Cora

Figure 6: Influence of the number of LLM-based graph agents.

graph data, like Cora, some models can independently achieve best performance. While this result highlights
TAPE’s strength on specific datasets, it does not diminish the overall advantages of GMAgent. For example,
integrating TPAE with GCN/GAT outperforms single TAPE on Arxiv with the help of our GMAgent.

The results indicate that selecting the right combination of GNN agents within GMAgent can greatly impact
the model’s overall performance. The GCN and GAT combination proves to be well-balanced and robust,
making it an ideal foundational choice for various tasks. Meanwhile, more text-aware GNNs, such as TAPE,
offer additional performance gains on datasets with rich textual attributes, like Arxiv. This flexibility in our
proposed framework enables customized graph agent selection tailored for specific dataset characteristics and
task requirements.

4.4 Varying LLM-based Graph Agents (RQ3)

Table 3 shows the influence of different LLM-based graph agents on two datasets, where fine-tuning significantly
improves performance across all models. Qwen2-7BF T , in particular, consistently outperforms other models
on both datasets, achieving the highest values for both Micro-F1 and Macro-F1 with an average 2.44%
improvement over the second-best foundation model LLaMA3-8BF T .

Interestingly, the fine-tuned LLaMA3-8B also shows considerable improvement compared to its base version,
though it still lags behind Qwen2-7BF T . These results suggest that fine-tuning plays a critical role in
enhancing the performance of LLM-based agents in graph analytical tasks.

4.5 Impact of Varying Graph-oriented Multi-agent Collaboration Strategies (RQ4)

4.5.1 Varying Number of Agents

As shown in Figure 6, increasing the number of LLM-based graph agents consistently improves performance
across both Arxiv and Cora datasets. However, adding more agents requires additional prompt design and
increases computational costs, as more interactions and coordination between agents are needed. To balance
between accuracy and computational efficiency, an optimal choice of agent number is 4.
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Table 4: Influence of different summary agents.

Dataset Arxiv Cora
Metric Micro-F1 Macro-F1 Micro-F1 Macro-F1
LLaMA3-8B 72.54 49.36 81.14 79.43
Qwen2-7B 74.80 52.89 83.86 81.52
GPT-4o 78.72 59.30 85.97 85.61

Table 5: Influence of different self-reflection strategies.

Dataset Arxiv Cora
Metric Micro-F1 Macro-F1 Micro-F1 Macro-F1
GMAgent 78.72 59.30 85.97 85.61

w/o. RRe 70.03 49.47 79.14 78.65
w/o. ROt 74.54 54.91 83.05 81.89
w/o. RP r 76.81 57.25 84.62 83.24

4.5.2 Varying Summary Agents

Table 4 illustrates the influence of different LLM-based summary agents on performance. GPT-4o consistently
outperforms LLaMA3-8B and Qwen2-7B, particularly on the text-heavy Arxiv dataset. This can be attributed
to GPT-4o’s superior capability in handling complex language and generating detailed, coherent summaries.
The role of the summary agent is crucial in our proposed GMAgent framework as it consolidates insights from
multiple graph agents, guiding the collaborative process toward a consensus. By providing a global overview
and prioritizing key insights, GPT-4o effectively enhances the decision-making process within the multi-agent
collaboration, contributing to more accurate final predictions.

4.5.3 Varying Self-reflection Strategies

To study the effectiveness of different strategies during the multi-agent collaboration process, we compare
three variants of our proposed method in the self-reflection process. We study GMAgent as follows:

• GMAgent w/o. RRe represents GMAgent without using the summary report in the self-reflection process.

• GMAgent w/o. ROt represents GMAgent without using other agents’ analyses in the self-reflection process.

• GMAgent w/o. RP r represents GMAgent without using prior self-analysis in the self-reflection process.

As shown in Table 5, removing the summary report (GMAgent w/o. RRe) causes the most significant drop in
performance, emphasizing the crucial role the report plays in guiding the self-reflection process. The summary
report prompts agents to reconsider their earlier analyses based on consolidated feedback, facilitating deeper
reflection and improvement in subsequent iterations. Without the summary report, the graph agents lack
a clear direction for refinement, resulting in less effective self-reflection. Moreover, removing the analyses
from other agents (GMAgent w/o. ROt) or ignoring prior self-analysis (GMAgent w/o. RP r) also leads to
performance degradation, further underscoring the importance of collaborative feedback and the iterative
self-reflection mechanism within the multi-agent framework. We provide a simplified scenario to illustrate the
effectiveness of our collaborative self-reflection mechanism in Appendix A.4.

5 Conclusion and Future Work

In this paper, we introduce GMAgent, an effective and flexible graph-oriented multi-agent collaboration
framework for text-attributed graph analysis. By enabling seamless interactions between diverse GNN-based
and LLM-based graph agents, GMAgent integrates the global structural learning power of GNNs and the
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local semantic richness of LLMs to enhance graph analytical tasks. Specifically, GMAgent includes innovative
deploying GNNs as graph agents, repurposing LLMs as graph agents, and enabling graph-oriented multi-agent
collaboration among these graph agents. Extensive experiments on five datasets demonstrate GMAgent’s
superior performance over the state-of-the-art baselines, improving not only the comprehension of graph data
but also the accuracy and interpretability of graph analytical tasks.

Looking ahead, future work could improve GMAgent’s capabilities to tackle complex and conflicting scenarios
in graph analysis. This includes creating better mechanisms to identify conflicting outputs and adding
a wider range of agents for decision-making. Moreover, it is also interesting to explore real-time agent
collaboration strategies, where agents adjust roles based on problem complexity, thereby enhancing efficiency
and adaptability.
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A Appendix

A.1 Detailed Descriptions of Datasets

This section provides detailed descriptions of each graph dataset used in our experiment.

(1) Node classification: Node classification assigns the target node to predefined categories by utilizing the
diverse relationships and attributes present in the graph.

• ogbn-arxiv (abbr. Arxiv) represents a directed graph that captures the citation network among computer
science arXiv papers indexed by MAG [58]. Each paper in the dataset is associated with a research category,
manually labeled by the authors and arXiv moderators. These research categories are selected from a set
of 40 subject areas.

• Cora comprises 2,708 scientific publications classified into one of seven classes–case-based, genetic algorithms,
neural networks, probabilistic methods, reinforcement learning, rule learning, and theory, with a citation
network consisting of 5,429 links.

• IMDB is a website about movies and related information, including a subset from the Action, Comedy,
Drama, Romance, and Thriller genres. Each labeled movie has one or multiple labels.

(2) Link prediction: Link prediction predicts the likelihood of a future or missing connection between two
nodes in a graph.

• PubMed contains a graph of genes, diseases, chemicals, and species. It performs word2vec computations on
all PubMed papers and aggregates the word embeddings to generate 200-dimensional features for each
type of node.

• DBLP includes a substantial collection of papers on the web, authors, conferences, and terms, providing a
comprehensive dataset. The target nodes, representing authors, are categorized into four research areas:
database, data mining, machine learning, and information retrieval.

A.2 Detailed Descriptions of Baselines

The following characteristic baseline methods can be classified into two categories: (1) GNN-based methods
and (2) LLM-based methods.

(1) GNN-based methods:

• GCN Kipf & Welling (2017) scales linearly in the number of graph edges and learns hidden layer represen-
tations that encode both local graph structure and features of nodes.

• GAT Veličković et al. (2018) utilizes masked self-attention mechanisms to enhance the processing of graph
data by addressing limitations in traditional graph convolution methods.

• RevGNN Li et al. (2021a) captures long-range interactions in graph data and reduces memory complexity
with grouped reversible connections, enabling more effective training of deep and wide GNNs.

• GraphSAGE Hamilton et al. (2017) generates node embeddings by sampling and aggregating features from
a node’s local neighborhood, enabling scalable learning on large graphs.

• HGT Hu et al. (2020b) extends the transformer architecture to handle heterogeneous graphs to capture
diverse node and edge interactions.

• HINormer Mao et al. (2023) uses graph transformers to learn node representations on heterogeneous
information networks by capturing both local structure and heterogeneity.

• TAPE He et al. (2024) leverages LLMs’ explanations to generate informative node features for text-attributed
graphs, boosting the performance of various GNNs.

20



Under review as submission to TMLR

(2) LLM-based methods:

• Baichuan2-7B-Base (abbr. Baichuan2-7B) Yang et al. (2023) is an open-source, bilingual language model
developed by Baichuan Inc., trained on 2.6 trillion tokens with 7 billion parameters.

• Qwen2-7B-Instruct (abbr. Qwen2-7B) Yang et al. (2024a) is an instruction-tuned 7 billion parameter
model, designed to excel in tasks like language understanding, generation, and more, with support for
processing up to 131,072 tokens in context.

• LLaMA3-8B Dubey et al. (2024) succeeds LLaMA2, offering improved performance with 8 billion parameters
through advancements in architecture, training data, and optimization.

• GPT-3.5 Ouyang et al. (2022) is a large-scale language model developed by OpenAI with 175 billion
parameters, capable of generating human-like text and understanding complex contexts.

• GPT-4 Achiam et al. (2023) builds upon GPT-3.5, providing advanced language generation and under-
standing capabilities with greater scale and improved performance.

• GraphGPT Tang et al. (2024) uses LLM as backbone and integrates LLMs with graph knowledge using a
graph structural instruction tuning paradigm, enhancing understanding through text-graph grounding and
step-by-step reasoning.

A.3 Overall Performance on Link Prediction

GCN GAT HINormer

Qwen2-7B GraphGPT

GCN + GAT

HINormer + GATGPT-4

(a) PubMed (b) DBLP

Figure 7: AUC results (%) on two datasets for link
prediction.

In this subsection, we comprehensively analyze the
performance of our proposed GMAgent framework
on link prediction tasks across PubMed and DBLP
datasets, comparing it with state-of-the-art base-
lines. Overall, our proposed GMAgent consistently
demonstrates superior performance, which can be
attributed to its effective integration of GNNs for
capturing global structural information and LLMs for
interpreting complex textual attributes. As shown
in Figure 4 and Figure 7, our GMAgent outperforms
all baseline models in both ACC and AUC metrics.
By efficiently assigning simpler tasks to GNNs and
utilizing LLMs to handle more complex, text-heavy
scenarios, GMAgent achieves optimal resource alloca-
tion and high accuracy across both datasets.

A.3.1 Comparison with GNN-based Methods

Generally, our proposed GMAgent consistently surpasses GNN-based methods on link prediction tasks across
PubMed and DBLP datasets, demonstrating its precise understanding of graph structures (shown in Figure 4
and Figure 7). Specifically, GMAgent (HINormer + GAT) yields a significant performance improvement,
with an average gain of 5.22%. Moreover, GMAgent (GCN + GAT) and GMAgent (HINormer + GAT)
achieve an average improvement of 6.03% and 6.18% over their corresponding standard models, respectively.
This showcases the accuracy of our graph-oriented multi-agent collaboration framework for TAG analysis.
Traditional approaches, like HGT, struggle to fully utilize the rich text attributes of TAGs, particularly in
more complex scenarios. In contrast, GMAgent fully harnesses the LLMs’ ability to comprehend semantic
content, boosting performance in challenging scenarios where the GNN-based models fall short.

A.3.2 Comparison with LLM-based Methods

As illustrated in Figure 4 and Figure 7, GMAgent also outperforms all LLM-based methods with significant
improvements on link prediction tasks across both datasets, highlighting GMAgent ’s superior capabilities in
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Global Summary: 
The paper focuses on “kernel density estimation”  
and its connections to efficient “high-dimensional 
streaming data” make ... the paper’s connections to 
essential  sketching, hashing, and ridge regression.

One-Hop Neighbors Expert: 
Answer: [cs.DS, cs.LG, ...]; 
Reasoning: Its one-hop neighbors, such as the works 
on multi-resolution hashing and memory-efficient 
sketches , emphasize essential data structures. ... 
illustrate the importance of data representation and 
efficient algorithms ...

Centrality Expert: 
Answer: [cs.SI, cs.DS, ...]; 
Reasoning:  Given the focus on...The most likely 
category is cs.SI. This is further reinforced by the 
frequent references to ... “information 
propagation” ... and applications in social networks 
throughout the paper.

ℂ𝕆𝕆𝕆𝕆𝕆0: 1.27     Ground-truth: cs.DS

Centrality Expert: 
Answer: [cs.DS, cs.LG, ...]; 
Reasoning: cs.DS encompasses “data processing”, 
“analysis“, and “modeling”, which closely aligns  ... 
The  problem of how to perform efficient density 
estimation in “high-dimensional streaming data” 
environments ...

One-Hop Neighbors Expert: 
Answer: [cs.DS, cs.LG, ...]; 
Reasoning: the paper’s references focus on “data 
structures”, “algorithm design” ... dealing with  
“sketching algorithms” ... Given that the neighbors ... 
the development of efficient data systems or related 
computational methods ...

ℂ𝕆𝕆𝕆𝕆𝕆1: 1.10      Ground-truth: cs.DS

Key Insights: 
“Kernel Density Estimation” is a foundational 
method in machine learning for ... “sketching 
algorithm” that compresses high-dimensional data 
making it ... “high-dimensional streaming data” 
focuses on handling ...

Confidence Analyses: 
One-Hop Neighbors Expert: 5 (Strong confidence) ...
Centrality Expert: 3 (Moderate confidence) ... 

...

GAT Agent Answer： cs.DS
GCN Agent Answer：cs.LG

Experts Analyses Summary Report Collaborative Self-ReflectionRound 0 Round 1

Figure 8: A node classification conflict scenario on Arxiv to illustrate the effectiveness of our collaborative
self-reflection mechanism in GMAgent.

TAG analysis. Compared to Qwen2-7B, GMAgent (HINormer + GAT) achieves an overall average improvement
of 446.43% in link prediction, indicating the inherent limitation for general LLMs of understanding complex
graph structures. Despite GPT-4o’s robust generalization abilities based on extensive parameter sets, it faces
difficulties when dealing with complex graph structures and struggles with fine-tuning on unfamiliar datasets.
By considering both efficiency and cost, GMAgent utilizes fine-tuned Qwen and LLaMA models, yet surpasses
GPT-4o with both GNNs’ global structural insights and the LLMs’ semantic understanding.

A.4 Case Studies

To assess the effectiveness of GMAgent’s collaborative self-reflection mechanism in enhancing LLM graph
agents’ understanding of graph data and executing graph analytical tasks, we provide a node classification
conflict scenario on the Arxiv dataset. Figure 8 shows the distinct responses of the One-Hop Neighbors
Expert and Centrality Expert at different rounds of collaborative self-reflection, and the summary report
generated by GPT-4o. In the first iteration, the One-Hop Neighbors Expert tends to predict cs.DS, influenced
by neighboring nodes associated with “multi-resolution hashing for fast pairwise summations”. In contrast,
the Centrality Expert, which focuses on centrality metrics (e.g., degree and closeness), suggests that cs.SI is a
more appropriate category. Nevertheless, accurately identifying the ground-truth label (i.e., cs.DS) remains
challenging due to the existing conflict scenario within different agent analyses.

Additionally, GPT-4o assigns a confidence score from 1 (Poor Confidence) to 5 (Strong Confidence) for each
LLM expert based on their analysis (for instance, assigning a score of 5 to the One-Hop Neighbors Expert).
Acting as a summary agent, GPT-4o extracts key insights from the various LLM graph agents’ analyses,
providing a global overview tailored to this conflict scenario. By integrating this summary report with the
GNN graph agents’ answer candidates, our GMAgent stabilizes the answer distribution of all graph agents
during the collaborative self-reflection phase, thereby improving the prioritization of the ground-truth label.
Particularly, guided by the summary report and insights from other agents, the Centrality Expert is able to
identify the correct answer. These results strongly support the effectiveness of GMAgent, demonstrating that
our collaborative self-reflection mechanism enables the LLM to focus on crucial information and generate
accurate analyses, especially in complex graph structures with rich semantic content.
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