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Abstract: Imitation learning with a privileged teacher has proven effective for1

learning complex control behaviors from high-dimensional inputs, such as im-2

ages. In this framework, a teacher is trained with privileged task information,3

while a student tries to predict the actions of the teacher with more limited obser-4

vations, e.g., in a robot navigation task, the teacher might have access to distances5

to nearby obstacles, while the student only receives visual observations of the6

scene. However, privileged imitation learning faces a key challenge: the student7

might be unable to imitate the teacher’s behavior due to partial observability. This8

problem arises because the teacher is trained without considering if the student is9

capable of imitating the learned behavior. To address this teacher-student asym-10

metry, we propose a framework for joint training of the teacher and student poli-11

cies, encouraging the teacher to learn behaviors that can be imitated by the student12

despite the latters’ limited access to information and its partial observability.13

1 Introduction14

State-of-the-art (SotA) policy learning approaches often rely on imitation learning to accelerate15

training [1, 2, 3, 4]. However, collecting expert demonstrations for imitation learning can be pro-16

hibitively expensive, which has led to the development of the teacher-student framework. In this17

framework, expert data is generated automatically by training a teacher policy using RL on priv-18

ileged task information, benefiting from efficient simulation and a faster learning process. This19

approach eliminates the need for the student to extensively explore the environment, which can be a20

very challenging process when dealing with high-dimensional observations, such as images. How-21

ever, privileged imitation learning can be hindered by information asymmetry between the teacher22

and student, where the student receives less informative observations and struggles to imitate the23

behavior of the teacher [5]. As a consequence of the information asymmetry, the teacher tends24

to over-rely on its full observability of the environment without considering the more limited ob-25

servation space of the student. This causes the teacher to provide target actions that the student26

cannot infer from its observations, since the student lacks access to the same level of environmental27

information. To tackle these challenges, we propose a teacher-student knowledge distillation frame-28

work that encourages the teacher to learn behaviors that account for the capabilities of the student.29

Specifically, the objective function of the teacher is extended by adding the upper bound of the stu-30

dent performance within the imitation learning setting. This results in a reward term that penalizes31

the teacher for visiting states where there is a significant action mismatch between the student and32

teacher. Additionally, minimizing this upper bound leads to a second optimization term that directly33

supervises the weights of the teacher network.34

2 Student-Informed Teacher Training35

As shown in [6, 7, 8], the performance gap between student and teacher is upper-bounded by the36

action difference between both policies. Thus, minimizing the action difference under the state37

distribution of the expert also minimizes the performance gap J(πT ) − J(π). Instead of trying to38

minimize the action difference by adjusting the student policy πS , we propose to change the per-39

spective and find a teacher policy πT optimizing for the task reward while considering the alignment40
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Figure 1: Method Overview. Our method leverages three networks (a), which are trained in three
alternating phases: the roll-out phase (b), the policy update phase (c), and the alignment phase (d).
The grey boxes represent networks frozen during the specific phase, i.e., the network parameters are
not updated. (b) In the roll-out phase, the KL-Divergence between the proxy student F̂S and teacher
FT is used as a penalty term. (c) In addition to the policy gradient, the teacher encoder is updated by
backpropagating through the KL-Divergence between the action distribution of the teacher and the
proxy student. (d) Using student observations, the proxy student is aligned to the student FS while
the student is aligned to the teacher network using consistency losses.

between teacher and student. Thus, we want to find a teacher policy πT that maximizes41

J̃(πT ) = Es∼dπT
,a∼πT (·|s)[r(s, a)]− Es∼dπT

[DKL(πT (·|s), πS(·|s))] (1)

= Es∼dπT
,a∼πT (·|s)[r(s, a)−DKL(πT (·|s), πS(·|s))] (2)

∝ Eτ∼pθ
[R(τ)−Dθ(τ)] =

∫
pθ(τ)(R(τ)−Dθ(τ))dτ. (3)

In the last step, the discounted state distribution is changed to the expectation over trajectories τ ∼42

pθ, which are induced by the expert policy πT and represent the state and corresponding actions43

τ = {s0, a0, s1, a1, ...}. Additionally, we define the return R(τ) =
∑

st,at∈τ γ
tr(st, at) and the44

sum of discounted KL-Divergences Dθ(τ) =
∑

st∈τ γ
tDKL(πT (·|st), πS(·|st)). We use subscript45

θ, to emphasize that the probability distribution over the trajectories pθ and Dθ(τ) is dependent on46

the parameter of the teacher network θ. Following the classical policy gradient to obtain the optimal47

policy, we take the gradient of Eq. 3 with respect to the teacher parameters θ48

∇θJ̃(πT ) = ∇θ

∫
pθ(τ)(R(τ)−Dθ(τ))dτ (4)

=

∫
∇θpθ(τ)R(τ)dτ −

∫
∇θpθ(τ)Dθ(τ)dτ −

∫
pθ(τ)∇θDθ(τ)dτ (5)

=

∫
∇θpθ(τ)(R(τ)−Dθ(τ))dτ︸ ︷︷ ︸

Policy Gradient

−
∫

pθ(τ)∇θDθ(τ)dτ︸ ︷︷ ︸
KL-Div Gradient

. (6)

As can be observed, we end up with the standard policy gradient optimizing the task reward while49

also considering the teacher-student misalignment for each trajectory. This weighted KL-Divergence50

Dθ can be interpreted as a reward encouraging the teacher policy to visit states where the student51

and teacher are aligned and avoid states with a large misalignment. The second term contains the52

expectation of the gradient with respect to the teacher network over the expert states, which rep-53

resents a direct supervision on the teacher weights by enforcing the prediction of the same action54

distribution as the student.55

3 Joint Learning Framework56

Building on the formulation in Sec. 2, we propose a practical framework to tackle the teacher-57

student asymmetry. Following Eq. 6, we adapt the widely-used PPO algorithm [9] to train the58

teacher to learn behaviors that can be imitated by the student. At the same time, we train the student59

network to imitate the teacher based on a subset of the collected environment interactions containing60
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student and teacher observations. By using a subset of paired teacher and student data, we avoid the61

(usually expensive) simulation of student observation for each time step the teacher interacts with62

the environment. An overview of the proposed method is shown in Figure 1 a).63

To implement the objective in Eq. 3 inside the teacher training, we implement two key components:64

(i) a proxy student network taking as input teacher observations and (ii) a shared action decoder65

network. Excluding the critic, our method consists of three different networks: the teacher network66

FT , the student network FS , and the proxy student network F̂S , which all share the same action67

decoder network A.68

Proxy Student Network To compute the action difference used in the penalty term and to obtain the69

KL-Div Gradient in Eq. 6, a forward pass through both the teacher and student networks is required70

for each collected sample. However, simulating high-dimensional student observations, such as71

images, is often computationally expensive, contradicting the initial goal of accelerating training.72

To avoid this simulation overhead, we introduce a separate neural network F̂S that imitates the73

current student policy based on the teacher observations. This allows us to approximate the actions74

of the student at each expert state without additional simulation cost. The proxy student network is75

trained during the alignment phase, where both student and teacher observations are available for a76

subset of environment interactions. Our proposed framework consists of three alternating training77

phases: (i) the classical policy roll-out, (ii) the policy update, and (iii) the alignment phase, see also78

Figure 1 (b)-(c). The first two phases follow the standard on-policy training, while in the alignment79

phase (iii), the student FS is aligned to the teacher FT , and the proxy student F̂S is aligned to the80

student FS . For both network alignments, paired student and teacher observations are used. In the81

following, we provide more details about the specific training phases.82

Roll-out Phase Our proposed framework introduces a minor modification to the roll-out phase of83

the standard teacher training, specifically in the reward computation. In addition to the task reward,84

we also add a penalty term computed based on the action difference between the teacher and the85

proxy student. This penalty encourages the teacher to only visit states in which the student can pre-86

dict the same actions as the teacher, thereby improving alignment between the student and teacher.87

Furthermore, during each roll-out phase, we store a subset of expert states required in the alignment88

phase. Depending on the simulation envrionment, this subset can be randomly selected states or a89

fixed number of environments from which student observations are generated.90

Policy Update Phase The gradient of the KL-Div term in Eq. 6 can be integrated into the policy up-91

date of the teacher, during which the network weights are updated using the clipped policy gradient92

of PPO. Since both the policy gradient and the KL-Divergence gradient are computed over the state93

distribution of the teacher, we can use the teacher states inside the roll-out buffer to compute the94

KL-Divergence between the action distributions of the teacher and the proxy student. This allows95

us to update the network parameters of the teacher in a single backward pass through the combined96

loss function.97

Alignment Phase The alignment phase focuses on aligning the features across the encoders of the98

teacher, proxy student, and student. This phase is the only one that requires paired teacher and99

student observations, which are simulated from a subset of the teacher’s experiences during the roll-100

out phase. We align the student encoder with the teacher encoder by computing the L1 loss between101

their corresponding features and between the activations of the frozen shared action decoder. To102

prevent the collapse of the model into predicting constant outputs, gradients are only backpropagated103

to the student encoder. Similarly, the proxy student is aligned with the student using the L1 loss on104

the encoded features, with gradients only backpropagated to the proxy student. The parameters of105

the teacher remain unaffected during this phase and are only updated during the policy update phase.106

4 Experiments107

We evaluate our student-informed teacher training framework on the task of vision-based drawer108

opening using a robot arm. We compare our method to multiple behavior cloning (BC) and DAgger109

and ablate the benefits of the alignment penalty and loss terms in all three tasks.110

Setup We adapt the publicly available Omniverse Isaac Gym Reinforcement Learning Environments111
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Figure 2: Vision-Based Manipulation. On the left, the task of opening a drawer with a robotic arm
is visualized for all of the parallel environments. The two images in the center (Without Alignment)
are sample images given to the student, which show the teacher behaviors trained without our align-
ment. Our approach with alignment leads to behaviors that the student can imitate more easily, i.e.,
the robot does not block the red drawer handle, as visualized in the two images on the right.

Methods Success Rate

BC 0.27 ± 0.02
DAgger 0.31 ± 0.24
w/o Align (Ours) 0.60 ± 0.04
w Align (Ours) 0.77 ± 0.12

Table 1: Manipulation Success
Rates. The mean and standard
deviation of the success rate for
the task of opening the drawer ob-
tained from three different train-
ings runs.

Figure 3: Manipulation Returns. The mean returns
achieved by the student and teacher trained with and
without alignment, averaged over three training runs.

for Isaac Sim repository, specifically modifying the cabinet-opening task. In this task, a Franka112

robot arm is trained to open a drawer that contains objects inside. The teacher receives the de-113

fault observations, which include the robot’s joint positions and velocities and the relative position114

between the gripper and the drawer handle, providing privileged information for effective manipu-115

lation. The student observations do not include relative distance information, and instead, an image116

is given together with the state of the robot arm as observation. Instead of an unobstructed top view,117

the viewpoint of the camera is selected closer to the robot arm, which enables self-occlusion. This118

camera setup is closer to real-world applications on mobile robots, such as humanoid robots, where119

certain arm configurations may obstruct cameras. We use a frozen DINOv2 [10] encoder to extract120

flattened image features, which are passed through a five-layer MLP before being fed into the shared121

action decoder, which comprises one layer. For the teacher and proxy student, we use a three-layer122

MLP to process the 1D observations.123

Table 1 reports the success rates for our method (with and without alignment), a DAgger-trained124

student, and a BC student across three training runs. Our framework with and without alignment125

significantly outperforms students trained with DAgger and BC, with success rates of up to 0.77126

compared to 0.47 (DAgger) and 0.27 (BC). This improvement can be explained by the shared task127

decoder, which is trained by leveraging the training samples of the teacher. Our method with align-128

ment improves student success rates by 17% compared to the non-aligned framework while also129

consistently achieving higher returns (Figure 3). These results demonstrate that our framework130

helps the teacher learn better behaviors for the student. Student policies trained without alignment131

achieve non-zero success rates due to the small sampling interval of the cabinet position. This al-132

lows them to memorize behaviors without relying heavily on the images. All teachers, regardless of133

alignment, reach a 100% success rate. Interestingly, the return of the teacher trained with alignment134

is also constantly higher than without alignment. A possible explanation is that the teacher learns135

gripper movements optimized for robustness without trying multiple times to grab the handle, which136

is a difficult behavior for the student lacking relative pose information. As can be seen in Figure 2,137

our method leads to several different behaviors, which also explains the high variance of success138

rates and returns. With alignment, the teacher learns once to grab the handle from a top-down con-139

figuration while another teacher lowers its first two elements to make the red handle visible. In both140

cases, the red handle is visible right before the gripper touches it. This shows that our alignment141

leads to emerging teacher behaviors that consider the imitation difficulties of the student.142
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