
Efficient Code LLM Training via Distribution-Consistent and
Diversity-Aware Data Selection

Anonymous ACL submission

Abstract001

Recent advancements in large language mod-002
els (LLMs) have significantly improved code003
generation and program comprehension, accel-004
erating the evolution of software engineering.005
Current methods primarily enhance model per-006
formance by leveraging vast amounts of data,007
focusing on data quantity while often over-008
looking data quality, thereby reducing train-009
ing efficiency. To address this, we introduce010
an approach that utilizes a parametric model011
for code data selection, aimed at improving012
both training efficiency and model performance.013
Our method optimizes the parametric model014
to ensure distribution consistency and diver-015
sity within the selected subset, guaranteeing016
high-quality data. Experimental results demon-017
strate that using only 10K samples, our method018
achieves gains of 2.4% (HumanEval) and 2.3%019
(MBPP) over 92K full-sampled baseline, out-020
performing other sampling approaches in both021
performance and efficiency. This underscores022
that our method effectively boosts model per-023
formance while significantly reducing compu-024
tational costs. Code is available at here.025

1 Introduction026

Recent years have witnessed remarkable progress027

in large language models (LLMs), particularly in028

code-related domains (Hurst et al., 2024; Liu et al.,029

2024a; Guo et al., 2025). Open-source code models030

(Li et al., 2023b; Lozhkov et al., 2024; Guo et al.,031

2024) have significantly advanced academic re-032

search by demonstrating strong capabilities in code033

generation and program comprehension. Through034

large-scale pre-training, these models provide in-035

telligent support across multiple programming lan-036

guages and development environments, accelerat-037

ing the evolution of software engineering intelli-038

gence. Meanwhile, instruction tuning has proven039

to be an effective method to enhance model perfor-040

mance (Wei et al., 2021; Chung et al., 2024). By041

fine-tuning on large-scale instruction data, models042

better align with human intent and excel in specific 043

tasks. However, high-quality human-annotated 044

data is scarce and costly to obtain. To address 045

this, researchers have proposed various methods 046

for generating data to expand instruction datasets 047

(Wang et al., 2023; Gunasekar et al., 2023). 048

Recent studies (Zhou et al., 2023a; Xia et al., 049

2024) emphasize that data quality is more impor- 050

tant than quantity, highlighting the significance 051

of representative data selection for training effi- 052

ciency. To address this, many approaches (Chen 053

et al., 2024; Lu et al., 2024; Wang et al., 2024) 054

leverage advanced LLMs (e.g., ChatGPT) for data 055

selection and annotation, thereby optimizing data 056

quality and diversity. However, these methods face 057

economic challenges when scaling to large datasets, 058

and most algorithms target general tasks rather than 059

code-specific data selection. 060

Inspired by ActiveFT (Xie et al., 2023), we intro- 061

duce the parametric model into code data selection 062

to improve training efficiency and model perfor- 063

mance. Unlike traditional discrete selection meth- 064

ods, we operate in feature space for more effective 065

data curation. Specifically, we first map each data 066

sample to a high-dimensional feature space using a 067

feature encoder. Then, we construct the paramet- 068

ric model based on these feature representations. 069

Our goal is to ensure that the feature distribution 070

of the selected subset closely matches the origi- 071

nal dataset’s while maximizing the diversity within 072

the subset. To achieve this, we continuously opti- 073

mize the parametric model through a loss function 074

that balances distribution consistency and diversity 075

constraints. Finally, based on the optimized para- 076

metric model, we select samples most similar to 077

the parameters to construct a high-quality subset. 078

We conducted extensive experiments to validate 079

the effectiveness of our method. We mixed mul- 080

tiple datasets to construct a training set contain- 081

ing 92K Python samples and trained the model 082

based on DeepSeek-Coder-Base-6.7B. The results 083

1

https://anonymous.4open.science/r/efficode-finetune-6C64

show that, with only 10K sampled data, our method084

achieved 69.5% on HumanEval and 77.2% on085

MBPP, surpassing full-data training by 2.4% and086

2.3%, respectively. Additionally, our method out-087

performs other sampling approaches across various088

data scales while requiring minimal sampling time.089

This demonstrates that our approach not only effec-090

tively selects high-quality data but also significantly091

improves model performance and computational092

efficiency.093

The contributions of our work are summarized094

as follows:095

• As far as we know, we are the first to intro-096

duce the parametric model into code data se-097

lection. By ensuring distribution consistency098

and diversity, we successfully identify high-099

quality data, significantly improving model100

performance.101

• We perform data selection in the feature space,102

avoiding traditional discrete selection meth-103

ods. This greatly enhances sampling and train-104

ing efficiency.105

• Extensive experiments validate the effective-106

ness of our method. The results show that107

using only 10K sampled data outperforms full-108

data training. Moreover, our method surpasses109

other sampling methods in both performance110

and sampling time across various data scales.111

2 Related Work112

2.1 Code Large Language Models113

The emergence of large language models (LLMs)114

has significantly advanced the intelligence-driven115

transformation of software engineering, particu-116

larly demonstrating breakthrough capabilities in117

code generation and program comprehension tasks.118

The open-source community has developed multi-119

ple high-performance code LLMs, with notable120

representatives including CodeLlama (Roziere121

et al., 2023), DeepSeek-Coder (Guo et al., 2024),122

CodeGemma (Team et al., 2024), and Qwen2.5-123

Coder (Hui et al., 2024). CodeLlama, built124

upon the Llama 2 (Touvron et al., 2023) archi-125

tecture through continued pre-training on 500B126

code tokens, achieves performance comparable to127

commercial models in standardized benchmarks.128

The DeepSeek-Coder series, trained from scratch129

on 2T high-quality multilingual code corpora,130

demonstrates significant superiority over the same-131

scale counterparts in benchmark evaluations. The132

Qwen2.5-Coder series are built upon the Qwen2.5 133

(Yang et al., 2024) architecture and continue train- 134

ing on a vast corpus of over 5.5 trillion tokens, sur- 135

passing closed-source models like GPT-4 (Achiam 136

et al., 2023) across multiple benchmarks and estab- 137

lishing new state-of-the-art records. These open- 138

source models, through architectural innovations 139

and training strategy optimizations, not only deliver 140

highly customizable code intelligence solutions but 141

also construct efficient technical infrastructure for 142

both academic research and industrial applications. 143

2.2 Instruction Fine-tuning 144

Instruction fine-tuning has been demonstrated as 145

a crucial approach to enhance model performance 146

and align models with human preferences. The 147

study (Chung et al., 2024) indicates that scal- 148

ing both the number of tasks and the model size 149

through instruction fine-tuning yields performance 150

improvements across various model classes. For 151

instance, WizardCoder (Luo et al., 2023) lever- 152

ages the Evol-Instruct (Xu et al., 2024) method 153

to iteratively evolve the complexity of the CodeAl- 154

paca (Chaudhary, 2023) dataset. This approach 155

results in a fine-tuning dataset consisting of ap- 156

proximately 78K highly complex programming 157

instructions, thereby improving the performance 158

of CodeLLama-Python-34B to 73.2% on the Hu- 159

manEval benchmark. Similarly, Magicoder (Wei 160

et al., 2024) proposes the OSS-Instruct approach, 161

which generates highly diverse instruction data by 162

using open-source code snippets. This approach 163

successfully generated a dataset containing approx- 164

imately 75K entries. Additionally, WaveCoder 165

(Yu et al., 2024) makes full use of open-source 166

code data through a carefully designed generator- 167

discriminator data synthesis framework to generate 168

high quality and diverse instruction data in multi- 169

task scenarios. 170

2.3 Data Selection for Efficient Training 171

Instruction fine-tuning typically requires large 172

amounts of data, but research such as LIMA (Zhou 173

et al., 2023a) has pointed out that data quality is 174

more crucial than quantity. Therefore, selecting the 175

most valuable data to improve training efficiency 176

has become a focal point of research. DEITA (Liu 177

et al., 2024b) focuses on the complexity, qual- 178

ity and diversity of the data, designing a multi- 179

faceted approach to select instruction data. Based 180

on the Evol-Instruct technique, ChatGPT is used 181

to augment the instructions, and the instructions 182

2

are then evaluated for complexity and quality by183

specially trained scorers. Quantifiable metrics like184

PPL (Ankner et al., 2024), IFD (Li et al., 2024b),185

and Superfiltering (Li et al., 2024a) focus on iden-186

tifying hard samples that are difficult to learn. DQ187

(Zhou et al., 2023b) integrates data distillation and188

coreset selection (Iyer et al., 2021) techniques, em-189

phasizing the selection of diverse data. Some meth-190

ods (Chen et al., 2024; Lu et al., 2024; Xu et al.,191

2023) that rely on external oracles use powerful192

language models, such as ChatGPT, for data selec-193

tion. However, due to cost constraints, utilizing194

external oracles is not always feasible.195

Overall, many data selection algorithms are pri-196

marily designed for general tasks, and the integra-197

tion of parametric models into code data selection198

remains underexplored.199

3 Methodology200

Our methodology aims to identify and select high-201

quality, representative data samples so that training202

on the curated subset yields better performance203

than training on the entire dataset. Inspired by Ac-204

tiveFT (Xie et al., 2023), we incorporate the para-205

metric model into the code data selection process206

to improve both training efficiency and model per-207

formance. We start by defining the data selection208

task in Section 3.1. Then we introduce the inte-209

gration of parametric models into data selection in210

Section 3.2, as illustrated in Figure 1. Finally, the211

implementation details are provided in Section 3.3.212

3.1 Task Definition213

Given a large instruction tuning dataset D =214

{x1, x2, . . . , xn}, where each xi = (Ii, Ci) repre-215

sents an individual instruction-code pair, our goal216

is to select a subset Sm
π ⊂ D of size m using a217

selection strategy π. The performance of the model218

after fine-tuning on Sm
π is denoted by P (Sm

π) and219

is used to evaluate the effectiveness of the selected220

subset. The optimal strategy π∗ under a fixed bud-221

get m is defined as:222

π∗ = argmax
π

P (Sm
π). (1)223

3.2 Data Selection with Parametric Model224

During data selection, we consider two key factors:225

On one hand, the selected subset S should have226

the distribution as close as possible to that of the227

original dataset D. On the other hand, the subset S228

should maintain the diversity. By balancing these229

Figure 1: Parametric Model Optimization Process:
By optimizing the loss in Equation 7, each parameter θjS
is attracted to nearby sample features(gold in the figure,
Equation 5) and repelled by other parameters θkS , k ̸= j
(green in the figure, Equation 6).

two aspects, we aim to select a representative sub- 230

set that covers edge cases in the original dataset, 231

thereby enhancing model performance. 232

Compared to selecting in the discrete data space, 233

it is more efficient and feasible to conduct data 234

selection in the feature space. We map each data 235

sample xi to the high-dimensional feature space 236

using a feature encoder E, resulting in fi = E(xi) 237

which is then normalized. After normalization, we 238

obtain the feature set of the dataset D as FD = 239

{fi}i∈[n], whose distribution is denoted by pFD
. 240

Similarly, for the selected subset S, we define its 241

feature set as FS = {fj}j∈[m], with its correspond- 242

ing distribution pFS
. Our objective is to find the 243

optimal selection strategy π∗ as follows: 244

π∗ = argmin
π

[M(pFD
, pFS

)− λ ·R(Sm
π)] , (2) 245

where M(·, ·) measures the distance between two 246

feature distributions, R(·) evaluates the diversity 247

of the selected subset, and λ is a scaling factor that 248

balances two terms. The first term in Equation 2 249

aims to align the distributions, while the second 250

term ensures the diversity within the subset. 251

It’s challenging to directly optimize the selec- 252

tion strategy π in the discrete space, so we adopt a 253

parametric model pθS to approximate pFS
, where 254

θS = {θjS}j∈[m] are the continuous parameters. 255

Each optimized parameter θjS corresponds to the 256

feature of a selected sample fj , and we select the 257

feature fj that is closest to θjS . Thus, the optimiza- 258

tion objective is written as follows: 259

θS,π∗ = argmin
θS

[M(pFD , pθS)− λ ·R(θS)] s.t. ||θjS ||2 = 1.

(3) 260

3

The key distinction between the features FS =261

{fj} and the parameters θS = {θjS} is that fj is262

a discrete feature corresponding to a data sample,263

whereas θjS is continuous in the feature space. By264

optimizing θS , we search for ideal samples in the265

feature space that cover the original data distribu-266

tion while maintaining dispersion.267

The first term represents the distribution match-268

ing term M(pFD
, pθS), which measures the simi-269

larity between the feature distribution of the dataset270

and the parametric model. It is defined as:271

ci = arg max
j∈[m]

sim(fi, θ
j
S), (4)272

M(pFD
, pθS) = − E

fi∈FD

[
sim(fi, θ

ci
S)/τ

]
, (5)273

where sim(·, ·) is a similarity function, such as co-274

sine similarity, and τ is a temperature parameter275

that controls the sensitivity of similarity measure.276

This term encourages the parameters to be well-277

spread across the feature space, effectively cover-278

ing the distribution of the original features.279

The second term is the diversity regularization280

R(θS), which promotes diversity within the se-281

lected subset by minimizing the similarity between282

the selected samples. It is defined as:283

R(θS) = − E
j∈[m]

log ∑
k ̸=j,k∈[m]

exp
(
sim(θjS , θ

k
S)/τ

) .

(6)284

We jointly optimize the following loss function285

to achieve the goal in Equation 3, where λ is set to286

1 by default.287

L =M(pFD
, pθS)− λ ·R(θS)

=− E
fi∈FD

[
sim(fi, θ

ci
S)/τ

]
+ E

j∈[m]

log ∑
k ̸=j,k∈[m]

exp
(

sim(θjS , θ
k
S)/τ

) .

(7)

288

We optimize the loss function in Equation 7 us-289

ing gradient descent. Upon completion of the op-290

timization, we find the features {fj}j∈[m] that ex-291

hibit the highest similarity to θjS .292

fj = arg max
fi∈FD

sim(fi, θ
j
S). (8)293

Finally, we collect the data samples correspond- 294

ing to these selected features to form the instruction 295

subset Sm
π , which will be used for fine-tuning. 296

Algorithm 1: Pseudo-code for Our Data
Selection Algorithm

Input: Dataset D = {xi}i∈[n], feature
encoder E, selection budget m,
iteration number T for optimization

Output: Subset S = {xj}j∈[m]

1 for i ∈ [n] do
2 fi = E(xi);

// Construct FD = {fi}i∈[n] based on
D, normalized to ||fi||2 = 1

3 Randomly sample {f0
j }j∈[m] from FD, and

initialize θjS = f0
j ;

// Initialize the parameters

θS = {θjS}j∈[m]

4 for iter ∈ [T] do
5 Calculate the similarity between {fi}i∈[n]

and {θjS}j∈[m]: Simi,j = f⊤
i θjS/τ ;

6 MaxSimi = maxj∈[m] Simi,j =
Simi,ci ;

// The Top-1 similarity between fi

and θjS, j ∈ [m]

7 Calculate the similarity between θjS and
θkS , k ̸= j for regularization:

RegSimj,k = exp(θjS
⊤
θkS/τ), k ̸= j;

8 Loss = − 1
n

∑
i∈[n] MaxSimi +

1
m

∑
j∈[m] log

(∑
k ̸=j,k∈[m] RegSimj,k

)
;

// Calculate the loss function in
Equation 7

9 θS = θS − lr · ∇θSLoss;
// Optimize the parameter through

gradient descent

10 θjS = θjS/||θ
j
S ||2, j ∈ [m];

// Normalize the parameters to

ensure ||θjS ||2 = 1

11 for j ∈ [m] do
12 Find fj closest to θjS :

fj = argmaxk∈[n] f
⊤
k θjS ;

13 Find xj corresponding to fj ;

14 Return the subset S = {xj}j∈[m];

3.3 Implementation Details 297

Algorithm 1 illustrates the implementation de- 298

tails of the data selection process. We use the 299

pre-trained model all-mpnet-base-v21 from the 300

1https://huggingface.co/sentence-transformers/all-mpnet-
base-v2

4

sentence-transformers (Reimers and Gurevych,301

2019) library as the feature encoder. This model302

has been trained on over 1 billion text pairs, effec-303

tively capturing the semantic information in instruc-304

tion texts. For each data sample xi = (Ii, Ci), we305

encode the instruction text Ii to obtain the feature306

vector fi = E(Ii) ∈ R768, as the instruction text307

fully defines the task semantics. All features are308

then processed using L2 normalization, forming309

the normalized feature set FD = {fi}i∈[n].310

Before optimizing the parametric model, the pa-311

rameters θS are initialized by randomly sampling312

from the feature set FD. During each iteration, to313

avoid memory overflow, we calculate the similar-314

ity between sample features and parameters in a315

batch-wise manner. Subsequently, we update ci ac-316

cording to Equation 4. Finally, we compute the loss317

function in Equation 7 and update the parameters318

θS using gradient descent.319

When the optimization process is finished, we320

find the sample feature fj that exhibit the high-321

est similarity to θjS according to Equation 8. The322

corresponding original sample xj is selected for323

subsequent fine-tuning. This process ensures that324

the selected subset is highly representative and cov-325

ers the edge cases in the original dataset, ultimately326

providing high-quality data support for the fine-327

tuning process.328

4 Experimental Setup329

4.1 Dataset330

We use three open-source instruction datasets, in-331

cluding Evol-Instruct-Python-26K2, CodeExercise-332

Python-27K3, and OSS-Instruct-75K4. The Evol-333

Instruct-Python-26K dataset is the Python subset of334

the Evol-Instruct-80K5 dataset, and its construction335

follows an iterative evolution strategy. Based on the336

CodeAlpaca (Chaudhary, 2023) instruction dataset,337

multi-round complexity enhancement operations338

are applied to the original problems using ChatGPT.339

The CodeExercise-Python-27K dataset is generated340

using the Camel (Li et al., 2023a) framework, cov-341

ering hundreds of Python-related topics including342

basic syntax and data structures, algorithm appli-343

2https://huggingface.co/datasets/mlabonne/Evol-Instruct-
Python-26k

3https://huggingface.co/datasets/codefuse-
ai/CodeExercise-Python-27k

4https://huggingface.co/datasets/ise-uiuc/Magicoder-
OSS-Instruct-75K

5https://huggingface.co/datasets/nickrosh/Evol-Instruct-
Code-80k-v1

cations, database queries, machine learning, and 344

more. The OSS-Instruct-75K dataset utilizes Chat- 345

GPT to generate programming problems and their 346

corresponding solutions. Its uniqueness lies in the 347

use of open-source code snippets as guidance for 348

generation. To maintain consistency in the pro- 349

gramming language, we filter this dataset and only 350

retain Python-related entries. Finally, we merge 351

these three datasets to obtain a mixed dataset, Mix- 352

Python-92K. We use this mixed dataset for training. 353

4.2 Evaluation Benchmarks 354

HumanEval/HumanEval+. HumanEval (Chen 355

et al., 2021) comprises 164 Python programming 356

problems designed to assess the ability of code gen- 357

eration models. Each problem is accompanied by 358

approximately 9.6 test cases to check whether the 359

generated code works as expected. HumanEval has 360

become one of the most widely used benchmarks 361

for evaluating the performance of code LLMs, mak- 362

ing it a key tool in the field of artificial intelligence 363

for coding. To enhance the rigor of the evaluation, 364

HumanEval+ (Liu et al., 2023) builds upon the orig- 365

inal dataset by significantly increasing the number 366

of test cases through the use of LLMs and muta- 367

tion strategies, resulting in a more comprehensive 368

evaluation benchmark. 369

MBPP/MBPP+. MBPP (Austin et al., 2021) 370

consists of approximately 1,000 Python program- 371

ming challenges sourced from a crowd of contribu- 372

tors, targeting beginners in programming and focus- 373

ing on core principles and the usage of the standard 374

library. Each challenge includes a description, a 375

solution and three tests to verify the accuracy. To 376

improve the reliability of the benchmark, MBPP+ 377

(Liu et al., 2023) extends the original dataset by 378

incorporating a subset of hand-verified problems 379

from the MBPP-sanitized dataset, ensuring that the 380

tasks are well-defined and unambiguous. This en- 381

hances the benchmark’s reliability and suitability 382

for more rigorous evaluations. 383

4.3 Evaluation Metrics 384

Pass@k. We use the Pass@k metric (Chen et al., 385

2021) to enhance the reliability of our evaluation 386

process. We count the total number of generated 387

samples that successfully passing all test cases, de- 388

noted as k, to compute the Pass@k. 389

Pass@k := E

[
1−

(
n−c
k

)(
n
k

)]
, (9) 390

5

Methods Data Size Sampling Time HumanEval HumanEval+ MBPP MBPP+
Random 10K - 64.6% 61.0% 74.3% 61.9%
DQ 10K 19.9h 64.6% 60.4% 75.9% 62.4%
DEITA 10K 7.2h 65.2% 61.0% 75.4% 63.0%
PPL 10K 3.6h 62.2% 54.9% 74.6% 61.1%
IFD 10K 3.6h 63.4% 57.3% 62.4% 46.6%
K-Center 10K 42.5 min 64.6% 61.0% 74.9% 61.6%
Ours 10K 13.5min 69.5% 63.4% 77.2% 63.2%

Table 1: Comparison of different sampling methods. All methods select 10K samples to train DeepSeekCoder-Base-
6.7B model. Our method outperforms the others in terms of Pass@1 (%) metric, while reducing sampling time.

where n is the total number of generated samples391

for each problem and c is the number of correct392

generated code samples passing all test cases(n >393

k ≥ c). In subsequent experiments, we compute394

the Pass@1 (%) metric using greedy decoding.395

4.4 Training Details396

In our experiments, we use DeepSeekCoder-Base-397

6.7B as the base model and conduct training on398

eigth NVIDIA A800-80GB GPUs using PyTorch’s399

Fully Sharded Data Parallel (FSDP) module for400

3 epochs. Specifically, we employ the AdamW401

optimizer with a learning rate of 5e-5, a cosine402

learning rate scheduler, and 100 warmup steps. The403

maximum sequence length per batch is set to 4096404

tokens with a global batch size of 512. To improve405

training efficiency, we utilize the Dynamic Pack406

(Lv et al., 2025). Model evaluation is conducted407

using the EvalPlus (Liu et al., 2023) library.408

For optimizing the parametric model, we adopt409

the same hyperparameter settings as in ActiveFT410

(Xie et al., 2023). Specifically, we use the Adam411

optimizer with 300 optimization iterations, a learn-412

ing rate of 0.001, and set the temperature parameter413

τ in Equation 7 to 0.07.414

5 Results415

5.1 Sampling Methods416

We compared various sampling methods, with the417

experimental results presented in Table 1. when418

sampling 10K samples, our method outperforms all419

baseline approaches across all benchmarks. Specif-420

ically, our method achieves 69.5% on HumanEval,421

63.4% on HumanEval+, 77.2% on MBPP, and422

63.2% on MBPP+. These results demonstrate the423

importance of considering both distribution consis-424

tency and diversity in subset. Our approach effec-425

tively balances these two factors, enabling the iden-426

tification of high-quality samples that contribute to427

enhancing model performance. 428

K-Center (Sener and Savarese, 2018) and DQ 429

(Zhou et al., 2023b) focus on maximizing diversity 430

within the subset. While these approaches increase 431

inter-sample diversity, they do not guarantee align- 432

ment with the original dataset’s distribution. Both 433

DQ and K-Center achieve 64.6% on HumanEval, 434

which is lower than our method. This suggests 435

that while diversity is important, it must be bal- 436

anced with distribution consistency to fully lever- 437

age the dataset’s structure. PPL and IFD prioritize 438

the selection of complex samples, aiming to en- 439

hance model performance by focusing on challeng- 440

ing instances. However, these methods perform 441

poorly compared to random sampling on several 442

benchmarks. For instance, IFD shows a substantial 443

performance drop on MBPP and MBPP+, indicat- 444

ing that complexity-focused sampling may devi- 445

ate from the original distribution. DEITA com- 446

bines complexity and quality assessment, yield- 447

ing competitive results. However, it requires the 448

training of two additional scoring models, result- 449

ing in higher computational costs and longer train- 450

ing times. In contrast, our method achieves su- 451

perior performance with significantly lower com- 452

putational overhead, making it more efficient and 453

scalable. 454

In summary, our method establishes distribu- 455

tion consistency as the foundation while incorpo- 456

rating diversity constraints, constructing a more 457

comprehensive and efficient data selection strategy. 458

This approach enables the identification of high- 459

quality training samples and consistently improves 460

the model’s overall performance. 461

5.2 Sampling Efficiency 462

We also compared the sampling efficiency of differ- 463

ent methods, with the results presented in Table 1. 464

The sampling process can be divided into two main 465

phases: (1) the processing phase, which involves 466

6

Figure 2: Performance comparison of different sampling methods with varying sampling quantities. Our method
outperforms the other methods across different sample sizes, achieving the best performance with 10K samples.

data preprocessing steps such as feature extraction467

and model scoring, and (2) the sampling phase,468

where specific strategies are applied for sample469

selection.470

Among all compared methods, DQ exhibits the471

lowest sampling efficiency. Its processing phase472

requires nearly 20 hours to partition the dataset into473

non-overlapping bins, a duration that even exceeds474

the model training time. Although DQ achieves475

competitive performance, its high time cost dur-476

ing the sampling process represents a significant477

disadvantage. In contrast, the DEITA, PPL, and478

IFD methods show better efficiency but still require479

forward inference for each data sample. Specifi-480

cally, DEITA relies on two 13B-parameter scoring481

models, while PPL and IFD depend on the model482

being trained for scoring. As a result, their sam-483

pling time increases linearly with the size of the484

dataset, resulting in poor scalability. The K-Center485

method reduces sampling time to 42.5 minutes by486

iteratively computing the similarity between can-487

didate samples and the selected subset. However,488

its reliance on distance-based computations funda-489

mentally limits further efficiency improvements. In490

contrast, our method achieves the highest sampling491

efficiency, requiring only 13.5 minutes. This advan-492

tage is attributed to the learnable parametric model493

for data selection, which significantly reduces com-494

putational overhead by optimizing the loss function495

in Equation 7 that ensures both distribution consis-496

tency with the original dataset and diversity within497

the selected subset.498

In summary, our method maintains model perfor-499

mance while significantly improving sampling effi-500

ciency and scalability. Compared to other methods,501

our approach minimizes sampling time, enabling 502

the efficient processing of large-scale datasets. 503

5.3 Sampling Quantity 504

To investigate the impact of sampling quantity on 505

model performance, we compared the experimen- 506

tal results with 5K, 10K, 15K, 20K, 25K, and 507

the full 92K dataset, as shown in Figure 2. The 508

experimental results reveal that the performance 509

curves of all methods generally exhibit an initial 510

increase followed by a decline, indicating the pres- 511

ence of low-quality data within the dataset. Moder- 512

ate sampling (e.g., 10K data) effectively filters out 513

low-quality samples, thus improving model perfor- 514

mance, while excessive sampling (more than 25K 515

data) may introduce noise, leading to performance 516

degradation. When trained on the full dataset, the 517

model achieved 67.1% on HumanEval and 74.9% 518

on MBPP. 519

The experimental results demonstrate that our 520

method consistently outperforms others across dif- 521

ferent sampling quantities, particularly peaking at 522

10K samples with 69.5% on HumanEval and 77.2% 523

on MBPP. Compared to training on the full dataset, 524

our method represents improvements of 2.4% and 525

2.3% respectively. These results validate the ef- 526

fectiveness of our data selection strategy, showing 527

that introducing the parametric model into the data 528

selection process can significantly enhance model 529

performance. 530

As the sampling quantity increases from 5K to 531

20K, PPL and IFD show performance improve- 532

ments on both HumanEval and MBPP benchmarks, 533

indicating that “non-complex yet important” data 534

samples also play a key role in improving per- 535

7

Model Params Data Size HumanEval HumanEval+ MBPP MBPP+
CodeLlama-Python 7B - 37.8% 35.4% 59.8% 46.8%
WizardCoder-CL 7B 78K 50.6% 45.1% 58.5% 49.5%
DeepseekCoder-Base 6.7B - 47.6% 39.6% 72.0% 58.7%
WaveCoder-DS 6.7B 20K 61.0% 54.9% 75.9% 60.9%
Magicoder-DS 6.7B 75K 66.5% 60.4% 75.4% 61.9%
Ours-DS 6.7B 10K 69.5% 63.4% 77.2% 63.2%

Table 2: Comparison of different code LLMs. The results of Magicoder-DS are taken from their original paper (Wei
et al., 2024). We re-evaluated WaveCoder-DS as the results in their original paper (Yu et al., 2024) were incomplete.
Results of other models are sourced from the EvalPlus Leaderboard (Liu et al., 2023).

formance. The improvement observed in these536

methods suggests that strategies focused solely on537

complex data sampling fail to yield the best per-538

formance, as they neglect simpler yet impactful539

samples. In contrast, our method considers both540

distribution consistency and diversity, ensuring that541

the sampled dataset not only includes complex data542

but also retains simpler yet essential samples, re-543

sulting in a more balanced performance gains.544

The performance curves of DEITA, DQ and K-545

Center exhibit similar trends, with performance546

declining after exceeding 15K samples. Notably,547

K-Center maintains relatively good performance on548

the MBPP benchmark but fluctuates significantly549

on the HumanEval benchmark. This reflects the550

limitations of diversity-driven sampling strategies551

in programming semantic understanding. Purely552

diversity-based approaches neglect distribution con-553

sistency, potentially resulting in unstable perfor-554

mance on different benchmarks.555

Overall, our method achieves stable and supe-556

rior performance across different sampling quan-557

tities by balancing both distribution consistency558

and diversity. In particular, with a 10K sample559

size, the model reaches optimal performance. This560

demonstrates that our approach not only excels in561

improving performance but also effectively avoids562

the noise introduced by excessive sampling, thus563

enhancing the model’s generalization ability. Our564

data selection strategy enables the identification565

of high-quality samples, significantly boosting the566

model’s overall performance.567

5.4 Code LLMs568

We compared the performance of different code569

LLMs, as shown in Table 2. WizardCoder-CL was570

trained on CodeLlama-Python using 78K instruc-571

tion samples, while WaveCoder-DS and Magicoder-572

DS were both trained on DeepSeekCoder-Base573

with 20K and 75K samples, respectively. Despite574

these models utilizing much larger training datasets, 575

our approach achieves superior performance across 576

all benchmarks using only 10K carefully selected 577

samples. 578

These results highlight that data quality is more 579

important than quantity. By developing an effec- 580

tive data selection strategy, we can significantly 581

enhance model performance. Our experiments con- 582

firm that employing the parametric model for data 583

selection constitutes an efficient approach. It not 584

only identifies high-quality training samples but 585

also substantially improves training efficiency by 586

reducing the number of unnecessary or low-quality 587

samples. Compared to models relying on massive 588

training data, our method delivers better perfor- 589

mance with far fewer data, demonstrating that our 590

data selection strategy ensures competitive perfor- 591

mance while effectively reducing computational 592

resource consumption. 593

6 Conclusion 594

In this work, we propose an efficient data selection 595

strategy designed for code data. By optimizing 596

parametric models, our approach ensures both dis- 597

tribution consistency between the selected subset 598

and the original dataset, while simultaneously max- 599

imizing the diversity of the subset. Experimental 600

results demonstrate that by using only 10K care- 601

fully selected data, our method achieves the best 602

performance across all benchmarks, outperform- 603

ing both other sampling methods and existing code 604

LLMs. These findings underscore that the data 605

quality is more important than the data quantity, 606

and that an effective data selection strategies can 607

significantly enhance both model performance and 608

training efficiency. We hope that our study pro- 609

vides valuable insights for efficiently training code 610

LLMs and contributes to advancing progress in 611

related research fields. 612

8

Limitations613

While our method shows significant advantages614

in code generation tasks, there are limitations that615

warrant further investigation. First, the current ex-616

perimental validation is limited to Python-specific617

evaluation benchmarks and is tested solely on the618

DeepSeekCoder-Base-6.7B model. Due to expen-619

sive equipment rental costs, we have not yet con-620

ducted experiments on other programming lan-621

guages (e.g., Java, C++) or larger-scale models622

(e.g., 34B parameters). More critically, our method623

does not directly validate the functional correctness624

of the code, potentially allowing flawed samples625

into the training set. In future work, we plan to626

integrate executable sandbox environments to rig-627

orously verify code correctness and extend evalua-628

tions to a broader range of programming languages629

and model scales for a comprehensive assessment630

of the method’s generalization capabilities.631

Acknowledgments632

We would like to express our sincere gratitude to633

those who have contributed to this work. Addi-634

tionally, we utilize ChatGPT to review and refine635

sentence structures, which helped enhance the clar-636

ity and quality of the text.637

References638

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama639
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,640
Diogo Almeida, Janko Altenschmidt, Sam Altman,641
Shyamal Anadkat, and 1 others. 2023. Gpt-4 techni-642
cal report. arXiv preprint arXiv:2303.08774.643

Zachary Ankner, Cody Blakeney, Kartik Sreenivasan,644
Max Marion, Matthew L Leavitt, and Mansheej Paul.645
2024. Perplexed by perplexity: Perplexity-based data646
pruning with small reference models. arXiv preprint647
arXiv:2405.20541.648

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten649
Bosma, Henryk Michalewski, David Dohan, Ellen650
Jiang, Carrie Cai, Michael Terry, Quoc Le, and 1651
others. 2021. Program synthesis with large language652
models. arXiv preprint arXiv:2108.07732.653

Sahil Chaudhary. 2023. Code alpaca: An instruction-654
following llama model for code generation. https:655
//github.com/sahil280114/codealpaca.656

Lichang Chen, Shiyang Li, Jun Yan, Hai Wang, Kalpa657
Gunaratna, Vikas Yadav, Zheng Tang, Vijay Srini-658
vasan, Tianyi Zhou, Heng Huang, and 1 others. 2024.659
Alpagasus: Training a better alpaca with fewer data.660
In The Twelfth International Conference on Learning661
Representations.662

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, 663
Henrique Ponde De Oliveira Pinto, Jared Kaplan, 664
Harri Edwards, Yuri Burda, Nicholas Joseph, Greg 665
Brockman, and 1 others. 2021. Evaluating large 666
language models trained on code. arXiv preprint 667
arXiv:2107.03374. 668

Hyung Won Chung, Le Hou, Shayne Longpre, Barret 669
Zoph, Yi Tay, William Fedus, Yunxuan Li, Xuezhi 670
Wang, Mostafa Dehghani, Siddhartha Brahma, and 671
1 others. 2024. Scaling instruction-finetuned lan- 672
guage models. Journal of Machine Learning Re- 673
search, 25(70):1–53. 674

Suriya Gunasekar, Yi Zhang, Jyoti Aneja, Caio 675
César Teodoro Mendes, Allie Del Giorno, Sivakanth 676
Gopi, Mojan Javaheripi, Piero Kauffmann, Gus- 677
tavo de Rosa, Olli Saarikivi, and 1 others. 2023. 678
Textbooks are all you need. arXiv preprint 679
arXiv:2306.11644. 680

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao 681
Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shi- 682
rong Ma, Peiyi Wang, Xiao Bi, and 1 others. 2025. 683
Deepseek-r1: Incentivizing reasoning capability in 684
llms via reinforcement learning. arXiv preprint 685
arXiv:2501.12948. 686

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai 687
Dong, Wentao Zhang, Guanting Chen, Xiao Bi, 688
Yu Wu, YK Li, and 1 others. 2024. Deepseek- 689
coder: When the large language model meets 690
programming–the rise of code intelligence. arXiv 691
preprint arXiv:2401.14196. 692

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, 693
Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun 694
Zhang, Bowen Yu, Keming Lu, and 1 others. 2024. 695
Qwen2.5-coder technical report. arXiv preprint 696
arXiv:2409.12186. 697

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam 698
Perelman, Aditya Ramesh, Aidan Clark, AJ Ostrow, 699
Akila Welihinda, Alan Hayes, Alec Radford, and 1 700
others. 2024. Gpt-4o system card. arXiv preprint 701
arXiv:2410.21276. 702

Rishabh Iyer, Ninad Khargoankar, Jeff Bilmes, and Hi- 703
manshu Asanani. 2021. Submodular combinatorial 704
information measures with applications in machine 705
learning. In Algorithmic Learning Theory, pages 706
722–754. PMLR. 707

Guohao Li, Hasan Hammoud, Hani Itani, Dmitrii 708
Khizbullin, and Bernard Ghanem. 2023a. Camel: 709
Communicative agents for" mind" exploration of 710
large language model society. Advances in Neural 711
Information Processing Systems, 36:51991–52008. 712

Ming Li, Yong Zhang, Shwai He, Zhitao Li, Hongyu 713
Zhao, Jianzong Wang, Ning Cheng, and Tianyi Zhou. 714
2024a. Superfiltering: Weak-to-strong data filtering 715
for fast instruction-tuning. In Proceedings of the 716
62nd Annual Meeting of the Association for Compu- 717
tational Linguistics (Volume 1: Long Papers), pages 718
14255–14273. 719

9

https://github.com/sahil280114/codealpaca
https://github.com/sahil280114/codealpaca
https://github.com/sahil280114/codealpaca

Ming Li, Yong Zhang, Zhitao Li, Jiuhai Chen, Lichang720
Chen, Ning Cheng, Jianzong Wang, Tianyi Zhou, and721
Jing Xiao. 2024b. From quantity to quality: Boost-722
ing llm performance with self-guided data selection723
for instruction tuning. In Proceedings of the 2024724
Conference of the North American Chapter of the725
Association for Computational Linguistics: Human726
Language Technologies (Volume 1: Long Papers),727
pages 7595–7628.728

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas729
Muennighoff, Denis Kocetkov, Chenghao Mou, Marc730
Marone, Christopher Akiki, Jia Li, Jenny Chim, and731
1 others. 2023b. Starcoder: may the source be with732
you! arXiv preprint arXiv:2305.06161.733

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang,734
Bochao Wu, Chengda Lu, Chenggang Zhao, Chengqi735
Deng, Chenyu Zhang, Chong Ruan, and 1 others.736
2024a. Deepseek-v3 technical report. arXiv preprint737
arXiv:2412.19437.738

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Ling-739
ming Zhang. 2023. Is your code generated by chatgpt740
really correct? rigorous evaluation of large language741
models for code generation. Advances in Neural742
Information Processing Systems, 36:21558–21572.743

Wei Liu, Weihao Zeng, Keqing He, Yong Jiang, and744
Junxian He. 2024b. What makes good data for align-745
ment? a comprehensive study of automatic data se-746
lection in instruction tuning. In The Twelfth Interna-747
tional Conference on Learning Representations.748

Anton Lozhkov, Raymond Li, Loubna Ben Allal, Fed-749
erico Cassano, Joel Lamy-Poirier, Nouamane Tazi,750
Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei,751
and 1 others. 2024. Starcoder 2 and the stack v2: The752
next generation. arXiv preprint arXiv:2402.19173.753

Keming Lu, Hongyi Yuan, Zheng Yuan, Runji Lin, Jun-754
yang Lin, Chuanqi Tan, Chang Zhou, and Jingren755
Zhou. 2024. # instag: Instruction tagging for analyz-756
ing supervised fine-tuning of large language models.757
In The Twelfth International Conference on Learning758
Representations.759

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xi-760
ubo Geng, Wenxiang Hu, Chongyang Tao, Jing Ma,761
Qingwei Lin, and Daxin Jiang. 2023. Wizardcoder:762
Empowering code large language models with evol-763
instruct. In The Twelfth International Conference on764
Learning Representations.765

Weijie Lv, Xuan Xia, and Sheng-Jun Huang. 2025.766
Data-efficient llm fine-tuning for code generation.767
arXiv preprint arXiv:2504.12687.768

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:769
Sentence embeddings using siamese bert-networks.770
In Proceedings of the 2019 Conference on Empirical771
Methods in Natural Language Processing. Associa-772
tion for Computational Linguistics.773

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten774
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,775

Jingyu Liu, Romain Sauvestre, Tal Remez, and 1 776
others. 2023. Code llama: Open foundation models 777
for code. arXiv preprint arXiv:2308.12950. 778

Ozan Sener and Silvio Savarese. 2018. Active learn- 779
ing for convolutional neural networks: A core-set 780
approach. In International Conference on Learning 781
Representations. 782

CodeGemma Team, Heri Zhao, Jeffrey Hui, Joshua 783
Howland, Nam Nguyen, Siqi Zuo, Andrea Hu, 784
Christopher A Choquette-Choo, Jingyue Shen, Joe 785
Kelley, and 1 others. 2024. Codegemma: Open 786
code models based on gemma. arXiv preprint 787
arXiv:2406.11409. 788

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al- 789
bert, Amjad Almahairi, Yasmine Babaei, Nikolay 790
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti 791
Bhosale, and 1 others. 2023. Llama 2: Open foun- 792
dation and fine-tuned chat models. arXiv preprint 793
arXiv:2307.09288. 794

Yifan Wang, Yafei Liu, Chufan Shi, Haoling Li, Chen 795
Chen, Haonan Lu, and Yujiu Yang. 2024. Inscl: A 796
data-efficient continual learning paradigm for fine- 797
tuning large language models with instructions. In 798
Proceedings of the 2024 Conference of the North 799
American Chapter of the Association for Computa- 800
tional Linguistics: Human Language Technologies 801
(Volume 1: Long Papers), pages 663–677. 802

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa 803
Liu, Noah A Smith, Daniel Khashabi, and Hannaneh 804
Hajishirzi. 2023. Self-instruct: Aligning language 805
models with self-generated instructions. In Proceed- 806
ings of the 61st Annual Meeting of the Association for 807
Computational Linguistics (Volume 1: Long Papers), 808
pages 13484–13508. 809

Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin 810
Guu, Adams Wei Yu, Brian Lester, Nan Du, An- 811
drew M Dai, and Quoc V Le. 2021. Finetuned lan- 812
guage models are zero-shot learners. arXiv preprint 813
arXiv:2109.01652. 814

Yuxiang Wei, Zhe Wang, Jiawei Liu, Yifeng Ding, 815
and Lingming Zhang. 2024. Magicoder: Empow- 816
ering code generation with oss-instruct. In Inter- 817
national Conference on Machine Learning, pages 818
52632–52657. PMLR. 819

Mengzhou Xia, Sadhika Malladi, Suchin Gururangan, 820
Sanjeev Arora, and Danqi Chen. 2024. Less: select- 821
ing influential data for targeted instruction tuning. In 822
Proceedings of the 41st International Conference on 823
Machine Learning, pages 54104–54132. 824

Yichen Xie, Han Lu, Junchi Yan, Xiaokang Yang, 825
Masayoshi Tomizuka, and Wei Zhan. 2023. Ac- 826
tive finetuning: Exploiting annotation budget in the 827
pretraining-finetuning paradigm. In Proceedings of 828
the IEEE/CVF Conference on Computer Vision and 829
Pattern Recognition, pages 23715–23724. 830

10

https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1908.10084

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng,831
Pu Zhao, Jiazhan Feng, Chongyang Tao, Qingwei832
Lin, and Daxin Jiang. 2024. Wizardlm: Empowering833
large pre-trained language models to follow complex834
instructions. In The Twelfth International Conference835
on Learning Representations.836

Yang Xu, Yongqiang Yao, Yufan Huang, Mengnan Qi,837
Maoquan Wang, Bin Gu, and Neel Sundaresan. 2023.838
Rethinking the instruction quality: Lift is what you839
need. arXiv preprint arXiv:2312.11508.840

An Yang, Baosong Yang, Beichen Zhang, Binyuan841
Hui, Bo Zheng, Bowen Yu, Chengyuan Li, Day-842
iheng Liu, Fei Huang, Haoran Wei, and 1 others.843
2024. Qwen2.5 technical report. arXiv preprint844
arXiv:2412.15115.845

Zhaojian Yu, Xin Zhang, Ning Shang, Yangyu Huang,846
Can Xu, Yishujie Zhao, Wenxiang Hu, and Qiufeng847
Yin. 2024. Wavecoder: Widespread and versatile848
enhancement for code large language models by in-849
struction tuning. In Proceedings of the 62nd Annual850
Meeting of the Association for Computational Lin-851
guistics (Volume 1: Long Papers), pages 5140–5153.852

Chunting Zhou, Pengfei Liu, Puxin Xu, Srinivasan Iyer,853
Jiao Sun, Yuning Mao, Xuezhe Ma, Avia Efrat, Ping854
Yu, Lili Yu, and 1 others. 2023a. Lima: Less is855
more for alignment. Advances in Neural Information856
Processing Systems, 36:55006–55021.857

Daquan Zhou, Kai Wang, Jianyang Gu, Xiangyu Peng,858
Dongze Lian, Yifan Zhang, Yang You, and Jiashi859
Feng. 2023b. Dataset quantization. In Proceedings860
of the IEEE/CVF International Conference on Com-861
puter Vision, pages 17205–17216.862

11

https://openreview.net/forum?id=CfXh93NDgH
https://openreview.net/forum?id=CfXh93NDgH
https://openreview.net/forum?id=CfXh93NDgH
https://openreview.net/forum?id=CfXh93NDgH
https://openreview.net/forum?id=CfXh93NDgH

	Introduction
	Related Work
	Code Large Language Models
	Instruction Fine-tuning
	Data Selection for Efficient Training

	Methodology
	Task Definition
	Data Selection with Parametric Model
	Implementation Details

	Experimental Setup
	Dataset
	Evaluation Benchmarks
	Evaluation Metrics
	Training Details

	Results
	Sampling Methods
	Sampling Efficiency
	Sampling Quantity
	Code LLMs

	Conclusion

