
Under review as submission to TMLR

Strengthening Interpretability: An Investigative Study of
Integrated Gradient Methods

Anonymous authors
Paper under double-blind review

Abstract

We conducted a reproducibility study on Integrated Gradients (IG) based methods and the
Important Direction Gradient Integration (IDGI) framework. IDGI eliminates the expla-
nation noise in each step of the computation of IG-based methods that use the Riemann
Integration for integrated gradient computation. We perform a rigorous theoretical analysis
of IDGI and raise a few critical questions that we later address through our study. We also
experimentally verify the authors’ claims concerning the performance of IDGI over IG-based
methods. Additionally, we varied the number of steps used in the Riemann approximation,
an essential parameter in all IG methods, and analyzed the corresponding change in results.
We also studied the numerical instability of the attribution methods to check the consis-
tency of the saliency maps produced. We developed the complete code to implement IDGI
over the baseline IG methods and evaluated them using three metrics since the available
code was insufficient for this study. Our code is readily usable and publicly available at
[link-hidden-for-submission].

1 Introduction

Deep learning models for computer vision have become increasingly integrated into several vital domains
like healthcare and security. There is a surge in research dedicated to studying the problem of attributing
the prediction of a deep network to its input features. Gradient-based saliency/attribution map approaches
(Sundararajan et al., 2017; Xu et al., 2020; Kapishnikov et al., 2021; 2019; Pan et al., 2021; Simonyan et al.,
2013; Smilkov et al., 2017) form an important category of explanation methods. One of the first works that
made a notable contribution to the field of explainability and introduced a valid metric system to evaluate
its results was by Kapishnikov et al. (2019). Other prominent gradient-based explanation methods include
Integrated Gradients (IG) (Sundararajan et al., 2017) and its variants, Blur Integrated Gradients (BlurIG)
and Guided Integrated Gradients (GIG) (Xu et al., 2020; Kapishnikov et al., 2021), that have garnered
considerable attention due to their notable explanation performance and desirable axiomatic properties.
However, IG-based methods integrate noise in their attribution. Previous works (Kapishnikov et al., 2021)
have explored the possible origin of this attribution noise and attempted to eliminate it.

The Important Direction Gradient Integration (IDGI) framework is a recent development that has tackled
this issue and reported better results. The paper (Yang et al., 2023) highlights the reason behind the noise
in the explanation. It proposes a framework to mathematically eliminate the components in the integration
calculation that contribute to the noise in the attribution. It also introduced a new measurement, Accuracy
Information Curves (AIC) and Softmax Information Curves (SIC) (Kapishnikov et al., 2019) using Multi-
Scale Structural Similarity Index Measure (MS-SSIM) to estimate the entropy of an image more accurately
by improving upon previously proposed metrics (Kapishnikov et al., 2019; Kancharla & Channappayya, 2018;
Ma et al., 2016; Odena et al., 2017). They further evaluate 11 standard, pre-trained ImageNet classifiers
with the three existing IG-based methods (IG, BlurIG, and GIG) and propose one attribution assessment
technique (AIC and SIC using MS-SSIM).

A detailed examination of IDGI and related works encouraged us to put forward some well-thought inquiries
that we attempt to resolve using our mathematical observations and experimental findings. The necessity

1

Under review as submission to TMLR

Figure 1: Saliency maps of the existing IG-based methods and those with IDGI explaining the prediction
from all models. While we cannot make any comments about IDGI’s results being objectively better or
worse for this instance, one can see that IDGI’s saliency maps tend to be more patch-like and do not

highlight edges of the input image as observed without IDGI.

of this study arose because IDGI is a relatively new and under-explored work and requires testing and
verification before we can judge its soundness. It was thus necessary to meticulously question the theoretical
basis of the work. Moreover, the official repository of the original paper does not contain the code used
to produce the complete results. During our study, we observed incompleteness in the resources and code
provided in the paper; for example, there was no publicly available code for weakly supervised localization
methods (Xu et al., 2020; Kapishnikov et al., 2019; Cong et al., 2018), and ambiguity in their implementation
details, specifically which dataset was used to compute them. We thus identified the need to perform an
elaborate investigation to understand better the contributions made in the paper.

In our work, we address these concerns, and based on our study and experiments, we ask ourselves:

• Q1: What is the claim’s validity that IDGI improves upon its baseline methods?

• Q2: What are the theoretical implications of IDGI? Under what conditions is it valid?

• Q3: The number of steps used in the Riemann approximation of the integral used in IG-based
methods is an important parameter. In most previous works, it has been overlooked, and the choice
of step size remains vague. We thus ask ourselves: How does the variation in step size impact the
performance of IDGI compared to the underlying IG methods?

• Q4: During our initial experimentation, we observed stark visual differences in the saliencies com-
puted for GIG on GPU and CPU, which led us to ask whether or not IDGI affects the numerical
stability of the underlying attribution method.

Our contributions and findings are as follows:

• We answer Q1 in Section 4, where we present the results obtained from experiments to compare
our results with the authors’ findings. We observed that our results mostly matched their claims.

2

Under review as submission to TMLR

We observed a vital trait common in the models that exhibit anomalies and discuss the same in
Section 4.4.

• We answer Q2 in Section 3. Firstly, we report two errors in the illustration of IDGI provided in the
original paper. We present our improved illustration of IDGI that correctly demonstrates the path
corresponding to IG, GIG, and BlurIG. Secondly, we derive the expression for xjp

, an important
term in the IDGI algorithm. While the original paper mentions the expression, how it was obtained
has not been discussed. The expression’s derivation gives us insights into how IDGI’s performance
is affected by step size variations, which led us to ask Q3.

• We answer Q3 in Section 4.5.1. We verify the insights from the theoretical analysis of the expression
for the above-mentioned xjp

term. We also vary the step size used to compute the Riemann sum for
IG and BlurIG. We arrive at a noteworthy conclusion: IDGI is more sensitive to step-size variation
than its underlying IG method. We successfully proved this through rigorous theoretical analysis of
how the step size and the performance of IDGI are linked. We then confirmed our theory through
our experimental findings. We also observed that at a higher step size, the scores of BlurIG + IDGI
are lower than those for IG + IDGI. We address this by analyzing the IDGI algorithm and observing
the variation in an image along the path for BlurIG and IG.

• We answer Q4 in Section 4.5.2. We perform an additional experiment to quantitatively compare
the saliency map produced for an image and a compressed version of the same image.

• We could not directly use the existing code for our study, which led us to integrate the code for IDGI
1 provided by the authors and use the original implementations 2 of the authors’ code for IG, GIG,
and BlurIG. The code provided by the repository was not usable for reproducing results at scale.
Our code utilizes high-performance computing (HPC) resources. It is ready to use and complete,
facilitating easy reproduction of results for the entire dataset and models presented in the original
paper. We provide the exact details regarding this in Section 4.

This paper has been organized as follows: We begin with a brief background on the original Integrated
Gradients method and its variants, BlurIG and GIG, in Section 2. Readers familiar with these can skip
to Section 3, where we summarize the IDGI algorithm, followed by the complete derivation of xjp

, as
previously mentioned, and an in-depth discussion on IDGI’s sensitivity to step-size variation. We also
present an improved illustration of IDGI. Finally, Section 4 presents our experimental results, including
implementation details, computational requirements, and results beyond the original paper. We also use
this section to describe the difficulties we faced during the study due to the need for more details on
implementation.

2 Background

In this section, we briefly discuss the concept and state the expressions for the attribution values for IG
(Sundararajan et al., 2017), BlurIG (Xu et al., 2020), and GIG (Kapishnikov et al., 2021).

Intuitively, consider the straight line path (in Rn) from the baseline x′, meant to represent an informationless
input to x, the input in hand and compute the gradients at all points along the path. Integrated gradients
are obtained by cumulating these gradients. Formally, integrated gradients are defined as the path integral
of the gradients along the straight line path from the baseline x′ to the input x. However, there are other
paths that are not necessarily straight lines that can monotonically transition between these two points, each
leading to a different attribution method (BlurIG and GIG).

Sundararajan et al. (2017) introduced the concept of a path function. γ = (γ1, . . . , γn) : [0, 1] → Rn is a
smooth function that denotes a path within Rn from x′ to x, satisfying γ(0) = x′ and γ(1) = x. Further,
they defined path integrated gradients along the ith dimension for an input x obtained by integrating the
gradients along the path γ(α) for α ∈ [0, 1] as:

1https://github.com/yangruo1226/IDGI
2https://github.com/PAIR-code/saliency

3

Under review as submission to TMLR

Ii(x) =
∫ 1

0

∂fc(γ(α))
∂γi(α)

∂γi(α)
∂α

dα, (1)

2.1 Integrated Gradients

Integrated Gradients (IG) Sundararajan et al. (2017) is a path method for the straight line path specified
γIG(α) = x′ + α × (x − x′) for α ∈ [0, 1]. Let f be a classifier, c a class, and x an input. The output fc(x)
signifies the confidence score for predicting that x belongs to class c. To determine feature attributions, we
calculate the line integral from the reference point x′ to the input image x within the vector field created
by the model. This vector field is formed by the gradient of fc(x) with respect to the input space. The
Integrated Gradient for the ith dimension of an input x is defined as follows:

IIG
i (x) =

∫ 1

0

∂fc(γIG(α))
∂γIG

i (α)
∂γIG

i (α)
∂α

dα, (2)

2.2 Blur Integrated Gradients

Xu et al. (2020) introduced Blur Integrated Gradients: For a given function f : Rm×n → [0, 1] representing
a classifier and c, a class, let z(x, y) be the 2D input and z′(x, y) be the baseline. We examine the path
from z′ to z and calculate gradients along this path. The path for IG is linear in z and scales the image’s
intensity. BlurIG, on the other hand, uses a path where a Gaussian filter progressively blurs the input. The
blurring path is defined by:

γBlurIG(x, y, α) =
∞∑

m=−∞

∞∑
n=−∞

1
πα

e− x2+y2
α z(x − m, y − n)

The final BlurIG computation is as follows:

IBlurIG(x, y) ::=
∫ 0

∞

∂fc(γBlurIG(x, y, α))
∂γBlurIG(x, y, α)

∂γBlurIG(x, y, α)
∂α

dα

2.3 Guided Integrated Gradients

Guided Integrated Gradients (GIG) iteratively find the integration path γIG(α), α ∈ [0, 1] to avoid the high
curvature points in the output shape of DNNs (due to which the larger-magnitude gradients from each
feasible point on the path would have a significantly more significant effect on the final attribution values).
The new path is defined as follows:

γGIG = arg min
γ∈Γ

N∑
i=1

∫ 1

0
|∂fc(γ(α))

∂γi(α)
∂γi(α)

∂α
|dα, (3)

After finding the optimal path γGIG, GIG uses it and computes the attribution values similar to IG. Formally,

IGIG
i (x) =

∫ 1

0

∂fc(γGIG(α))
∂γGIG

i (α)
∂γGIG

i (α)
∂α

dα. (4)

3 Theoretical Analysis of IDGI

Regardless of whichever IG-based approach is used for calculating the attributions, the final attribution map
is produced from Riemann Integration in all IG-based algorithms. Yang et al. (2023) explains that each path
segment has a noise direction where gradient integration with that direction has a zero net contribution to
the attribution scores.

4

Under review as submission to TMLR

They also provide an illustration to demonstrate the direction of the noise vector. We make two remarks
about the original illustration of IDGI with regard to how it could be misleading:

• The relationship between fc(x) and x for IG is portrayed as linear; however, that is only true for
linear models (which was not discussed in the paper). However, the relationship between x and α is
always linear.

• The scalar function x → fc(x) should be many-to-one; however the original illustration portrays it
to be a one-to-many function, which is not possible.

We present an improved illustration in Figure 2 that counters the two issues we observed.

Figure 2: The original illustration of IDGI Yang et al. (2023) (left), our improved illustration(right).

We now shift our attention to the IDGI algorithm, as present in the original work by Yang et al. (2023). We
discuss the mathematics leading to the IDGI algorithm for new readers: Recall the path function denoted
by γ discussed in Section 2. Consider the point xj = γ(αj) and the next point xj+1 = γ(αj+1) on the path
from reference point x

′ to the input point x. IG-based methods compute the gradient, g, of fc(xj) with
respect to x and use Riemann integration to perform element-wise multiplication of the gradient and the
step, xj+1 − xj , which the authors refer to as the original direction. Further, they refer to the direction
g

|g| as the important direction. The gradient of the function value fc at each point in space defines the
conservative vector field, where an infinite number of hyperplanes h exist, and each hyperplane contains
all points x with the same functional value. In the conservative vector field, separate hyperplanes never
intersect, meaning each point has its projection point with regard to the other hyperplanes. For point xj ,
if one moves xj along the Important direction, there exists a unique projection point xjp

on the hyperplane
hj+1 where fc(xjp) = fc(xj+1).

The authors (Yang et al., 2023) then state Theorem 1: Consider a function fc(x) mapping from Rn to R. Let
xj , xj+1, xjp ∈ Rn be given points. The gradient of fc with respect to each point in Rn forms conservative
vector fields, denoted as −→

F . We define a hyperplane hj as the set of all points x where fc(x) = fc(xj).
In this context, we assume that Riemann Integration provides an accurate estimate for the line integral
of the vector field −→

F between points. For instance, the integral from xj to xjp
can be approximated as∫ xjp

xj

∂fc(x)
∂x dx ≈ ∂fc(xj)

∂xj
(xjp

− xj). Here, xj lies on the hyperplane hj , while xjp
and xj+1 lie on the

hyperplane hj+1.

This theorem asserts that the line integral of the vector field from xj to xj+1 is approximately equal to the
line integral from xj to xjp

. This indicates that the chosen path within these specific points and hyperplanes
yields similar results when integrating the function’s gradient. This illustrates that while for a feature, i,
the value of the attribution computed from the original direction and the critical direction can be different,
the change in the value of fc remains the same.

5

Under review as submission to TMLR

Let x be a given input with target class c, f be a given classifier, [x′
, ..., xj , ...x] be a given path from any

IG-based method and g be the gradient of fc(xj) with respect to x. Then, according to the IDGI Algorithm,
the important direction vector of g is determined as g

|g| and the step size as fc(xj+1)−fc(xj)
|g| . The projection

of xj onto the hyperplane hj+1, formed as xjp = xj + g
|g|

fc(xj+1)−fc(xj)
|g| , has the same functional value as

point xj+1, i.e., fc(xj+1) = fc(xjp
).

Here, we observe that the Taylor series approximation is necessary to arrive at the expression for xjp .
Assuming xjp

lies on the given path from any IG-based method such that it is defined as xjp
= xj + c · g

|g| ,
where c is the length of the projection that we wish to approximate, we now derive the expression for
xjp .

Derivation.

xjp
= xj + c · g

|g|
=⇒ fc(xjp

) = fc(xj + c · g

|g|
)

By Taylor series approximation,

fc(xj+1) = fc(xjp
) ≈ fc(xj) + ∇f · (c · g

|g|
)

∴ fc(xj+1) ≈ fc(xj) + c · |g| =⇒ c ≈ fc(xj+1) − fc(xj)
|g|

∴ xjp ≈ xj + g

|g|
· fc(xj+1) − fc(xj)

|g|

We arrive at the final expression for xjp
using the Taylor series approximation, implying that the value of

fc(xj + g
|g| · fc(xj+1)−fc(xj)

|g|) ≈ fc(xj+1). Hence, while xjp and xj+1 theoretically lie on the same hyperplane,
the approximated value of xjp (used in practice) and xj+1 only approximately lie on the same hyperplane.

This analysis implies that the more accurate derivation of xjp comes not from Theorem 1, as the authors
suggest, but from the Taylor series approximation.

How does IDGI vary with step size?

As previously mentioned, the derivation for xjp
gives us insights into how IDGI’s performance is affected

by step size variations. The expression for c, the length of the projection, determines the validity of the
Taylor series approximation. The smaller the value of c, the more valid the approximation. We observe
that c is directly proportional to fc(xj+1) − fc(xj). Here, xj+1 and xj are consecutive points in the path
of an IG-based method. It is easy to observe that for the same path, these two points are closer to each
other for a larger number of steps (since the number of steps denotes the finite number of small piece-wise
linear segments that we discretize the path between x

′ and x into.) This implies that fc(xj+1) and fc(xj)
are closer in value. Therefore, a larger number of steps is required for a smaller c. The expression of xjp

is
thus directly linked to the number of steps and, thus, the step size used for the algorithm, which means that
IDGI is sensitive to step size variation.

4 Experimental Methodology and Results

Before detailing the experimental setting and presenting our results, we addressed the difficulties we faced
while conducting our experiments. We found that the official code for IDGI contained only the algorithmic
implementation of the method, and the PAIR Saliency page showed the results for each method on a single
image and a single model. Thus, the available code was insufficient to reproduce all the results of IDGI. We
had to perform the following tasks ourselves,

• The saliency masks had to be calculated for ten models and six methods, each followed by every
quantitative metric used by the authors of IDGI and on ∼ 35K images. We thus had to optimize
the code and implement batched computations to improve speed due to limited time and resources.

6

Under review as submission to TMLR

• To run the code, we wrote scripts to automate calculating the saliencies on all six methods. Following
this task, we also ran scripts to compute the metrics, which was computationally expensive.

• We had to write the code ourselves to compute Insertion Scores, SIC, and AIC using MS-SSIM
and Normalized Entropy since the authors had modified the original implementation and had not
provided the modified code for it.

• We noticed common calculations for all the IG-based methods. To minimize the computation over-
head, we precomputed these results and stored them.

Figure 3: Saliency map of the existing IG-based methods and those with IDGI explaining the prediction
from InceptionV3. We compare two sets of saliencies for each image by taking the model’s top 2 distinct
classes as the predicted class. While the top class object is always more highlighted, we observe that all
IG-based methods with IDGI are slightly better at highlighting each class than methods without IDGI.

4.1 Experimental Setup

We use the same baseline methods (IG, GIG, and BlurIG) as the authors’ original work. Following the
implementations of IDGI, we also use the original implementations with default parameters in the authors’
code for IG, GIG, and BlurIG. We use the black image as the reference point for IG and GIG. Finally, as
previously mentioned, we use different step sizes (8, 16, 32, 64, and 128) as an additional experiment beyond
the original paper to verify our hypothesis on how sensitive IDGI is to step size. We also report our findings
on the effect of IDGI on the numerical stability of the attribution methods.

Models. We use the PyTorch (1.13.1) pre-trained models: DenseNet121, 169, 201, InceptionV3, Mo-
bileNetV2, ResNet50,101,151V2, and VGG16,19. We did not use Xception due to computational constraints.
Datasets. We used the same dataset as the original paper - The Imagenet validation dataset, which contains
50K test samples with labels and annotations. We also tested the explanation methods for each model on
images that show that the model predicted the label correctly, which varies from 33K to 39K, corresponding
to different models.

7

Under review as submission to TMLR

Evaluation Metrics. We use four evaluation metrics - Insertion Score (Pan et al., 2021; Petsiuk et al.), the
Softmax Information Curves (SIC), and the Accuracy Information Curves (AIC) (Kapishnikov et al., 2021;
2019) using Normalized Entropy and the modified version of SIC and AIC with MS-SSIM as introduced
in the original IDGI paper. We follow the implementation details described in previous works, as in the
original paper. We did not compute the three Weakly Supervised Localization metrics because, according to
previous works from which Yang et al. (2023) borrowed the implementation details, we require the Imagenet
segmentation dataset to compute these metrics. Three versions of this dataset exist, and neither the previous
works (Xu et al., 2020; Kapishnikov et al., 2021; 2019) nor Yang et al. (2023) mention which version of the
dataset they used. Calculating the metrics for all three dataset versions was not computationally feasible.
Furthermore, none of the works provide the code to calculate these metrics.

Computational Requirements. We used a single NVIDIA Tesla V100 GPU with 16 GB of VRAM for
our reproducibility experiments. The compute time varies slightly with the model, the method, and the step
size. We report the average compute time per method per model for 128 steps: computing the saliencies took
approximately 9 hours, computing SIC and AIC using Normalized Entropy and MS-SSIM took 90 minutes,
and computing insertion scores took 70 minutes.

4.2 Insertion Score

Metrics Models IG-based Methods
IG +IDGI GIG +IDGI BlurIG +IDGI

Insertion
Score
with

Probability
(↑)

DenseNet121 .127 .374 .155 .299 .080 .281
DenseNet169 .130 .388 .152 .320 .088 .291
DenseNet201 .152 .390 .177 .333 .107 .316
InceptionV3 .135 .419 .160 .399 .102 .379
MobileNetV2 .038 .149 .037 .140 .202 .201
ResNet50V2 .062 .120 .057 .207 .241 .237
ResNet101V2 .184 .262 .213 .396 .430 .423
ResNet152V2 .197 .270 .223 .408 .140 .377

VGG16 .049 .287 .056 .200 .039 .231
VGG19 .058 .319 .069 .233 .256 .285

Insertion
Score
with

Probability
Ratio
(↑)

DenseNet121 .144 .415 .177 .334 .091 .312
DenseNet169 .142 .418 .167 .348 .097 .315
DenseNet201 .168 .427 .198 .368 .119 .347
InceptionV3 .160 .483 .191 .464 .122 .437
MobileNetV2 .104 .364 .106 .366 .530 .529
ResNet50V2 .152 .285 .140 .504 .581 .573
ResNet101V2 .252 .355 .291 .539 .582 .574
ResNet152V2 .266 .363 .301 .549 .187 .504

VGG16 .057 .317 .067 .225 .045 .255
VGG19 .067 .352 .082 .262 .291 .322

Table 1: Insertion Score for explanation methods using 128 steps. The claim that IDGI improves all
methods for all models does not hold.

We begin by assessing the explanation approaches with the Insertion Score from prior works (Pan et al., 2021;
Petsiuk et al.). We re-wrote the available code according to the modified implementation details introduced
in the paper (Yang et al., 2023) and evaluated each of the three baselines (IG, GIG, and BlurIG) across ten
models. We report the insertion scores for 128 steps in Table 1.

Based on our results, we find that our results match the claims made in the original paper mostly, and
the better explanation method has a higher insertion score. However, we observed that for MobileNetv2,
ResNet50v2, and ResNet101v2, IDGI worsens the insertion scores for BlurIG.

8

Under review as submission to TMLR

4.3 SIC and AIC using Normalized Entropy

Metrics Models IG-based Methods
IG +IDGI GIG +IDGI BlurIG +IDGI

AUC
AIC
(↑)

DenseNet121 .134 .476 .080 .384 .200 .349
DenseNet169 .141 .465 .096 .398 .200 .342
DenseNet201 .191 .484 .122 .418 .267 .387
InceptionV3 .195 .554 .128 .491 .277 .478
MobileNetV2 .056 .410 .043 .313 .570 .531
ResNet50V2 .054 .265 .048 .313 .617 .580
ResNet101V2 .174 .354 .154 .523 .693 .663
ResNet152V2 .352 .345 .151 .528 .298 .464

VGG16 .041 .369 .029 .268 .077 .311
VGG19 .052 .378 .033 .294 .412 .421

AUC
SIC
(↑)

DenseNet121 .010 .435 .005 .311 .038 .261
DenseNet169 .011 .438 .006 .346 .042 .266
DenseNet201 .027 .455 .009 .369 .104 .320
InceptionV3 .016 .527 .008 .465 .066 .436
MobileNetV2 .005 .201 .005 .121 .362 .348
ResNet50V2 .005 .075 .005 .132 .425 .408
ResNet101V2 .025 .241 .015 .470 .588 .570
ResNet152V2 .260 .240 .015 .486 .113 .395

VGG16 .005 .304 .005 .160 .005 .218
VGG19 .005 .316 .005 .197 .336 .353

Table 2: Area under the curve for AIC and SIC using Normalized Entropy for 128 steps. The claim that
IDGI improves all three IG-based methods across all experiment settings does not hold.

We evaluated the explanation methods using the Softmax information curves (SIC) and the Accuracy infor-
mation curves (AIC) using Normalized Entropy. We rewrote the available code according to the modified
implementation details introduced in the paper (Yang et al., 2023) and evaluated each of the three baselines.
We report the area under the AIC and SIC curves for 128 steps in Table 2.

Based on our results, we find that our results match the claims made in the original paper (Yang et al.,
2023) for the most part, and the better explanation method has a higher area under the AIC and SIC
curves. However, we observed that for ResNet152v2, IDGI worsens the area under the AIC and SIC curves
for IG; and, for MobileNetv2, ResNet50v2, and ResNet101v2, BlurIG + IDGI also underperforms BlurIG. A
common trait observed in the models that exhibit anomalies is that they all implement residual connections
in their architecture. While we could not demonstrate how this may cause IDGI to reduce the performance
of the underlying method, it is a plausible hypothesis that the residual connections might interact with the
IDGI framework in ways that are not fully understood, warranting further investigation into the underlying
mechanisms and their impact on explanation methods.

4.4 SIC and AIC with MS-SSIM

We now evaluate the explanation methods using the Softmax information curves (SIC) and the Accuracy
information curves (AIC) using MS-SSIM (Kancharla & Channappayya, 2018; Ma et al., 2016; Odena et al.,
2017). This well-studied image quality evaluation method analyzes the structural similarity of two images.
We re-wrote the available code according to the modified implementation details introduced in the paper
(Yang et al., 2023) and evaluated each of the three baselines (IG, GIG, and BlurIG) across ten models. We
report the area under AIC and SIC for 128 steps in Table 3.

Based on the results we obtained, we find that our results match the claims made in the original paper (Yang
et al., 2023) consistently. The better explanation method has a higher area under the AIC and SIC curves.
However, for ResNet152V2, the area under SIC for IG is equal to that for IG + IDGI.

9

Under review as submission to TMLR

Metrics Models IG-based Methods
IG +IDGI GIG +IDGI BlurIG +IDGI

AUC
AIC
(↑)

DenseNet121 .164 .302 .141 .283 .188 .279
DenseNet169 .173 .300 .155 .292 .192 .285
DenseNet201 .196 .312 .169 .301 .216 .302
InceptionV3 .212 .347 .192 .345 .236 .340
MobileNetV2 .124 .253 .110 .243 .287 .297
ResNet50V2 .135 .232 .121 .252 .312 .322
ResNet101V2 .206 .261 .192 .325 .340 .354
ResNet152V2 .262 .267 .192 .330 .219 .319

VGG16 .092 .255 .084 .218 .114 .236
VGG19 .103 .260 .092 .229 .218 .258

AUC
SIC
(↑)

DenseNet121 .106 .260 .093 .242 .149 .237
DenseNet169 .123 .267 .109 .262 .162 .253
DenseNet201 .135 .278 .113 .268 .179 .267
InceptionV3 .137 .308 .126 .310 .186 .301
MobileNetV2 .050 .141 .047 .141 .173 .184
ResNet50V2 .065 .136 .055 .159 .207 .214
ResNet101V2 .148 .209 .132 .277 .269 .283
ResNet152V2 .221 .221 .140 .289 .171 .276

VGG16 .055 .213 .051 .178 .076 .195
VGG19 .061 .221 .056 .191 .165 .213

Table 3: Area under the curve for AIC and SIC using MS-SSIM for 128 steps. The claim that IDGI
improves all three IG-based methods across all experiment settings does not hold.

4.5 Additional Experiments

As mentioned in Section 1 and discussed in Section 3, we now proceed to show our results for step-size
variation and evaluate its effect on IDGI compared to the baselines (IG, GIG, and BlurIG). We also conducted
an experiment to compare the saliency map generated for an image quantitatively with that of a compressed
version of the same image.

4.5.1 Step Size Variation

IG-based
methods

Insertion
score
with
probabil-
ity

Insertion
score
with
probabil-
ity ratio

AIC with
Normal-
ized
Entropy

SIC with
Nor-
malized
Entropy

AIC
with MS-
SSIM

SIC with
MS-
SSIM

IG .024 .026 .033 .004 .010 .002
IG + IDGI .224 .250 .350 .473 .098 .106
BlurIG .004 .006 .124 .054 .041 .040
BlurIG+IDGI .082 .087 .146 .202 .044 .049

Table 4: Difference in score between 8 and 128 steps for InceptionV3 (%)

We report our results for step-size variation through Figure 4, where we study the variation of the value
of the respective metric versus the number of steps (8, 16, 32, and 64) for InceptionV3. Increasing the
number of steps leads to a better score, as a higher number of steps in the Riemann sum leads to a finer
approximation of the actual integral. However, due to computational limitations, increasing the number of
steps requires more resources and time, necessitating a trade-off. The developer must make a choice based
on the sensitivity of the application and the resources available. Please note that the x-axis is in exponential
scale, which means that beyond a step size of ∼32, the return in score improvement per step is marginal.

10

Under review as submission to TMLR

Algorithm 1 Important Direction Integrated Gradient
Inputs: x, f , c, path : [x′, . . . , xj , . . . , x]

1: Initialize IIDGI
i = 0

2: for each xj in path do
3: d = fc(xj+1) − fc(xj)
4: g = ∂fc(xj)

∂x

5: IIDGI
i += gi×gi×d

g·g
6: end for
7: return IIDGI

We observe that at a higher step size, the scores of BlurIG + IDGI are lower than those for IG + IDGI. To
explain this, we analyze the IDGI algorithm, as defined by Yang et al. (2023), and observe the relationship
between d and IIDGI

i , the attribution value for IDGI. α, x,f ,c, and path are as defined in Section 3.

Figure 4: Insertion Score with probability and probability ratio, AIC and SIC using Normalized Entropy
and MS-SSIM vs. number of steps, for Inceptionv3.

As shown in Figure 5, the variation in the image for BlurIG is minimal for most of the path, with significant
sharpening occurring only in the final ∼10% of the steps, suggesting that f is a constant, low value for most
of the sampled points. In contrast, the image brightness increases uniformly along the IG path, indicating
a more steady change in f . The change between two subsequent steps (d) determines the magnitude of the
integrand added to the final saliency. Consequently, for BlurIG + IDGI, most samples contribute minimally
to the final saliency. Both IG + IDGI and BlurIG + IDGI benefit from increased steps, improving the
approximation of the underlying integral. However, IG + IDGI generally benefits more due to the more
uniform change in probability scores along most of the path.

In the Appendix, we report the insertion scores and area under AIC and SIC using Normalized Entropy and
MS-SSIM for the remaining models for 8, 16, 32, and 64 steps. According to our experimental results, our
theoretical analysis is verified and stands correct. We observe that IDGI consistently has more variants in
the number of steps than its baselines.

11

Under review as submission to TMLR

Figure 5: Images observed along the path of BlurIG and IG. For BlurIG, for most values of α, we notice
minimal changes in the image with small increments. In contrast, for IG, a uniform change in the image is

observed with the same increments in α.

4.5.2 Numerical Instability

IG-based Methods - log MSE
IG 2.619

IG + IDGI 8.949
GIG 0.845

GIG + IDGI 8.029
BlurIG 3.466

BlurIG + IDGI 8.778

Table 5: The negative log values of MSE computed between the saliencies of the compressed images and
the non-compressed images for InceptionV3. Higher values indicate better numerical stability

During our early experimental stage, we observed that, visually, the saliency maps obtained for GIG were
starkly different when computed on GPU and CPU. This phenomenon is undesirable as it makes the at-
tribution method unreliable. Hence, we decided to study the numerical instability of different attribution
methods. We used JPEG compression with a retention factor of 75% We perform this experiment for IDGI
and each underlying method: IG, BlurIG, and GIG. Our experimental results show that the baseline method
+ IDGI achieves significantly better numerical stability (smaller MSE) than the baseline method. Also, GIG
shows poor numerical stability, as we had anticipated from visual observations.

5 Conclusion

We rigorously analyze the theoretical aspects of IDGI, experimentally verify the claims made by Yang
et al. (2023), and perform additional experiments to verify our theoretical observations and understand the
numerical stability of the framework. While the claim that IDGI constantly improves upon all baseline
methods mostly holds for MobileNetV2 and the ResNet family, our experimental results show otherwise for
some baseline methods. Our theoretical and experimental analysis shows that IDGI is more sensitive to step
size variation than the baseline methods. Applying IDGI makes the baseline method more class-sensitive, a
desirable property. We also observe that the IDGI + baseline method is more numerically stable than the
baseline.

References

Runmin Cong, Jianjun Lei, Huazhu Fu, Ming-Ming Cheng, Weisi Lin, and Qingming Huang. Review of
visual saliency detection with comprehensive information. IEEE Transactions on circuits and Systems for
Video Technology, 29(10):2941–2959, 2018.

12

Under review as submission to TMLR

Parimala Kancharla and Sumohana S Channappayya. Improving the visual quality of generative adversarial
network (gan)-generated images using the multi-scale structural similarity index. In 2018 25th IEEE
international conference on image processing (ICIP), pp. 3908–3912. IEEE, 2018.

Andrei Kapishnikov, Tolga Bolukbasi, Fernanda Viégas, and Michael Terry. Xrai: Better attributions through
regions. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4948–4957,
2019.

Andrei Kapishnikov, Subhashini Venugopalan, Besim Avci, Ben Wedin, Michael Terry, and Tolga Boluk-
basi. Guided integrated gradients: An adaptive path method for removing noise. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pp. 5050–5058, 2021.

Kede Ma, Qingbo Wu, Zhou Wang, Zhengfang Duanmu, Hongwei Yong, Hongliang Li, and Lei Zhang. Group
mad competition-a new methodology to compare objective image quality models. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pp. 1664–1673, 2016.

Augustus Odena, Christopher Olah, and Jonathon Shlens. Conditional image synthesis with auxiliary clas-
sifier gans. In International conference on machine learning, pp. 2642–2651. PMLR, 2017.

Deng Pan, Xin Li, and Dongxiao Zhu. Explaining deep neural network models with adversarial gradient
integration. In Thirtieth International Joint Conference on Artificial Intelligence (IJCAI), 2021.

V Petsiuk, A Das, and K Saenko. Rise: Randomized input sampling for explanation of black-box models.
arxiv 2018. arXiv preprint arXiv:1806.07421.

Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside convolutional networks: Visualising
image classification models and saliency maps. arXiv preprint arXiv:1312.6034, 2013.

Daniel Smilkov, Nikhil Thorat, Been Kim, Fernanda Viégas, and Martin Wattenberg. Smoothgrad: removing
noise by adding noise. arXiv preprint arXiv:1706.03825, 2017.

Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for deep networks. In International
conference on machine learning, pp. 3319–3328. PMLR, 2017.

Shawn Xu, Subhashini Venugopalan, and Mukund Sundararajan. Attribution in scale and space. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9680–9689, 2020.

Ruo Yang, Binghui Wang, and Mustafa Bilgic. Idgi: A framework to eliminate explanation noise from
integrated gradients. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 23725–23734, 2023.

13

Under review as submission to TMLR

Appendix

6 Appendix

Table 6 to Table 17 show the insertion scores with probability and probability ratio, the area under AIC
and SIC using Normalized Entropy and MS-SSIM for 4 methods (baseline methods, IG and BlurIG + IDGI)
across the 10 models that we performed the experiments on for 64, 32, 16 and 8 steps (in that order). We
could not perform these experiments for GIG due to computational constraints.

We have highlighted the better performing method in each Table.

Metrics Models IG-based Methods
IG +IDGI BlurIG +IDGI

Insertion
Score
with

Probability
(↑)

DenseNet121 .127 .357 .080 .265
DenseNet169 .128 .359 .088 .277
DenseNet201 .150 .368 .106 .303
InceptionV3 .133 .409 .100 .360
MobileNetV2 .038 .122 .202 .198
ResNet50V2 .059 .099 .241 .233
ResNet101V2 .171 .223 .429 .417
ResNet152V2 .181 .222 .140 .355

VGG16 .048 .282 .039 .215
VGG19 .058 .313 .255 .275

Insertion
Score
with

Probability
Ratio
(↑)

DenseNet121 .143 .397 .090 .295
DenseNet169 .141 .388 .096 .300
DenseNet201 .167 .404 .118 .332
InceptionV3 .159 .472 .118 .416
MobileNetV2 .103 .299 .529 .520
ResNet50V2 .145 .237 .581 .564
ResNet101V2 .235 .303 .581 .566
ResNet152V2 .245 .300 .186 .475

VGG16 .057 .313 .045 .239
VGG19 .067 .346 .290 .311

Table 6: Insertion score for different models with explanation methods for 64 steps.

Metrics Models IG-based Methods
IG +IDGI BlurIG +IDGI

AUC
AIC
(↑)

DenseNet121 .133 .464 .193 .328
DenseNet169 .139 .440 .193 .323
DenseNet201 .189 .467 .260 .370
InceptionV3 .194 .547 .270 .451
MobileNetV2 .054 .337 .572 .520
ResNet50V2 .052 .183 .618 .567
ResNet101V2 .154 .276 .692 .652
ResNet152V2 .322 .254 .291 .428

VGG16 .041 .368 .073 .288
VGG19 .052 .376 .409 .409

AUC
SIC
(↑)

DenseNet121 .010 .414 .034 .232
DenseNet169 .011 .399 .037 .239
DenseNet201 .026 .428 .094 .293
InceptionV3 .016 .514 .059 .401
MobileNetV2 .005 .127 .363 .340
ResNet50V2 .005 .028 .426 .404
ResNet101V2 .020 .168 .588 .564
ResNet152V2 .229 .150 .103 .349

VGG16 .005 .301 .005 .183
VGG19 .005 .312 .332 .337

Table 7: AUC for AIC and SIC using Normalized Entropy for 64 steps.

14

Under review as submission to TMLR

Metrics Models IG-based Methods
IG +IDGI BlurIG +IDGI

AUC
AIC
(↑)

DenseNet121 .164 .297 .184 .272
DenseNet169 .173 .292 .188 .279
DenseNet201 .196 .306 .212 .297
InceptionV3 .211 .343 .232 .332
MobileNetV2 .123 .230 .287 .293
ResNet50V2 .134 .205 .313 .317
ResNet101V2 .201 .238 .339 .352
ResNet152V2 .255 .240 .215 .309

VGG16 .092 .253 .110 .228
VGG19 .103 .258 .217 .254

AUC
SIC
(↑)

DenseNet121 .106 .254 .144 .230
DenseNet169 .123 .258 .158 .247
DenseNet201 .135 .270 .175 .261
InceptionV3 .137 .303 .182 .293
MobileNetV2 .050 .123 .172 .180
ResNet50V2 .065 .112 .207 .212
ResNet101V2 .144 .187 .269 .281
ResNet152V2 .213 .193 .166 .265

VGG16 .055 .212 .073 .185
VGG19 .061 .219 .164 .209

Table 8: AUC for SIC and AIC using MS-SSIM for 64 steps.

Metrics Models IG-based Methods
IG +IDGI BlurIG +IDGI

Insertion
Score
with

Probability
(↑)

DenseNet121 .124 .290 .078 .246
DenseNet169 .125 .268 .087 .259
DenseNet201 .147 .292 .105 .284
InceptionV3 .129 .382 .097 .341
MobileNetV2 .037 .099 .202 .193
ResNet50V2 .058 .094 .240 .229
ResNet101V2 .166 .195 .427 .409
ResNet152V2 .176 .201 .140 .329

VGG16 .048 .265 .040 .196
VGG19 .057 .288 .251 .260

Insertion
Score
with

Probability
Ratio
(↑)

DenseNet121 .140 .324 .088 .275
DenseNet169 .137 .292 .095 .281
DenseNet201 .163 .323 .116 .313
InceptionV3 .154 .441 .115 .396
MobileNetV2 .101 .247 .528 5̇10
ResNet50V2 .142 .225 .579 .553
ResNet101V2 .228 .266 .578 .554
ResNet152V2 .238 .272 .187 .442

VGG16 .056 .294 .046 .219
VGG19 .067 .319 .285 .295

Table 9: Insertion score for different models with explanation methods for 32 steps.

15

Under review as submission to TMLR

Metrics Models IG-based Methods
IG +IDGI BlurIG +IDGI

AUC
AIC
(↑)

DenseNet121 .132 .396 .173 .296
DenseNet169 .135 .342 .175 .295
DenseNet201 .186 .385 .238 .342
InceptionV3 .188 .518 .250 .414
MobileNetV2 .050 .261 .573 .508
ResNet50V2 .047 .147 .617 .554
ResNet101V2 .144 .230 .690 .638
ResNet152V2 .305 .217 .278 .378

VGG16 .041 .351 .066 .256
VGG19 .052 .353 .405 .392

AUC
SIC
(↑)

DenseNet121 .010 .314 .024 .186
DenseNet169 .010 .253 .026 .197
DenseNet201 .025 .305 .070 .252
InceptionV3 .015 .473 .046 .348
MobileNetV2 .005 .065 .362 .333
ResNet50V2 .005 .015 .424 .398
ResNet101V2 .016 .119 .586 .555
ResNet152V2 .209 .116 .087 .284

VGG16 .005 .275 .005 .134
VGG19 .005 .278 .326 .313

Table 10: AUC for AIC and SIC using Normalized Entropy for 32 steps.

Metrics Models IG-based Methods
IG +IDGI BlurIG +IDGI

AUC
AIC
(↑)

DenseNet121 .163 .286 .172 .261
DenseNet169 .172 .273 .178 .270
DenseNet201 .195 .293 .201 .287
InceptionV3 .210 .332 .221 .321
MobileNetV2 .120 .205 .283 .286
ResNet50V2 .132 .189 .309 .311
ResNet101V2 .198 .220 .337 .347
ResNet152V2 .250 .225 .209 .294

VGG16 .093 .249 .104 .215
VGG19 .103 .253 .212 .248

AUC
SIC
(↑)

DenseNet121 .106 .242 .132 .217
DenseNet169 .123 .236 .148 .236
DenseNet201 .135 .254 .163 .251
InceptionV3 .137 .289 .171 .280
MobileNetV2 .049 .103 .168 .175
ResNet50V2 .065 .099 .204 .207
ResNet101V2 .142 .168 .267 .277
ResNet152V2 .209 .179 .159 .249

VGG16 .055 .207 .066 .172
VGG19 .061 .213 .158 .202

Table 11: AUC for SIC and AIC using MS-SSIM for 32 steps.

16

Under review as submission to TMLR

Metrics Models IG-based Methods
IG +IDGI BlurIG +IDGI

Insertion
Score
with

Probability
(↑)

DenseNet121 .115 .189 .079 .226
DenseNet169 .117 .169 .088 .237
DenseNet201 .138 .191 .106 .264
InceptionV3 .125 .302 .096 .323
MobileNetV2 .037 .086 .199 .189
ResNet50V2 .058 .092 .235 .223
ResNet101V2 .165 .181 .421 .398
ResNet152V2 .173 .189 .142 .297

VGG16 .048 .212 .042 .171
VGG19 .056 .226 .239 .245

Insertion
Score
with

Probability
Ratio
(↑)

DenseNet121 .131 .214 .089 .254
DenseNet169 .129 .187 .096 .259
DenseNet201 .154 .215 .117 .292
InceptionV3 .150 .351 .114 .379
MobileNetV2 .100 .216 .521 .498
ResNet50V2 .141 .221 .566 .539
ResNet101V2 .226 .247 .570 .540
ResNet152V2 .234 .255 .189 .402

VGG16 .056 .238 .049 .192
VGG19 .065 .253 .272 .277

Table 12: Insertion score for different models with explanation methods for 16 steps.

Metrics Models IG-based Methods
IG +IDGI BlurIG +IDGI

AUC
AIC
(↑)

DenseNet121 .118 .269 .137 .267
DenseNet169 .121 .218 .147 .269
DenseNet201 .167 .257 .198 .312
InceptionV3 .184 .395 .211 .375
MobileNetV2 .045 .215 .564 .501
ResNet50V2 .044 .130 .610 .545
ResNet101V2 .137 .212 .686 .622
ResNet152V2 .292 .199 .253 .324

VGG16 .039 .283 .054 .224
VGG19 .051 .281 .397 .375

AUC
SIC
(↑)

DenseNet121 .009 .158 .013 .146
DenseNet169 .009 .111 .015 .161
DenseNet201 .020 .145 .038 .212
InceptionV3 .015 .297 .025 .294
MobileNetV2 .005 .038 .355 .331
ResNet50V2 .005 .013 .416 .394
ResNet101V2 .015 .101 .582 .546
ResNet152V2 .196 .097 .062 .215

VGG16 .005 .168 .005 .088
VGG19 .005 .170 .314 .287

Table 13: AUC for AIC and SIC using Normalized Entropy for 16 steps.

17

Under review as submission to TMLR

Metrics Models IG-based Methods
IG +IDGI BlurIG +IDGI

AUC
AIC
(↑)

DenseNet121 .160 .268 .156 .248
DenseNet169 .169 .239 .164 .259
DenseNet201 .191 .265 .183 .275
InceptionV3 .208 .304 .204 .309
MobileNetV2 .116 .187 .275 .281
ResNet50V2 .131 .178 .302 .303
ResNet101V2 .197 .210 .334 .341
ResNet152V2 .246 .216 .200 .276

VGG16 .092 .237 .100 .201
VGG19 .103 .238 .200 .239

AUC
SIC
(↑)

DenseNet121 .106 .219 .117 .204
DenseNet169 .121 .202 .135 .224
DenseNet201 .132 .220 .145 .238
InceptionV3 .137 .257 .155 .266
MobileNetV2 .048 .090 .161 .171
ResNet50V2 .065 .090 .197 .202
ResNet101V2 .142 .158 .265 .272
ResNet152V2 .205 .171 .149 .230

VGG16 .055 .193 .068 .158
VGG19 .061 .195 .143 .192

Table 14: AUC for SIC and AIC using MS-SSIM for 16 steps.

Metrics Models IG-based Methods
IG +IDGI BlurIG +IDGI

Insertion
Score
with

Probability
(↑)

DenseNet121 .107 .139 .087 .206
DenseNet169 .113 .121 .102 .213
DenseNet201 .129 .139 .114 .241
InceptionV3 .111 .195 .098 .297
MobileNetV2 .036 .080 .193 .185
ResNet50V2 .057 .090 .229 .217
ResNet101V2 .164 .176 .410 .386
ResNet152V2 .172 .182 .150 .255

VGG16 .046 .141 .046 .151
VGG19 .054 .148 .228 .232

Insertion
Score
with

Probability
Ratio
(↑)

DenseNet121 .122 .159 .099 .232
DenseNet169 .124 .135 .111 .233
DenseNet201 .144 .158 .126 .267
InceptionV3 .134 .233 .116 .350
MobileNetV2 .099 .206 .504 .488
ResNet50V2 .140 .219 .552 .525
ResNet101V2 .224 .240 .554 .524
ResNet152V2 .232 .246 .199 .348

VGG16 .054 .161 .054 .170
VGG19 .063 .171 .259 .264

Table 15: Insertion score for different models with explanation methods for 8 steps.

18

Under review as submission to TMLR

Metrics Models IG-based Methods
IG +IDGI BlurIG +IDGI

AUC
AIC
(↑)

DenseNet121 .102 .204 .098 .247
DenseNet169 .110 .153 .121 .250
DenseNet201 .146 .187 .145 .291
InceptionV3 .162 .204 .153 .332
MobileNetV2 .041 .196 .524 .497
ResNet50V2 .040 .127 .573 .539
ResNet101V2 .132 .206 .661 .605
ResNet152V2 .283 .192 .212 .265

VGG16 .036 .175 .049 .206
VGG19 .047 .174 .369 .364

AUC
SIC
(↑)

DenseNet121 .007 .091 .007 .118
DenseNet169 .007 .060 .010 .134
DenseNet201 .015 .082 .017 .181
InceptionV3 .012 .054 .012 .234
MobileNetV2 .005 .029 .333 .329
ResNet50V2 .005 .012 .400 .392
ResNet101V2 .013 .094 .567 .536
ResNet152V2 .187 .090 .032 .144

VGG16 .005 .039 .005 .062
VGG19 .005 .045 .274 .271

Table 16: AUC for AIC and SIC using Normalized Entropy for 8 steps.

Metrics Models IG-based Methods
IG +IDGI BlurIG +IDGI

AUC
AIC
(↑)

DenseNet121 .155 .250 .147 .240
DenseNet169 .166 .211 .162 .251
DenseNet201 .185 .238 .172 .267
InceptionV3 .202 .249 .195 .296
MobileNetV2 .112 .177 .269 .278
ResNet50V2 .129 .176 .293 .298
ResNet101V2 .196 .206 .328 .333
ResNet152V2 .244 .211 .192 .251

VGG16 .090 .210 .104 .194
VGG19 .101 .204 .198 .235

AUC
SIC
(↑)

DenseNet121 .103 .195 .113 .195
DenseNet169 .119 .177 .132 .215
DenseNet201 .127 .191 .136 .229
InceptionV3 .135 .202 .146 .252
MobileNetV2 .046 .083 .157 .169
ResNet50V2 .064 .087 .192 .200
ResNet101V2 .141 .154 .260 .265
ResNet152V2 .203 .166 .140 .204

VGG16 .054 .161 .077 .150
VGG19 .060 .159 .141 .187

Table 17: AUC for SIC and AIC using MS-SSIM for 8 steps.

19

	Introduction
	Background
	Integrated Gradients
	Blur Integrated Gradients
	Guided Integrated Gradients

	Theoretical Analysis of IDGI
	Experimental Methodology and Results
	Experimental Setup
	Insertion Score
	SIC and AIC using Normalized Entropy
	SIC and AIC with MS-SSIM
	Additional Experiments
	Step Size Variation
	Numerical Instability

	Conclusion
	Appendix

