
Primal-Dual Neural Algorithmic Reasoning

Yu He 1 Ellen Vitercik 1 2

Abstract
Neural Algorithmic Reasoning (NAR) trains neu-
ral networks to simulate classical algorithms, en-
abling structured and interpretable reasoning over
complex data. While prior research has predom-
inantly focused on learning exact algorithms for
polynomial-time-solvable problems, extending
NAR to harder problems remains an open chal-
lenge. In this work, we introduce a general NAR
framework grounded in the primal-dual paradigm,
a classical method for designing efficient approxi-
mation algorithms. By leveraging a bipartite rep-
resentation between primal and dual variables, we
establish an alignment between primal-dual algo-
rithms and Graph Neural Networks. Furthermore,
we incorporate optimal solutions from small in-
stances to greatly enhance the model’s reasoning
capabilities. Our empirical results demonstrate
that our model not only simulates but also out-
performs approximation algorithms for multiple
tasks, exhibiting robust generalization to larger
and out-of-distribution graphs. Moreover, we
highlight the framework’s practical utility by inte-
grating it with commercial solvers and applying
it to real-world datasets.

1. Introduction
Understanding the algorithmic reasoning ability of neural
networks is crucial for quantifying their expressivity and
practical deployment (Łukasz Kaiser & Sutskever, 2016;
Zhou et al., 2022; Sanford et al., 2024; de Luca & Foun-
toulakis, 2024). However, end-to-end supervised learning
often struggles with generalization for algorithmic tasks.
Neural Algorithmic Reasoning (NAR) (Veličković & Blun-
dell, 2021) addresses this challenge by training neural net-
works to mimic operations of classical algorithms, such as

1Department of Computer Science, Stanford University, Stan-
ford, CA, USA 2Department of Management Science & Engineer-
ing, Stanford University, Stanford, CA, USA. Correspondence to:
Yu He <heyu@stanford.edu>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

Bellman-Ford for shortest-path problems (Veličković et al.,
2020). By aligning a model’s architecture with an algo-
rithm’s step-wise operations, NAR enhances generalization
and sample efficiency (Xu et al., 2020; 2021).

Moreover, NAR addresses a fundamental bottleneck of clas-
sical algorithms: while they guarantee correctness and in-
teroperability, they require extensive feature engineering to
compress real-world data into scalar values. By embedding
algorithmic knowledge into neural models, NAR enables di-
rect handling of structured real-world data (Deac et al., 2021;
He et al., 2022; Beurer-Kellner et al., 2022; Numeroso et al.,
2023). For instance, a model pre-trained with Bellman-Ford
knowledge can tackle real-world transportation problems,
while integrating domain-specific features such as weather
conditions and traffic patterns.

Despite the success of NAR in simulating polynomial-time
algorithms (Ibarz et al., 2022; Rodionov & Prokhorenkova,
2024), in particular the 30 algorithms (e.g., sorting, search,
graph) from the CLRS-30 benchmark (Veličković et al.,
2022) and other benchmarks (Minder et al., 2023; Markeeva
et al., 2024), its extension to NP-hard problems remains
an open challenge due to the difficulty in reliably generat-
ing ground-truth samplers (Veličković et al., 2022). This
limitation creates a significant gap when applying NAR to
real-world problems, many of which are inherently NP-hard.
Addressing this gap is crucial, as the motivation behind
NAR is to enable the transfer of algorithmic knowledge to
tackle complex, real-world datasets effectively.

We build upon the line of NAR research that simulates clas-
sical algorithms with Graph Neural Networks (GNNs) (Xu
et al., 2020; Veličković et al., 2020; Bevilacqua et al., 2023;
Rodionov & Prokhorenkova, 2023; 2024; Georgiev et al.,
2024). Specifically, we focus on advancing NAR into the un-
derexplored NP-hard domain (Cappart et al., 2022; Georgiev
et al., 2023c) by training GNNs to replicate approximation
algorithms. Additionally, we leverage findings that NAR
benefits from multi-task learning (Xhonneux et al., 2021;
Ibarz et al., 2022) when trained on multiple algorithms. In
particular, we harness the concept of duality, which frames
problems through complementary primal and dual perspec-
tives, a principle that has been shown to enhance NAR
(Numeroso et al., 2023) in the context of Ford-Fulkerson
via the max-flow min-cut theorem.

1

Primal-Dual Neural Algorithmic Reasoning

Our key contributions are as follows:

• We propose Primal-Dual Neural Algorithmic Reason-
ing (PDNAR) – a general NAR framework based on
the primal-dual paradigm to learn algorithms for both
polynomial-time-solvable and NP-hard tasks.

• We establish a novel alignment between primal-dual algo-
rithms and GNNs using a bipartite representation between
primal and dual variables.

• We provide theoretical proofs showing that PDNAR can
exactly replicate the classical primal-dual algorithm and
inherit performance guarantees.

• We go beyond algorithm replication by incorporating op-
timal supervision signals from small problem instances,
enabling it to outperform the algorithm it is trained on1.
To the best of our knowledge, this is the first NAR method
designed to achieve this.

• We empirically validate PDNAR on synthetic algorithmic
datasets, demonstrating strong generalization to larger
problem instances and OOD distributions.

• We showcase PDNAR’s practical utility by applying it to
real-world datasets and commercial solvers.

Our code can be found at https://github.com/
dransyhe/pdnar.

2. Related works
The most closely related work extending NAR to NP-hard
domain is by Georgiev et al. (2023c), which pretrains a
GNN on algorithms for polynomial-time-solvable problems
(e.g., Prim’s algorithm for MST) and using transfer learning
to solve NP-hard problems (e.g., TSP). However, this ap-
proach lacks generality since each NP-hard problem requires
carefully selecting a related polynomial-time-solvable prob-
lem and algorithm. However, our method is inherently
general, directly learning approximation algorithms for NP-
hard tasks and incorporating optimal solutions from small
instances to enhance the model’s reasoning ability.

Only one prior work has explored the role of duality in NAR.
Numeroso et al. (2023) trained a GNN to replicate the Ford-
Fulkerson algorithm for the max-flow (primal) and min-cut
(dual) problems. By leveraging supervision signals from
both problems, their model benefits from multi-task learning
to achieve better performance. However, their architecture
is highly specialized for Ford-Fulkerson, and both problems
are polynomial-time solvable and thus benefit from strong
duality. In contrast, our framework is general and applicable

1Many classical primal-dual algorithms achieve tight worst-
case approximation bounds under the Unique Games Conjec-
ture (e.g., Khot & Regev, 2008). Although worst-case limits
are unlikely to be exceeded, our empirical results demonstrate
improved performance in a setting beyond the worst-case.

to a range of exact and approximation algorithms.

Another line of work, Neural Combinatorial Optimization
(NCO), develops neural approaches for solving NP-hard
problems. However, NCO and NAR differ fundamentally.
NCO focuses on learning task-specific heuristics or end-to-
end optimization methods for finding (near-)optimal solu-
tions (Dai et al., 2018; Li et al., 2018; Joshi et al., 2019;
Karalias & Loukas, 2021; Wang & Li, 2023; Wenkel et al.,
2024; Yau et al., 2024), whereas NAR designs neural ar-
chitectures to simulate and generalize algorithmic behav-
ior across problems, allowing them to embed algorithmic
knowledge in real-world settings. While our primary focus
is not NCO, our framework can serve as an algorithmically
informed GNN to enhance data efficiency and generalization
in supervised learning. See Appendix H for details.

3. Background
3.1. Problem statement: algorithmic reasoning

The task of algorithmic reasoning is to learn a modelM that
approximates the behavior of a target algorithmA : X → Y ,
where inputs x ∈ X map to outputs y = A(x) ∈ Y . Unlike
standard function approximation, the goal is to model the
sequence of intermediate states {S(t)}Tt=0 generated by A
during execution with trajectoryM(t)(x) = S(t).

In particular, we focus on simulating the primal-dual al-
gorithm, which provides a general framework to design
algorithms for both polynomial-time-solvable and NP-hard
problems. We prioritize the latter due to the limited NAR
research in the NP-hard domain.

3.2. Algorithmic tasks

We study the following algorithmic problems.

Definition 3.1 (Minimum Vertex Cover). Let G = (V, E)
be a graph where V are vertices and E are edges, and each
vertex v ∈ V has a non-negative weight wv ∈ R+. A vertex
cover for G is a subset C ⊆ V of the vertices such that for
each edge (v, u) ∈ E , either v ∈ C, u ∈ C, or both. The
objective is to minimize the total vertex weight

∑
v∈C wv .

Definition 3.2 (Minimum Set Cover). Given a ground set
U and a family of sets C ⊆ 2U with non-negative weights
wS ∈ R+ for all sets S ∈ C, a set cover is a subfamily
C′ ⊆ C such that ∪S∈C′S = ∪S∈CS. The objective is to
minimize the total weight

∑
S∈C′ wS .

Definition 3.3 (Minimum Hitting Set). Given a ground set
E of elements e with non-negative weights we ∈ R+ and
a collection T of subsets T ⊆ E, a hitting set is a subset
A ⊆ E such thatA∩T ̸= ∅ for every T ∈ T . The objective
is to minimize the total weight

∑
e∈A we.

2

https://github.com/dransyhe/pdnar
https://github.com/dransyhe/pdnar

Primal-Dual Neural Algorithmic Reasoning

Figure 1. Let xe ∈ {0, 1} for each element e ∈ E be the variables, where xe = 1 represents that element e is included in the hitting set A,
the IP formulation of MHS is shown in (a). Let xe ∈ R+ be the primal variables, the LP relaxation of MHS is shown in (b). Let yT ∈ R+

for each set T ∈ T be the dual variables, the dual problem of the LP relaxation of MHS is shown in (c).

Algorithm 1 General primal-dual approximation algorithm

Input: (T , E, w): a ground set E with weights w, a family of subsets T ⊆ 2E

A← ∅; for all e ∈ E, re ← we

while ∃T : A ∩ T = ∅ do
V ← {T : A ∩ T = ∅}
repeat

for T ∈ V do δT ← mine∈T

{
re

|{T ′:e∈T ′}|

}
for e ∈ E \A do re ← re −

∑
T :e∈T δT

until ∃e /∈ A : re = 0
A← A ∪ {e : re = 0}

end while
Output: A

Uniform increase (optional):
(6.1): ∆← minT∈VδT
(6.2): for e ∈ E \A do re ← re − |{T : e ∈ T}|∆

The minimum vertex cover problem is a foundational NP-
hard problem with wide-reaching applications, where its
dual problem is the well-studied maximum edge-packing
problem. This primal-dual pair inspired a famous 2-
approximation algorithm proposed by Hochbaum (1982)
and many follow-up works. The minimum set cover prob-
lem is a generalization of vertex cover to hypergraphs, pro-
viding a more complex structural setting to evaluate algo-
rithmic reasoning. Lastly, the hitting set is equivalent to
the set cover problem, but its formulation more naturally
extends to a wide range of problems, including vertex cover,
Steiner tree, feedback vertex set, and many more (Goemans
& Williamson, 1996).

3.3. A general primal-dual approximation algorithm

We now illustrate a general primal-dual approximation al-
gorithm using the Minimum Hitting Set (MHS) problem as
a concrete example. MHS can be formulated as an integer
program (IP) as shown in Figure 1(a), where variables are
restricted to integer values. The linear programming (LP)
relaxation relaxes the integer constraints and allows vari-
ables to take continuous values, making the problem more
tractable. This is illustrated in Figure 1(b).

Every LP formulation has a dual version. For MHS, Figure
1(b) is the primal and Figure 1(c) is the dual. More gener-

ally, the dual of an LP minx≥0{c⊤x : Ax ≥ b} is defined
as maxy≥0{y⊤b : ATy ≤ c}. The weak duality principal
states that any feasible solution to the primal problem has a
larger objective value than any feasible solution to the dual
problem. Based on this principle, the primal-dual frame-
work iteratively updates both the primal and dual solutions,
closing their gap and ensuring they improve in tandem.

Based on the primal-dual framework, an α-approximation
algorithm (Bar-Yehuda & Even, 1981; Hochbaum, 1982;
Goemans & Williamson, 1996; Khuller et al., 1994) for
the general hitting set problem was developed, where α is
the maximal cardinality of the subsets. The pseudocode of
the algorithm is shown in Algorithm 1. Given a hitting set
problem (T , E, w), the algorithm progresses over a series
of rounds. At each round, the algorithm increases some of
the dual variables yT until a constraint

∑
T :e∈T yT ≤ we

becomes equality, at which point the element e is added to
the hitting set A. Although the algorithm does not explicitly
define the dual variables yT , it can be interpreted as gradu-
ally increasing the dual variables by an amount δT in each
round, as shown in Line 1. This is implemented by defining
a residual weight re = we −

∑
T :e∈T yT , which is defined

in terms of the step sizes δT , as shown in Line 1. Once
re = 0 for some e ̸∈ A (i.e. the constraint becomes tight), e
is added to the hitting set A (Lines 1 and 1). This process is
repeated until A is a valid hitting set (Line 1).

3

Primal-Dual Neural Algorithmic Reasoning

A general framework This algorithm can be reformu-
lated to recover many classical (exact or approximation)
algorithms (Goemans & Williamson, 1996). For example,
vertex cover can be seen as a hitting set problem, where ele-
ment e ∈ E corresponds to vertex v ∈ V , and subset T ∈ T
corresponds to an edge that connects two vertices. This al-
lows a direct adaptation of Algorithm 1 to solve the vertex
cover problem. Moreover, Khuller et al. (1994) propose a
sublinear-time vertex cover approximation algorithm which
is a simple generalization of Algorithm 1 (see Appendix A).
They relax the dual constraint using a parameter ϵ > 0, such
that a vertex e is included in the cover if re ≤ ϵwe, instead of
re = 0. This leads to a 2/(1− ϵ)-approximation algorithm
with a runtime of O(ln2 |T | ln 1

ϵ). Since set cover extends
vertex cover to hypergraphs, this algorithm can be adapted
into an r/(1 − ϵ)-approximation algorithm for set cover,
where r is the maximal cardinality of the sets. We will later
empirically show how well our framework simulates these
algorithms. Moreover, the generality of the primal-dual
framework is not limited by approximation algorithms for
NP-hard tasks: it also recovers exact algorithms for some
polynomial-time-solvable problems, such as Kruskal’s min-
imum spanning tree algorithm (Kruskal, 1956).

Uniform increase of dual variables Some problems ben-
efit from simultaneously increasing all dual variables δT at
the same rate (Agrawal et al., 1995; Goemans & Williamson,
1995). An example is how Kruskal’s algorithm greedily se-
lects the minimum-cost edge that connects two distinct com-
ponents. This corresponds to increasing the dual variables
for all connected components simultaneously until there is
an edge whose dual constraint becomes tight. The incorpora-
tion of this uniform increase rule is illustrated from Line 6.1
and Line 6.2 in Algorithm 1. This rule provides a more bal-
anced approach that attends to all dual variables, allowing
the framework to adapt to a broader range of algorithms.

4. Primal-Dual Neural Algorithmic Reasoning
(PDNAR)

We now present our framework of using a GNN to simulate
the general primal-dual approximation algorithm, represent-
ing the primal-dual variables as two sides in a bipartite graph
(Section 4.1). We also show how the uniform increase rule
can be incorporated with a virtual node that connects to all
dual nodes in the bipartite graph (Section 4.2). Furthermore,
we explain how we use optimal solutions from integer pro-
gramming solvers as additional training signals (Section
4.4), and later show how it allows the PDNAR to surpass
the performance of the approximation algorithm.

4.1. Architecture

We adopt the encoder-processor-decoder framework (Ham-
rick et al., 2018) from the neural algorithmic reasoning

blueprint (Veličković & Blundell, 2021). In this framework,
the processor is typically a message-passing GNN (Gilmer
et al., 2017), operating in a latent space to simulate a sin-
gle step of algorithmic execution. The encoder transforms
the input value (e.g., element weight) into this latent space,
while the decoder reconstructs the final prediction from it
(e.g., whether to include the element in the solution). We
continue using Algorithm 1 for MHS as an example.

Bipartite graph construction Given a hitting set problem
(T , E, w), we represent it as a bipartite graph with elements
e ∈ E (primal) on the left-hand side (LHS) and sets T ∈ T
(dual) on the right-hand side (RHS), as illustrated in Figure
2. An edge connects an element e and a set T if e ∈ T . Let
N (e) denote the set of neighbors of node e. As outlined in
Algorithm 1, the algorithm incrementally adds elements e
to the hitting set A. When an element is added, we remove
node e by masking it out, along with its neighboring sets
T ∈ N (e), which are now hit. Consequently, the violation
set V = {T | A ∩ T = ∅} consists of the remaining sets T
still in the graph. Once A becomes a valid hitting set, the
violation set V is empty. Next, at each timestep t, we let r(t)e

denote the residual weight of element e and d(t)e denote its
current node degree. Therefore, the initial residual weight
r
(0)
e is defined as its cost we, and the initial degree d(0)e is

given by |{T : e ∈ T}|.

Encoder The architecture includes two MLP encoders, fr
and fd, which encode the residual node weight r(t)e and node
degree d(t)e , respectively, for each element e ∈ E. These en-
coders transform all features into a high-dimensional latent
space for the processor:

h(t)
e = fr(r

(t−1)
e), h

(t)
de

= fd(d
(t−1)
e).

Processor The processor is a message-passing GNN ap-
plied to the bipartite graph. A general message-passing
framework (Gilmer et al., 2017) comprises a message func-
tion ψθ and an update function ϕθ. The node feature h(t)

v of
node v is transformed via

h(t)
v = ϕθ

(
h(t)
v ,

⊕
u∈N (v)

ψθ(h
(t)
u)

)
,

where ψθ and ϕθ are usually shallow MLPs and
⊕

is a
permutation invariant function, such as sum or max. We
now demonstrate how this message-passing framework is
applied to the bipartite graph to simulate the primal-dual
approximation algorithm.

Step (1): This step corresponds to Line 1 of Algorithm 1,
where increment δ(t)T for each set T ∈ V is computed. Let
h
(t)
T be the hidden representation of δ(t)T . We aggregate

4

Primal-Dual Neural Algorithmic Reasoning

Figure 2. (a) Bipartite graph construction. (b) The architecture of PDNAR with the encoder, processor, and decoder colored distinctively.
∆ is only used when the uniform increase rule is applied.

messages from its connected elements e ∈ N (T) using a
message function ge with a min aggregation operation:

h
(t)
T = min

e∈N (T)
ge(h

(t)
e ,h

(t)
de
).

Step (2): This step corresponds to Line 1 of Algorithm 1,
where residual weight r(t)e for each element e ∈ E \ A is
computed. Therefore, the dual variable update h(t)

T is passed
back to its connected elements e using a sum aggregation
and an update function gu:

h(t)
e = gu

(
h(t)
e ,

∑
T∈N (e)

h
(t)
T

)
.

Decoder At each timestep t, Algorithm 1 computes three
types of intermediate quantities: (1) whether to include an
element e in the hitting set, represented by x(t)e ∈ {0, 1},
(2) the residual weights of an element r(t)e , and (3) the
increment to the dual variable δ(t)T . We utilize separate MLP
decoders, qx, qr, and qδ , to compute each of these quantities:

x̂(t)e = qx(h
(t)
e), r̂(t)e = qr(h

(t)
e), δ̂

(t)
T = qδ(h

(t)
T).

Training Given the recurrent nature of our architec-
ture, we apply noisy teacher forcing (Veličković et al.,
2022) with a probability of 0.5 to determine whether to
use hints—ground-truth values for intermediate quantities
above—as inputs for the next timestep. Otherwise, the
model’s prediction from the previous timestep is passed
on. This approach allows the model to follow its recur-
rent flow while reducing the risk of error propagation.
The recurrent model is repeated for a maximum of |E|
timesteps or terminates early when the solution becomes
a valid hitting set. The loss function is defined as L(t)

algo =

LBCE(x̂
(t)
e , x

(t)
e) + LMSE(r̂

(t)
e , r

(t)
e) + LMSE(δ̂

(t)
T , δ

(t)
T) and

averaged across timesteps. During test time, if the model

output has not produced a valid hitting set, we greedily add
the element e with the highest re/de value to the solution.
Empirically, we find our model rarely requires it.

4.2. Uniform increase of dual variables

The uniform increase rule requires global communication
among all dual variables. To achieve this, we introduce a
virtual node z that connects to every set T ∈ T , as shown in
Figure 2. Below, we describe how Step (2) in the processor
is adjusted to accommodate this modification.

• Step (2.1): The virtual node aggregates all messages
from the dual variables h(t)

T via a min aggregation, cor-
responding to Line 6.1 via h(t)

z = minT∈T h
(t)
T .

• Step (2.2): The global information is passed back to
dual variables with temporary h

′(t)
T = h(t)

z , and then
to the primal variables h(t)

e with an update function gu
and a sum aggregation. This corresponds to Line 6.2 via
h(t)
e = gu(h

(t)
e ,
∑

T∈N (e) h
′(t)
T).

The intermediate quantity ∆(t) is also given by Algorithm 1.
We use an additional decoder q∆ to predict ∆̂(t) = q∆(h

(t)
z)

and add LMSE(∆̂
(t),∆(t)) to the total loss L(t)

algo.

4.3. Theoretical justification

Algorithmic alignment is critical for generalization in NAR
(Xu et al., 2020; 2021). We show that PDNAR can exactly
replicate the behavior of Algorithm 1.

Theorem 4.1. Given a hitting set problem (T , E, w), let
A(T , E, w) be the solution produced by Algorithm 1, which
terminates after K timesteps. There exists a parameter
configuration Θ for a PDNAR model MΘ such that, at
timestep K, the model output satisfiesM(K)

Θ (T , E, w) =
A(T , E, w). Furthermore, let (x(t), r(t), δ(t),∆(t)) be

5

Primal-Dual Neural Algorithmic Reasoning

the intermediate quantities computed by Algorithm 1
at each timestep t. Then, the PDNAR model satisfies
M(t)

Θ (T , E, w) = (x(t), r(t), δ(t),∆(t)), where ∆(t) is
omitted if the uniform increase rule is not applied.

In our proof of Theorem 4.1 (Appendix B), we show that
this can be achieved with a PDNAR model using 8 layers.
Therefore, PDNAR inherits the approximation ratio and
convergence guarantees of the primal-dual approximation
algorithm it learns, as described in Corollary 4.2.

Corollary 4.2. There exists a parameterization of the
PDNAR modelMΘ with 8 layers such that, after K itera-
tions,M(K)

Θ (T , E, w) yields an α-approximation to the op-
timal solution the MHS problem, where α = maxT∈T (|T |)
and K = O(|E|).

This guarantee also extends to the 2/(1− ϵ)-approximation
algorithm (Khuller et al., 1994) for MVC (and thus MSC).

Corollary 4.3. Given ϵ ∈ (0, 1), there exists a parameter-
ization of the PDNAR modelMΘ with 8 layers such that,
after K iterations, M(K)

Θ (V,E,w) yields an 2/(1 − ϵ)-
approximation to the optimal solution of the MVC problem,
where K = O(logm log(1/ϵ)) and m = |E|.

4.4. Use of optimal solutions from solvers

We can compute optimal solutions using IP solvers for
small problem instances. We use the default IP solver in
scipy based on HiGHS (Schwendinger & Schumacher,
2023; Huangfu & Hall, 2018). These optimal solutions are
used as additional training signals to guide the model toward
better outcomes. However, unlike the primal-dual algorithm,
which provides intermediate steps, IP solvers only produce
the final optimal solution. Therefore, the corresponding loss
is defined as Loptm = LBCE(x̂

K
e , x

optm
e), whereK is the final

timestep. The overall loss is then the sum of the intermedi-
ate losses from the primal-dual algorithm and the optimal
solution loss, given by L = 1

K

∑K
t=1 L(t)algo+Loptm. The

motivation stems from the fact that IP solvers are computa-
tionally expensive, especially for larger problem instances.
By training PDNAR using optimal solutions from IP solvers
on smaller problem instances—allowing it to exceed the
performance of the approximation algorithm—we can lever-
age its generalization ability to create a cost-efficient, high-
performance model for much larger problems.

5. Experiments
Dataset distributions and hyperparameter details of all ex-
periments are provided in Appendices C, D, and E.

5.1. Synthetic algorithmic datasets

Dataset We evaluate PDNAR’s ability to simulate the
approximation algorithms for the three NP-hard algorithmic
problems described in Section 3.2. The training dataset
includes 1000 random graphs of size 16 for each task. We
use Barabási-Albert graphs for vertex cover. For set cover
and hitting set, we generate Barabási-Albert bipartite graphs
with a preferential attachment parameter b = 5. Each test
set consists of 100 graphs and is repeated for 10 seeds.

Baselines We compare with three types of baselines. (i)
GNNs for end-to-end node classification trained with op-
timal labels: GIN (Xu et al., 2019) and GAT (Veličković
et al., 2018). (ii) NAR models to simulate the approxima-
tion algorithm: NAR (MPNN) (Veličković et al., 2020) and
the more expressive TripletMPNN (Ibarz et al., 2022) at
the cost of training efficiency. Both models do not use the
bipartite representation, and therefore are trained only on
intermediate states of primal variables. (iii) Variations of
PDNAR: No algo (trained without intermediate supervision
from the algorithm) and no optm (trained without optimal
solutions). Additionally, PDNAR’s aggregation strategy is
specifically tailored to align with the algorithm’s structure.
We test alternative mean and max aggregation methods.

Table 1 shows PDNAR achieves the best performance. By
combining losses from intermediate steps of the approx-
imation algorithm and optimal solutions from IP solvers,
PDNAR yields the lowest ratios across all test cases. More-
over, PDNAR’s performance remains stable across differ-
ent graph sizes, indicating strong generalization to larger
problems. Comparisons with other baselines (such as “No
optm”) show that incorporating supervision from optimal
solutions improves the quality of final predictions, allow-
ing PDNAR to outperform the primal-dual algorithm it was
designed to simulate. In contrast, training without interme-
diate steps (such as “No algo”) leads to a significant drop
in generalization, highlighting that the primal-dual algo-
rithm provides critical reasoning capabilities beyond merely
learning optimal solution patterns.

Our model is a general NAR framework for a wide range of
algorithms that uses the primal-dual paradigm. In Table 1,
we see PDNAR is effective across all three tasks. For ver-
tex cover, we demonstrate its applicability to graph-based
algorithms. In set cover, we extend the framework to hyper-
graphs using a bipartite structure, highlighting its flexibility
beyond traditional graph settings. Additionally, the uniform
increase rule proves effective for hitting set, which can be
instantiated to a range of exact and approximation algo-
rithms. Notably, these results suggest that our approach may
achieve even better performance when trained on more chal-
lenging instances where the optimal solutions significantly
outperform those of approximation algorithms.

6

Primal-Dual Neural Algorithmic Reasoning

Table 1. Model-to-algorithm weight ratio trained on 16-node graphs and tested on larger graphs, calculated by the sum of weights from
the model solution divided by the sum of weights from the algorithm solution (wmodel/walgo). Smaller is better for minimization tasks.

Model 16 (1x) 32 (2x) 64 (4x) 128 (8x) 256 (16x) 512 (32x) 1024 (64x)

MVC

GIN 0.987 ± 0.011 1.040 ± 0.041 1.097 ± 0.059 1.087 ± 0.061 1.109 ± 0.073 1.120 ± 0.083 1.116 ± 0.083
GAT 0.962 ± 0.106 1.039 ± 0.085 1.072 ± 0.099 1.071 ± 0.085 1.108 ± 0.106 1.114 ± 0.096 1.125 ± 0.082
NAR 0.998 ± 0.013 0.999 ± 0.012 1.005 ± 0.011 1.002 ± 0.012 1.009 ± 0.015 1.013 ± 0.012 1.018 ± 0.013
TripletMPNN 0.982 ± 0.015 0.986 ± 0.015 0.991 ± 0.013 0.995 ± 0.020 1.000 ± 0.013 1.001 ± 0.019 1.005 ± 0.019
No algo 1.142 ± 0.038 1.115 ± 0.027 1.110 ± 0.038 1.099 ± 0.032 1.091 ± 0.034 1.099 ± 0.036 1.095 ± 0.038
No optm 0.995 ± 0.004 1.001 ± 0.004 1.001 ± 0.005 0.998 ± 0.009 0.998 ± 0.009 0.998 ± 0.011 0.994 ± 0.011
PDNAR (mean) 1.031 ± 0.022 1.062 ± 0.031 1.079 ± 0.039 1.107 ± 0.047 1.107 ± 0.046 1.122 ± 0.049 1.126 ± 0.055
PDNAR (max) 0.968 ± 0.014 1.011 ± 0.012 1.003 ± 0.012 1.005 ± 0.014 1.006 ± 0.013 1.010 ± 0.015 1.007 ± 0.013
PDNAR 0.943 ± 0.004 0.957 ± 0.002 0.966 ± 0.002 0.958 ± 0.002 0.958 ± 0.002 0.958 ± 0.002 0.957 ± 0.002

MSC
No algo 1.028 ± 0.016 1.025 ± 0.014 1.010 ± 0.017 1.017 ± 0.020 1.012 ± 0.018 1.008 ± 0.023 1.006 ± 0.027
No optm 1.008 ± 0.006 1.008 ± 0.008 0.997 ± 0.008 0.992 ± 0.006 0.981 ± 0.004 0.973 ± 0.002 0.975 ± 0.002
PDNAR 0.979 ± 0.003 0.918 ± 0.013 0.947 ± 0.009 0.915 ± 0.005 0.920 ± 0.007 0.915 ± 0.006 0.913 ± 0.003

MHS
No algo 1.047 ± 0.008 1.050 ± 0.006 1.049 ± 0.007 1.036 ± 0.016 1.065 ± 0.023 1.122 ± 0.031 1.256 ± 0.036
No optm 1.002 ± 0.000 1.008 ± 0.003 0.994 ± 0.006 0.999 ± 0.007 1.005 ± 0.010 1.015 ± 0.013 1.053 ± 0.018
PDNAR 0.989 ± 0.002 0.982 ± 0.005 0.985 ± 0.005 0.965 ± 0.006 0.990 ± 0.008 0.996 ± 0.009 1.027 ± 0.020

Table 2. Model-to-algorithm weight ratio trained on B-A (bipartite) graphs and tested on OOD graph families.

16 (1x) 32 (2x) 64 (4x) 128 (8x) 256 (16x) 512 (32x) 1024 (64x)

MVC

E-R 0.955 ± 0.004 0.934 ± 0.004 0.934 ± 0.005 0.950 ± 0.004 0.992 ± 0.007 0.989 ± 0.008 0.993 ± 0.008
Star 0.966 ± 0.004 0.979 ± 0.003 0.977 ± 0.005 0.982 ± 0.006 0.989 ± 0.005 0.992 ± 0.007 0.998 ± 0.006
Lobster 0.971 ± 0.003 0.965 ± 0.005 0.972 ± 0.004 0.960 ± 0.005 0.970 ± 0.008 0.966 ± 0.009 0.966 ± 0.009
3-Con 0.974 ± 0.002 0.965 ± 0.002 0.965 ± 0.005 0.957 ± 0.006 0.963 ± 0.006 0.962 ± 0.008 0.961 ± 0.009

MSC b = 3 0.943 ± 0.008 0.941 ± 0.005 0.916 ± 0.008 0.918 ± 0.006 0.924 ± 0.003 0.929 ± 0.003 0.922 ± 0.004
b = 8 0.969 ± 0.010 0.950 ± 0.015 0.955 ± 0.016 0.940 ± 0.013 0.944 ± 0.010 0.941 ± 0.017 0.943 ± 0.012

MHS b = 3 0.988 ± 0.002 0.995 ± 0.003 0.985 ± 0.004 0.982 ± 0.005 0.982 ± 0.002 1.008 ± 0.015 1.005 ± 0.036
b = 8 0.979 ± 0.002 0.978 ± 0.005 0.973 ± 0.008 0.960 ± 0.003 0.983 ± 0.010 1.008 ± 0.015 1.014 ± 0.018

5.2. Size and OOD generalization

Dataset We evaluate the model’s generalization perfor-
mance on larger and OOD graph families, using the same
training set as before. For the vertex cover problem, we
generate three OOD test sets comprising Erdős–Rényi (E-
R), Star, Lobster, and 3-connected planar (3-Con) graphs.
These graph types pose unique challenges for the vertex
cover problem due to their distinct structural properties. For
set cover and hitting set, we vary the preferential attachment
parameter b to 3 and 8 to generate OOD bipartite graphs.

Table 1 demonstrates that PDNAR, trained on 16-node
graphs, scales robustly to larger graphs of up to 1024 nodes
for MVC. We highlight that prior NAR research typically
evaluates up to 128 nodes. Furthermore, Table 2 shows
PDNAR’s ability to generalize to graphs from OOD fam-
ilies. Notably, these graph types can exhibit significantly
different optimal sizes: Erdős–Rényi graphs require an aver-
age of 80% of nodes, while Star graphs need only 15% (see
Table 5), highlighting the strong generalization ability of
PDNAR. Obtaining optimal solutions for small instances is
fast and efficient, even for hard problems, particularly with
integer programming solvers like Gurobi (Gurobi Optimiza-
tion, LLC, 2024). However, the computational complexity
increases exponentially as the problem size grows. This

underscores the key strength of PDNAR — we can train
it efficiently using small problem instances and apply it
to much larger, unseen problems that are computationally
expensive to solve.

5.3. Real-world datasets

We now present a practical use case of our model. One
of the key strengths of NAR is its ability to embed algo-
rithmic knowledge in neural networks to tackle real-world
challenges. Previous works applied NAR to reinforcement
learning (Deac et al., 2021), brain vessels (Numeroso et al.,
2023), and computer network configuration (Beurer-Kellner
et al., 2022). Traditional algorithms designed for specific
problems face a significant limitation: they cannot be di-
rectly applied to real-world data without substantial prepro-
cessing. Indeed, real-world graphs generally consist of high-
dimensional features rather than simple scalar weights—the
standard input for most traditional algorithms. As a result,
applying traditional algorithms would necessitate extensive
feature engineering to derive scalar weights, which may
lead to the loss of crucial information embedded in the
high-dimensional features.

In contrast, PDNAR overcomes this limitation by integrat-
ing a feature encoder that learns to estimate vertex weights

7

Primal-Dual Neural Algorithmic Reasoning

directly from raw data, eliminating the need for manual pre-
processing. We showcase such an application using the Air-
ports datasets (Brazil, Europe, USA) (Ribeiro et al., 2017).
In these graphs, the nodes represent airports, and the edges
represent commercial flight routes. The goal is to predict the
activity level of each airport, where vertex cover solutions
can be highly valuable in predicting node influence.

Architecture and baselines We follow similar evaluation
settings as Numeroso et al. (2023). We use three base mod-
els to perform node classification: GCN (Kipf & Welling,
2017), GAT (Veličković et al., 2018), and GraphSAGE
(Hamilton et al., 2017). Then, we use PDNAR to produce
embeddings to be concatenated with the base model’s out-
puts before a final classification layer. We use a pretrained
PDNAR on B-A graphs of size 16, keeping only the pro-
cessor and degree encoder. We train a new encoder that
learns to map new node features into the shared latent space
of the processor, enabling it to replicate the vertex cover
problem-solving behavior on airport data. The pretrained
components are frozen, and a single message-passing step
is performed. We compare PDNAR’s embeddings against
several baselines: Node2Vec (Grover & Leskovec, 2016)
and a degree encoder. The latter helps to show that PDNAR
captures more complex information beyond node degrees.
We also compare with two positional encodings: LapPE
(Dwivedi et al., 2022a) and RWPE (Dwivedi et al., 2022b).

Table 3 shows that PDNAR achieves significant improve-
ments in all datasets. Note that Node2Vec has an additional
advantage by directly training on the graphs to produce the
embeddings. PDNAR’s superior performance over the de-
gree encoder also indicates that it captures more complex
information by integrating both learned node weights from
features and degree information to replicate vertex cover.
This showcases the important practical value of NAR in em-
bedding algorithmic knowledge in real-world applications,
overcoming the bottleneck of traditional algorithms.

5.4. Commercial optimization solvers

Another practical use case for PDNAR is to warm start
large-scale commercial solvers, such as Gurobi (Gurobi
Optimization, LLC, 2024), by initializing variables with
its predictions. The motivation is that providing a starting
point closer to the optimal solution can lead to faster solving
times and improved efficiency.

Dataset We evaluate the vertex cover problem by com-
paring Gurobi’s default initialization to warm starts using
solutions from the primal-dual algorithm and our model.
Trained on 1000 B-A graphs of size 16, the model generates
solutions for random larger B-A graphs, with 100 graphs
per size. Gurobi’s default parameters are used, with a thread
count of 1 and a 1-hour time limit.

Table 3. Accuracy (%) for the three Airports datasets comparing
embeddings generated using different methods.

Brazil Europe USA

GCN 58.89 ±17.72 63.87 ± 10.74 77.48 ± 2.28

GCN+LapPE 61.48 ± 17.23 73.50 ± 3.83 78.11 ± 2.94

GCN+RWPE 58.15 ± 20.15 73.25 ± 4.47 77.56 ± 3.28

GCN+Degree 71.48 ± 15.53 70.37 ± 4.16 79.25 ± 2.16

GCN+N2V 73.33 ± 5.44 74.75 ± 5.12 79.54 ± 2.19

GCN+PDNAR 81.11 ± 9.46 76.88 ± 5.10 82.82 ± 3.06

GAT 60.13 ± 15.68 65.85 ± 9.68 80.59 ± 2.43

GAT+LapPE 62.22 ± 19.23 71.00 ± 4.57 79.54 ± 2.57

GAT+RWPE 66.30 ± 21.24 73.87 ± 3.93 82.39 ± 1.99

GAT+Degree 66.30 ± 12.27 77.75 ± 4.10 82.82 ± 2.08

GAT+N2V 75.56 ± 9.82 75.87 ± 5.03 82.65 ± 1.58

GAT+PDNAR 84.44 ± 8.89 81.25 ± 4.51 85.13 ± 1.79

SAGE 44.82 ± 17.40 61.82 ± 10.38 78.07 ± 3.39

SAGE+LapPE 62.59 ± 22.98 64.12 ± 21.72 79.50 ± 2.02

SAGE+RWPE 50.74 ± 25.23 73.38 ± 3.54 80.80 ± 2.65

SAGE+Degree 74.44 ± 12.74 75.50 ± 9.19 81.53 ± 2.18

SAGE+N2V 80.00 ± 6.46 76.12 ± 3.75 83.15 ± 3.20

SAGE+PDNAR 85.56 ± 7.49 80.75 ± 2.38 83.28 ± 2.04

Metrics We report the average solving times of all cases
when optimal solutions are found (Solve time). We also
measure the average computation time to generate the warm-
start solutions using the primal-dual algorithm and the
model per graph (Compute time). Results are recorded
in seconds and averaged across 5 seeds.

Table 4. Performance of warm starting Gurobi using solutions from
a PDNAR trained on 16-node graphs and solutions from the primal-
dual approximation algorithm.

#Nodes Method Solve time
(optimal found)

Compute
time

500
None 78.97 ± 2.24 -

Algorithm 76.69 ± 1.54 0.20
PDNAR 72.61 ± 2.13 0.02

600
None 230.84 ± 19.59 -

Algorithm 227.83 ± 19.32 0.30
PDNAR 209.52 ± 14.15 0.03

750
None 299.01 ± 23.53 -

Algorithm 300.12 ± 22.89 0.39
PDNAR 292.92 ± 18.61 0.03

Table 4 shows that PDNAR outperforms both the default
initialization and the approximation algorithm in all cases,
achieving the fastest mean solving time. The improvement
from using the model over the algorithm is greater than
that of the algorithm over no warm start. Additionally, the
model’s inference time is nearly 10 times faster than the
approximation algorithm’s computation time. This demon-
strates a practical use case: by simulating an approxima-
tion algorithm and leveraging optimal solutions on small

8

Primal-Dual Neural Algorithmic Reasoning

instances, the model generates high-quality solutions for
larger problems, improving efficiency for large-scale com-
mercial solvers, such as Gurobi.

6. Conclusions
We propose a general NAR framework using the primal-
dual paradigm. Our approach can simulate approximation
algorithms for NP-hard problems, greatly extending NAR’s
capability beyond the polynomial-time-solvable domain.
Furthermore, we leverage both the intermediate states gener-
ated by the primal-dual algorithm and optimal solutions ob-
tained from integer programming solvers on small problem
instances, which can be obtained efficiently. While interme-
diate algorithmic steps provides a foundation for reasoning,
incorporating optimal solutions enables the model to surpass
the algorithm’s performance. Empirical results demonstrate
that our framework is effective and robust, showing strong
generalization to larger problems and OOD distributions.
Additionally, we present two practical applications: gener-
ating algorithmically informed embeddings for real-world
datasets and warm-starting commercial solvers.

Limitation and future work The primal-dual framework
underlies many algorithmic problems, making our approach
broadly applicable. Our architecture is currently designed
for the hitting set problem, which can be reformulated as
many other algorithmic problems. However, problems that
do not reduce to hitting set may require architectural exten-
sions. For instance, the uncapacitated facility location prob-
lem involves two types of dual variables that need special-
ized handling. Other advanced techniques (Williamson &
Shmoys, 2011), such as selectively updating dual variables
to improve scalability, can further extend our framework to
a broader class of approximation algorithms. Future work
could also explore the multi-task learning setting (Ibarz
et al., 2022) in PDNAR by training on multiple approxima-
tion algorithms simultaneously.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none of which we feel must be
specifically highlighted here.

Acknowledgement
We thank the anonymous reviewers for their valuable feed-
back on this manuscript. This work was supported in part
by NSF grant CCF-2338226.

References
Agrawal, A., Klein, P., and Ravi, R. When trees

collide: An approximation algorithm for the gener-
alized steiner problem on networks. SIAM Journal
on Computing, 24(3):440–456, 1995. doi: 10.1137/
S0097539792236237. URL https://doi.org/10.
1137/S0097539792236237.

Akiba, T., Sano, S., Yanase, T., Ohta, T., and Koyama, M.
Optuna: A next-generation hyperparameter optimization
framework. In Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining, 2019.

Bar-Yehuda, R. and Even, S. A linear-time approximation
algorithm for the weighted vertex cover problem. Journal
of Algorithms, 2(2):198–203, 1981. ISSN 0196-6774.
doi: https://doi.org/10.1016/0196-6774(81)90020-1.
URL https://www.sciencedirect.com/
science/article/pii/0196677481900201.

Beurer-Kellner, L., Vechev, M., Vanbever, L., and
Veličković, P. Learning to configure computer networks
with neural algorithmic reasoning. In Koyejo, S., Mo-
hamed, S., Agarwal, A., Belgrave, D., Cho, K., and Oh, A.
(eds.), Advances in Neural Information Processing Sys-
tems, volume 35, pp. 730–742. Curran Associates, Inc.,
2022.

Bevilacqua, B., Nikiforou, K., Ibarz, B., Bica, I., Pa-
ganini, M., Blundell, C., Mitrovic, J., and Veličković,
P. Neural algorithmic reasoning with causal regular-
isation. In Krause, A., Brunskill, E., Cho, K., En-
gelhardt, B., Sabato, S., and Scarlett, J. (eds.), Pro-
ceedings of the 40th International Conference on Ma-
chine Learning, volume 202 of Proceedings of Machine
Learning Research, pp. 2272–2288. PMLR, 23–29 Jul
2023. URL https://proceedings.mlr.press/
v202/bevilacqua23a.html.

Borodin, A., Karavasilis, C., and Pankratov, D. An exper-
imental study of algorithms for online bipartite match-
ing, 2018. URL https://arxiv.org/abs/1808.
04863.

Bounsi, W., Ibarz, B., Dudzik, A., Hamrick, J. B., Mar-
keeva, L., Vitvitskyi, A., Pascanu, R., and Veličković, P.
Transformers meet neural algorithmic reasoners. arXiv
preprint arXiv:2406.09308, 2024.

Cappart, Q., Chételat, D., Khalil, E., Lodi, A., Morris, C.,
and Veličković, P. Combinatorial optimization and rea-
soning with graph neural networks, 2022.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein,
C. Introduction to Algorithms. The MIT Press, 2 edition,
2001.

9

https://doi.org/10.1137/S0097539792236237
https://doi.org/10.1137/S0097539792236237
https://www.sciencedirect.com/science/article/pii/0196677481900201
https://www.sciencedirect.com/science/article/pii/0196677481900201
https://proceedings.mlr.press/v202/bevilacqua23a.html
https://proceedings.mlr.press/v202/bevilacqua23a.html
https://arxiv.org/abs/1808.04863
https://arxiv.org/abs/1808.04863

Primal-Dual Neural Algorithmic Reasoning

Dai, H., Khalil, E. B., Zhang, Y., Dilkina, B., and Song, L.
Learning Combinatorial Optimization Algorithms over
Graphs, February 2018. URL http://arxiv.org/
abs/1704.01665. arXiv:1704.01665.

de Luca, A. B. and Fountoulakis, K. Simulation of
graph algorithms with looped transformers. In ICML,
2024. URL https://openreview.net/forum?
id=aA2326y3hf.

Deac, A., Bacon, P.-L., and Tang, J. Graph neural induction
of value iteration, 2020. URL https://arxiv.org/
abs/2009.12604.

Deac, A.-I., Veličković, P., Milinkovic, O., Bacon, P.-L.,
Tang, J., and Nikolic, M. Neural algorithmic reasoners
are implicit planners. In Ranzato, M., Beygelzimer,
A., Dauphin, Y., Liang, P., and Vaughan, J. W. (eds.),
Advances in Neural Information Processing Systems,
volume 34, pp. 15529–15542. Curran Associates, Inc.,
2021. URL https://proceedings.neurips.
cc/paper_files/paper/2021/file/
82e9e7a12665240d13d0b928be28f230-Paper.
pdf.

Dudzik, A. J., von Glehn, T., Pascanu, R., and Veličković,
P. Asynchronous algorithmic alignment with cocy-
cles. In Villar, S. and Chamberlain, B. (eds.), Pro-
ceedings of the Second Learning on Graphs Con-
ference, volume 231 of Proceedings of Machine
Learning Research, pp. 3:1–3:17. PMLR, 27–30 Nov
2024. URL https://proceedings.mlr.press/
v231/dudzik24a.html.

Dwivedi, V. P., Joshi, C. K., Luu, A. T., Laurent, T., Ben-
gio, Y., and Bresson, X. Benchmarking graph neural
networks, 2022a. URL https://arxiv.org/abs/
2003.00982.

Dwivedi, V. P., Luu, A. T., Laurent, T., Bengio, Y., and Bres-
son, X. Graph neural networks with learnable structural
and positional representations. In International Confer-
ence on Learning Representations, 2022b. URL https:
//openreview.net/forum?id=wTTjnvGphYj.

Engelmayer, V., Georgiev, D. G., and Veličković, P. Parallel
algorithms align with neural execution. In The Second
Learning on Graphs Conference, 2023. URL https:
//openreview.net/forum?id=IC6kpv87LB.

Estermann, B., Lanzendörfer, L. A., Niedermayr, Y., and
Wattenhofer, R. Puzzles: A benchmark for neural al-
gorithmic reasoning, 2024. URL https://arxiv.
org/abs/2407.00401.

Fu, Z.-H., Qiu, K.-B., and Zha, H. Generalize a small
pre-trained model to arbitrarily large tsp instances. Pro-
ceedings of the AAAI Conference on Artificial Intelli-
gence, 35(8):7474–7482, May 2021. doi: 10.1609/
aaai.v35i8.16916. URL https://ojs.aaai.org/
index.php/AAAI/article/view/16916.

Gasse, M., Chételat, D., Ferroni, N., Charlin, L., and Lodi,
A. Exact Combinatorial Optimization with Graph Convo-
lutional Neural Networks, October 2019. URL http://
arxiv.org/abs/1906.01629. arXiv:1906.01629.

Georgiev, D. and Liò, P. Neural bipartite matching, 2020.
URL https://arxiv.org/abs/2005.11304.

Georgiev, D., Barbiero, P., Kazhdan, D., Veličković, P., and
Lió, P. Algorithmic concept-based explainable reason-
ing. Proceedings of the AAAI Conference on Artificial
Intelligence, 36(6):6685–6693, Jun. 2022. doi: 10.1609/
aaai.v36i6.20623. URL https://ojs.aaai.org/
index.php/AAAI/article/view/20623.

Georgiev, D., Vinas, R., Considine, S., Dumitrascu, B.,
and Lio, P. NARTI: Neural Algorithmic Reasoning for
Trajectory Inference. In The 2023 ICML Workshop on
Computational Biology, 2023a.

Georgiev, D., Liò, P., and Buffelli, D. The deep equilibrium
algorithmic reasoner. arXiv preprint arXiv:2402.06445,
2024.

Georgiev, D. G., Lio, P., Bachurski, J., Chen, J., Shi,
T., and Giusti, L. Beyond erdos-renyi: Generaliza-
tion in algorithmic reasoning on graphs. In The Second
Learning on Graphs Conference, 2023b. URL https:
//openreview.net/forum?id=TTxQAkg9QG.

Georgiev, D. G., Numeroso, D., Bacciu, D., and Lio, P.
Neural algorithmic reasoning for combinatorial optimi-
sation. In The Second Learning on Graphs Conference,
2023c. URL https://openreview.net/forum?
id=N8awTT5ep7.

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., and
Dahl, G. E. Neural message passing for quantum chem-
istry. In International conference on machine learning,
pp. 1263–1272. PMLR, 2017.

Goemans, M. X. and Williamson, D. P. A general ap-
proximation technique for constrained forest problems.
SIAM Journal on Computing, 24(2):296–317, 1995. doi:
10.1137/S0097539793242618. URL https://doi.
org/10.1137/S0097539793242618.

Goemans, M. X. and Williamson, D. P. The primal-dual
method for approximation algorithms and its application
to network design problems, pp. 144–191. PWS Publish-
ing Co., USA, 1996.

10

http://arxiv.org/abs/1704.01665
http://arxiv.org/abs/1704.01665
https://openreview.net/forum?id=aA2326y3hf
https://openreview.net/forum?id=aA2326y3hf
https://arxiv.org/abs/2009.12604
https://arxiv.org/abs/2009.12604
https://proceedings.neurips.cc/paper_files/paper/2021/file/82e9e7a12665240d13d0b928be28f230-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/82e9e7a12665240d13d0b928be28f230-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/82e9e7a12665240d13d0b928be28f230-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/82e9e7a12665240d13d0b928be28f230-Paper.pdf
https://proceedings.mlr.press/v231/dudzik24a.html
https://proceedings.mlr.press/v231/dudzik24a.html
https://arxiv.org/abs/2003.00982
https://arxiv.org/abs/2003.00982
https://openreview.net/forum?id=wTTjnvGphYj
https://openreview.net/forum?id=wTTjnvGphYj
https://openreview.net/forum?id=IC6kpv87LB
https://openreview.net/forum?id=IC6kpv87LB
https://arxiv.org/abs/2407.00401
https://arxiv.org/abs/2407.00401
https://ojs.aaai.org/index.php/AAAI/article/view/16916
https://ojs.aaai.org/index.php/AAAI/article/view/16916
http://arxiv.org/abs/1906.01629
http://arxiv.org/abs/1906.01629
https://arxiv.org/abs/2005.11304
https://ojs.aaai.org/index.php/AAAI/article/view/20623
https://ojs.aaai.org/index.php/AAAI/article/view/20623
https://openreview.net/forum?id=TTxQAkg9QG
https://openreview.net/forum?id=TTxQAkg9QG
https://openreview.net/forum?id=N8awTT5ep7
https://openreview.net/forum?id=N8awTT5ep7
https://doi.org/10.1137/S0097539793242618
https://doi.org/10.1137/S0097539793242618

Primal-Dual Neural Algorithmic Reasoning

Grover, A. and Leskovec, J. node2vec: Scalable feature
learning for networks. In Proceedings of the 22nd ACM
SIGKDD international conference on Knowledge discov-
ery and data mining, pp. 855–864, 2016.

Gurobi Optimization, LLC. Gurobi Optimizer Reference
Manual, 2024. URL https://www.gurobi.com.

Hamilton, W., Ying, Z., and Leskovec, J. Inductive repre-
sentation learning on large graphs. Advances in neural
information processing systems, 30, 2017.

Hamrick, J. B., Allen, K. R., Bapst, V., Zhu, T., McKee,
K. R., Tenenbaum, J. B., and Battaglia, P. W. Relational
inductive bias for physical construction in humans and
machines. arXiv preprint arXiv:1806.01203, 2018.

Hayderi, A., Saberi, A., Vitercik, E., and Wikum, A. MAG-
NOLIA: Matching algorithms via GNNs for online value-
to-go approximation. In Forty-first International Con-
ference on Machine Learning, 2024. URL https:
//openreview.net/forum?id=XlgeQ47Ra9.

He, Y., Veličković, P., Lio, P., and Deac, A. Continu-
ous neural algorithmic planners. In Rieck, B. and Pas-
canu, R. (eds.), Proceedings of the First Learning on
Graphs Conference, volume 198 of Proceedings of Ma-
chine Learning Research, pp. 54:1–54:13. PMLR, 09–
12 Dec 2022. URL https://proceedings.mlr.
press/v198/he22a.html.

Hochbaum, D. S. Approximation algorithms for set covering
and vertex cover problems. SIAM Journal on Computing,
11(3):555–556, 1982.

Huangfu, Q. and Hall, J. A. J. Parallelizing the dual
revised simplex method. Mathematical Programming
Computation, 10(1):119–142, 2018. doi: 10.1007/
s12532-017-0130-5.

Ibarz, B., Kurin, V., Papamakarios, G., Nikiforou, K., Ben-
nani, M., Csordás, R., Dudzik, A., Bošnjak, M., Vitvit-
skyi, A., Rubanova, Y., Deac, A., Bevilacqua, B., Ganin,
Y., Blundell, C., and Veličković, P. A generalist neural
algorithmic learner, 2022.

Jain, R., Veličković, P., and Liò, P. Neural priority queues for
graph neural networks. arXiv preprint arXiv:2307.09660,
2023.

Jin, Y., Song, G., and Shi, C. Gralsp: Graph neural networks
with local structural patterns, 2019. URL https://
arxiv.org/abs/1911.07675.

Joshi, C. K., Laurent, T., and Bresson, X. An Efficient
Graph Convolutional Network Technique for the Travel-
ling Salesman Problem, October 2019. URL http://
arxiv.org/abs/1906.01227. arXiv:1906.01227.

Joshi, C. K., Cappart, Q., Rousseau, L.-M., and Laurent, T.
Learning the Travelling Salesperson Problem Requires
Rethinking Generalization, May 2022. URL http://
arxiv.org/abs/2006.07054. arXiv:2006.07054.

Jürß, J., Jayalath, D. H., and Veličković, P. Recursive al-
gorithmic reasoning. In Villar, S. and Chamberlain, B.
(eds.), Proceedings of the Second Learning on Graphs
Conference, volume 231 of Proceedings of Machine
Learning Research, pp. 5:1–5:14. PMLR, 27–30 Nov
2024. URL https://proceedings.mlr.press/
v231/jurss24a.html.

Karalias, N. and Loukas, A. Erdos Goes Neural: an Unsuper-
vised Learning Framework for Combinatorial Optimiza-
tion on Graphs, March 2021. URL http://arxiv.
org/abs/2006.10643. arXiv:2006.10643.

Khot, S. and Regev, O. Vertex cover might be hard to
approximate to within 2- ε. Journal of Computer and
System Sciences, 74(3):335–349, 2008.

Khuller, S., Vishkin, U., and Young, N. A primal-dual
parallel approximation technique applied to weighted set
and vertex covers. Journal of Algorithms, 17(2):280–289,
September 1994. ISSN 0196-6774. doi: 10.1006/jagm.
1994.1036. URL http://dx.doi.org/10.1006/
jagm.1994.1036.

Kipf, T. N. and Welling, M. Semi-supervised classi-
fication with graph convolutional networks. In In-
ternational Conference on Learning Representations,
2017. URL https://openreview.net/forum?
id=SJU4ayYgl.

Kruskal, J. B. On the shortest spanning subtree of a graph
and the traveling salesman problem. Proceedings of the
American Mathematical society, 7(1):48–50, 1956.

Kujawa, Z., Poole, J., Georgiev, D., Numeroso, D., and Liò,
P. Neural algorithmic reasoning with multiple correct
solutions, 2024. URL https://arxiv.org/abs/
2409.06953.

Li, B., Yang, L., Chen, Y., Wang, S., Chen, Q., Mao,
H., Ma, Y., Wang, A., Ding, T., Tang, J., and Sun, R.
PDHG-Unrolled Learning-to-Optimize Method for Large-
Scale Linear Programming, June 2024. URL http://
arxiv.org/abs/2406.01908. arXiv:2406.01908.

Li, Z., Chen, Q., and Koltun, V. Combinatorial Optimization
with Graph Convolutional Networks and Guided Tree
Search, October 2018. URL http://arxiv.org/
abs/1810.10659. arXiv:1810.10659.

Markeeva, L., McLeish, S., Ibarz, B., Bounsi, W., Ko-
zlova, O., Vitvitskyi, A., Blundell, C., Goldstein, T.,

11

https://www.gurobi.com
https://openreview.net/forum?id=XlgeQ47Ra9
https://openreview.net/forum?id=XlgeQ47Ra9
https://proceedings.mlr.press/v198/he22a.html
https://proceedings.mlr.press/v198/he22a.html
https://arxiv.org/abs/1911.07675
https://arxiv.org/abs/1911.07675
http://arxiv.org/abs/1906.01227
http://arxiv.org/abs/1906.01227
http://arxiv.org/abs/2006.07054
http://arxiv.org/abs/2006.07054
https://proceedings.mlr.press/v231/jurss24a.html
https://proceedings.mlr.press/v231/jurss24a.html
http://arxiv.org/abs/2006.10643
http://arxiv.org/abs/2006.10643
http://dx.doi.org/10.1006/jagm.1994.1036
http://dx.doi.org/10.1006/jagm.1994.1036
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
https://arxiv.org/abs/2409.06953
https://arxiv.org/abs/2409.06953
http://arxiv.org/abs/2406.01908
http://arxiv.org/abs/2406.01908
http://arxiv.org/abs/1810.10659
http://arxiv.org/abs/1810.10659

Primal-Dual Neural Algorithmic Reasoning

Schwarzschild, A., and Veličković, P. The clrs-text algo-
rithmic reasoning language benchmark. arXiv preprint
arXiv:2406.04229, 2024.

Minder, J., Grötschla, F., Mathys, J., and Wattenhofer, R.
SALSA-CLRS: A sparse and scalable benchmark for al-
gorithmic reasoning. In The Second Learning on Graphs
Conference, 2023. URL https://openreview.
net/forum?id=PRapGjDGFQ.

Mirjanic, V. V., Pascanu, R., and Veličković, P. La-
tent space representations of neural algorithmic reason-
ers. In The Second Learning on Graphs Conference,
2023. URL https://openreview.net/forum?
id=tRP0Ydz5nN.

Numeroso, D., Bacciu, D., and Veličković, P. Dual algo-
rithmic reasoning. In The Eleventh International Confer-
ence on Learning Representations, 2023. URL https:
//openreview.net/forum?id=hhvkdRdWt1F.

Ribeiro, L. F., Saverese, P. H., and Figueiredo, D. R.
struc2vec: Learning node representations from structural
identity. In Proceedings of the 23rd ACM SIGKDD In-
ternational Conference on Knowledge Discovery and
Data Mining, KDD ’17. ACM, August 2017. doi:
10.1145/3097983.3098061. URL http://dx.doi.
org/10.1145/3097983.3098061.

Rodionov, G. and Prokhorenkova, L. Neural algorithmic
reasoning without intermediate supervision. In Thirty-
seventh Conference on Neural Information Processing
Systems, 2023. URL https://openreview.net/
forum?id=vBwSACOB3x.

Rodionov, G. and Prokhorenkova, L. Discrete neural al-
gorithmic reasoning, 2024. URL https://arxiv.
org/abs/2402.11628.

Rossi, E., Charpentier, B., Di Giovanni, F., Frasca, F., Gün-
nemann, S., and Bronstein, M. M. Edge directionality
improves learning on heterophilic graphs. In Learning on
Graphs Conference, pp. 25–1. PMLR, 2024.

Sanford, C., Fatemi, B., Hall, E., Tsitsulin, A., Kazemi,
M., Halcrow, J., Perozzi, B., and Mirrokni, V. Under-
standing transformer reasoning capabilities via graph al-
gorithms, 2024. URL https://arxiv.org/abs/
2405.18512.

Schwendinger, F. and Schumacher, D. highs: ’HiGHS’
Optimization Solver, 2023. URL https://CRAN.
R-project.org/package=highs. R package ver-
sion 0.1-10.

Veličković, P., Badia, A. P., Budden, D., Pascanu, R., Ban-
ino, A., Dashevskiy, M., Hadsell, R., and Blundell, C.

The clrs algorithmic reasoning benchmark. In Inter-
national Conference on Machine Learning, pp. 22084–
22102. PMLR, 2022.

Veličković, P. and Blundell, C. Neural algorithmic reasoning.
Patterns, 2(7):100273, July 2021. ISSN 2666-3899. doi:
10.1016/j.patter.2021.100273. URL http://dx.doi.
org/10.1016/j.patter.2021.100273.

Veličković, P., Cucurull, G., Casanova, A., Romero, A.,
Liò, P., and Bengio, Y. Graph attention networks. In
International Conference on Learning Representations,
2018. URL https://openreview.net/forum?
id=rJXMpikCZ.

Veličković, P., Ying, R., Padovano, M., Hadsell, R., and
Blundell, C. Neural execution of graph algorithms. In
International Conference on Learning Representations,
2020. URL https://openreview.net/forum?
id=SkgKO0EtvS.

Wang, H. and Li, P. Unsupervised Learning for Com-
binatorial Optimization Needs Meta-Learning, Jan-
uary 2023. URL http://arxiv.org/abs/2301.
03116. arXiv:2301.03116.

Wenkel, F., Cantürk, S., Horoi, S., Perlmutter, M., and
Wolf, G. Towards a general recipe for combinatorial
optimization with multi-filter GNNs. In The Third
Learning on Graphs Conference, 2024. URL https:
//openreview.net/forum?id=6FfwQvbZ7l.

Williamson, D. P. and Shmoys, D. B. The primal-dual
method. In The Design of Approximation Algorithms,
chapter 7, pp. 161–194. Cambridge University Press,
2011.

Xhonneux, L.-P., Deac, A.-I., Veličković, P., and Tang, J.
How to transfer algorithmic reasoning knowledge to learn
new algorithms? Advances in Neural Information Pro-
cessing Systems, 34:19500–19512, 2021.

Xhonneux, S., He, Y., Deac, A., Tang, J., and Gidel, G. Deep
equilibrium models for algorithmic reasoning. In The
Third Blogpost Track at ICLR 2024, 2024. URL https:
//openreview.net/forum?id=diagbK14G5.

Xu, K. and Veličković, P. Recurrent aggregators in neural
algorithmic reasoning. arXiv preprint arXiv:2409.07154,
2024.

Xu, K., Li, C., Tian, Y., Sonobe, T., Kawarabayashi, K.-i.,
and Jegelka, S. Representation learning on graphs with
jumping knowledge networks. In International confer-
ence on machine learning, pp. 5453–5462. PMLR, 2018.

Xu, K., Hu, W., Leskovec, J., and Jegelka, S. How powerful
are graph neural networks? In International Conference

12

https://openreview.net/forum?id=PRapGjDGFQ
https://openreview.net/forum?id=PRapGjDGFQ
https://openreview.net/forum?id=tRP0Ydz5nN
https://openreview.net/forum?id=tRP0Ydz5nN
https://openreview.net/forum?id=hhvkdRdWt1F
https://openreview.net/forum?id=hhvkdRdWt1F
http://dx.doi.org/10.1145/3097983.3098061
http://dx.doi.org/10.1145/3097983.3098061
https://openreview.net/forum?id=vBwSACOB3x
https://openreview.net/forum?id=vBwSACOB3x
https://arxiv.org/abs/2402.11628
https://arxiv.org/abs/2402.11628
https://arxiv.org/abs/2405.18512
https://arxiv.org/abs/2405.18512
https://CRAN.R-project.org/package=highs
https://CRAN.R-project.org/package=highs
http://dx.doi.org/10.1016/j.patter.2021.100273
http://dx.doi.org/10.1016/j.patter.2021.100273
https://openreview.net/forum?id=rJXMpikCZ
https://openreview.net/forum?id=rJXMpikCZ
https://openreview.net/forum?id=SkgKO0EtvS
https://openreview.net/forum?id=SkgKO0EtvS
http://arxiv.org/abs/2301.03116
http://arxiv.org/abs/2301.03116
https://openreview.net/forum?id=6FfwQvbZ7l
https://openreview.net/forum?id=6FfwQvbZ7l
https://openreview.net/forum?id=diagbK14G5
https://openreview.net/forum?id=diagbK14G5

Primal-Dual Neural Algorithmic Reasoning

on Learning Representations, 2019. URL https://
openreview.net/forum?id=ryGs6iA5Km.

Xu, K., Li, J., Zhang, M., Du, S. S., ichi Kawarabayashi, K.,
and Jegelka, S. What can neural networks reason about?
In International Conference on Learning Representations,
2020. URL https://openreview.net/forum?
id=rJxbJeHFPS.

Xu, K., Zhang, M., Li, J., Du, S. S., Kawarabayashi,
K.-I., and Jegelka, S. How neural networks extrapo-
late: From feedforward to graph neural networks. In
International Conference on Learning Representations,
2021. URL https://openreview.net/forum?
id=UH-cmocLJC.

Yau, M., Karalias, N., Lu, E. H., Xu, J., and Jegelka, S.
Are graph neural networks optimal approximation algo-
rithms? In The Thirty-eighth Annual Conference on Neu-
ral Information Processing Systems, 2024. URL https:
//openreview.net/forum?id=SxRblm9aMs.

Zhou, H., Nova, A., Larochelle, H., Courville, A.,
Neyshabur, B., and Sedghi, H. Teaching algorithmic
reasoning via in-context learning, 2022. URL https:
//arxiv.org/abs/2211.09066.

Zhu, Z., Zhang, Z., Xhonneux, L.-P., and Tang, J. Neural
bellman-ford networks: A general graph neural network
framework for link prediction. In Ranzato, M., Beygelz-
imer, A., Dauphin, Y., Liang, P., and Vaughan, J. W. (eds.),
Advances in Neural Information Processing Systems,
volume 34, pp. 29476–29490. Curran Associates, Inc.,
2021. URL https://proceedings.neurips.
cc/paper_files/paper/2021/file/
f6a673f09493afcd8b129a0bcf1cd5bc-Paper.
pdf.

Łukasz Kaiser and Sutskever, I. Neural gpus learn al-
gorithms, 2016. URL https://arxiv.org/abs/
1511.08228.

13

https://openreview.net/forum?id=ryGs6iA5Km
https://openreview.net/forum?id=ryGs6iA5Km
https://openreview.net/forum?id=rJxbJeHFPS
https://openreview.net/forum?id=rJxbJeHFPS
https://openreview.net/forum?id=UH-cmocLJC
https://openreview.net/forum?id=UH-cmocLJC
https://openreview.net/forum?id=SxRblm9aMs
https://openreview.net/forum?id=SxRblm9aMs
https://arxiv.org/abs/2211.09066
https://arxiv.org/abs/2211.09066
https://proceedings.neurips.cc/paper_files/paper/2021/file/f6a673f09493afcd8b129a0bcf1cd5bc-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/f6a673f09493afcd8b129a0bcf1cd5bc-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/f6a673f09493afcd8b129a0bcf1cd5bc-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/f6a673f09493afcd8b129a0bcf1cd5bc-Paper.pdf
https://arxiv.org/abs/1511.08228
https://arxiv.org/abs/1511.08228

Primal-Dual Neural Algorithmic Reasoning

A. Additional details of vertex cover and set cover
A.1. Primal-dual pair: vertex cover and edge packing

Given a graph G = (V,E), where V are vertices and E are edges, each vertex v ∈ V has a non-negative weight
w : V → R+.

Definition A.1 (Minimum vertex cover). A vertex-cover for G is a subset C ⊆ V of the vertices such that for each edge
(v, u) ∈ E, either v ∈ C, u ∈ C, or both. The objective is to minimize the total vertex weight

∑
v∈C w(v).

Definition A.2 (Maximum edge packing). An edge-packing is an assignment p : E → R+ of non-negative weights to the
edges e ∈ E, such that for any vertex v ∈ V , the total weight

∑
e:v∈e p(e) assigned to the edges e that are incident to v is at

most w(v). The objective is to maximize the total edge weight
∑

e∈E p(e).

The edge packing problem is the dual of the LP relaxation of the vertex cover problem, which also has many practical
implications, such as resource allocation. Because of this relationship, the primal-dual pair becomes key problems for
studying approximation algorithms and the primal-dual framework. Let xv ∈ {0, 1} indicate whether each vertex v ∈ V is
in the cover, and ye ∈ R+ be the non-negative weight assigned to each edge e ∈ E. The two problems can be formulated as:

Min
∑
v∈V

w(v)xv

sub. to xu + xv ≥ 1, ∀e = (u, v) ∈ E
xv ∈ {0, 1}, ∀v ∈ V

Max
∑
e∈E

ye

sub. to
∑
e:v∈e

ye ≤ w(v), ∀v ∈ V

ye ≥ 0, ∀e ∈ E.

A.2. Pseudocode of MVC algorithm

A 2/(1− ϵ)-approximation algorithm for the minimum vertex cover (MVC) problem was proposed by Khuller et al. (1994).
It can be interpreted as an instantiation of the general primal-dual approximation algorithm without uniform increase
(Algorithm 1). In the following, we give the original algorithm as illustrated in the original paper (Khuller et al., 1994).

Intuitively, the algorithm maintains a packing p and partial cover Cp = {v ∈ V : p(E(v)) ≥ (1− ϵ)w(v)}, and gradually
increases the edge weights p(e) as much as possible. When the constraint on the residual vertex weight is met, a vertex v is
removed and added to the cover Cp. The process iterates until p is ϵ-maximal and Cp is a cover. Let Ep(v) be the set of
remaining edges incident to vertex v, dp(v) = |Ep(v)| be the degree, and wp(v) = w(v)− p(E(v)) be the residual weight.
The following is a pseudocode of the algorithm as described in Khuller et al. (1994).

Algorithm 2 COVER(G = (V,E), w, ϵ)

1: for v ∈ V do
2: wp(v)← w(v); Ep(v)← E(v); dp(v)← |E(v)|
3: end for
4: while edges remain do
5: for each remaining edge (u, v) do
6: δ((u, v))← min

(
wp(u)
dp(u)

,
wp(v)
dp(v)

)
7: end for
8: for each remaining vertex v do
9: wp(v)← wp(v)−

∑
e∈Ep(v)

δ(e)

10: if wp(v) ≤ ϵ · w(v) then
11: delete v and its incident edges; update Ep(·) and dp(·)
12: end if
13: end for
14: end while
15: Output: the set of deleted vertices

14

Primal-Dual Neural Algorithmic Reasoning

A.3. Primal-dual pair: Set cover and element packing

The minimum set cover (MSC) problem is a generalization of MVC to hypergraphs. Similar to the edge packing, the element
packing is the dual of the LP relaxation of the set cover problem.

Definition A.3 (Minimum Set Cover). Given a universe U and a family of sets C ⊆ 2U with non-negative weights
w : C → R+, a set cover is a subfamily C′ ⊆ C such that ∪S∈C′S = ∪S∈CS. The objective is to minimize the total weight∑

S∈C′ w(S).

Definition A.4 (Maximum Element Packing). An element-packing is an assignment p : U → R+ of non-negative weights to
the elements e ∈ U , such that for any set S ∈ C, the total weight

∑
e∈S p(e) is at most w(S). The objective is to maximize

the total element weight
∑

e∈U p(e).

Let xS ∈ {0, 1} indicate whether each set S ∈ C is in the cover C′, and ye ∈ R+ be the non-negative weight assigned to
each element e ∈ U . The two problems can be formulated as:

Min
∑
S∈C

w(S)xS

sub. to
∑

S:e∈S

xS ≥ 1, ∀e ∈ U

xS ∈ {0, 1}, ∀S ∈ C

Max
∑
e∈U

ye

sub. to
∑
e∈S

ye ≤ w(S), ∀S ∈ C

ye ≥ 0, ∀e ∈ U .

A.4. Pseudocode of MSC Algorithm

The above algorithm can be extended for set cover as an r/(1 − ϵ)-approximation algorithm, where r is the maximal
cardinality of sets. The following pseudocode is the adapted approximation algorithm to solve vertex cover on a hypergraph.

Algorithm 3 COVER(G = (V,E), w, ϵ)

1: for v ∈ V do
2: wp(v)← w(v); Ep(v)← E(v); dp(v)← |E(v)|
3: end for
4: while edges remain do
5: for each remaining edge e do
6: δ(e)← minv∈e

(
wp(v)
dp(v)

)
7: end for
8: for each remaining vertex v do
9: wp(v)← wp(v)−

∑
e∈Ep(v)

δ(e)

10: if wp(v) ≤ ϵ · w(v) then
11: delete v and its incident edges; update Ep(·) and dp(·)
12: end if
13: end for
14: end while
15: Output: the set of deleted vertices

B. Proof of Theorem 4.1
Given a hitting set problem (T , E, w), we construct a bipartite graph B as explained in Section 4.1. Let B(t) denote the
bipartite graph at timestep t, then B(0) = B. If we remove a node e and its incident edges from the graph when an element
e is included in the hitting set at timestep t, an action denoted by x(t)e = 1, then the bipartite graph B(t) changes accordingly.
Therefore, the degrees of primal nodes d(t) can be computed via d(t) = f(T , E,maxt′∈[0,...,t](x

(t′))) for some function f ,
where the max function is applied element-wise. WLOG, let n denote the hidden dimension. We can now prove the theorem
using mathematical induction.

1. Base case (t = 0): This is true because the inputsM(0)
Θ (T , E, w) = (0, {we : e ∈ E},0, 0) = (x(0), r(0), δ(0),∆(0)).

15

Primal-Dual Neural Algorithmic Reasoning

2. Induction step (t > 0): To formulate the strong induction hypothesis, let (x(t′), r(t
′), δ(t

′),∆(t′)) be the intermediate
quantites computed by Algorithm 1 for each timestep t′ ∈ [0, ..., t−1], assumeM(t′)

Θ (T , E, w) = (x(t′), r(t
′), δ(t

′),∆(t′)).
We now prove thatM(t)

Θ (T , E, w) = (x(t), r(t), δ(t),∆(t)).

The inputs for the tth step of our recurrent model are the outputs from the (t − 1)th step. By the induction hypothesis,
the model output r̂(t−1) = r(t−1). Furthermore, since d(t) = f(T , E,maxt′∈[0,...,t](x

(t)′)) for some function f , and the

model outputs satisfy x̂(t)′ = x(t)′ for all t′ ∈ [0, ..., t− 1] via the strong induction hypothesis, we have d̂
(t−1)

= d(t−1).
We take the natural logarithmic form of r(t−1) and d(t−1) as inputs to the encoders.

Both encoders fr and fd are MLPs. We define the weight of fr as Wfr = [1, 0, ..., 0] ∈ Rn×1. We define the weight of fd
as Wfd = [1, 0, ..., 0] ∈ Rn×1. Therefore,

h(t)
e = fr(r

(t−1)
e) =Wfr ln r

(t−1)
e

= [ln r(t−1)
e , 0, ..., 0] ∈ Rn×1

h
(t)
de

= fd(d
(t−1)
e)

=Wfd ln d
(t−1)
e

= [ln d(t−1)
e , 0, ..., 0] ∈ Rn×1

The first step performs message-passing from the primal node representations h(t)
e to the dual nodes h

(t)
T via h

(t)
T =

mine∈N (T) ge(h
(t)
e ,h

(t)
de
). Let ge be an MLP with ELU activation, then we set Wge = [1, 0, ..., 0,−1, 0, ..., 0]⊤ ∈ R1×2n,

bge = [1] ∈ R1, and W ′
ge = [1, 0, ..., 0] ∈ Rn×1 thus:

ge(h
′(t)
e) =W ′

ge

(
ELU

(
Wge [h

(t)
e ∥h

(t)
de
]
)
+ bge

)
=W ′

ge

(
ELU

(
[1, 0, ..., 0,−1, 0, ..., 0]⊤

[ln r(t−1)
e , 0, ..., 0, ln d(t−1)

e , 0, ..., 0]
)
+ 1
)

=W ′
ge

(
ELU

(
ln r(t−1)

e − ln d(t−1)
e

)
+ 1
)

=W ′
ge

(
ELU

(
ln
r
(t−1)
e

d
(t−1)
e

)
+ 1

)

Since ELU(x) = ex − 1 if x ≤ 0, and ln
r(t−1)
e

d
(t−1)
e

≤ 0,

ge(h
′(t)
e) =W ′

ge

(
exp

(
ln
r
(t−1)
e

d
(t−1)
e

)
− 1 + 1

)

= [1, 0, ..., 0]
r
(t−1)
e

d
(t−1)
e

= [
r
(t−1)
e

d
(t−1)
e

, 0, ..., 0] ∈ Rn×1

Therefore, the hidden representation h
(t)
T for each set T ∈ T , is:

h
(t)
T = min

e∈N (T)
ge(h

′(t)
e)

= min
e∈N (T)

[
r
(t−1)
e

d
(t−1)
e

, 0, ..., 0]

16

Primal-Dual Neural Algorithmic Reasoning

Algorithm 4 General primal-dual approximation algorithm

1: Input: (T , E, w): a ground set E with weights w, and a family of subsets T ⊆ 2E

2: A← ∅; for all e ∈ E: re ← we

3: while ∃T ∈ T : A ∩ T = ∅ do
4: V ← {T ∈ T : A ∩ T = ∅}
5: repeat
6: for each T ∈ V do δT ← mine∈T

{
re

|{T ′∈T :e∈T ′}|

}
7: for each e ∈ E \A do re ← re −

∑
T :e∈T δT

8: until ∃e /∈ A : re = 0
9: A← A ∪ {e : re = 0}

10: end while
11: Output: A

Uniform increase (optional):
(6.1): ∆← minT∈VδT
(6.2): for e ∈ E \A do re ← re − |{T : e ∈ T}|∆

= [min
e∈N (T)

r
(t−1)
e

d
(t−1)
e

, 0, ..., 0]

= [δ
(t)
T , 0, ..., 0] ∈ Rn×1 (From Line 1 of Algorithm 4)

The next step performs message-passing from the dual node representations h(t)
T and then updates the primal representations

h(t)
e via h(t)

e = gu(h
(t)
e ,
∑

T∈N (e) h
(t)
T). We use ELU activation function on the previously computed h(t)

e and a bias

br = [1, 0, ..., 0] ∈ Rn×1. Since ln r
(t−1)
e ≤ 0, we have:

h(t)
e = ELU

(
h(t)
e

)
+ br

= ELU
(
[ln r(t−1)

e , 0, ..., 0]
)
+ [1, 0, ..., 0]

= [exp (ln r(t−1)
e)− 1 + 1, 0, ..., 0]

= [r(t−1)
e , 0, ..., 0] ∈ Rn×1

The update function gu is also an MLP. We define its weights to be Wgu = [1, 0, ..., 0,−1, 0, ..., 0]⊤ ∈ R1×2n. Then, the
hidden dimension h(t)

e for each element e ∈ E becomes:

h(t)
e = gu

h(t)
e ,

∑
T∈N (e)

h
(t)
T

=Wgu

h(t)
e ∥

∑
T∈N (e)

h
(t)
T

= [1, 0, ..., 0,−1, 0, ..., 0]⊤

[r(t−1)
e , 0, ..., 0,

∑
T∈N (e)

δ
(t)
T , 0, ..., 0]

= [r(t−1)
e −

∑
T∈N (e)

δ
(t)
T , 0, ..., 0]

= [r(t)e , 0, ..., 0] ∈ Rn×1 (From Line 4 of Algorithm 4)

17

Primal-Dual Neural Algorithmic Reasoning

Alternatively, if the uniform increase rule is incorporated, we have an additional virtual node z that connects to all dual
variables. Its hidden representation h(t)

z is computed as:

h(t)
z = min

T∈T
h
(t)
T

= min
T∈T

[δ
(t)
T , 0, ..., 0]

= [min
T∈T

δ
(t)
T , 0, ..., 0]

= [∆(t), 0, ..., 0] ∈ Rn×1 (From Line 6.1 of Algorithm 4)

Then let h′(t)
T = h(t)

z , the primal variable updates becomes:

h(t)
e = gu

h(t)
e ,

∑
T∈N (e)

h
′(t)
T

=Wgu

h(t)
e ∥

∑
T∈N (e)

h
′(t)
T

= [1, 0, ..., 0,−1, 0, ..., 0]⊤

[r(t−1)
e , 0, ..., 0,

∑
T∈N (e)

∆(t), 0, ..., 0]

= [r(t−1)
e − d(t−1)

e ∆(t), 0, ..., 0]

= [r(t)e , 0, ..., 0] ∈ Rn×1 (From Line 6.2 of Algorithm 4)

For the decoders qx, qr, qδ (and q∆ if uniform increase is used), they map hidden representations h(t)
e , h(t)

T (and h(t)
z if

uniform increase is used) to predictions for the intermediate quantities computed by the algorithm. We define Wqx =

Wqr = Wqδ = Wq∆ = [1, 0, ..., 0]⊤ ∈ R1×n. For x(t)e , it is a binary classification task, where x(t)e = 1 if r(t)e = 0 to add
the element e to the hitting set. Define o : R→ {0, 1}, where

o(x) =

{
1, if x ≤ 0

0, else

We note that although we use a sigmoid function in our architecture, the sigmoid function can approximate o(x) to arbitrary
precision by adjusting its temperature. Therefore, we have

x̂(t)e = o(qx(h
(t)
e))

= o
(
Wqx(h

(t)
e

)
= o

(
[1, 0, ..., 0]⊤[r(t)e , 0, ..., 0]

)
= o

(
r(t)e

)
= x(t)e (Definition of x(t)e)

For the other three intermediate quantities:

r̂(t)e = qr(h
(t)
e)

=Wqr (h
(t)
e)

= [1, 0, ..., 0]⊤[r(t)e , 0, ..., 0]

= r(t)e

18

Primal-Dual Neural Algorithmic Reasoning

δ̂
(t)
T = qδ(h

(t)
T)

=Wqδ(h
(t)
T)

= [1, 0, ..., 0]⊤[δ
(t)
T , 0, ..., 0]

= δ
(t)
T

∆̂(t) = qδ(h
(t)
z)

=Wq∆(h
(t)
z)

= [1, 0, ..., 0]⊤[∆(t), 0, ..., 0]

= ∆(t)

Therefore,M(t)
Θ (T , E, w) = (x(t), r(t), δ(t),∆(t)) and the induction step is completed.

C. Datasets
C.1. Synthetic datasets

We provide the details of the graph distributions used to generate random graphs for both training and testing.

Barabási-Albert (B-A) graph Barabási-Albert graphs for both training and testing are randomly generated using
networkx.barabasi_albert_graph. The number of edges to attach from a new node to existing nodes is randomly
chosen from [1, 10]. Node weights for primal variables are uniformly sampled from [0, 1].

Erdős–Rényi (E-R) graph We use networkx.erdos_renyi_graph to generate random Erdős–Rényi graphs with
edge probability uniformly sampled from [0.2, 0.8].

Star graph Star graphs are generated by randomly partitioning the nodes into 1 to 5 sets. Within each node set, a star
graph is generated with a center node connected to all other nodes. Random edges between the star graphs are then added to
ensure the graph is connected.

Lobster graph To generate a lobster graph, the number of nodes on the “backbone”m is randomly sampled from [1, n−1],
where n is the total number of nodes in the graph. Then, another k nodes are added to the backbone nodes to start “branches”,
where 1 ≤ k ≤ (n−m). Finally, the remaining nodes (if any left from n−m− k) are randomly attached to the branches.

3-Connected (3-Con) Planar graph A 3-regular graph is randomly generated with
networkx.random_regular_graph, and then checked to see if it is 3-connected and planar. The process
is repeated until a valid 3-connected planar graph is found, or if it reaches the limit of 100 attempts.

Table 5. Percentage of nodes being in the optimal vertex cover for different graph families.

B-A E-R Star Lobster 3-Con

16 nodes 43% 71% 23% 40% 61%
32 nodes 49% 80% 15% 41% 60%
64 nodes 45% 88% 8% 41% 59%

Barabási-Albert bipartite graph We use the same distribution to generate random Barabási-Albert bipartite graph as
described in Borodin et al. (2018) and Hayderi et al. (2024). Given parameters (m,n, b), we generate a bipartite graph G on
n nodes on the left-hand side (LHS) and m on the right-hand side (RHS) via a preferential attachment scheme. Given n
LHS nodes, we attach each RHS node to b LHS nodes sampled without replacement, where the probability of selecting an
LHS node v is proportional to Pr[v] = degree(v)∑

v′ degree(v′) .

19

Primal-Dual Neural Algorithmic Reasoning

The parameter b can be varied to generate OOD graphs. For training, we choose b = 5. For testing OOD generalization, we
use b = 3 and b = 8 to generate test graphs with sparser and denser preferential attachment.

For vertex cover and set cover, we use Algorithm 2 and Algorithm 3 (Khuller et al., 1994) to generate intermediate
supervisions, which are instantiations of Algorithm 1 with improved efficiency, as explained in Section 3.3. For hitting set,
we use Algorithm 1 with the uniform increase rule. Furthermore, the optimal solutions are generated with the default IP
solver in scipy, which is based on HiGHS (Schwendinger & Schumacher, 2023; Huangfu & Hall, 2018).

C.2. Gurobi datasets

Random B-A graphs are generated following the same distribution described above. For testing, we generate B-A graphs
with 500, 600, and 750 nodes. We use the trained model to perform inference on the testing set and retrieve vertex cover
solutions. We also use Algorithm 2 (Khuller et al., 1994) to compute solutions with ϵ = 0.1. The comparison of the solutions
from the model and the algorithm is shown in Table 6. The two sets of solutions are then used to initialize variables to
warm-start the Gurobi solver. We also compare them with Gurobi’s default initialization (i.e., no warm start). We use the
default parameter settings of Gurobi, setting thread count to 1 (model.setParam(’Threads’, 1)), the time limit to
3600s (model.setParam(’TimeLimit’, 3600)), and random seed (model.setParam(’Seed’, seed)).
Each experiment is repeated with 5 seeds.

Table 6. The ratio of total weights of the solutions generated by the model compared with those generated by the algorithm (wpred/walgo).
We also report the percentage of uncovered edges from the solutions generated by the model (i.e. how often the cleanup stage is required).

500 nodes 600 nodes 750 nodes

wpred/walgo 0.972 0.970 0.970
Uncovered edges 0% 0% 0%

C.3. Real-world datasets

Airports The Airports datasets (Ribeiro et al., 2017) consist of three airport networks from Brazil (131 nodes, 1038 edges),
Europe (399 nodes, 5995 edges), and the USA (1190 nodes, 13599 edges). The nodes represent airports, and the edges
represent commercial flight routes. The node features are one-hot encoded node identifiers, as described in (Jin et al., 2019).
The task is to predict the activity level of each airport, measured by the total number of landings plus takeoffs, or the total
number of people arriving plus departing. It is a classification task with 4 labels, with label 1 assigned to the 25% least
active airports, and so on, according to the quartiles of the activity distribution. We create 10 random train/val/test splits for
the transductive task with a ratio of 60%/20%/20%.

D. Hyperparameters
All GPU experiments were performed on Nvidia Quadro RTX 8000 with 48GB memory. The Gurobi experiments were
conducted on Intel Xeon E7-8890x with 144 cores and 12TB memory.

Synthetic and Gurobi experiments For training, we use the Adam optimizer with an initial learning rate of 1e-3 and
weight decay of 1e-4, coupled with the ReduceLROnPlateau scheduler with default settings. Additionally, we use a batch
size of 32, a hidden dimension of 32, and a maximum of 100 epochs. For testing, we use the trained model with the lowest
validation loss.

Real-world dataset experiments We use the same optimizer and scheduler settings as in the synthetic experiments.
Additionally, we also apply early stopping with a patience of 10 epochs based on validation loss and set the scheduler with a
patience of 20 epochs. All embeddings have a fixed dimension of 32. For testing, we use the model with the lowest validation
loss. The base models are used with max jumping knowledge (Xu et al., 2018) and L2 normalization after each layer (Rossi
et al., 2024). We conduct hyperparameter search for each base model on Airports datasets (Brazil, Europe, USA), then use
the setting for all embedding methods. Due to the high computational costs of WikipediaNetwork (Chameleon, Squirrel) and
PPI datasets, hyperparameter search is only done with GCN. We use the default TPE hyperparameter search algorithm from
optuna (Akiba et al., 2019) with a median pruner. The searchable parameters are lr=[0.01, 0.001, 0.0005], hid_dim=[32,

20

Primal-Dual Neural Algorithmic Reasoning

64, 128], dropout=[0.1, 0.3, 0.5], and num_layer=[1, 3, 5]. For training Node2Vec (Grover & Leskovec, 2016), we use
walk_length=20, context_size=10, walks_per_node=10, with 100 epochs.

Table 7. Additional hyperparameters for real-world dataset experiments.
Brazil Europe USA

GCN lr=0.0005 lr=0.001 lr=0.001
hid_dim=32 hid_dim=32 hid_dim=64
dropout=0.5 dropout=0.1 dropout=0.3
num_layer=3 num_layer=3 num_layer=3

GAT lr=0.001 lr=0.001 lr=0.001
hid_dim=32 hid_dim=32 hid_dim=32
dropout=0.3 dropout=0.1 dropout=0.1
num_layer=3 num_layer=3 num_layer=3

SAGE lr=0.0005 lr=0.0005 lr=0.001
hid_dim=32 hid_dim=32 hid_dim=64
dropout=0.5 dropout=0.3 dropout=0.1
num_layer=1 num_layer=1 num_layer=3

E. Additional architectural details
In practice, due to the potentially high degree variance, we apply log transformation on the node degree d(t)e before encoding
it with fd for better generalization, i.e. h(t)

de
= fd(ln(d

(t−1)
e + 1)). Then, for decoding x̂(t)e = qx(h

(t)
e), which represents

whether to include element e to the solution, we apply a sigmoid activation function to convert logits to probabilities. For
minimum vertex cover and minimum set cover, since multiple elements can be included into the solution at each timestep,
we set a threshold of 0.5 to decide whether to include the element. For minimum hitting set, since the uniform increase rule
is used, only one element is included into the solution at each timestep, we choose the element with the highest probability
to include in the hitting set. Lastly, we add dropouts in between processor layers with probability of 0.2 for Gurobi and
real-world experiments. This helps the model to generalize to much larger graphs at a slight cost of approximation ratios.

F. Limitation and future work
While our framework is a general one that can learn any algorithm designed with the primal-dual paradigm, the architecture
described in the paper can be directly adapted to solve any problem represented by the hitting set formulation. The hitting
set provides a flexible structure for modeling various optimization problems by selecting a subset of elements that “hits” or
“covers” all required constraints, represented as sets. This formulation is versatile because it can capture diverse constraints
(e.g., nodes, edges, paths, cycles), making it applicable to numerous problems. As discussed in Section 3.3, Algorithm 1 can
be reformulated to recover many classical (exact or approximation) algorithms for problems that are special cases of the
hitting set, covering both polynomial-time solvable and NP-hard problems. Some of these special cases are illustrated in
Goemans & Williamson (1996) and Williamson & Shmoys (2011), including shortest s-t path, minimum spanning tree,
vertex cover, set cover, minimum-cost arborescence, feedback vertex set, generalized Steiner tree, minimum knapsack, and
facility location problems.

We note that not all problems can be directly represented by the hitting set formulation. As a minimization problem, the
hitting set does not naturally align with maximization objectives, making the primal-dual approximation algorithm less
straightforward to apply. However, the primal-dual framework can still be extended to maximization problems by carefully
reformulating the primal-dual pair, where the dual is a minimization problem, and adapting Algorithm 1. Then, similarly,
the algorithm starts with a feasible dual solution and iteratively updates both primal and dual variables to reduce the gap
between them. Therefore, PDNAR, with its bipartite graph structure, can still be extended to handle maximization problems
with appropriate adjustments to Algorithm 1.

Furthermore, while Algorithm 1 provides a general framework for designing primal-dual approximation algorithms, it can
be further strengthened by incorporating techniques to enhance the algorithmic performance. One such technique is the
uniform increase rule, which we have shown how it can be integrated into our framework. Future work can incorporate other
advanced techniques, such as those outlined in (Williamson & Shmoys, 2011), to further extend our framework’s ability to

21

Primal-Dual Neural Algorithmic Reasoning

accommodate a broader range of primal-dual approximation algorithms with improved worst-case guarantees.

Lastly, our method may not explicitly preserve the worst-case approximation guarantees of the primal-dual algorithm in
practice. Instead, our model focuses on learning solutions that perform better for the training distribution and generalize
well to new instances. While this does not mean that the worst-case guarantees are secured, it is important to note that such
cases are often less common in real-world scenarios. One of the core strengths of NAR lies in leveraging a pretrained GNN
with embedded algorithmic knowledge to tackle real-world datasets. Therefore, we believe it is valuable to train models to
produce high-quality solutions for common cases, even if they do not preserve worst-case guarantees. This aligns with the
overarching goals of NAR.

G. Related works on neural algorithmic reasoning
We provide a more comprehensive review of existing works on Neural Algorithmic Reasoning (NAR) and highlight our
contributions in this context.

Neural algorithmic reasoning The algorithmic alignment framework proposed by Xu et al. (2020) suggests that GNNs
are particularly well-suited for learning dynamic programming algorithms due to their shared aggregate-update mechanism.
Additionally, Veličković et al. (2020) demonstrates the effectiveness of GNNs in learning graph algorithms such as BFS and
Bellman-Ford. These foundational works have contributed to the development of neural algorithmic reasoning (Veličković &
Blundell, 2021), which investigates the potential of neural networks, particularly GNNs, to simulate traditional algorithmic
processes. This research direction has since inspired several follow-up studies, including efforts to instantiate the framework
for specific algorithms (Deac et al., 2020; Georgiev & Liò, 2020; Zhu et al., 2021), applications to real-world use cases
(Deac et al., 2021; He et al., 2022; Beurer-Kellner et al., 2022; Georgiev et al., 2023a; Numeroso et al., 2023; Estermann
et al., 2024), architectural improvements (Georgiev et al., 2022; Bevilacqua et al., 2023; Rodionov & Prokhorenkova, 2023;
Jain et al., 2023; Engelmayer et al., 2023; Mirjanic et al., 2023; Georgiev et al., 2023b; Dudzik et al., 2024; Jürß et al.,
2024; Xhonneux et al., 2024; Georgiev et al., 2024; Rodionov & Prokhorenkova, 2024; Xu & Veličković, 2024; Kujawa
et al., 2024), and integration with large language models (Bounsi et al., 2024). Our work advances NAR by introducing a
general framework designed to tackle combinatorial optimization problems, particularly NP-hard ones, with the objective of
simulating and outperforming primal-dual approximation algorithms.

Combinatorial optimization with GNNs The CLRS benchmark (Veličković et al., 2022) and its extensions (Minder
et al., 2023; Markeeva et al., 2024) are widely recognized for evaluating GNNs on 30 algorithms from the CLRS textbook
(Cormen et al., 2001) and more. However, these algorithms are limited to polynomial-time problems, leaving the more
challenging NP-hard problems largely unexplored in neural algorithmic reasoning. A comprehensive review by Cappart
et al. (2022) summarizes the current progress of using GNNs for combinatorial optimization. The most relevant work
(Georgiev et al., 2023c) trains GNNs on algorithms for polynomial-time-solvable problems and test them on NP-hard
problems, demonstrating the value of algorithmic knowledge over non-algorithmically informed models. In contrast, our
approach bridges this gap by extending GNNs to tackle NP-hard problems through the use of primal-dual approximation
algorithms. Furthermore, we integrate optimal solutions from integer programming, which guides the model toward better
outcomes during training. To the best of our knowledge, our method is the first of its kind to surpass the performance of the
algorithms it was originally trained on.

Multi-task learning for NAR Early work by Veličković et al. (2020) demonstrated that BFS and Bellman-Ford are best
learned jointly, and subsequent studies have highlighted broader benefits of multi-task learning when GNNs are trained on
multiple algorithms simultaneously (Xhonneux et al., 2021; Ibarz et al., 2022). Building on this, Numeroso et al. (2023)
leveraged the primal-dual principle from linear programming to successfully learn the Ford-Fulkerson algorithm using the
max-flow min-cut theorem. However, their approach was tailored specifically for Ford-Fulkerson and did not generalize to
other primal-dual scenarios or address NP-hard problems. To overcome these limitations, our work introduces a general
framework that employs the primal-dual principle to enable GNNs to benefit from multi-task learning across a broad range
of optimization problems, particularly those expressible as instances of the general hitting set problem.

22

Primal-Dual Neural Algorithmic Reasoning

H. Contribution to Neural Combinatorial Optimization (NCO)
Most GNN-based supervised learning methods for NCO learn task-specific heuristics or optimize solutions in an end-to-end
manner (Joshi et al., 2019; Li et al., 2018; Gasse et al., 2019; Fu et al., 2021). These end-to-end approaches rely exclusively
on supervision signals derived from optimal solutions, which are computationally expensive to obtain for hard instances.
Furthermore, dependence on such labels can limit generalization (Joshi et al., 2022). In contrast, our method trains
on synthetic data obtained efficiently from a polynomial-time approximation algorithm. The embedding of algorithmic
knowledge also demonstrates strong generalization. The addition of optimal solutions are derived from small problem
instances, enabling our model to outperform the approximation algorithm and generalize effectively to larger problem sizes.

Our approach represents a previously underexplored area of NCO research with GNNs, offering a general framework
to build an algorithmically informed GNN to tackle combinatorial optimization problems. Unlike end-to-end methods,
we leverage intermediate supervision signals from polynomial-time approximation algorithms, which can be generated
efficiently, to address key bottlenecks in data efficiency and generalization. Additionally, we fill the gap in autoregressive
methods for NCO using GNNs by aligning our architecture with the primal-dual method, enabling the GNN to simulate a
single algorithmic step in an efficient and structured manner.

We provide additional empirical evidences on the RB benchmark graphs, which are well-known hard instances for the
Minimum Vertex Cover (MVC) problem. We compared our method with several NCO baselines. Given the supervised
nature of our approach, obtaining optimal solutions for RB200/500 graphs is computationally challenging. Therefore, we
tested the generalization of our model, trained on Barabási-Albert graphs of size 16 (using intermediate supervision from the
primal-dual algorithm and optimal solutions), on the larger RB200/500 graphs. We compare with EGN (Karalias & Loukas,
2021) and Meta-EGN (Wang & Li, 2023), two powerful NCO baselines for these benchmarks, as well as two algorithms
(the primal-dual approximation algorithm and the greedy algorithm) and Gurobi. The results are summarized in Table 8.

Table 8. Approximation ratio of solutions compared with optimal solutions for MVC (lower is better).

Method RB200 RB500

EGN 1.031± 0.004 1.021± 0.002
Meta-EGN 1.028± 0.005 1.016± 0.002
PDNAR (ours) 1.029± 0.005 1.020± 0.004
Primal-dual 1.058± 0.003 1.056± 0.004
Greedy 1.124± 0.002 1.062± 0.005
Gurobi 9.5 (≤ 1.00s) 1.011± 0.003 1.019± 0.003
Gurobi 9.5 (≤ 2.00s) 1.008± 0.002 1.019± 0.003

From Table 8, we observe that PDNAR outperforms EGN and is competitive with its improved variant, Meta-EGN. Notably,
EGN and Meta-EGN are trained directly on 4000 RB200/500 graphs, while our method was trained solely on 1000
Barabási-Albert graphs with just 16 nodes and tested out-of-distribution. This highlights the data efficiency and strong
generalization capability of PDNAR.

We note that both EGN and Meta-EGN are unsupervised methods, whereas our method adopts a supervised approach.
A fairer comparison would involve supervised baselines for NCO. However, current focus of NCO has primarily shifted
towards unsupervised methods, leaving existing supervised baselines with outdated performances. Obtaining labels for
large graphs, such as RB200/500, is also computationally prohibitive. Additionally, supervised methods usually require a
combination of external solvers or search algorithms, which is a different setting than ours. In summary, our supervised
approach addresses this underexplored direction of NCO by addressing its key challenges — PDNAR as an algorithmically
informed GNN that leverages efficiently obtainable labels while demonstrating strong generalization capabilities.

I. Duality in linear programming
Duality in linear programming has been utilized in training neural networks to tackle optimization problems. Li et al. (2024)
introduces a Learning-to-Optimize method to mimic Primal-Dual Hybrid Gradient method for solving large-scale LPs.
While they focus on developing efficient solvers for LPs, we aim to simulate the primal-dual approximation algorithm for
NP-hard problems using GNNs. Although both approaches reference the primal-dual framework, this similarity is superficial.

23

Primal-Dual Neural Algorithmic Reasoning

The primal-dual terminology is widely used in optimization, but our work applies it to study algorithmic reasoning. For
example, the primal-dual approximation algorithm can be instantiated to many traditional algorithms, such as Kruskal’s
algorithm for MST. Furthermore, unlike Li et al. (2024), our method relies on intermediate supervision from the primal-dual
algorithm to guide reasoning, ensuring that the model learns to mimic algorithmic steps. We also incorporate optimal
solutions into the training process to improve solution quality, allowing our model to outperform the primal-dual algorithm
it is trained on. Moreover, the architectures differ significantly: our method employs a recurrent application of a GNN to
iteratively solve problems, while Li et al. (2024) does not use GNNs or recurrent modeling. These distinctions highlight that
our focus is not on solving LPs but on leveraging NAR to generalize algorithmic reasoning for NP-hard problems.

24

