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Abstract

Past years have witnessed the fast and thorough development of active learning, a human-in-
the-loop semi-supervised learning that helps reduce the burden of expensive data annotation.
Diverse techniques have been proposed to improve the e�ciency of label acquisition. However,
the existing techniques are mostly intractable at scale on massive unlabeled instances. In
particular, the query time of large-scale image-data models is usually linear or even quadratic
in the size of the unlabeled pool set and its dimension. The main reason for this intractability
is the iterative need to scan the pool set at least once to select the best samples for label
annotation.
To alleviate this computational burden, we propose e�cient Di�usion Graph Active Learning
(DGAL). DGAL is used on a pre-computed Variational-Auto-Encoders (VAE) latent space
to restrict the pool set to a much smaller candidate set. The sub-sample is then used in deep
architectures, to reduce the query time, via an additional standard active learning baseline
criterion. DGAL demonstrates a query time versus accuracy trade-o� that is two or more
orders of magnitude acceleration over state-of-the-art methods. Moreover, we demonstrate
the important exploration-exploitation trade-o� in DGAL that allows the restricted set to
capture the most impactful samples for active learning at each iteration.

1 Introduction

Deep learning has provided unprecedented performance in various semi-supervised learning tasks, ranging
from speech recognition to computer vision and natural language processing. Deep Convolutional Neural
Networks (CNN), in particular, have demonstrated object recognition that exceeds human performance.
However, this success comes with the requirement for massive amounts of labeled data. While data collection
at a large scale has become easier, its annotation with labels has become a major bottleneck for execution in
many real-life use cases (Settles, 2009; Ren et al., 2021). Active learning provides a plethora of techniques
to select a set of data points for labeling which optimally minimizes the error probability under a fixed
budget of a labeling e�ort (see Settles (2009) for review). As such it is a key technology for reducing the data
annotation e�ort in training semi-supervised models.

One of the key caveats in active learning, preventing it from being used on an industrial web scale, is the
computational burden of selecting the best samples for annotation at each step of active learning. This
complexity is rooted in a variety of important criteria that need to be optimized in active learning. Referred
to as the ‘two faces of active learning’ Dasgupta (2011), the most common selection mechanisms can be
categorized into two parts: uncertainty (e.g. Lewis & Gale (1994)) and diversity sampling (e.g Ash et al.
(2019a); Sener & Savarese (2017a)). The intuition of the former is to select query points that improve the
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model as rapidly as possible. The latter exploits heterogeneity in the feature space, sometimes characterized
by natural clusters, to avoid redundancy in sampling. The combination of the uncertainty and diversity
criteria has been an important subject of recent works (Yuan et al., 2020; Zhu et al., 2008; Shen et al.,
2004; Duco�e & Precioso, 2018; Margatina et al., 2021; Sinha et al., 2019a; Gissin & Shalev-Shwartz, 2019;
Parvaneh et al., 2022; Huijser & van Gemert, 2017; Zhang et al., 2020).

Optimizing for uncertainty or diversity (or both) may require scanning all data at least once, and typically
requires methodologies with computational costs that scale quadratic or more in the unlabeled pool size
(Bodó et al., 2011; Tong & Koller, 2001; Sener & Savarese, 2017a). A standard active learning cycle repeats
the time-consuming model (re-)training and query selection process multiple times. In many cases, these
cumbersome repetitions render active learning impractical on real large-scale data sets. Even a single
feed-forward process in a deep learning network for uncertainty calculation (e.g. Gal et al. (2017)) may
impose a significant delay in query time. It may scale non-linearly in the dimension of the data (e.g. number
of pixels) for each query candidate in many deep network architectures, where fully connected layers exist.
To this end, only a few approaches have been suggested to overcome this bottleneck in the context of deep
learning. Most notable is SEALS Coleman et al. (2022a), which improves the computational e�ciency of
active learning and rare class search methods by restricting the candidate pool for labeling to the nearest
neighbors of the currently labeled set instead of scanning over all of the unlabeled data. The restricted set
is given as an input to the task classifier for a second selection step, and using a second basic uncertainty
criterion, a final query set is selected for annotation.

We identified that the SEALS criterion of selecting k-nearest neighbors to the restricted pool does not address
the diversification criterion in query selection. It also does not capture the exploration-refinement transition
which improves active learning tremendously. Therefore, we propose a di�erent algorithm for the selection of
the restricted pool set based on a graph di�usion algorithm inspired by (Kushnir, 2014; Kushnir & Venturi,
2023). We refer to it as Di�usion Graph Active Learning (DGAL). In DGAL, the proximity graph is computed
only once for a latent Variational Auto Encoder (VAE) Kingma & Welling (2013) representation space
which is trained (without supervision) once prior to the annotation cycles. This graph representation is
then used for a label di�usion process to select the most diversified and uncertain candidates in time that is
log-linear in the data size (Appendix 4.4). The graph, computed only once, allows faster linear query time in
each di�usion process, unlike SEALS Coleman et al. (2022a), whose query time keeps growing by a factor
dependent linearly on the number of neighbors k.

As seen in the overview of our method in figure 1, our method is comprised of two components: a representation
component in which a VAE training occurs once and is used to generate a proximity graph that is then
shared in the iterative stage of the active learning component. We note that other representation spaces may
also be considered for graph construction. A label di�usion process on the graph is used throughout the
active learning iterations, in the second component, to select a restricted and small set of candidates which is
fed into the classification neural net for the final query selection (e.g. uncertainty sampling (Lewis & Gale,
1994), margin (Sche�er et al., 2001), etc.). As shown in our paper the restriction to a smaller set via our
graph construction accelerates active learning while achieving state-of-the-art or better accuracy.

The graph-based di�usion algorithm used in DGAL enhances an important criterion in active learning referred
to as the exploration-exploitation (or exploration-refinement criterion). Exploration addresses a stage in
active learning in which data are sampled and annotated to first map decision boundaries in the data. On
the other hand, exploitation takes the so far detected boundaries and samples points around them to further
localize the boundaries. At the early stages of AL, an exploratory strategy typically yields better gains
in accuracy over boundary refinement. However, once all boundaries are detected, typically a refinement
stage provides better accuracy gains over further exploration. This important trade-o� is not leveraged in
standard simple AL criteria such as probabilistic uncertainty sampling or diversification per se. In particular,
a k-nearest-neighbors to the training set (Coleman et al. (2022a)) also does not reflect this trade-o�. We
demonstrate in this paper that our combined graph methodology for pool set restriction improves AL query
time and scales it to large-scale data sets. We summarize our contributions below:
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• We propose DGAL, a two-step active learning algorithm, that starts with restricting the pool set to
a smaller set using a graph-di�usion process and then uses the restricted set to perform deep active
learning e�ciently.

• DGAL achieved orders of magnitude acceleration in query time compared to state-of-the-art (SOTA)
active learning schemes, while maintaining the most competitive accuracy.

Latent graph 
diffusion

Query 
candidates

Labeled 
training set

Re-training

Final label query

Annotate selected queries

Label information

Optimized Representation (Single Pass)

Active Learning Cycle

Similarity 
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Variational Auto-encoder

Figure 1: Overview of the DGAL approach. A Representation component that involves a single pass on
the data for deriving a VAE-based latent graph representation. An Active Learning iterative component that
uses the VAE latent representation graph in conjunction with existing label information to select a restricted
set of query candidates. The set of candidates is fed into a task neural net, where a second criterion is used
to select the final label queries for annotation.

2 Related research

E�cient Active Learning. With the increasing availability of large-scale unlabeled datasets, traditional
active learning methods are too computationaly demanding to apply. This problem has motivated the
development of more compact, e�cient AL algorithms to cope with large-scale data sets/models. In SEALS
Coleman et al. (2022a) the candidate pool is restricted to the k-Nearest Neighbours (KNN) of so-far-labeled
instances, to avoid the computational burden of batch selection with large pool sets. However, the KNN
set is typically very similar to the already labeled training data and therefore its information content for
improving the classifier is low. This lack of diversification and exploration in SEALS yields sub-optimal
accuracy. Moreover, the number of nearest neighbors being fed later to the tasks neural net is growing by a
factor of k on each query step. This leads to an increasingly higher query time when the restricted pool is fed
into the task network. Xie et al. (2021) propose knowledge clusters extracted from intermediate features over
pre-trained models by a single pass. Ertekin et al. (2007); Doucette & Heywood (2008) proposed to actively
subsample unlabeled candidates under imbalanced datasets in general learning schemes, di�erent than deep
learning. Generating informative samples Mayer & Timofte (2020); Huijser & van Gemert (2017); Zhu &
Bento (2017) saves time from the unlabeled data acquisition aspect. Small but well-trained auxiliary models
have been used to select data to reduce the computational cost of extracting feature representation from the
unlabeled pool (Yoo & Kweon, 2019; Coleman et al., 2019).
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Graph-based Semi-Supervised Learning (GSSL) Semi-supervised learning (SSL) Zhu (2005) exploits
the information of both the labeled and unlabeled datasets to learn a good classifier. As a form of SSL, active
learning automates the process of data acquisition from a large pool of unlabeled datasets for annotation to
achieve the maximal performance of the classifier (usually) under a limited budget. GSSL (Zhu, 2005; Song
et al., 2022; Zha et al., 2009) is a classic branch of the SSL that aims to represent the data in a graph such
that the label information of the unlabeled set can be inferred using the labeled data. A classic and solid
technique is label propagation or Laplace learning Zhu et al. (2003), which di�uses label information from
labeled sets to unlabeled instances. Notably, the computational complexity of a typical label propagation
algorithm is only linear in the size of the data, which renders them e�cient choices for learning.

The success of label propagation hinges on an informative graph that retains the similarity of the data points.
Due to the volatile property of image pixels, i.e., unstable to noise, rotation, etc., feature transformations
Lowe (1999); Bruna & Mallat (2013); Simonyan & Zisserman (2014) are usually applied to build good quality
graphs. Past research Doersch (2016); Kingma et al. (2019); Mei et al. (2019); Miller et al. (2022); Calder
et al. (2020) has shown that the VAE can generate high-quality latent representation of data for feature
extraction and similarity graph construction. We utilize these properties in our DGAL framework.

Generative Models in Active Learning. Deep generative models have been used to learn the latent
representation of data in both semi-supervised and unsupervised learning (Kingma et al., 2019; 2014). Except
for constructing similarity graphs in GSSL, they can also be exploited to generate adversarial data/models
for more e�cient and robust AL. For example, Sinha et al. (2019a) proposed a task-agnostic model that
trains an adversarial network to select unlabeled instances that are distinct from the labeled set in the latent
space of a Variational Auto-Encoder (VAE). The DAL Gissin & Shalev-Shwartz (2019) selects samples in a
way such that the labeled and unlabeled sets are hard to distinguish in a learned representation of the data.
Miller et al. (2022) embeds the Synthetic Aperture Radar (SAR) data in a latent space of VAE and applies a
GSSL method on a constructed similarity graph in this feature space. Pourkamali-Anaraki & Wakin (2019)
aims at finding a diverse coreset in a representative latent space using K-Means clustering.

3 Problem setup and preliminaries

3.1 Active Learning

Algorithm 1 A general active learning algorithm
Input: Labeled data Dl, unlabeled pool Du,
batch size B, maximum round R, task model f◊

Initialize Dl by random sampling and train f◊ on
for i = 1 to R do

query DQ Ω QueryStrategy(f◊, Du, B)
update Dl Ω Dl

t
DQ, Du Ω Du \ DQ

train model f◊ on new labeled pool Dl

end for

We consider a data set D œ Rd of cardinally [n]. D

can split into a labelled set Dl which represents a
labeled subset of D, and an unlabeled subset Du. C

denotes the number of classes. Fixing a batch size B,
we seek for the most ‘informative’ subset D

ı œ Du

to be annotated from an unlabeled pool set given a
limited budget for annotation.

Active Learning Problem Statement. Let f◊ be
a classifier: f◊ : Rd æ �C , (�C denotes the space of
probability measures over [C] = {1, ..., C}). Assume
data are sampled i.i.d. over a space D ◊ [C], denoted {xi, yi}iœ[n].We would like to find a subset D

ı
Q µ Du of

cardinality B such that for a classifier f◊ trained with Dl
t

D
ú
Q

D
ı
Q = arg min

DQ:|DQ|=B
Ex,yœDu [I{f◊(x) ”= y}] (1)

gives the minimum expected error. Clearly, finding D
ú
Q µ Du that minimizes (1) is not possible without

knowing the labels. Hence various active learning strategies to approximate D
ú
Q have been developed in the

literature. To summarize we provide the general active learning framework in algorithm 1.

Query Time. Query time is the time measured between the activation of the query strategy and its return
with a selected set, i.e. first line in the loop of Algorithm 1.
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3.2 VAE-based data representation

Latent variable models such as the VAEs are well-acknowledged for learning representations of data, especially
images. VAE is a generative neural network consisting of a probabilistic encoder q(z|x) and a generative
model p(x|z). The generator models a distribution over the input data x, conditioned on a latent variable z

with prior distribution p◊(z), for simplicity we omit the subscript ◊. The encoder approximates the posterior
distribution p(z|x) of the latent variables z given input data x and is trained along with the generative model
by maximizing the evidence lower bound (ELBO):

ELBO(x) = Eq(z|x)[log(p(x|z)] ≠ KL(q(z|x)||p(z))

where KL is the Kullback–Libeler divergence and log(p(x)) Ø ELBO(x).

Figure 2: A VAE representation of digits ‘4’ and
‘9’ from MNIST.

To get a representative latent space from data (without
label information), we use a ResNet18 (He et al., 2016)
based encoder for large datasets and a CNN-based VAE for
all other datasets. In the first term, Eq(z|x)[log(p(x|z)] =
1

n

qn
i (xi≠x

Õ
i)2 where x

Õ
i is the i-th (out of n) reconstructed

image. We use the MSE loss for the first term, i.e. the
reconstruction loss. Next, we construct a proximity graph
from the latent representation to be used within a graph
di�usion process and label acquisition.

Figure 2 visualizes a 2D projection of a CNN-VAE 5D rep-
resentation of digits ‘4’ and ‘9’ from the MNIST dataset.
To demonstrate the important semantics of this representa-
tion for active learning, we focus on the decision boundary
between digits. we observe samples of ‘4’s that are similar
to samples from the ‘9’ class along the boundary.

4 Methodology

Below we explain the various components of VAE-DGAL and then connect them to provide the overall DGAL
scheme. Active learning is used in DGAL in a similar scheme to what is proposed in algorithm 1. However, we
are using an active criterion in two components: first, we use a very e�cient graph-di�usion-based selection
criterion Kushnir & Venturi (2023) in the VAE latent space to restrict the pool set to a much smaller set of
candidates. In the second component, we use a second acquisition criterion to select from the set of query
candidates the final query set for annotation. The second selection criterion may be computationally intensive
due to its nature, but also because it requires a feed-forward transmission. However, when applied to a
smaller, restricted set can be executed extremely fast.

We provide the pseudo-code of our method in Algorithm 2. We note that the input to VAE-DGAL includes
the labeled and unlabeled pool set, the VAE architecture, and the task classification network f◊. After
training the representation model g, we initiate active learning cycles which include i) di�usion-based selection
for restricting the pool set, ii) feeding the restricted set to the task network f◊ and, iii) using a basic active
learning criterion to select the final set. After annotating the final set, f◊ is retrained. The time complexity
analysis showing a log-linear complexity can be found in Section 4.4.

The VAE representation space can be replaced by other representations. Its advantage is in being derived via
an unsupervised method which requires no labels and can be performed only once, prior to label acquisition.
The underlying assumption is that the representation space bears a structure that correlates with the class
function, and therefore can be used to restrict the pool set to a smaller, yet, impactful set of candidates for
annotation.

4.1 Di�usion on graphs

Consider the optimized latent representation g(D) = Z, where g : Rd æ Rk, and k is the dimensionality of
the latent space Z. Z may also be divided into a mapping of the labeled and unlabelled set as Zl and Zu,
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respectively. In this latent space, we construct a weighted KNN proximity graph G = (V, E), where the nodes
V correspond to the latent space representation of the data points zi œ Z, and the edges E correspond to the
pairs (vi, vj) corresponding to (zi, zj) who are neighboring in Z. The edge weights are computed as

Wij = m

3
≠fl(zi, zj)

‡ij

4
I{j œ N(i)}

with m : (zi, zj) æ R+ as a similarity metric, fl as a distance metric, ‡ij as a local scaling factor, and N(i) as
the K -NN neighbourhood of node i in the latent space. We define a graph transition matrix M by

M
.= �≠1

W, (2)

where � = diag(
q

j Wij). M stands for the transition probabilities of a Markov random walk on G.

We construct a label di�usion framework as a Markov process to propagate the label information from the
labeled set Dl to the unlabelled set Du. The transition probability of a step from state i to state j is Mij .
W.l.g. consider a binary classification and the labeling function y(z) æ {≠1, 1} to facilitate the following:
we associate the classification probability p(y(zi) = 1|zi) with a t-step hit probability - pt(y(z) = 1|i) of a
random walk from zi to a training sample z with label 1. We can therefore predict the label ’1’ to zi in Zu

based on the random walk probability pt(y(z) = 1|i). pt(y(z) = 1|i) can be derived by the recursive relation

pt(y(z) = 1|i) =
ÿ

j

pt≠1(y(z) = 1|j)pij . (3)

Let ‰i = 2pt(y(z) = 1|i) ≠ 1 œ [≠1, 1] denote an approximation to the binary label function of a node vi. We
also denote ‰u and ‰l as the entries corresponding to the unlabeled and labeled node sets in ‰, respectively.
In matrix form we can rewrite (3) for ‰

‰u = [�≠1

uu Wul|�≠1

uu Wuu]
3

‰l

‰u

4
, where � =

3
�ll 0
0 �uu

4
, W =

3
Wll Wlu

Wul Wuu

4
. (4)

We can rewrite (4) the graph Laplacian L = D ≠ W in the system

Luu‰u = Wul‰l ≈∆ Luu‰uu = ≠Lulyl (5)

Equation (5) above can be solved via the iteration (Chapelle et al., 2009):

‰
(t+1)

i = 1
Luu,ij

Q

a≠(Lulyl)i ≠
ÿ

j ”=i

Luu,ij‰
(t)

j

R

b , (6)

where the superscript corresponds to the iteration index. Equation (6) is transducing, at time step (t + 1), a
label ‰

t+1

i to ‰i as a weighted average of the labels of its neighbors at time step t.

Now consider the multi-class case, ‰ is now an n ◊ C matrix. For the signal column vector corresponding to
the class c œ C, the di�usion process initializes with

‰
(0)

ic =

Y
]

[

1 if zi œ Zl and c = yi

≠1 if zi œ Zl and c ”= yi

0 if zi œ Zu.

(7)

The labels are propagated to ‰u gradually for t steps. At the (t + 1)-th step,

‰
(t+1)

ic =

Y
]

[

1 if zi œ Zl and c = yi

≠1 if zi œ Zl and c ”= yi

(M‰
t
:,c)i if zi œ Zu.

(8)
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Short legs

Long legs

Figure 3: The DGMG selection of digits 4s and 9s
(from MNIST) in an embedding space of ResNet18
well-trained with full data and labels.

Figure 4: The DGMG selection of CIFAR10 in a
ResNet18 embedding space. The dark dots are
selected points by DGMG.

4.2 Query criterion

To this end, the di�usion process can be used to probe the most uncertain points. Most uncertain points
maximize the gradient of the loss function in expectation and therefore will reduce the expected error in the
model in Equation (1). Active learning, therefore, aims to query points of highest uncertainty.

The matrix ‰
(T ) of propagated values at time T can be interpreted as uncertainties measured by the

absolute value |‰(T )

c,i |. Specifically, the absolute value magnitude represents a measure of uncertainty on
whether vertex i belongs to class c. The magnitude can be used to select the new batch to query as

D
sub
Q = {xi : arg minB

ziœZu
min
cœ[C]

Î‰
(T )

c,i Î}, (9)

where minB denotes the B smallest elements.

We demonstrate the exploration-refinement trade-o� of (9) in Figure 3, with a subset of MNIST (LeCun
et al., 1998) representation in a trained ResNet18 (He et al., 2016). A higher query rate is observed close to
the decision boundary after the overall clusters have been explored (queried samples are in bold round points).
We also demonstrate that the query selection along the boundary captures ‘4’s and ‘9’s that have similar
shapes, ‘leg’ sizes, and orientations. These samples whose similarity can be best learned via annotation are
automatically selected by our criterion (9) for annotation.

In Figure 4 we plot the latent representation of CIFAR10 (Krizhevsky et al., 2009). We mark the points
selected by the first five rounds as dark, round dots and data selected by the next five rounds as rectangular,
dark dots. Di�erent color stands for di�erent classes and points with lighter colors are the latent representation
of all the CIFAR10 data. Here a similar trend is captured showing the sample selection starts with exploration
and then tends to the refinement of decision boundaries between clusters of di�erent classes.

Exploration and Refinement. Our query criterion coupled with the di�usion process allows us to explore
the data set at the early stages of active learning and switch to refinement when exploration has saturated.
To understand this mechanism we show in the following that the di�usion iterant ‰

t converges to the second
eigenvector „2 of the graph’s Laplacian as t æ Œ. Asymptotically, „2 provides a relaxed solution to the
minimal normalized cut problem, where the cut corresponds to the decision boundary between the two classes
in G(V, E, W ).

At early stages of label acquisition low magnitude entries in ‰ correspond to data points that are unreachable
from the training set via di�usion and need to be explored. At later stages, all unlabelled data points Xu

are reachable via di�usion from the labeled set Xl. At this stage low magnitude entries correspond to the
transition between the two classes -1 and 1. These nodes capture the eigenvector’s transition from negative
to positive entries. Therefore, sampling these points for annotation corresponds to the refinement of the
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decision boundary. We provide the main theoretical result on the convergence of ‰
(t) and refer for further

details in Kushnir & Venturi (2023).

Lemma 4.1. Let ⁄1, ..., ⁄n, „1, ..., „n be the solutions to the system: L„ = (1 ≠ ⁄)D„. Then ‰
(t) converges

to „2 via the iteration (6) with M , as t æ Œ.

4.3 Deep active learning with the task classifier

Algorithm 2 The DGAL strategy
Input: Labeled data Dl, unlabeled pool Du, the initial VAE
model g, the task model f◊, T , K, batch sizes B1,2, round R, a
query strategy Q

Train g with the full dataset (without label information)
Build graph G = (V, E, W ) from the latent space g(D) = Z

for r = 1 to R do

Initialize ‰
(0) based on Dl

for t = 1 to T do

‰
(t) Ω M‰

(t≠1)

assign ‰
(t) with training labels

end for

Query a restricted set of size B1 :
D

sub
Q = {xq : zq = arg miniœZu,cœ[C]

|‰(T )

i,c |}
Active sub-sampling of batch D

sub
Q with criterion Q

and network f◊: DQ Ω Q(f◊, D
sub
Q , B2)

Annotate DQ

Update Dl Ω Dl
t

DQ, Du Ω Du \ DQ

Train f◊ with Dl

end for

At the last stage of the algorithm we in-
put the restricted subset D

sub
Q into the

task net and using a baseline active learn-
ing criterion we select the final set DQ

to be sent for annotation. Feeding pool
data into the network poses a significant
computational cost. However, since the
restricted set D

sub
Q is significantly smaller

than Du we observe a significant speedup
in the query time. In our experiments,
we used two simple baselines to demon-
strate the speed of DGAL. However, any
other deep active learning criterion can
be used, including another di�usion-based
criterion (Kushnir & Venturi, 2023).

Least Confidence. Confidence sam-
pling (Lewis, 1995): xq = arg maxx(1 ≠
fĉ(x)), where f(x) is the prediction proba-
bility extracted from the output layer and
ĉ = arg max f(x). Denoted as DGLC.
Margin. Margin sampling (Sche�er et al.,
2001): x

ı = arg minx(fĉ1(x) ≠ fĉ2(x)),
where ĉ1, ĉ2 are the first and second most probable prediction labels respectively. Denoted as DGMG.

4.4 Computational complexity analysis and parameter selection

The running time analysis is composed of three parts. The first part includes the computation of the K-NN
graph. The K-NN proximity search computational cost can be reduced from the naive search cost by using
procedures for K-NN search based on KD (Bentley, 1975) or ball trees (Omohundro, 1989). Such methods
have complexity O(dN log N), with d as the dimension of the space. Other alternatives include approximate
search (Datar et al., 2004). In the second part, the di�usion vector ‰ is multiplied by the transition matrix.
Addressing its sparsity as O(KN) non-zero entries, this operation scales linearly in N as O(TKN). T and
K determine the level of confidence imposed by the di�used training set over the unlabeled set. Higher
K imposes strong confidence in the current labeling hypothesis but renders the di�usion more exhaustive.
Similarly, a large number of iterations T may result in an overly smoothed (and less informative) signal
‰

(T ). During exploration, large T imposes a hypothesis that may be locally correct but is far from being
globally reliable. In our experiments, we use T ƒ logK N to cover most of the graph via di�usion: assuming
a diameter-balanced graph (S. Miklavic, 2018). The cover requires O(logK N) iterations if the labeled set
is small (i.e. |Xl| ¥ O(1), as typical in active learning settings). We use K su�ciently high to allow graph
connectivity. This parameter selection leads to a di�usion process that scales as O(KN logK N).

Finally, a batch of the smallest soft-labels needs to be queried. This requires a quick-sort to be applied
to the soft labels magnitude, which scales O(N log N). We conclude that the running time of DDAL is
O(dN log N + KN logK N + N log N), whereas for a constant K can be further simplified to O(dN log N).
We note that the number of units in the penultimate layer d is typically small.
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Additional parameters: The batch size B is set at no more than 500 (see batch size for di�usion algorithm
in Kushnir & Venturi (2023). The number of epochs is set with a stopping criterion for the convergence of
the loss function.

5 Experiments

Our experiments validate our goal to reduce the query time while maintaining the highest accuracy. We
report DGAL’s improved query time vs. accuracy trade-o� and compare it with pivotal SOTA baselines.
Additionally, we provide classical active learning empirical analysis of the trade-o� between the number
of queried data points and accuracy, and we provide average query times, for all baselines and data sets.
We provide an ablation study with VAE-SEALS (see Algorithm 3) and with random versions of pool set
restriction. Training details are provided in table 1 in the appendix.

5.1 Benchmarks

Random: selects samples uniformly at random for annotation. Confidence based methods: A set of
conventional selection strategies includes Least-Confidence (LC) (Lewis, 1995), Margin (Sche�er et al., 2001;
Luo et al., 2005) and Entropy (Holub et al., 2008). In LC, the instance whose prediction is least confident is
selected; Margin selects data that has minimum di�erence between the prediction probability of the first
and second most confident class labels. Entropy selects samples that are the most uncertain overall class
probabilities on average. BADGE (Ash et al., 2019a;b): Selects points based on their gradient magnitude
and diversity. CoreSet (Sener & Savarese, 2017a;b): An algorithm that selects a core-set of points that
⁄-cover the pool set. SEALS (Coleman et al., 2022a;b): restricts the candidate pool to the nearest neighbors
of the currently labeled set to improve computational e�ciency. We examine two versions of SEALS, one
that updates the feature extractor, and another that sets it fixed using a VAE. GANVAE (Sinha et al.,
2019a;b): A task-agnostic method that selects points that are not well represented in the pool, using a VAE
and an adversarial network.

Data sets and setting. Experiments are conducted on multiple data sets to evaluate how DGAL performs
in comparison to SOTA benchmarks. We also perform an ablation study. We experimented with benchmark
data sets MNIST LeCun et al. (1998), EMNIST Cohen et al. (2017), SVHN Netzer et al. (2011), CIFAR10
Krizhevsky et al. (2009), CIFAR100 Krizhevsky et al. (2009), and Mini-ImageNet Ravi & Larochelle (2017)
data sets. We include classic networks CNN LeCun et al. (1998), ResNet18 He et al. (2016), ResNet50 He
et al. (2016), and ViT-Small Dosovitskiy et al. (2020).

5.2 DGMG vs. Benchmarks

Query time vs. test accuracy. In Figure 5 we report accuracy per total query time for a fixed number of
queries. We observe for all data sets that DGMG’s accuracy per query time is by far higher than SOTA.
Moreover, we emphasize its ability to reach the highest accuracy vs. the random baseline, which is the fastest
method with essentially close to zero query time (approx. 10≠3 secs.). It can be seen that the acceleration of
DGAL is of an order of x1000 with respect to the worst benchmark method and x100 concerning the next
best-performing method. These results emphasize the advantage of the DGALs graph di�usion approach
in selecting more impactful samples for the pool set restriction, in particular, the advantage over using the
k-nearest-neighbors to the existing training set, as proposed in SEALS. The KNN criterion does not select a
diversified set or even focus on decision boundary refinement in the restricted set. Consequently, its accuracy
gain in each query step is lower. Additionally, the ever-growing candidate size in SEALS (by a factor of the
number of neighbors) increases the total query time.

We note that in our experiments for Figure 5, the SEALS feature extractor is trained with labeled data
before any acquisition cycles by using a part of the labeled data to implement the KNN data structure. The
remaining data serves for pool acquisition. Such an approach does not apply to active learning where initial
labels may not even exist unless transferred from a pre-trained model, as suggested in Coleman et al. (2019).
To provide a consistent benchmark, i.e. applying SEALS in the same way for all datasets, we adjust the
algorithm by feeding the datasets into the trained task model to get an embedding representation as the
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(a) MNIST (b) EMNIST (c) SVHN

(d) CIFAR10 (e) CIFAR100 (f) Mini ImageNet

Figure 5: Plots of total query time vs test accuracy for 6 datasets over 6 benchmarks. The vertical lines
capture the highest and lowest test accuracy among all methods.

feature extractor, which adds up query time. Below, we demonstrate a version of SEALS using a VAE as the
feature extractor to compute the KNN graph only once. From a later experiment, we found that VAE-SEALS
is slower than DGAL in query time and worse in its query-vs-accuracy trade-o�.

Test accuracy vs. number of selected labels. In Figure 6, we report the classical active learning trade-o�
between accuracy and training set size. DGAL is observed to be competitive with several SOTA benchmarks,
in particular, BADGE of Ash et al. (2019a) and CoreSet of Sener & Savarese (2017a). SEALS, on the other
hand, is observed to be lagging in several data sets in an early stage of active learning because its selection
criterion relies on the nearest neighbors of the existing training set which does not diversify the restricted
set enough. In fact, its accuracy in the late stage does not even get close to existing benchmarks because
refinement is not occurring either in the nearest neighbor-based query criterion.

Average query time. In Figure 7, the DGMG’s average query time is an order of magnitude lower than
that of all benchmarks. Note that the RS has an almost zero query time (at most 10≠3 secs) that is barely
visible in the plots.

VAE and graph construction time. We provide running time for the VAE and graph construction in
Table 2 in the appendix. As seen, even with the pre-processing time our method is still faster than other
methods, in particular, faster than the SEALS algorithm without its additional pre-processing time. We
note that the pre-processing time is a one-time procedure, while the query is a repeated process, depending
on each case. Hence, total query time can increase significantly higher than the pre-processing time. Hence
the advantage of reducing it even with the price of pre-processing time.

5.3 DGMG vs. VAE-SEALS in accuracy and query time

We compare DGMG and DGLC with VAE-SEALS (see Algorithm 3). In VAE-SEALS, instead of extracting
the features of unlabeled data from the task model and re-computing its KNN graph at each round, we use
the same VAE latent space as used in DGMG. We note that in the SEALS paper Coleman et al. (2019), the
authors didn’t specify a specific representation space in the algorithm. This ablation study verifies that our
query component based on di�usion is outperforming the KNN criterion of SEALS. We provide the results
for this experiments in Figure 8 below and figures 10 and 11 in Appendix D.1. This study provides di�erent
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(a) MNIST (b) EMNIST (c) SVHN

(d) CIFAR10 (e) CIFAR100 (f) Mini ImageNet

Figure 6: Plots of test accuracy vs. size of queried data. Each experiment is run at fixed query rounds for
di�erent methods and has been repeated 5 times.

(a) MNIST (b) EMNIST (c) SVHN

(d) CIFAR10 (e) CIFAR100 (f) Mini ImageNet

Figure 7: Query time for 6 benchmarks and DGMG, averaged over a fixed number of rounds for each method.
The average time is averaged over 5 repetitions for each experiment.

experimentation on using a static pre-computed data representation with the KNN criterion, and its e�ect on
the overall accuracy and query time of the methods. It also provides a view of the di�erent versions of DGAL
(DGMG and DGLC) and the advantage of the DGAL latent di�usion methodology over other restriction
criteria. In particular, the comparison between VAE-SEALS and DGAL versions shows that DGAL is faster
and achieves better accuracy. As seen in Figs. 8, DGMG has better accuracy than DGLC in most data sets.
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Algorithm 3 The VAE-SEALS strategy
Input: Labeled data Dl, unlabeled pool Du, the initial
VAE model g, the task model f◊, batch size B, round R,
a query strategy Q, label y

train g with Dl

implement the k-nearest neighbors structure N (·, ·)
on the latent space g(D) = Z

initialize the limited unlabeled pool as Du =
fi(Z,y)œDl

N (Z, k)
for r = 1 to R do

active sub-sampling of a batch B from Du with

criterion Q and network f◊: DQ = Q(f◊, Du)
annotate DQ

update Dl = Dl
t

DQ, Du = (Du \ DQ) fi N(DQ, k)
train f◊ with Dl

end for

In Figure 8, DGAL versions have an advantage
over the VAE-SEALS. The VAE-SEALS can
achieve similar accuracy with EMNIST, SVHN,
CIFAR10, and Mini-ImageNet but uses more
time than DGAL in these cases. It shows that
the di�usion graph on latent space is more pow-
erful than simply applying KNN on a latent
space. On the other data sets SEALS doesn’t
achieve the accuracy that DGAL achieves within
the same range of queries.

Comparing DGLC with VAE-SEALS in Fig-
ure 10, we observe the importance of pre-
selection. The pre-selection of SEALS lacks di-
versity in the first few rounds of data acquisition.
Under the same sub-sampling method (the least
confidence sampling) after pre-selection, DGLC
has an obvious advantage over VAE-SEALS at
the beginning of the active learning cycles, especially for MNIST, EMNIST, CIFAR10, and CIFAR100.

In Figure 11, we observe that our methods (DGMG, DGLC) win over the others in average query time.
Due to the nature of the restriction process, all methods reduce the query time due to a smaller pool set.
Nevertheless, as we see in Figures 8 and 10, while VAE-SEALS average query time may be similar to DGAL’s,
its accuracy trade-o� with the query time is significantly worse than DGALs.

(a) MNIST (b) EMNIST (c) SVHN

(d) CIFAR10 (e) CIFAR100 (f) Mini ImageNet

Figure 8: Test accuracy vs. total query time for VAE-SEALS, DGMG, DGLC, and Random (RS). The
horizontal lines capture the highest and lowest test accuracy among all methods.

5.4 Ablation study

We conducted several ablation studies to investigate further on DGAL. First, we compare DGMG vs. non-
DG-based confidence methods. The results show that the di�usion-based pre-selection contributes to a fast
model improvement, especially in the early stage of querying. We also perform a study in which we substitute
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various deep AL methods after our di�usion-based restriction of the candidate set in Figure 14. Methods
combined with the VAE di�usion method are faster than running them alone. Due to space limitation, we
provide plotted results in Appendix D.

5.5 Results on ImageNet data

The ImageNet Deng et al. (2009) is a well-known large-scale dataset in computer vision. It has approximately
1.3 million images with 1000 classes and an average size of 469 ◊ 387 pixels per image. Due to the size
of the data set, many AL algorithms did not finish execution in reasonable time. We therefore present in
Figure 9 the results of selected AL methods as well as the DGMG. As observed, DGMG achieves better
accuracy than VAE-SEALS and Random sampling. In these multi-class problems, the accuracy di�erence is
significant. We run the experiment with a query size of 1000, and restriction to 20,000 in total query labels
with K = 10, T = 5.

(a) Query time vs. accuracy (b) Accuracy vs. number of labels

Figure 9: Experiments on the ImageNet data.

6 Conclusion

We proposed a di�usion-based sub-sampling method DGAL for e�cient active learning. Unlike most active
learning methods that feed the entire candidate pool set into the task model at each round, we first apply a
di�usion model for pre-selection of the query set and then apply a deep active learning criterion on the subset
for final label acquisition. Our method outperforms others in both test accuracy and query time in various
experimental settings and diverse data sets. We show an order of magnitude acceleration in the query time
compared to all other benchmarks. In the future, we plan to explore unsupervised representation learning
schemes for improving latent space where label di�usion can be more e�ciently applied.
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