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ABSTRACT

In the face of rapidly accumulating genomic data, our understanding of the RNA
regulatory code remains incomplete. Recent self-supervised methods in other do-
mains have demonstrated the ability to learn rules underlying the data-generating
process, such as sentence structure in language. Inspired by this, we extend con-
trastive learning techniques to genomic data by utilizing functional similarities be-
tween sequences generated through alternative splicing and gene duplication. We
introduce IsoCLR, a model trained on a novel dataset with a contrastive objective
enabling the learning of generalized RNA isoform representations. We validate
representation utility on downstream tasks such as RNA half-life and mean ribo-
some load prediction. Our pre-training strategy yields competitive results using
linear probing across 6 tasks, along with up to a two-fold increase in Pearson cor-
relation in low-data conditions. Importantly, our exploration of the learned latent
space reveals that our contrastive objective yields semantically meaningful rep-
resentations, underscoring its potential as a valuable initialization technique for
RNA property prediction.

1 INTRODUCTION

Self-supervised learning (SSL) techniques have recently enabled the generation of effective repre-
sentations that can be fine-tuned on related downstream tasks. This has reduced reliance on labeled
data and demonstrated impressive generalization capabilities to a diversity of tasks (Tomasev et al.
(2022); Radford et al. (2021)). SSL can be formulated through a data reconstruction objective, where
a model is required to reconstruct a portion of the input data. Typical formulations have included
next token prediction (NTP) and masked language modeling (MLM) (Devlin et al. (2018); Rad-
ford & Narasimhan (2018); Vaswani et al. (2017)). Recent self-supervised methods, including those
by Ji et al. (2021), Chen et al. (2022), and Nguyen et al. (2023), have applied the self-supervised
learning (SSL) paradigm to genomic data. However, the unique properties inherent to genomic
data pose challenges for implementing reconstruction-based SSL objectives or supervised learning
approaches.

Genomic sequences in the natural world are constrained by evolutionary viability, resulting in low
natural diversity1 and high mutual information across genomes from the same species (Taliun et al.
(2021)). Latest estimates propose that up to five percent of the human genome is under constraint and

∗Co-first Authors; correspondence to phil.fradkin@mail.utoronto.ca ljlee@psi.toronto.edu
1In the coding region (2% of human DNA), an average individual carries 27±13 unique SNPs (Gudmunds-

son et al. (2021)).
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Figure 1: Pearson correlation of linear regressions trained on representations by different self-
supervised methods. RNA half-life and mean ribosome load are important cellular properties for
regulating protein abundance. IsoCLR’s contrastive objective outperforms existing SSL approaches.

can be considered high information content (Chen et al. (2024); Lindblad-Toh et al. (2011)). The
remaining 95% of the genetic sequence lacks evidence of negative selection, meaning mutations
may have little to no impact on organism fitness (Chen et al. (2024)). Without a strong biological
inductive bias, existing reconstruction-based SSL models often reconstruct non-informative tokens,
which can result in suboptimal representations. Due to the high-mutual information between sam-
ples, it is also difficult to scale the effective size of the training dataset to circumvent this issue. We
find that recent applications of SSL methods to genomics (Dalla-Torre et al. (2023); Ji et al. (2021);
Nguyen et al. (2023)) learn latent representations that are not well linearly separated (Figure 1). The
gap between baseline SSL methods and supervised approaches remains large, while no clear trend
exists between model size and performance.

In this work, we develop IsoCLR, a contrastive technique applied to genomic data with the pur-
pose of learning effective RNA representations. Contrastive learning, a type of SSL, utilizes data
augmentations to alter samples in a semantically meaningful way to learn effective representations
(Koch (2015); Chen et al. (2020)). (Poole et al. (2019); Tschannen et al. (2019)). IsoCLR utilizes
stronger biologically motivated inductive biases, making it less reliant on limited sequence diversity
and capable of learning representations without extensive training on experimental data (Figure 2).
To generate RNA augmentations, we rely on naturally occurring cellular and evolutionary processes:
alternative splicing, and gene homology. Byproducts of these processes often generate RNAs with
different sequences and similar functions (Pertea et al. (2018)). We identify paired RNA sequences
generated by these processes and use them as augmentations for learning RNA embeddings. We
investigate the effectiveness of learned representations by evaluating IsoCLR on six tasks including
RNA half-life (HL) and mean ribosome load prediction (MRL) (Agarwal & Kelley (2022); Sug-
imoto & Ratcliffe (2022)). We find that IsoCLR outperforms other self-supervised methods and
matches or exceeds supervised performance when fine-tuned. Our main contributions are:

• We create a novel RNA pre-training dataset by proposing augmentations for genomic se-
quences produced through homology, and alternative splicing processes.

• We propose IsoCLR, a novel method that employs a contrastive learning objective to learn
robust RNA isoform representations across species.

• We conduct extensive evaluations of IsoCLR on tasks such as RNA half-life and mean
ribosome load prediction to demonstrate improvements, particularly in the low data regime.

2 METHODS

Contrastive Learning Dataset: Our proposed dataset for the contrastive learning objective is com-
posed of annotated RNA transcriptomes (Frankish et al. (2021); O’Leary et al. (2016)). Using this
information, we generate a six-track mature RNA representation, consisting of four one-hot encoded
tracks encoding genomic sequence, a track indicating the 5’ location of splice sites, and a track indi-
cating the first nucleotide of every codon. The addition of splice site and coding sequence locations
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Figure 2: Description of the data generation and training processes for IsoCLR. The upper half
of the figure demonstrates hypothetical examples for creating mature RNA sets from which pos-
itive data pairs are sampled. The first example demonstrates that a positive mature RNA set can
be constructed from splicing. The second example demonstrates RNA set construction from gene
homology. The lower half of the figure demonstrates the training process utilizing the generated
mature RNA sets. First, RNAs are sampled with replacement from the sets and an RNA embedding
is generated using a dilated convolutional residual encoder f . Then the representations are passed
through a projector g, the normalized output of which is used to compute the decoupled contrastive
loss.

has been shown to be beneficial for downstream genomic tasks (Agarwal & Kelley (2022)). Depend-
ing on the species analyzed and the transcriptome annotation resource used, between 25% and 50%
of genes contain multiple isoforms which we then sample to use as augmentations (Table 3). Ad-
ditionally, we used homology as a source of RNA isoform invariances. Homologous genes, which
share structural similarities and encode similar functions, include paralogous and orthologous rela-
tionships, the former of which we use for training (Lesk (2020)). To annotate these relationships,
we used the Homologene database (Sayers et al. (2023)).

Contrastive Learning Objective: During our contrastive training phase, we pool together se-
quences of splicing isoforms from homologous genes and treat them as views of the same object.
Given a batch of N sequences (e.g. RNA isoforms) x1, ...xN let x1

i , x2
i be two splicing isoforms

from a set of homologous genes. We pass these augmented views through a dilated convolutional
encoder f resulting in the outputs h1

i and h2
i . These representations are then fed into a multi-layer

perceptron projection head, g the output of which is used to calculate normalized projections zi as
shown in Figure 2.

Normalized projections zi are used to compute the contrastive loss, utilizing samples from the rest
of the batch as negative examples. We use decoupled contrastive learning (DCL) as it has been
shown to require smaller batch sizes, is less sensitive to hyperparameters such as learning rate, and
the positive loss term can be weighted by sample difficulty (Yeh et al. (2021)). DCL iterates on
the normalized temperature-scaled cross-entropy loss by splitting the contrastive objective into two
terms: a similarity loss (positive) and a dissimilarity loss (negative) (Sohn (2016)). More formally,
the positive and negative losses are calculated:

LDCL,i(θ) = log

N∑
zk∈Z,l∈1,2

1k ̸=i exp(⟨z1i · zlk⟩/τ)− wi⟨z1i , z2i ⟩/τ. (1)
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Table 1: Linear probing results for self-supervised methods. The embeddings were computed for
each method and then linear regression was computed analytically using the corresponding labels
for each task. Bolded numbers indicate the best performing model. IsoCLR-S; small, IsoCLR-M;
medium and IsoCLR-L; large models. MSE; Mean square error.

Model Name
RNA HL

Human MSE ↓
RNA HL

Human R ↑
RNA HL

Mouse MSE ↓
RNA HL

Mouse R ↑
MRL

MSE ↓
MRL
R ↑

GO Mol Func
ROC AUC ↑

Protein loc
ROC AUC ↑

mRFP Expr
R ↑

IsoCLR-S (ours) 0.59 0.65 0.58 0.66 0.76 0.42 0.86 0.85 0.65
IsoCLR-M (ours) 0.56 0.66 0.58 0.66 0.75 0.43 0.84 0.83 0.71
IsoCLR-L (ours) 0.57 0.66 0.58 0.66 0.73 0.45 0.87 0.84 0.66

DNA-BERT2 0.84 0.44 0.83 0.38 0.84 0.24 0.72 0.77 0.41
NT-500m-1000g 1.03 0.25 0.98 0.30 0.97 0.17 0.67 0.70 0.33
NT-500m-human-ref 0.90 0.41 0.85 0.40 0.91 0.24 0.72 0.73 0.52
NT-2.5b-1000g 0.89 0.41 0.85 0.37 0.92 0.26 0.73 0.70 0.51
NT-2.5b-multi-species 0.89 0.48 0.88 0.44 1.00 0.28 0.78 0.73 0.44
Hyena-32K-seqlen 0.83 0.45 0.77 0.44 0.84 0.26 0.75 0.79 0.43
Hyena-160K-seqlen 0.81 0.46 0.79 0.46 0.81 0.29 0.75 0.79 0.62
Hyena-450K-seqlen 0.80 0.45 0.80 0.46 0.82 0.29 0.75 0.78 0.55
RNA-FM 0.78 0.47 0.83 0.44 0.89 0.20 0.78 0.81 0.55

In the above z1 and z2 correspond to two views of the same object, zk are views from other objects,
τ is the temperature parameter set to 0.1, and 1k ̸=i is an indicator function that evaluates to 1 when
k ̸= i. The above loss is computed for all the samples in the batch for both the sampled views
l ∈ 1, 2. Due to the non-uniform number of views per set of sample, we use the term wi for sample
evidence weighting. Additional implementation details and datasets can be found in the appendix
B.

3 EXPERIMENTAL RESULTS

We demonstrate that contrastive pre-training across homologous genes and splicing isoforms im-
proves downstream prediction across six tasks, including RNA HL and MRL prediction. We eval-
uate the effectiveness of the learned representation with three strategies: linear probing, full model
fine-tuning, and latent space evaluations. In addition, we highlight the effectiveness of pre-trained
representations in low-data settings, which can be found in the appendix along with additional find-
ings C.

3.1 ISOCLR EMBEDDINGS ARE PREDICTIVE OF DIVERSE PHENOTYPES

To evaluate the effectiveness of our pre-trained representations, we followed the conventional evalu-
ation strategy of linear probing. The learned latent embedding is effective if ∃ w s.t. wTX+ b = ŷ,
where X is a matrix of embeddings and ŷ approximates y. To evaluate the above, we freeze the
weights of the dilated convolutional encoder f and train a linear layer to predict labels for regression
and classification tasks. Further experimental details are described in Appendix D.1. We demon-
strate that IsoCLR outperforms other evaluated self-supervised methods on a diverse set of tasks by
a substantial margin in Figure 1 and Table 1.

We observe mixed results with regard to scaling the number of model parameters in terms of linear
probing. We see a clear improvement trend in MRL and GO class prediction, but we do not observe
the same trend for other datasets. Similarly, we observe that for other self-supervised models, the
number of parameters does not consistently improve performance. The clearest improvement trend
we observe is in the Nucleotide Transformer work, where increasing the diversity of the training
set by scaling the number of species improves performance. Similarly in our work, we aggregate
highly informative sequences across 10 species. This demonstrates a path to further improve model
effectiveness in genomic property prediction.

3.2 FINE TUNING ISOCLR YIELDS EFFECTIVE PREDICTORS

To assess whether the IsoCLR pre-training objective provides utility beyond an effective represen-
tation, we evaluate its performance by fully fine-tuning it and comparing it to a supervised model
with matched architecture. We also evaluate its performance against a published method for the
RNA half-life prediction, Saluki (Agarwal & Kelley (2022)). We find that the fully fine-tuned Iso-
CLR model matches the performance of Saluki on the RNA half-life task (Table 2). Furthermore,
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Table 2: MSE and Pearson correlations (R) of full model fine-tuning on RNA half-life (HL), mean
ribosome load (MRL), protein localization and mRFP expression tasks. Best models are shown
in bold. Confidence intervals were computed using standard deviation over three random seeds.
Additional experimental details are described in appendix D.2

Model Name
RNA HL

Human MSE
RNA HL
Human R

RNA HL
Mouse MSE

RNA HL
Mouse R

MRL
MSE

MRL
R

Protein Loc.
ROC AUC

mRFP Expr.
R

IsoCLR-S 0.44 ± 1e-2 0.76 ± 8e-3 0.53 ± 3e-2 0.70 ± 1e-2 0.70 ± 3e-2 0.50 ± 2e-2 0.84 ± 5e-3 0.85 ± 1e-2
IsoCLR-M 0.48 ± 1e-2 0.74 ± 7e-3 0.56 ± 2e-2 0.69 ± 2e-2 0.76 ± 3e-2 0.49 ± 3e-2 0.85 ± 5e-3 0.82 ± 1e-2
HyenaDNA-Tiny 0.79 ± 2e-2 0.47 ± 9e-3 0.79 ± 6e-2 0.48 ± 2e-2 0.91 ± 2e-2 0.05 ± 2e-2 0.82 ± 2e-4 0.13 ± 1e-1
HyenaDNA-Small 0.78 ± 1e-2 0.46 ± 5e-3 0.78 ± 3e-2 0.48 ± 8e-3 0.91 ± 2e-2 0.04 ± 4e-2 0.82 ± 1e-5 0.24 ± 2e-1
Supervised-S 0.50 ± 1e-2 0.71 ± 8e-3 0.59 ± 5e-2 0.66 ± 3e-3 0.69 ± 6e-2 0.50 ± 5e-2 0.84 ± 1e-2 0.79 ± 2e-2
Supervised-M 0.53 ± 3e-2 0.63 ± 3e-2 0.64 ± 8e-2 0.69 ± 2e-2 0.82 ± 6e-2 0.43 ± 6e-2 0.84 ± 3e-3 0.15 ± 2e-1
Saluki 0.44 ± 1e-2 0.76 ± 1e-2 0.55 ± 5-e2 0.70 ± 3e-2 0.67 ± 4e-2 0.52 ± 2e-2 0.80 ± 2e-3 0.38 ± 2e-2

we retrain the Saluki architecture for other tasks and identify that IsoCLR significantly outperforms
those models for protein localization and mRFP expression prediction tasks. In addition, IsoCLR
outperforms fine-tuned HyenaDNA models across an assortment of tasks. Other baseline SSL meth-
ods such as DNA-BERT2 and RNA-FM have limited input context windows, and cannot be easily
applied to these tasks. For certain tasks, we observe that scaling the models results in performance
degradation, but note that IsoCLR still significantly outperforms baselines with similar parameter
counts.

4 DISCUSSION

In this work, we demonstrate that by minimizing the distance between mature RNAs generated
through gene duplication and alternative splicing, we are able to generate representations useful for
RNA property prediction tasks. The pre-training is especially helpful in low data regimes when
there are 200 or fewer data points with labels 4. These situations arise in molecular biology appli-
cations, especially in therapeutic domains where manufacturing and experiments can be expensive.
We demonstrate that self-supervised pre-training is an approach for addressing data efficiency chal-
lenges present in genomics, and scaling to additional species can be an effective dataset expansion
strategy.

Previous self-supervised works for genomic sequence property prediction have focused on recon-
struction objectives like masked language modeling or next token prediction (Ji et al. (2021); Dalla-
Torre et al. (2023)). As previously discussed, most genomic positions are under little to no negative
selection, and are not as informative for model training. Thus, predicting the corresponding to-
kens introduces little new information to the model. In this work, we instead choose to utilize a
stronger inductive bias, minimizing the distance between functionally similar sequences. By rely-
ing on a more structured objective, we are able to outperform models that are multiple orders of
magnitude larger in terms of parameter count. A possible limitation of our approach is that by min-
imizing the representational distance between related sequences, we remove important signals for
predicting certain properties. Are there property prediction tasks for which our inductive bias is ac-
tually detrimental compared to a randomly initialized model? For RNA half-life, Spies et al. (2013)
demonstrated that in more than 85% of genes, isoform choice has no statistically discernible effect.

An important question to address is why we expect that minimizing distances between RNA iso-
forms would be useful for predicting seemingly unrelated phenotypes like RNA half-life or codon
optimality in mRFP prediction. One hypothesis is that alternative splicing and gene duplication pre-
serve core functional RNA segments. Through the contrastive pre-training procedure, we identify
these shared regions between diverse sequences. Indeed, a recent work proposes that contrastive
methods are effective due to block separating latent variables shared between views (von Kügelgen
et al. (2022)). By utilizing decoupled contrastive learning, diverse sequences are pushed apart, thus
uniformly distributing samples in the latent space which helps with downstream tasks (Yeh et al.
(2021); Wang & Liu (2021)). Through encoding these invariances, we find that IsoCLR is able to
learn complex RNA properties such as cellular component localization and RNA half-life.
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5 CONCLUSIONS

In this work, we propose a novel, self-supervised contrastive objective for learning mature RNA
isoform representations. We show that this approach is an effective strategy to address major chal-
lenges for cellular property prediction: data efficiency, and model generalizability. We demonstrate
that IsoCLR representations are effective in the low data setting, paving the path to true few-shot
learning for RNA property prediction. Finally, fine-tuning IsoCLR matches the performance of
supervised models, beating out other self-supervised methods.
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Garimella, Jeff Gentry, Gad Getz, David C. Glahn, Benjamin Glaser, Stephen J. Glatt, David
Goldstein, Clicerio Gonzalez, Leif Groop, Sanna Gudmundsson, Andrea Haessly, Christopher

6



Published at the GEM workshop, ICLR 2024

Haiman, Ira Hall, Craig L. Hanis, Matthew Harms, Mikko Hiltunen, Matti M. Holi, Christina M.
Hultman, Chaim Jalas, Mikko Kallela, Diane Kaplan, Jaakko Kaprio, Sekar Kathiresan, Eimear E.
Kenny, Bong-Jo Kim, Young Jin Kim, Daniel King, George Kirov, Jaspal Kooner, Seppo Kosk-
inen, Harlan M. Krumholz, Subra Kugathasan, Soo Heon Kwak, Markku Laakso, Nicole Lake,
Trevyn Langsford, Kristen M. Laricchia, Terho Lehtimäki, Monkol Lek, Emily Lipscomb, Ruth
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and Michael L Tress. APPRIS: selecting functionally important isoforms. Nucleic Acids Res., 50
(D1):D54–D59, January 2022.

E. W. Sayers, E. E. Bolton, J. R. Brister, K. Canese, J. Chan, D. C. Comeau, C. M. Farrell,
M. Feldgarden, A. M. Fine, K. Funk, E. Hatcher, S. Kannan, C. Kelly, S. Kim, W. Klimke,
M. J. Landrum, S. Lathrop, Z. Lu, T. L. Madden, A. Malheiro, A. Marchler-Bauer, T. D. Murphy,
L. Phan, S. Pujar, S. H. Rangwala, V. A. Schneider, T. Tse, J. Wang, J. Ye, B. W. Trawick, K. D.
Pruitt, and S. T. Sherry. Database resources of the National Center for Biotechnology Information
in 2023. Nucleic Acids Res, 51(D1):D29–D38, Jan 2023.

Kihyuk Sohn. Improved deep metric learning with multi-class n-pair loss objective. In D. Lee,
M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett (eds.), Advances in Neural Information
Processing Systems, volume 29. Curran Associates, Inc., 2016.

N. Spies, C. B. Burge, and D. P. Bartel. 3’ UTR-isoform choice has limited influence on the stability
and translational efficiency of most mRNAs in mouse fibroblasts. Genome Res, 23(12):2078–
2090, Dec 2013.

Yoichiro Sugimoto and Peter J. Ratcliffe. Isoform-resolved mRNA profiling of ribosome load de-
fines interplay of HIF and mTOR dysregulation in kidney cancer. Nature Structural Molecular
Biology, 29(9):871–880, September 2022. doi: 10.1038/s41594-022-00819-2.

D. Taliun, D. N. Harris, M. D. Kessler, J. Carlson, Z. A. Szpiech, R. Torres, S. A. G. Taliun,
A. Corvelo, S. M. Gogarten, H. M. Kang, A. N. Pitsillides, J. LeFaive, S. B. Lee, X. Tian, B. L.
Browning, S. Das, A. K. Emde, W. E. Clarke, D. P. Loesch, A. C. Shetty, T. W. Blackwell, A. V.
Smith, Q. Wong, X. Liu, M. P. Conomos, D. M. Bobo, F. Aguet, C. Albert, A. Alonso, K. G.
Ardlie, D. E. Arking, S. Aslibekyan, P. L. Auer, J. Barnard, R. G. Barr, L. Barwick, L. C. Becker,
R. L. Beer, E. J. Benjamin, L. F. Bielak, J. Blangero, M. Boehnke, D. W. Bowden, J. A. Brody,
E. G. Burchard, B. E. Cade, J. F. Casella, B. Chalazan, D. I. Chasman, Y. I. Chen, M. H. Cho,
S. H. Choi, M. K. Chung, C. B. Clish, A. Correa, J. E. Curran, B. Custer, D. Darbar, M. Daya,
M. de Andrade, D. L. DeMeo, S. K. Dutcher, P. T. Ellinor, L. S. Emery, C. Eng, D. Fatkin, T. Fin-
gerlin, L. Forer, M. Fornage, N. Franceschini, C. Fuchsberger, S. M. Fullerton, S. Germer, M. T.
Gladwin, D. J. Gottlieb, X. Guo, M. E. Hall, J. He, N. L. Heard-Costa, S. R. Heckbert, M. R. Irvin,
J. M. Johnsen, A. D. Johnson, R. Kaplan, S. L. R. Kardia, T. Kelly, S. Kelly, E. E. Kenny, D. P.
Kiel, R. Klemmer, B. A. Konkle, C. Kooperberg, A. ttgen, L. A. Lange, J. Lasky-Su, D. Levy,
X. Lin, K. H. Lin, C. Liu, R. J. F. Loos, L. Garman, R. Gerszten, S. A. Lubitz, K. L. Lunetta,
A. C. Y. Mak, A. Manichaikul, A. K. Manning, R. A. Mathias, D. D. McManus, S. T. McGarvey,
J. B. Meigs, D. A. Meyers, J. L. Mikulla, M. A. Minear, B. D. Mitchell, S. Mohanty, M. E. Mon-
tasser, C. Montgomery, A. C. Morrison, J. M. Murabito, A. Natale, P. Natarajan, S. C. Nelson,
K. E. North, J. R. O’Connell, N. D. Palmer, N. Pankratz, G. M. Peloso, P. A. Peyser, J. Pleiness,
W. S. Post, B. M. Psaty, D. C. Rao, S. Redline, A. P. Reiner, D. Roden, J. I. Rotter, I. Ruczinski,
C. Sarnowski, S. Schoenherr, D. A. Schwartz, J. S. Seo, S. Seshadri, V. A. Sheehan, W. H. Sheu,
M. B. Shoemaker, N. L. Smith, J. A. Smith, N. Sotoodehnia, A. M. Stilp, W. Tang, K. D. Taylor,
M. Telen, T. A. Thornton, R. P. Tracy, D. J. Van Den Berg, R. S. Vasan, K. A. Viaud-Martinez,

10



Published at the GEM workshop, ICLR 2024

S. Vrieze, D. E. Weeks, B. S. Weir, S. T. Weiss, L. C. Weng, C. J. Willer, Y. Zhang, X. Zhao, D. K.
Arnett, A. E. Ashley-Koch, K. C. Barnes, E. Boerwinkle, S. Gabriel, R. Gibbs, K. M. Rice, S. S.
Rich, E. K. Silverman, P. Qasba, W. Gan, G. J. Papanicolaou, D. A. Nickerson, S. R. Browning,
M. C. Zody, S. llner, J. G. Wilson, L. A. Cupples, C. C. Laurie, C. E. Jaquish, R. D. Hernan-
dez, T. D. O’Connor, G. R. Abecasis, N. Abe, L. Almasy, S. Ament, P. Anderson, P. Anugu,
D. Applebaum-Bowden, T. Assimes, D. Avramopoulos, E. Barron-Casella, T. Beaty, G. Beck,
D. Becker, A. Beitelshees, T. Benos, M. Bezerra, J. Bis, R. Bowler, U. Broeckel, J. Broome,
K. Bunting, C. Bustamante, E. Buth, J. Cardwell, V. Carey, C. Carty, R. Casaburi, P. Castaldi,
M. Chaffin, C. Chang, Y. C. Chang, S. Chavan, B. J. Chen, W. M. Chen, L. M. Chuang, R. H.
Chung, S. Comhair, E. Cornell, C. Crandall, J. Crapo, J. Curtis, C. Damcott, S. David, C. Davis,
L. L. Fuentes, M. DeBaun, R. Deka, S. Devine, Q. Duan, R. Duggirala, J. P. Durda, C. Eaton,
L. Ekunwe, A. El Boueiz, S. Erzurum, C. Farber, M. Flickinger, M. Fornage, C. Frazar, M. Fu,
L. Fulton, S. Gao, Y. Gao, M. Gass, B. Gelb, X. P. Geng, M. Geraci, A. Ghosh, C. Gignoux,
D. Glahn, D. W. Gong, H. Goring, S. Graw, D. Grine, C. C. Gu, Y. Guan, N. Gupta, J. Haessler,
N. L. Hawley, B. Heavner, D. Herrington, C. Hersh, B. Hidalgo, J. Hixson, B. Hobbs, J. Hokan-
son, E. Hong, K. Hoth, C. A. Hsiung, Y. J. Hung, H. Huston, C. M. Hwu, R. Jackson, D. Jain,
M. A. Jhun, C. Johnson, R. Johnston, K. Jones, S. Kathiresan, A. Khan, W. Kim, G. Kinney,
H. Kramer, C. Lange, E. Lange, L. Lange, C. Laurie, M. LeBoff, J. Lee, S. S. Lee, W. J. Lee,
D. Levine, J. Lewis, X. Li, Y. Li, H. Lin, H. Lin, K. H. Lin, S. Liu, Y. Liu, Y. Liu, J. Luo,
M. Mahaney, B. Make, J. Manson, L. Margolin, L. Martin, S. Mathai, S. May, P. McArdle, M. L.
McDonald, S. McFarland, D. McGoldrick, C. McHugh, H. Mei, L. Mestroni, N. Min, R. L. Min-
ster, M. Moll, A. Moscati, S. Musani, S. Mwasongwe, J. C. Mychaleckyj, G. Nadkarni, R. Naik,
T. Naseri, S. Nekhai, B. Neltner, H. Ochs-Balcom, D. Paik, J. Pankow, A. Parsa, J. M. Peralta,
M. Perez, J. Perry, U. Peters, L. S. Phillips, T. Pollin, J. P. Becker, M. P. Boorgula, M. Preuss,
D. Qiao, Z. Qin, N. Rafaels, L. Raffield, L. Rasmussen-Torvik, A. Ratan, R. Reed, E. Regan,
M. S. Reupena, C. Roselli, P. Russell, S. Ruuska, K. Ryan, E. C. Sabino, D. Saleheen, S. Sal-
imi, S. Salzberg, K. Sandow, V. G. Sankaran, C. Scheller, E. Schmidt, K. Schwander, F. Sciurba,
C. Seidman, J. Seidman, S. L. Sherman, A. Shetty, W. H. Sheu, B. Silver, J. Smith, T. Smith,
S. Smoller, B. Snively, M. Snyder, T. Sofer, G. Storm, E. Streeten, Y. J. Sung, J. Sylvia, A. Szpiro,
C. Sztalryd, H. Tang, M. Taub, M. Taylor, S. Taylor, M. Threlkeld, L. Tinker, D. Tirschwell,
S. Tishkoff, H. Tiwari, C. Tong, M. Tsai, D. Vaidya, P. VandeHaar, T. Walker, R. Wallace,
A. Walts, F. F. Wang, H. Wang, K. Watson, J. Wessel, K. Williams, L. K. Williams, C. Wil-
son, J. Wu, H. Xu, L. Yanek, I. Yang, R. Yang, N. Zaghloul, M. Zekavat, S. X. Zhao, W. Zhao,
D. Zhi, X. Zhou, and X. Zhu. Sequencing of 53,831 diverse genomes from the NHLBI TOPMed
Program. Nature, 590(7845):290–299, Feb 2021.
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A RELATED WORKS

This work builds on top of foundational efforts spread across three main areas: contrastive rep-
resentation learning, self-supervised applications in cellular property prediction, and methods for
enriching genetic sequence input beyond one hot encoded representation. Contrastive methods:
We build the IsoCLR approach for RNA sequences utilizing a rich body of work exploring con-
trastive learning for computer vision (Balestriero et al. (2023)). A fundamental deep metric learning
approach is SimCLR in which the authors propose minimizing the representation distance between
two views from the same sample while maximizing the distance between views from different sam-
ples (Chen et al. (2020)). This approach does not require labeled data and is based on the avail-
ability of domain-specific augmentations. Methods like BYOL and VicReg followed and were able
to reformulate the contrastive approach by removing the need for in-batch negative samples (Grill
et al. (2020); Bardes et al. (2021)). They propose solutions to the trivial solution collapse prob-
lem through a variance regularization loss term and architectural design choices. Recent work aims
to unify these methods under the contrastive formulation by making a distinction between sample
and dimension contrastive methods (Garrido et al. (2022)). Self-supervised learning for cellular
properties: Due to the common sequence-based representation between genomics and language,
self-supervised learning techniques have long been explored in genomic sequence property predic-
tions. DNABert utilized the BERT problem formulation to learn an encoding for 500 nucleotide long
sequences and demonstrated the value for splice site predictions and other tasks (Ji et al. (2021); De-
vlin et al. (2018); Zhou et al. (2023)). Nucleotide Transformer (NT), another masked language mod-
eling method, demonstrated the utility of doing data collection from multiple species (Dalla-Torre
et al. (2023)). RNA-FM was trained to predict non-coding RNA properties with masked language
modeling using 23 million non-coding sequences (Chen et al. (2022)). Recently, HyenaDNA has
demonstrated that applying long convolutions replacing the attention operation, can lead to effective
DNA property prediction while scaling the input sequence length to a million tokens (Nguyen et al.
(2023)). In the distinct protein representation learning space, there is a variety of protein language
models utilizing auto-regressive and masked language modeling losses to predict protein proper-
ties like structure, variant effects, and functional properties (Meier et al. (2021); Lin et al. (2023)).
Contrastive learning has also been used in more specialized domains such as enzyme property pre-
diction while utilizing known shared enzyme properties as views of similar sequences (Yu et al.
(2023)). Contrastive methods have also been used to learn a more general representation of protein
function by maximizing the mutual information between global and local sequence representations
(Lu et al. (2020)). We build on these works by exploiting domain-specific RNA augmentation to
build general representations that are architecture-agnostic. Beyond one hot encoded genomes:
Another important area for advancing cellular property prediction is iterating beyond the reference
genome for representing genomic sequences. One such strategy is to integrate random biologically
plausible augmentations during training (Lee et al. (2023)). By using domain-specific knowledge of
the types of augmentations introduced during evolutionary processes, the authors demonstrate they
can improve the performance of supervised models for predicting DNA properties. Using multiple
sequence alignments is another way to use homology information, common in the protein modeling
space (Do et al. (2005); Frazer et al. (2021); Jumper et al. (2021)). In another perspective, authors
have argued that evolutionary homologs are a viable path for generating augmentations (Lu et al.
(2020)).

B EXTENDED METHODS

Contrastive learning has been shown to be a bound on mutual information between two random
variables X and Y corresponding to I(X;Y ) = Ep(x,y)

[
log p(x,y)

p(x)p(y)

]
. We utilize a variation of

the classical InfoNCE loss, E
[
log exp(f(xi,yi))

Σ exp(f(xi,yj))

]
, where a model f is tasked with classifying the

correct yi which was jointly drawn with xi (van den Oord et al. (2018)). Herein, the observations
xi, yi correspond to splice isoforms or duplicate gene sequences which are interpreted as views of
the same object while f is a neural network that we optimize to minimize the loss.

In the vision domain, contrastive learning strategies have had significant success by identifying aug-
mentations that do not have a strong semantic effect, such as cropping, rotation, or Gaussian blur
(Yun et al. (2019); Zhang et al. (2017); Chen et al. (2020)). In this work, we use RNA splicing
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isoforms and homologous genes as sources of functional invariance. By sampling RNA isoform
sequences produced by alternative splicing, we identify sequence variation that is likey to maintain
core functional properties. In addition, we use homology to pool RNA transcripts from evolutionar-
ily related genes and generate sequence diversity (Pertea et al. (2018)). By minimizing the distance
between functionally similar sequences, the model can learn regulatory regions critical for RNA
property and function prediction. We pre-train a dilated convolutional residual model which has
been demonstrated to be successful in applications for cellular property prediction by generalizing
to long variable length sequences (Kelley et al. (2018); Linder et al. (2022); Chen et al. (2016); He
et al. (2015)).

We use decoupled contrastive learning (DCL) as it has been shown to require smaller batch sizes, is
less sensitive to hyperparameters such as learning rate, and the positive loss term can be weighted
by sample difficulty (Yeh et al. (2021)). DCL iterates on the normalized temperature-scaled cross-
entropy loss by splitting the contrastive objective into two terms: a similarity loss (positive) and
a dissimilarity loss (negative) (Sohn (2016)). More formally, the positive and negative losses are
calculated:

LDCL,i(θ) = log
N∑

zk∈Z,l∈1,2

1k ̸=i exp(⟨z1i · zlk⟩/τ)− wi⟨z1i , z2i ⟩/τ. (2)

Sets of homologous genes with more transcripts are more informative than those with a single tran-
script thus, we weight the loss non-uniformly.

Unlike computer vision, the function q which can be used to generate views of the same object, is
unknown. Thus, in genomics we have to use naturally observed views which may vary in number
per gene and so the set of homologous genes will have a different number of splicing isoforms.
Many non-protein coding genes will have only a single splicing isoform, resulting in the sampled
two views being identical. To make the positive objective of identifying the augmented isoform
non-trivial, we use dropout in our model and, randomly mask 15% of the transcript sequence Ji et al.
(2021). This enforces the positive loss term for samples with a single RNA sequence to be non-zero.
However, samples with multiple sequences generated through splicing and homology processes are
more informative to the model. To reflect this imbalance between samples in our positive loss term,
we introduce a sample evidence weighting term wi to increase the importance of samples with a
higher number of splicing isoforms:

wi = log(ti + c)
T

ΣN
k=1log(tk + c)

, (3)

Where t is the number of transcripts per gene set, T corresponds to the total count of transcripts
in the dataset, and c is a constant. The above objective increases the importance of samples with
multiple RNA views while maintaining the overall norm of the total loss at the start of training. The
weighting is applied only to the positive loss since the negative loss responsible for maximizing the
distance between different samples is not affected by the number of transcripts per sample.

B.1 DOWNSTREAM EVALUATION TASKS

RNA half-life (RNA HL) is an important cellular property to measure due to its implications for
protein expression regulation. Recently, it has been shown that the choice of method for measuring
RNA half-life can have an outsize impact with no clear ground truth (Agarwal & Kelley (2022)). To

Table 3: Descriptive statistics for the contrastive learning dataset. As we utilize more species for
dataset construction the number of sequences grows. Trans.;Transcripts.

#Species #Genes #Trans. Mean #Trans. %Genes with ≥ 2 Trans.

10 228,800 926,628 4.0 29%

2 65,600 286,390 4.36 41%

1 42,800 222,492 5.19 51%
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address this problem, Agarwal and Kelley (2022) utilized the first principal component of over 40
different RNA half-life experiments. The dataset consists of 10,432 human and 11,008 mouse RNA
sequences with corresponding measurements. The low data availability and high inter-experiment
variation underscore the importance of data efficiency, and generalizability in computational models
to be developed for this task.

Mean ribosome load (MRL) is a measure of the translational efficiency of a given mRNA molecule.
It measures the number of ribosomes translating a single mRNA molecule at a point in time. Ac-
curate MRL measurement is crucial as it offers insights into the efficiency of protein translation, a
key process in cellular function. The dataset in question, derived from the HP5 workflow, captures
this metric across 12,459 mRNA isoforms from 7,815 genes (Sugimoto & Ratcliffe (2022)). This
dataset was derived from a single experiment, so we can expect a higher amount of noise associated
than the RNA half-life dataset.

Protein localization Protein function is often linked to its subcellular location, which can be deter-
mined using cells that are immunofluorescently stained. We downloaded a dataset of 10,409 genes,
whose protein localization was determined by the Human Protein Atlas (Thul et al. (2017)). We
included the 12 most common locations including Nucleoplasm, Cytosol, Vesicles, Mitochondria,
Plasma Membrane, Golgi apparatus and others. We utilized one transcript per gene (defined to be
the canonical isoform by Rodriguez et al. (2022)) to obtain IsoCLR embeddings.

mRFP Expression We utilized 1,459 RNA sequences based on mRFP (monomeric Red Fluorescent
Protein) with induced synonymous codon randomization. The data is from experiments conducted
in Escherichia coli (E. coli) where protein production levels for various gene variants were quantified
(Nieuwkoop et al. (2023)). We obtained IsoCLR embeddings for each sequence (all 678 bases long).

Gene ontology (GO) terms are a hierarchical classification system used for assigning function to
genes and their products (Consortium et al. (2023); Ashburner et al. (2000); Zhou et al. (2019)). In
this work, we utilize GO classes to visualize model latent embeddings and classification. GO term
hierarchical systems allow for fine-grained annotation of function, with broader terms at the top of
the hierarchy and increased specificity closer to the bottom. To annotate genes with gene ontology
terms, we subset GO classes three levels from the root labeling all available genes.

C EXTENDED RESULTS

C.1 LATENT SPACE ANALYSIS

We evaluate whether IsoCLR’s pre-trained representations capture fundamental biological informa-
tion. First, we examine IsoCLR’s ability to capture gene-ontology terms associated with cellular
components, and biological processes (Figure 3a, b). We generate the representation with the en-
coder f and reduce the dimensionality of the embedding with t-sne (van der Maaten & Hinton
(2008)). To quantitatively verify the latent structure, we perform linear probing over ten GO classes
and find they are linearly separable in IsoCLR’s latent space. (Table ??, Appendix D.3).

In addition, we examine the embedding distances learned by IsoCLR across three different settings
(Figure 3c). We measure the distances of splice isoforms within genes, across genes - by taking
the principal isoform per gene, and within GO classes by measuring the distances between princi-
pal isoforms of genes from the same GO term. Consistent with our training objective, we find that
’within gene’ distances are significantly smaller compared to inter-gene distances. In addition when
sampling genes with the same GO class we observe statistically significant difference in distances
compared to randomly sampled genes (p=2.2e-16, two sided t-test). In the literature, there are well
annotated examples where transcripts belonging to the same gene have drastically different function.
We find evidence of that reflected in IsoCLR representations by identifying that more than 4% of
’within gene’ transcript pairs have a distance greater than that of two randomly chosen genes, indi-
cating that the IsoCLR training objective preserves within gene sequence diversity. ’Within gene’
diversity could potentially help delineate differential isoform protein functions, a very active area of
research. We examine more closely one such gene corresponding to UQCRH, a gene whose pro-
tein product is localized in the mitochondrion and is involved in the electron transport chain (Vidali
et al. (2021)). Out of its five annotated splice isoforms in our dataset, two are subjected to nonsense
mediated decay and two possess a retained intron while UQRCH-201 is the principal protein-coding
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Figure 3: (a, b) Visualization of the learned latent representations with stochastic neighbor embed-
ding. Each dot is an RNA transcript from a unique gene colored by the correspondingly annotated
gene ontology. (c) Distributions of log(L2) distances are shown between IsoCLR embeddings in
three settings. Intergene distances represent measurements between random genes (one transcript
per gene), while within-gene embeddings show distances among transcripts within the same gene,
sampled from 500 genes. Within GO term distances are calculated for genes grouped by the same
gene set. (d) An example of a within gene embedding distances heatmap showing pairwise similar-
ity across transcripts. Values indicate log(L2) distances.

isoform (Figure 3d). IsoCLR learns to linearly separate the protein coding isoform from the four
others without any supervised labels. We also observe that NMD and intron retention isoforms clus-
ter together suggesting further compartmentalization of embeddings driven by underlying splicing
outcomes.

C.2 ABLATIONS: SPLICING AUGMENTATIONS ARE KEY

Finally, we investigate the IsoCLR augmentations that contribute towards effective performance.
We find that sampling splicing isoforms from the same gene is the primary driver of performance
on downstream tasks(Table 4). Homology, and masking a small percentage of the input sequence
provide small additional gains. Homologous gene mapping can be interpreted as removing wrong
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Figure 4: Data sub-sampling analysis demonstrating IsoCLR’s strong performance in the low data
regime. Confidence intervals were computed using standard deviation over three random seeds.

negatives from our training set, where duplicated genes will have highly similar sequences. Masking
the input space can also be thought of as a regularization method which has recently been shown as
vital for learning effective representations with contrastive learning (Ben-Shaul et al. (2023)).

Table 4: Ablation analysis demonstrates that splicing is the key contributor to representation effec-
tiveness. Linear probing results are generated by performing gradient descent to optimize a linear
layer. 6t; Six track input corresponding to one hot encoded sequence, splicing and codon positions.

Augmentations Half-life Human MSE Half-life Mouse MSE GO ROC AUC

Splice + Homology + Mask + 6t 0.57 0.62 0.85
Splice + Homology + Mask 0.73 0.74 0.84
Splice + Homology + 6t 0.58 0.70 0.84
Splice + Mask + 6t 0.58 0.65 0.85
Mask + 6t 0.88 0.86 0.77

D DATA EFFICIENCY

To simulate downstream tasks for which there is a lack of experimental data, we perform fine-
tuning on RNA HL prediction where only a subset of the original training data set is available. We
observe that supervised methods are ineffective in this regime, while IsoCLR maintains competitive
performance at 10% and 1% of the data (Figure ??). The performance differences are even more
stark when using only 0.5% of the training data (Pearson R; IsoCLR = 0.50 versus Saluki = 0.26).
These findings illustrate that IsoCLR advances towards the aim of few-shot learning for downstream
tasks where data is too limited for traditional supervised learning approaches.

D.1 LINEAR PROBE EXPERIMENTAL DETAILS

In this section, we describe the experimental procedure to evaluate linear probing results.

We first performed a 70-15-15 data split on datasets. The data sequences are then embedded by
the various self-supervised learning (SSL) models. For IsoCLR, we simply take the mean of the
embeddings across the seqeunce dimension. For HyenaDNA, we take the mean and max of the
embedding sequence dimension, as well as the last hidden state in the output sequence. Other
SSL methods could not handle input sequences of more than 500 or 1000 nucleotides. Thus, when
input sequences exceeded the allowable context window, each sequence was chunked to the max-
imum length allowed by a model. We then computed the mean of each chunk embedding across
the sequence dimension, and then averaged the mean embedding of each chunk to obtain the final
embedding.

After obtaining embedding vectors, we used the scikit-learn implementation of linear models to per-
form the linear probes of the embeddings. For the downstream regression tasks, we used either used
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linear regression or ridge regression with the regularization parameter selected by cross validation.
The final linear model was selected using the validation split. The gene ontology and protein lo-
calization tasks are multi-label classification tasks. For this, we fit scikit-learn’s LogisticRegression
model to the labels using a MultiOutputClassifer, which essentially trains a separate linear classi-
fier for each label class. We use the default logistic regression parameters, and set 5000 maximum
iterations for the solver.

For the classification tasks we also calculate AU-PRC results but due to space constraints could not
include them in the main text of the paper.

Model GO AUROC GO AUPRC Protein Loc AUROC Protein Loc AUPRC
IsoCLR-S (ours) 0.86 0.57 0.85 0.41
IsoCLR-M (ours) 0.84 0.53 0.83 0.38
IsoCLR-L (ours) 0.87 0.59 0.84 0.40
DNA-BERT2 0.72 0.30 0.77 0.26
NT-500m-1000g 0.67 0.25 0.70 0.20
NT-500m-human-ref 0.72 0.35 0.73 0.24
NT-2.5b-1000g 0.73 0.34 0.70 0.22
NT-2.5b-multi-species 0.78 0.42 0.73 0.26
Hyena-32K-seqlen 0.75 0.36 0.79 0.29
Hyena-160K-seqlen 0.75 0.33 0.79 0.29
Hyena-450K-seqlen 0.75 0.35 0.78 0.29
RNA-FM 0.78 0.40 0.81 0.32

Table 5: Area under the Precision Recall curve metrics computed for imbalanced datasets.

D.2 FINE-TUNING EXPERIMENTAL DETAILS

We fine-tune IsoCLR by first initializing most of the model with weights from pre-training, the
penultimate two layers with random initialization, and the final layer with zero init. We don’t apply
any weight decay to weights that were initialized from pre-training while the final three layers have
an l2 weight decay term of 1e-5. We fine-tune on downstream tasks using the Adam optimizer with
a learning rate of 0.01. We apply exponential learning rate decay with a factor of 0.95. The models
are trained with a single Nvidia T4 GPU in a mixed precision setting.

HyenaDNA models initialized with fine-tuning head. We perform a small learning rate hyperparam-
eter grid search around the suggested hyperparameters of 6e-4. The suggested AdamW optimizer is
used. Models were trained for a maximum of 100 epochs on Nvidia T4 GPUs with a batch size of
28 for the HyenaDNA-tiny and a batch size of 8 for HyenaDNA-small. Models were stopped early
based on validation loss using an epoch patience of three. After selecting learning rate using the
validation split, the runs were repeated using different random initializations to generate confidence
intervals.

D.3 ADDITIONAL COMPARISONS FOR ISOCLR REPRESENTATIONS

To test IsoCLR’s latent space semantic interpretability, we take a single transcript from every single
human gene and annotate it with gene ontology terms from the three main hierarchies: biological
processes, cellular components, and molecular function. We subset the gene ontology terms to third
from the root to identify a broad and yet high-level number of functions. From the subset, we se-
lect the three most common gene ontology terms to use for the visualization. We also compare the
representations to two baselines: a stochastic neighborhood embedding with randomly initialized
labels from IsoCLR representation, and a supervised model with a matched architecture trained to
predict RNA half-life (van der Maaten & Hinton (2008), ??). We observe that the supervised embed-
ding also produces a distinct cluster for the biological process go hierarchy confirming the unique
structure of g protein-coupled receptors. Upon visual inspection, however, the clusters from the su-
pervised model are less separated compared to the IsoCLR representation. For example, we observe
a distinct cluster for sequences associated with the centrosome function in the IsoCLR representa-
tion, whereas, for the supervised model, the samples are interspersed throughout the representation
??.
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Figure 5: Comparing linear probing performance for self-supervised methods on RNA half-life
mouse data.
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Figure 6: Gene ontology multi-label classification comparison with the supervised model. This is a
ten-class multi-label classification task for the molecular function gene ontology category.

To quantitatively validate IsoCLR latent space with gene ontology, we perform linear probing over
a 10 class multi-label classification task. Each class corresponds to a gene ontology term, and the
samples are RNA sequences with corresponding GO labels. We find that performing linear probing
on IsoCLR embeddings exceeds performance of supervised models trained with full fine-tuning
(Figure 6.

20


	Introduction
	Methods
	Experimental Results
	IsoCLR embeddings are predictive of diverse phenotypes
	Fine tuning IsoCLR yields effective predictors

	Discussion
	Conclusions
	Related Works
	Extended Methods
	Downstream Evaluation Tasks

	Extended Results
	Latent Space Analysis
	Ablations: splicing augmentations are key

	Data Efficiency
	Linear Probe Experimental Details
	Fine-tuning Experimental Details
	Additional comparisons for IsoCLR Representations


