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ABSTRACT

Multimodal contrastive learning methods like CLIP train on noisy and uncurated
training datasets. This is cheaper than labeling datasets manually, and even im-
proves out-of-distribution robustness. We show that this practice makes backdoor
and poisoning attacks a significant threat. By poisoning just 0.01% of a dataset
(e.g., just 300 images of the 3 million-example Conceptual Captions dataset), we
can cause the model to misclassify test images by overlaying a small patch. Tar-
geted poisoning attacks, whereby the model misclassifies a particular test input
with an adversarially-desired label, are even easier requiring control of 0.0001%
of the dataset (e.g., just three out of the 3 million images). Our attacks call into
question whether training on noisy and uncurated Internet scrapes is desirable.

1 INTRODUCTION

Contrastive learning (Chopra et al., 2005; Hadsell et al., 2006) trains a model that projects a data
distribution onto a lower-dimensional embedding space such that similar objects in the origin space
are closer together in the embedding space than dissimilar objects (Chechik et al., 2010; Sohn,
2016; Oord et al., 2018; Wu et al., 2018). Significant advances over the last years have enabled
self-supervised classifiers to achieve state of the art accuracy by training on noisy and uncurated
datasets (Radford et al., 2021; Tian et al., 2021), which brings two significant benefits.

First, training on uncurated data is cheaper (Joulin et al., 2016). Compared to an estimated several
million USD it cost to label the ImageNet dataset (Deng et al., 2009), contrastively trained models can
train without expensive labeling efforts (Chen et al., 2020a). Further, because each image in ImageNet
is required to contain one of just 1,000 different objects, there are large categories of images that can
never be part of this supervised dataset (Jia et al., 2021). On the other hand, a contrastive model can
learn on arbitrary images whether or not they have a suitable corresponding label in some dataset.

Second, training on noisy data improves robustness (Radford et al., 2021). Classifiers trained
exclusively on ImageNet overfit the particular details of this training set (Recht et al., 2019; Hendrycks
& Dietterich, 2019), and do not generalize to other test sets (Taori et al., 2020). Contrastive models
trained on data scraped from the Internet exhibit impressive robustness properties; The contrastively
trained CLIP (Radford et al., 2021) model is the first technique to show significant effective robustness
on ImageNet-V2 (Recht et al., 2019; Taori et al., 2020).

Contributions. We make the case that training on unfiltered may be undesirable if even a tiny
fraction of the data could be maliciously poisoned by an adversary. And this is likely the case: the
data is scraped from the Internet (Jia et al., 2021) without any human review before it is passed to
the learning algorithm (Radford et al., 2021; Jia et al., 2021; Tian et al., 2021). Thus, because these
datasets are explicitly “noisy” (Jia et al., 2021) and “uncurated” (Tian et al., 2019), we argue the
likelihood of at least one adversary is high.

We show that this adversary can mount powerful targeted poisoning (Biggio et al., 2012) and
backdoor attacks (Gu et al., 2017; Chen et al., 2017) against multimodal contrastive models. A
poisoning adversary introduces malicious examples into the training dataset so that the model will
misclassify a particular input at test time as an adversarially-desired label. We then consider patch-
based backdoors, where the adversary poisons a dataset so that the learned model will classify any
input that contains a particular trigger-pattern as a desired target label.

We require no new technical ideas to poison or backdoor contrastively-trained models (Biggio et al.,
2012; Gu et al., 2017; Chen et al., 2017)—although we must adapt existing techniques to this new
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domain. The primary contribution of this paper is an empirical evaluation to show these attacks are
immediately practical. Compared to prior backdooring attacks which require poisoning on average
1% of training data for successful clean label attacks (Shafahi et al., 2018; Saha et al., 2021), we
find that attacking multimodal contrastive models requires orders of magnitude fewer injections: just
0.01% suffices for many of our backdoor attacks, or 0.0001% for poisoning attacks.

2 BACKGROUND, NOTATION, AND RELATED WORK

2.1 POISONING AND BACKDOOR ATTACKS

In a poisoning attack (Biggio et al., 2012), an adversary modifies a benign training dataset X by
injecting poisoned examples P to form a poisoned dataset X ′ = X ∪ P . When the victim runs the
training algorithm T on the modified training dataset X ′, they obtain a poisoned model fθ ← T (X ′).
This model fθ will now perform well in most standard settings, but because of the poisoned examples
P , the adversary will control how it behaves in other settings.

We first consider targeted poisoning (Barreno et al., 2006; Biggio et al., 2012) where an adversary
injects poisoned examples so that some input x′ will be misclasified as a desired target y′. Poisoning
attacks exist for many tasks, including supervised (Biggio et al., 2012; Turner et al., 2019; Koh &
Liang, 2017), unsupervised (Kloft & Laskov, 2010; 2012; Biggio et al., 2013), and semi-supervised
(Liu et al., 2020; Carlini, 2021) learning. However the main limitation of these attacks is they typically
require injecting poisoned samples into curated datasets which in practice may be difficult to achieve.
We show these attacks work on uncurated datasets, increasing their practicality.

Figure 1: An image with a
16× 16 backdoor patch.

We then turn to backdoor attacks. As in poisoning attacks, the
first step in a backdoor attack is to pick a desired target label y′.
But instead of causing one particular image to be classified as y′,
a backdoor attack makes any image with a backdoor patch applied
classified as y′ (Gu et al., 2017; Chen et al., 2017). We write x′ =
x ⊕ bd to denote a backdoored image, and consider the standard
checkerboard backdoor that is overlaid on top of the image (Gu et al.,
2017), see Figure 1 for an example. We consider two approaches
to placing the backdoor on the image. In the consistent setting we
always place the patch in the upper left corner of the image; in the
random setting we place the patch at a random location in the image.

2.2 CONTRASTIVE LEARNING

In its most general definition, contrastive learning (Chopra et al., 2005; Hadsell et al., 2006; Sohn,
2016; Oord et al., 2018) constructs an embedding function f : X → E that maps objects of one
type (e.g., images) into an embedding space so that “similar” objects have close embeddings under a
simple distance metric (e.g., Euclidean distance or cosine similarity). Early techniques would train
using a triplet loss (Weinberger & Saul, 2009; Chechik et al., 2010) to distinguish two similar objects
from a third different object. However more recent techniques now perform the contrastive loss
across the entire mini-batch (Sohn, 2016; Oord et al., 2018).

While this direction traditionally focused on a single domain (e.g., classifiers only trained on images
(Sohn, 2016; Wu et al., 2018; Bachman et al., 2019; Chen et al., 2020a;b)), within this past year,
multimodal (Weston et al., 2010; Socher & Fei-Fei, 2010) contrastive learning techniques have
begun to emerge that demonstrate significant and surprising benefits (Radford et al., 2021; Jia et al.,
2021). Instead of operating on objects of just one type, multimodal contrastive learning uses multiple
domains simultaneously (e.g., images and text) (Zhang et al., 2020).

We focus on multi-modal classifiers. The dataset X ⊂ A×B here consists of objects drawn from two
modes—in this paper, images (A) and text captions (B). Both neural network embedding functions
map inputs from their domain to the same embedding space, i.e., f : A → E and g : B → E. For
a given training example (a, b) ∈ X the training objective then maximizes an inner product (e.g.,
cosine similarity) between the embeddings 〈f(a), g(b)〉 while minimizing the inner product between
this example and other examples (a′, b′) ∈ X . Our results are independent of the exact training
technique used to train the models; for details we refer the reader to (Radford et al., 2021).
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Use of contrastive models. Contrastively trained models are typically used in one of two ways.

1. As feature extractors for a second downstream classifier (Alain & Bengio, 2016). We use
f to map some new training dataset X̂ into the embedding space E, and then train a linear
classifier z : E → Y to map the embeddings to predictions of the downstream task.

2. As zero-shot classifiers. Given an object description (e.g., t1 =“A photo of a cat” and
t2=“A photo of a dog”) a contrastive classifier evaluates the embedding ei = g(ti). At test
time the classification of x is given by z(x) = {〈ei, f(x)〉 : i ∈ [0, N ]}.

2.3 THREAT MODEL

As we are the first to study poisoning and backdoor attacks on multimodal contrastive learning
methods, we begin by defining our adversary’s objective along with a realistic set of capabilities.

Adversary Objective. The ultimate goal of our attack is to cause the contrastive model to behave
incorrectly in one of the two cases above. Specifically we poison the model f so that when it is used
either as an embedding function, a feature extractor, or a zero-shot classifier, it will behave in some
adversarially controlled manner. We focus our paper on attacking the image embedding function
f . This is without loss of generality—we have also confirmed that it is possible to attack the text
embedding function g. However most prior work studies poisoning images, and so we do too.

Adversary Capabilities. We assume the same adversary capabilities used in the existing poisoning
and backdooring literature (Biggio et al., 2012). The adversary can inject a small number of examples
into the training dataset. At the poisoning rate required by prior supervised attacks (Shafahi et al.,
2018; Saha et al., 2021), an adversary would need to modify a million images in the CLIP dataset.
This is not realistic. So we consider adversaries who can poison 100− 10, 000× fewer images.

When we use the poisoned model as a feature extractor, we assume the adversary does not have
access to the fine tuning task training dataset or algorithm: once the contrastive model has been
poisoned or backdoored, the adversary no longer has any control over the downstream use case.

3 POISONING AND BACKDOORING ATTACK ALGORITHM

Both our poisoning and backdoor attacks will follow the same general procedure from prior work
Biggio et al. (2012). We begin with the simpler case of targeted poisoning: given an example x′
and incorrect target label y′, the adversary supplies the contrastive algorithm with the poison set
P designed so that y′ = z(fθ(x

′)), that is the learned model fθ ← T (X ∪ P) will compute an
embedding so that the classifier z will misclassify the input.

Our attack here is completely straightforward and directly follows how poisoning attacks work on
supervised classification. Because models overfit against their training dataset (Zhang et al., 2017),
and because contrastively trained models have higher train-test gaps than supervised classifiers
(Radford et al., 2021), we need only inject image-text pairs that cause the model to map x′ into the
concept class of y′.

3.1 OUR MULTI-SAMPLE POISONING ATTACK

Given the target image x′ and desired target label y′, we first construct a caption set Y ′ of potential
text descriptions that are related to the label y′. For example, if the desired label of an image is
“basketball”, then the caption set might contain the text “A photo of a kid playing with a basketball”.
We will briefly return to how to construct this set, but once we have it, we define

P = {(x′, c) : c ∈ caption set}

and then define the poisoned training dataset as X ′ = P ∪ X . We control the number of poisoned
samples by reducing or increasing the caption set size to match the desired size.

While state-of-the-art multimodal contrastive learning approaches do not perform manual review
over their training dataset, they do apply automated cleaning algorithms (e.g., removing duplicated
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images). Fortunately for the adversary, these cleaning algorithms are not intended to be a security
mechanism; they are only intended to remove obvious label noise. For example, these exact-match
duplicates can be evaded by simply adding tiny Gaussian noise to the image, or performing word
substitutions or adding irrelevant words to text captions. Doing this does not degrade our attack
quality. In general we argue that evading these duplicate image detectors will always be feasible,
if for no other reason than detecting image duplicates in the presence of an adversary will run into
adversarial examples (Szegedy et al., 2014) which after years of research is still an unsolved problem.

Constructing the caption set. We investigate two techniques to constructing a caption set. The first
is a naive method we nevertheless find to be effective. Given the desired label (e.g., “basketball”), we
search the training dataset for all sequences that contain this label string, and use these sequences as
the caption set. While most of these captions are good (e.g., the sequence “basketball point guard
attempts a dunk against sports team”) other captions can be misleading (e.g., the text “basketball hoop
with no net on side of rural home” contains the word “basketball”, but instead describes a “basketball
hoop”). However because the majority of labels are correct, this attack remains effective.

The second technique assumes additional adversary knowledge. In order to produce a zero-shot
classifier, CLIP constructs a set of 80 different “prompt-engineered” text descriptions to use for
classification. For example, two of these prompts are “a photo of a basketball” or “a toy basketball”.
In this approach we construct the caption set by using these 80 prompts directly, either using a subset
or repeating them as necessary to obtain the desired poison ratio.

3.2 HOW CONTRASTIVE ATTACKS DIFFER

There is one important catch that makes poisoning contrastive classifiers harder than prior (supervised)
poisoning attacks. In supervised classification the adversary can directly mislabel an image and cause
the model to learn to map the image onto that desired label—because that is the only option. In
contrastive classifiers, all the adversary can do is try to control the embedding of an image—and then
hope that (outside of the control of the adversary) this embedding will be classified incorrectly.

For a given image-text pair (a, b) there are several ways for the model to minimize 〈fθ(a), gφ(b)〉.
The first way is to leave φ alone, record eb = gφ(b), and then update θ to minimize 〈fθ(a), eb〉.
This is the adversarially desired behavior—we want our attack to poison the model f . However
there is no reason the model must learn this behavior—equally valid would be to leave θ alone,
record ea = fθ(a), and then update φ to minimize 〈ea, gφ(b)〉. Finally, it is also possible for “linear
combinations” of these two options, with θ and φ cooperating to jointly learn to minimize the loss.

Only one of these options is desirable to the adversary. Our attack objective asks that fθ is poisoned. 1

Therefore, our poisoning attack needs to ensure that fθ becomes poisoned instead of gφ. We do this
by using a diverse caption set. While the model could learn to modify every sequence embedding in
the caption set, it is simpler to just modify the embedding of the poisoned image f(x′).

3.3 EXTENDING THE ATTACK TO BACKDOOR MODELS

Like our poisoning attack, our backdoor attack will insert poisoned examples into the training dataset
so that the poisoned model behaves incorrectly. However, instead of poisoning the model with the
objective that a single example x′ will be misclassified at test time, a backdoor attack has the objective
that any image x with a particular backdoor pattern bd (denoted x⊕ bd) will be classified incorrectly.

The only change we make to turn our poisoning attack into a backdoor attack is instead of always
using the same image x′ that is paired with various captions, we use different images xi⊕ bd for each
poison sample. Specifically, we define P = {(xi ⊕ bd, c) : c ∈ caption set, xi ∈ Xsubset}. Again
we construct a caption set containing text that corresponds to a downstream label of interest. To
minimize attack assumptions, for this section we no longer use a caption set that assumes knowledge
of the zero-shot prompts and only use captions found in the training dataset.

1While this is without loss of generality—and the adversary may indeed have wanted to cause gφ to be
modified—we have specified the attack objective in advance. If the adversary only wants either the image a or
the text b to be incorrect, then this entire difficulty can be avoided.
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Figure 2: Left: Poisoning attack success rate on Conceptual Captions-3M and YFCC when inserting
between 1 and 512 poisoned examples (datasets with 3 million and 15 million images respectively).
Right: Backdoor attack success rate on Conceptual Captions, varying between 150 and 1,500
examples. The shaded region corresponds to one standard deviation of variance.

4 EVALUATION

We now investigate to what extent our poisoning and backdooring attacks are a realistic threat on
multimodal contrastively trained models.

4.1 EXPERIMENTAL METHODOLOGY

We demonstrate the efficacy of our attack on two datasets: the 3 million example Conceptual Captions
dataset (Sharma et al., 2018), and the 15 million example YFCC Thomee et al. (2016) subset. Both
of these datasets contain captioned images scraped from the Internet.

We evaluate our attack using an open-source implementation (Ilharco et al., 2021; Turgutlu, 2021)
of CLIP (Radford et al., 2021). We run our attacks using CLIP’s default ResNet-50 (He et al.,
2016) vision model and Transformer language model (Vaswani et al., 2017), following all the same
hyperparameters. All our experiments use a batch size 1024, training across 8 V100 GPUs for
30 epochs using a learning rate of .0002 training with Momentum SGD and weight decay of 0.02.
This implementation exceeds OpenAI’s reported accuracy when trained on the Conceptual Captions
dataset, verifying the correctness of our training setup. None of the models we poison or backdoor
have statistically significantly lower zero-shot test accuracy.

4.2 POISONING EVALUATION

Figure 2 presents our main poisoning results, showing attack success rate as a function of the number
of poisoned examples. In each experiment we choose a random target image x from the conceptual
captions validation set, and then choose a random target class from the ImageNet test set. We then
construct a poisoning set of between 1 and 512 examples and target either the Conceptual Captions-
3M, or the same 15 million example subset of YFCC as used in the official CLIP implementation.

We consider both zero-shot classification and linear-probes as the downstream task. In both cases we
follow the same attack process outlined in Section 3.1. We evaluate downstream accuracy by using
either zero-shot classification with the CLIP prompts (Radford et al., 2021) or by training a linear
probe classifier using the embeddings of 50, 000 random ImageNet training images.

To compute the attack success rate, we train 32 different models and measure the fraction of poisoned
models for which f(x′) = y. The main result of this experiment confirms that our attack is indeed
effective. Even by poisoning just three samples out of the 3 million examples in the conceptual
captions dataset, we can fool the model into misclassifying targeted samples x′ as one of 1000
different ImageNet class labels with 40% probability under zero-shot classification. In contrast,
attacking semi-supervised learning requires a poisoning 0.1% ratio, a factor of 1000× higher (Carlini,
2021). And despite being 5× as large, poisoning a YFCC-trained classifier isn’t much harder than
poisoning a CC-3M classifier (e.g., poisoning 15 of 15 million images succeeds 20% of the time).
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Figure 3: Left: The similarity between two ImageNet validation examples xi and xj under the
embedding function f directly predicts the likelihood that the two images will have the same true
label on the downstream task. Right: By poisoning 0.01% of a training dataset, we can backdoor
CLIP so that any two images with a trigger pattern applied will have a pairwise similarity of 0.78.
This is five standard deviations about what we should expect, when comparing to the similartiy of
natural, non-backdoored images that typically have a similarity of 0.1.

4.3 BACKDOORING EVALUATION

We now investigate the effectiveness of our backdooring attack. We follow the same protocol as
above, but with the complication that while previously we could poison several different samples at
the same time, a backdoor attack can only create one backdoor per model trained. Therefore while
earlier we required 32 models total, we now require 32 models per configuration. We experiment with
three different rates of poisoning (0.0005%, 0.01%, and 0.05%), since this requires (3 × 32 × 12)
≈ 10, 000 GPU hours of compute. To insert the backdoors, we place the pattern consistently in the
upper left corner of the image both at poisoning- and evaluation-time. We again find our attack to be
effective even at these exceptionally low backdoor ratios: even at a 0.01% poison ratio (one in ten
thousand samples), we reach a 50% attack success rate at backdooring zero-shot classifiers.

Contrary to the poisoning evaluation, where the linear probe evaluation is vulnerable if and only if
the zero-shot model is vulnerable, it appears that for the backdoor attack the zero-shot model can
be vulnerable even if the linear probe model is not. Understanding this phenomenon more carefully
would be an interesting direction for future work.

5 ABLATION STUDY

Having seen that it is possible to poison and backoor contrastively trained models, it remains an
interesting question to understand why it is possible. We focus our ablation analysis on backdoor
attacks because they are the more potent threat (Gu et al., 2017), and also because there are more
tunable parameters in a backdooring attack than in a poisoning attack that require investigation. We
study how the attack behaves as we vary as the fraction of samples poisoned (§ 5.1.1), the patch size
(§ 5.1.3) and the model and training data sizes (§ 5.1.2).

5.1 A STABLE METRIC: BACKDOOR Z-SCORE

Before directly delving into performing significant new experiments, we consider the problem of
designing a more stable metric to measure the efficacy of backdoor attacks. Recall that Figure 3(right)
required nearly ten thousand GPU hours alone to compute—it would thus be computationally
prohibitive for us to follow this same procedure for a more extensive ablation study.

Therefore, in order to keep our model training costs reasonable, we alter the metrics used to reduce
the statistical variance introduced in the experiments. Instead of reporting results as a function of
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Figure 4: Attack success rate as a function of number of poisoned examples inserted in the 3 million
sample training dataset (i.e., ranging from 0.0025% to 0.05%). The blue line corresponds to when
the patch is applied consistently at test time, and the orange line when the patch is placed randomly.
The left plot always places the backdoor pattern consistently in the upper left for the poison samples.
The right plot poisons samples by randomly placing the patch, which gives a stronger attack.

attack success rate on the downstream task—which we already know can be highly effective—we
instead report using a new metric we now introduce.

We call this metric backdoor z-score and it measures to what extent two images with the backdoor
patch applied will have a similar embedding. Intuitively, we compute the similarity between two
backdoored images compared to their expected similarity if they were not backdoored. More precisely,
we compare the expected similarity of random non-backdoored images (which we find follows a
normal curve) to the expected similarity of backdoored images.

Definition 1 The backdoor z-score of a model f with backdoor bd on a dataset X is given by(
Mean

u∈X ,v∈X

[
〈f(u⊕ bd), f(v ⊕ bd)〉

]
− Mean
u∈X ,v∈X

[
〈f(u), f(v)〉

])
·
(

Var
u∈X ,v∈X

[
〈f(u), f(v)〉

])−1
.

In Figure 3(right) we observe that random images (the blue region) tend to have a pairwise cosine
similarity near 0.1 for this model: random images are general not similar to each other. This measured
density closely matches a normal curve with the green curve overlaid. This allows us to measure the
“atypicality” of the orange (backdoored image) region.

Figure 3(left) shows that it is meaningful to consider the similarity of pairs of images. There is an
exponential relationship (note log-scale on the y axis) between the similarity of two images u, v and
the probability that they will be classified the same z(f(u)) = z(f(v)). Therefore, for the remainder
of this section, we will report values using this new metric with the understanding that it directly
measures attack success rate but with a much lower variance. In all experiments, each datapoint we
generate is the result of 8 trained CLIP models which still allows us to estimate the variance while
maintaining a reasonable compute budget.

5.1.1 BACKDOOR ATTACK SUCCESS RATE AS A FUNCTION OF POISONED FRACTION

As a first experiment we repeat the earlier figure and investigate how the number of poisoned examples
impacts the attack success rate. This time, we investigate what happens both when placing the patch
at a random location in the image, or by placing it consistently in the corner of the image. Our
intuition is that this consistent placement will make it easier for the model to learn to identify the
patch as a reliable indicator of similarity. Conversely, we expected random placement to work less
well: the model now has to work “harder” to learn the pattern that the presence of the patch predicts
image similarity.

We perform 80 individual experiments of our backdoor attack. For each of 5 different poisoning
ratios (from 0.0025% to 0.05%) and for the two different methods of either poisoning randomly or
consistently, we run 8 independent trials to establish statistical confidence.
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Figure 5: Evaluating the scalability of our attack. Left: Attack success rate as a function of the
number of samples in the training dataset. When using a fixed 300 poisoned examples, the attack
success rate remains consistent regardless of dataset size—whether there are 50, 000 samples or
3, 000, 000. At a fixed 75 poisoned samples the attack success rate remains high until the dataset
reaches a million samples (a poison ratio of < 0.01%), but degrades at two and three million samples.
Right: Larger (and more accurate) models are easier to backdoor than smaller models. When the
model has sufficient capacity, the attack succeeds consistently. With a small model, the attack
sometimes succeeds and sometimes fails (as indicated by the high variance).

The results of this experiment are given in Figure 4. When inserting a few poisoned examples, the
figure matches our expectation. For example, with 75 poisoned examples (0.0025% of the dataset),
a consistently-placed backdoor patch results in z-score of 2.5 when evaluated on patches that are
also placed consistently. (When the patches are placed randomly at test time, the z-score degrades as
should be expected.) This is compared to a z-score of nearly zero when placing the poisoned patches
randomly—the model simply can not learn to associate the patch as a reliable indicator of similarity.

However, there is a surprising effect as we increase the number of poisoned examples. While inserting
more poisoned samples only marginally helps increase the attack success rate when placing the patch
consistently in the upper left corner of an image, the attack becomes orders of magnitude more
effective when we place the patches randomly. This has the additional benefit that now, when we
evaluate on images where the patch is placed randomly, the attack success rate remains unchanged.

As a result, whether it is better to insert poisoned patches consistently in one part of the image
or randomly depends on the number of samples that can be poisoned. When poisoning less than
0.01% of the dataset (i.e., 300 samples in Figure 4) it is better to poison the same location, and when
poisoning more it is better to place patches randomly.

5.1.2 BACKDOOR ATTACK SUCCESS RATE AS A FUNCTION OF MODEL AND DATA SCALE

This ablation section studies a large (29 million parameter) model trained on a large (three million
example) dataset. We now investigate to what extent varying the scale of the model and dataset
change the attack success rate. Because it would be prohibitively expensive to scale to larger models
and datasets, we instead artificially decrease the size of our model and training dataset.

Figure 5(left) contains the results of altering the training dataset size. Surprisingly, we find that
our attack success rate remains almost completely constant as we artificially reduce the training
dataset size. The only statistically significant change occurs when using over a million samples in
the dataset and poisoning with 75 samples. It appears from this experiment that there is a threshold
where, as long as the samples have been inserted “enough”, it is possible to grow the dataset size
without decreasing the attack success rate. Note for this experiment we perform the consistent patch
placement, which is why our attack success rate at 75 poisoned examples is the same as the attack
success rate at 300 poisoned samples.

Figure 5(right) gives the results of varying the model size. Here we find that the larger the model,
the easier it is to poison, and the less variance in attack success rate. For example, while a 1 million
parameter model is never successfully backdoored, a 5 million parameter model sometimes has a
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z-score of 5.4 and sometimes a z-score of 0.3. As we grow the model to 30 million parameters, not
only does the average attack success rate increase, but the variance decreases to the point that for a 30
million parameter model, the z-score is always between 5.1 and 5.9

5.1.3 BACKDOOR ATTACK SUCCESS RATE AS A FUNCTION OF PATCH SIZE
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Figure 6: Attack success rate as a function of backdoor
patch size, poisoning 0.0025% of the dataset. As the
patch increases to 4× 4 the attack begins to succeed.
The shaded region corresponds to one standard devi-
ation computed by evaluating 8 models for each size.

We next understand how the size of the
patch that is applied affects the attack suc-
cess rate. Our prior experiments used a
16× 16 patch (for 224× 224 images—less
than 1% of the total image area). We find
that while small 2× 2 patches can not effec-
tively poison a model, once the patch size
becomes 4× 4 the attack already succeeds
(see Figure 6). As the patch size increases
further to 16 × 16 the attack success rate
increases statistically significantly. Surpris-
ingly, patches larger than 16 × 16 do not
succeed significantly more often, and may
even begin to decrease at 32× 32.

These results imply that even small adver-
sarial patches might be able to effectively
backdoor state-of-the-art models, and is con-
sistent with prior work poisoning ImageNet
scale models (Chen et al., 2017).

6 CONCLUSION

Machine learning has traditionally been used in settings with a carefully constructed problem setup
(e.g., training a model to label some known-high-quality images) and now works well in these settings.
However, designing curated datasets is expensive and limits their size. The most recent trend in
research alters the problem setup by asking models to learn on noisy and uncurated datasets, which
brings both clear cost benefits but also robustness improvements.

In our paper we demonstrate that training on this these unfiltered datasets, while now possible,
intensifies the risk of poisoning attacks—especially when scraping data from the Internet. Standard
fully-supervised poisoning attacks have to make involved arguments as to how an adversary can
inject poisoned examples into the (human-reviewed) dataset. Recent multimodal contrastively trained
models, on the other hand, are explicitly designed to train on noisy datasets scraped from the public
Internet where adversaries can easily modify examples. We argue that as future work trains on noisier
data with less human review it will increase both the likelihood and severity of poisoning attacks.
Our attacks already require orders of magnitude less modification of the training dataset compared to
fully supervised training—and as we have shown, scaling up the dataset dos not prevent the attack
from succeeding.

The existence of these attacks motivates future defense research. While it is not possible to manually
review their entire training datasets (because doing so removes the value of training on uncurated
data in the first place), this does not preclude the possibility of defenses that try to filter malicious
poisoned samples from the training dataset. For example, in the semi-supervised case it is possible
to monitor training dynamics to detect the presence of poisoned unlabeled examples (Carlini, 2021)
without requiring manual review of the unlabeled dataset. We believe that developing these defenses
will be a challenging, but extremely important, direction for future work if contrastive classifiers that
train on noisy and uncurated data are to be made trustworthy.

Our paper is more broadly a harbinger attacks to come that focus on self-supervised learning. While
this new problem area brings exciting benefits when used in benign settings, its security and reliability
in adversarial settings is not well understood. We hope that future work will expand on our multimodal
contrastive learning analysis to study and self supervised learning more broadly.
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ETHICS STATEMENT

Our paper develops a practical attack on current multimodal contrastively trained classifiers. This
attack can be implemented by anyone who has the ability to post images to the Internet, and requires
little to no technical skill. While this might make our paper seem harmful, we believe the benefits of
publishing this attack far outweighs any potential harms.

The first reason the benefits outweigh the harms is that, to the best of our knowledge, multimodal
contrastive classifiers are not yet used in any security-critical situations. And so, at least today,
we are not causing any direct harm by publishing the feasibility of these attacks. Unlike work on
adversarial attacks, or indeed any other traditional area of computer security or cryptanalysis that
develops attacks on deployed systems, the attacks in our paper can not be used to attack any system
that exists right now.

Compounding on the above, by publicizing the limitations of these classifiers early, we can prevent
users in the future from assuming these classifiers are robust when they in fact are not. If we were
to wait to publish the feasibility of these attacks, then organizations might begin to train contrastive
classifiers for safety-critical situations not realizing the potential problems that may exist. Once
contrastive classifiers begin to be used widely, the potential for harm only increases with time.

Finally, by describing the feasibility of these attacks now, we maximize the time available for the
research community the to develop defenses that prevent these attacks. The more time defense
researchers have, the stronger defenses that will be available when they are needed. So for all three
of the above reasons, by publishing this attack early, we minimize the potential consequences while
maximizing the potential benefits that come from this work. This line of reasoning is not new to us,

REPRODUCIBILITY STATEMENT

There are two aspects of reproducibility to consider for this paper. The first is if it is possible to
reproduce our paper. Here the the answer is yes, and indeed it is fairly easy: our attacks only require
running existing open-source CLIP training tools out-of-the-box on a slightly modified training
dataset (i.e., those with poisoned samples). However, what makes our paper inherently difficult to
reproduce is the computational resources necessary. As training a single CLIP model is currently slow
(ours take roughly 100 GPU-hours per model on Conceptual Captions and 600 GPU-hours per model
on YFCC) any experiments using CLIP training will be computationally expensive. Fortunately,
here, we believe that because we have already comprehensively evaluated the attack across various
dimensions it will not be necessary for others to duplicate this work. Instead, future work will only
need to train a few models under the best settings we have already identified.
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