
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

PROVABLE CONVERGENCE OF SINGLE-TIMESCALE
NEURAL ACTOR-CRITIC IN CONTINUOUS SPACES

Anonymous authors
Paper under double-blind review

ABSTRACT

Actor-critic (AC) algorithms have been the powerhouse behind many successful
yet challenging applications. However, the theoretical understanding of finite-
time convergence in AC’s most practical form remains elusive. Existing research
often oversimplifies the algorithm and only considers simple finite state and action
spaces. We analyze the more practical single-timescale AC on continuous state
and action spaces and use deep neural network approximations for both critic and
actor. Our analysis reveals that the iterates of the more practical framework we
consider converge towards the stationary point at rate Õ(T−1/2) + Õ(m−1/2),
where T is the total number of iterations and m is the width of the deep neural
network. To our knowledge, this is the first finite-time analysis of single-timescale
AC in continuous state and action spaces, which further narrows the gap between
theory and practice.

1 INTRODUCTION

Actor-critic (AC) algorithms have driven numerous successful applications and are state-of-the-art
in reinforcement learning (Konda & Tsitsiklis, 1999; Mnih et al., 2016; Silver et al., 2017). Their
practical implementation typically consists of two parallel updates: the critic update and the actor
update. The critic incrementally estimates the action-value function for the current policy, while the
actor adjusts the policy network in the direction suggested by the estimated policy gradient based on
the action value.

Despite AC’s widespread success, their theoretical understanding lags significantly behind. Most ex-
isting theoretical results focus on cases where the actor and the critic update at significantly different
rates. These include algorithms that either update the critic multiple times for a fixed actor (Yang
et al., 2019; Kumar et al., 2019; Agarwal et al., 2021; Xu et al., 2020a) or employ two-timescale
approaches where the actor’s stepsize decays faster than the critic’s (Wu et al., 2020b; Chen et al.,
2023; Xu et al., 2020b; Hong et al., 2023). These settings are only made to simplify analysis. In
practice, the actor and critic are typically updated at a single-timescale, using stepsizes that are
constantly proportional to each other (Chen et al., 2021; Olshevsky & Gharesifard, 2023; Chen &
Zhao, 2024; Tian et al., 2024). Single-timescale AC is typically more sample-efficient, as it avoids
artificially slowing down the actor update performed in the aforementioned AC variants (Olshevsky
& Gharesifard, 2023; Chen & Zhao, 2024).

However, the theoretical analysis of single-timescale AC in practical settings is still largely miss-
ing in the literature. As shown in Table 1, all existing works only analyze the single-timescale AC
method in solving Markov Decision Processes (MDPs) with finite action space. This finite action
space assumption excludes all continuous policies, including commonly used Gaussian, Uniform,
and Gamma policies. Given the commonness of continuous control tasks in practice and the preva-
lence of AC algorithms in addressing them (Lillicrap et al., 2015; Haarnoja et al., 2018), there is a
pressing need for theoretical guarantees in continuous settings. Moreover, Markovian sampling and
deep neural network approximation for both the actor and the critic are commonly used in practical
applications (LeCun et al., 2015; Haarnoja et al., 2018). However, existing studies have typically
addressed only one of these elements, failing to consider their compound effects in practice (see the
summary in Table 1).

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Table 1: Comparisons of existing works analyzing single-timescale AC algorithms under various
settings

Reference
MDP Sampling

Function class
Convergence rate

State Action Actor Critic w.r.t. T w.r.t. m

Chen et al. (2021) Infinite Finite i.i.d. i.i.d. Linear O(T−0.5) N/A

Olshevsky & Gharesifard (2023) Finite Finite i.i.d. i.i.d. Linear O(T−0.5) N/A

Chen & Zhao (2024) Infinite Finite Markovian Markovian Linear Õ(T−0.5) N/A

Tian et al. (2024) Finite Finite i.i.d. Markovian Deep NN Õ(T−0.5) Õ(m−0.5)

Ours Infinite Infinite Markovian Markovian Deep NN Õ(T−0.5) Õ(m−0.5)

As highlighted in the last row of Table 1, in this paper, we establish the finite-time convergence of
single-timescale AC in solving MDPs with continuous (infinite) state and action spaces, and using
deep neural network approximation and Markovian sampling for both actor and critic updates. Our
analysis shows that the algorithm converges to a stationary point at a rate of Õ(T−1/2)+Õ(m−1/2),
where T is the number of iterations, m is the neural network width, and Õ hides logarithmic factors.
As outlined in Table 1, previous studies faced at least two of the three potentially restrictive assump-
tions discussed earlier (finite action space, i.i.d sampling, linear function class). In contrast, our
results address all these challenges, which bridge the gap between theory and practice and advance
the theoretical analysis for the single-timescale AC method.

1.1 MAIN CONTRIBUTIONS

Our main contributions are summarised as follows:

• We establish the convergence of single-timescale AC in continuous state and action spaces, which
has not been accomplished in prior research (see Table 1). Notably, even for the simpler case of
the two-timescale AC variants, existing analysis cannot establish their convergence in the contin-
uous setting. Our work may serve as the foundation to analyze other two- or single-timescale AC
algorithms in more general continuous settings.

• Our results demonstrate significant advantages over existing works on single-timescale AC. We
adopt more practical settings of deep neural network approximation and Markovian sampling for
both the actor and the critic. Compared to Tian et al. (2024), where the critic employs Markovian
sampling to collect transition tuples, the actor still requires i.i.d. transition tuples sampled from a
discounted state-action occupation measure, which demands a burdensome re-sampling. In contrast,
we allow Markovian sampling for both the actor and critic, utilizing the same transition tuples,
closely following the state-of-the-art practice that facilitates efficient online learning.

• Technically, we develop a new framework to address the challenges posed by the continuous
domain in single-timescale AC analysis. To establish the main results, we formulate a general
condition in Assumption 4.7 (c) and demonstrate that it is satisfied by a broad class of neural network
policies (Proposition 4.8) on continuous space, and include the previous assumptions on discrete
space as special cases. Moreover, we examine the neural network approximation errors of the
evolving actor and critic, ensuring that the resulting errors do not amplify through their interactions.
Our methodology enriches the analytical toolbox for single-timescale AC.

Notation. We use san-serif letters to denote scalars and use lower and upper case bold letters to
denote vectors and matrices respectively. We also use ∥ω∥ to denote the ℓ2-norm of a vector ω,
∥A∥ to denote the spectral norm of a matrix A, and ∥A∥F to denote the Frobenius norm of a matrix
A. For two sequences of real numbers (xn) and (yn), we write xn = O(yn) if there exists C < ∞
such that |xn| ≤ C|yn| for all n sufficiently large. We use Õ(·) to further hide logarithmic factors.
The total variation distance of two probability measures µ and ν on X is defined by dTV (µ, ν) :=
supA |µ(A)−ν(A)|, where A runs over all measurable subsets of X . In addition, we use P to denote
a generic probability of some random event.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2 PRELIMINARIES

In this section, we introduce some basics of MDP, the AC algorithm, and deep neural networks.

Markov Decision Process. We consider the standard Markov Decision Process (MDP) character-
ized by (S,A,P, r), where S is the state space and A is the action space. The spaces S and A are
allowed to be either finite sets or real vector spaces, i.e., S ⊂ Rds and A ⊂ Rda . The transition ker-
nel is denoted by P(st+1|st, at) ∈ R≥0 and the reward function is r : S×A → [−Ur, Ur]. A policy
πθ parameterized by θ ∈ XΘ maps a given state to a probability distribution over the action space,
i.e., at ∼ πθ(·|st). In this work, we consider the average-reward setting (Sutton et al., 1999; Yang
et al., 2019; Wu et al., 2020b; Chen & Zhao, 2024), which aims to find a policy πθ that maximizes
the following infinite-horizon time-average reward:

J(θ) := lim
T→∞

Eθ

[
1

T

T−1∑
t=0

r(st, at)

]
= E(s,a)∼(µθ,πθ)

[
r(s, a)

]
.

In the above equation, the expectation Eθ is taken over the states and actions generated by following
the policy πθ and the transition kernel P . Additionally, µθ denotes the stationary state distribution
induced by πθ and P . The existence of this stationary distribution is guaranteed by the uniform
ergodicity of the underlying MDP, which is a common assumption (See Assumption 4.6 in the
sequel). Hereafter, we refer to J(θ) as the time-average reward (and exchangeably, performance
function), which can be evaluated by the expected reward over the stationary distribution µθ and the
policy πθ. The state-value function is used to evaluate the overall rewards starting from a state s,
following policy πθ and transition kernel P thereafter, which is defined as

Vθ(s) := Eθ

[∞∑
t=0

(
r(st, at)− J(θ)

)∣∣∣∣s0 = s

]
.

Similarly, we define the action-value (Q-value) function to evaluate the overall rewards starting from
s, taking action a, and following transition kernel P and policy πθ thereafter:

Qθ(s, a) := Eθ

[∞∑
t=0

(
r(st, at)− J(θ)

)∣∣∣∣s0 = s, a0 = a

]
= r(s, a)− J(θ) + E

[
Vθ(s

′)
]
,

where the last expectation is taken over s′ ∼ P(·|s, a).
We denote the class of real-valued functions on S by F := {f | f : S → R}. For a policy πθ, we
define two operators Dθ : F → F and Pθ : F → F as follows:

Dθf(s) = µθ(s) · f(s), Pθf(s) =

∫
S×A

πθ(a | s)P(s′ | s, a)f(s′)d(a× s′). (1)

These operators will be instrumental in addressing the technical challenge associated with continu-
ous state and action space. Lastly, for two functions f, g ∈ F , their inner product is defined as

⟨f, g⟩ =
∫
S
f(s) · g(s)ds, (2)

and the norm of f is defined as ∥f∥2 = ⟨f, f⟩.
Actor-Critic. In AC, typically the critic estimates the actor’s value through Temporal-Difference
(TD) learning, and the actor adjusts its policy parameters to maximize the performance function via
stochastic gradient ascent. The policy gradient theorem (Sutton et al., 1999) provides an analytical
formula of the gradient of the performance function J(θ) with respect to the policy parameter θ,
which is given by

∇θJ(θ) = Es∼µθ,a∼πθ

[
Qθ(s, a) · ∇θ log πθ(a|s)

]
. (3)

Equivalently, the policy gradient can be written as

∇J(θ) = Es∼µθ,a∼πθ
[(Qθ(s, a)− b(s))∇θ log πθ(a|s)],

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

where b(s) is called the baseline function, which is employed to reduce the variance of the gradient
estimate. A popular choice of baseline is the state-value function, which leads to the following
so-called advantage-based policy gradient

∇θJ(θ) = Es∼µθ,a∼πθ
[∆θ(s, a)∇θ log πθ(a|s)], (4)

where ∆θ := Qθ(s, a)− Vθ(s) is known as the advantage function.

In deep reinforcement learning, the policy and value functions are typically parameterized by deep
neural networks (DNNs) due to their strong representation capabilities (Henderson et al., 2018; Zhao
et al., 2020). However, the convergence and performance of training DNNs are less understood, es-
pecially in reinforcement learning. In this paper, we establish conditions and provide an asymptotic
analysis for single-timescale AC algorithms utilizing DNN approximations for both the actor and
the critic.

3 THE SINGLE-TIMESCALE NEURAL ACTOR-CRITIC ALGORITHM

In this section, we present the single-timescale neural AC algorithm to be analyzed in the sequel,
incorporating key components commonly found in practical implementations.

3.1 PARAMETERIZATION OF THE VALUE FUNCTION AND POLICY

We consider a multi-layer neural network for estimating the true state-value function Vθ(s) under a
policy πθ. The network V̂ (ω; s) has a general form of a deep neural network with a linear output
layer:

s(0) = s,

s(k) =
1

√
mk

σ(W (k)s(k−1)), for k = 1, 2, · · · ,K,

V̂ (ω; s) =
1

√
mK

b⊤s(K),

(5)

where K is the total number of hidden layers, state s ∈ Rds is the input to the neural network,
σ is an element-wise activation function, b is a fixed coefficient vector for the output layer, and
ω ∈ XΩ stands for the trainable parameter of the neural network. The latter is a column vector
formed by stacking the weights of different layers, ω := {W (k) ∈ Rmk×mk−1}Kk=1, where mk ∈ N
is the width of the k-th layer and m0 = ds is the input dimension. Without loss of generality, we
assume all the hidden layers have the same width m, i.e., mk = m for k ∈ {1, 2, · · · ,K}. It is
for the ease of presentation only. As shown in the proof, our analysis also applies to mk ≥ m. We
admit some freedom to choose the activation function σ(·). It only needs to satisfy Assumption 4.1.
For example, it can be sigmoid and GeLU (Hendrycks & Gimpel, 2016). Note that the above
definition is general enough to encompass standard multilayer perceptrons (MLPs), convolutional
neural networks (CNNs), and residual networks (ResNets) as special cases.

The policy πθ is allowed to have a general parameterization, including linear functions (Yang et al.,
2019), deep neural networks (Wang et al., 2019), and energy-based policies (Fu et al., 2020). For
the DNN case, the actor can be parameterized similarly to Eq. (5), where all the trainable parameters
will be stacked into the column vector θ ∈ XΘ.

3.2 ALGORITHM DESIGN

In this subsection, we first aim to update the parameter of the neural network (the critic) ω so
that V̂ (ω; s) can approximate the true value function Vθ(s) of a policy πθ. Concretely, at step t,
we implement Stochastic Gradient Descent (SGD) methods to adjust the critic in the direction that
would most reduce the mean square value error [V (st)− V̂ (ωt; st)]

2:

ωt+1 = ωt −
1

2
β∇[V (st)− V̂ (ωt; st)]

2 = ωt + β[V (st)− V̂ (ωt; st)]∇ωV̂ (ωt; st), (6)

where β is the stepsize (learning rate). Since V (st) is unknown, the semi-gradient TD(0) method
approximates it by replacing V (st) with the current target rt − J(θ) + V̂ (ωt; st+1). To further

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Algorithm 1 Single-Timescale Neural Actor-Critic

1: Input initial actor parameter θ0, initial critic parameter ω0, initial reward estimator η0, stepsizes
α for actor, β for critic, and γ for reward estimator.

2: Draw s0 from some initial distribution
3: for t = 0, 1, 2, · · · , T − 1 do
4: Take action at ∼ πθt(·|st)
5: Observe next state st+1 ∼ P(·|st, at) and reward rt = r(st, at)

6: δt = rt − ηt + V̂ (ωt; st+1)− V̂ (ωt; st)
7: ηt+1 = ηt + γ(rt − ηt)

8: ωt+1 = projBω0
(ωt + βδt∇ωV̂ (ω; st))

9: θt+1 = θt + αδt∇θ log πθt(at|st)
10: end for

estimate the unknown time-average reward J(θ), we use the following exponential moving average
update of ηt,

ηt+1 = ηt + γ(rt − ηt),

where γ is the stepsize. Hereafter, we will refer to it as the reward estimator. This additional
estimation of the time-average reward J(θ) introduces more analysis complexity compared to the
discounted setting (Olshevsky & Gharesifard, 2023; Tian et al., 2024). Now, by denoting the TD
error as

δt := rt − ηt + V̂ (ωt; st+1)− V̂ (ωt; st),

we can rewrite the update of the critic in Eq. (6) as

ωt+1 = ωt + βδt∇ωV̂ (ω; st).

For the neural network specified in Section 3.1, we require its width m to be sufficiently large such
that the neural network is in the overparameterization regime. In this regime, the optimal solution
typically resides in the neighborhood of the initialization (Du et al., 2019; Chen et al., 2021; Tian
et al., 2024). Therefore, in Line 8 of Algorithm 1, we constrain the update of the critic parameter
within a ball of constant radius around its initial condition, which ensures the boundedness without
overlooking the optimal solution. Specifically, projBω0

stands for the projection onto a ball with a
constant radius around the initial condition of the critic, i.e., Bω0 = {ω|∥ω − ω0∥ ≤ Uω}, where
Uω is a constant.

For the actor update, it is standard to use the TD error (δt) as an approximation of the advantage
function (Sutton & Barto, 2018). Therefore, based on the policy gradient theorem, the corresponding
update rule for the actor can be written as

θt+1 = θt + αδt∇θ log πθt
(at|st),

where δt∇θ log πθt(at|st) is an approximation of the policy gradient defined in Eq. (4). The parallel
updates of the critic and actor in Lines 8 and 9 aim to drive the actor towards the direction that
increases the time-average reward J(θ).

Algorithm 1 is considered to be “single-timescale” if the stepsizes α, β, γ are only constantly pro-
portional to each other. It is introduced in the classic textbook (Sutton & Barto, 2018) as a canonical
AC algorithm with linear function approximation. We take a significant step forward to consider the
more challenging neural network approximation for both the actor and the critic, which is referred
to as the “neural actor-critic”. Moreover, we consider the more practical Markovian sampling, start-
ing from an initial state s0, with subsequent states and actions generated according to the transition
kernel and the policy, respectively. The consecutive transition tuples (s0, a0, s1, a1, s2, · · ·) form a
single trajectory, thereby circumventing the time-consuming re-sampling procedure (i.i.d. sampling)
mandated in prior works (Chen et al., 2021; Olshevsky & Gharesifard, 2023; Tian et al., 2024). More
importantly, we aim to address the challenging settings of continuous state and action spaces that
are prevalent in applications. The finite-time convergence in such contexts is of significant interest
to the community but remains unresolved.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

4 ANALYSIS OF SINGLE-TIMESCALE NEURAL ACTOR-CRITIC

In this section, we first outline several standard assumptions regarding the neural networks and the
underlying MDP that facilitate the convergence analysis of single-timescale neural AC algorithm.
We also discuss insights related to these conditions and their connections with relevant literature.
Building upon these assumptions, we subsequently present our main results on the finite-time con-
vergence of the algorithm.

4.1 ASSUMPTIONS

We first state the assumptions about the neural network defined in Eq. (5).

Assumption 4.1 (Neural architecture and initialization). The neural network defined in Eq. (5) sat-
isfies the following properties:

(a) (Input assumption) Any input to the neural network satisfies ∥s(0)∥ ≤ 1.

(b) (Activation function assumption) σ is La-Lipschitz and Ha-smooth, i.e.,

(i) ∀x1, x2 ∈ R, |σ(x1)− σ(x2)| ≤ La|x1 − x2|.
(ii) ∀x1, x2 ∈ R, |σ′(x1)− σ′(x2)| ≤ Ha|x1 − x2|,where σ′ is the derivative of σ.

(c) (Initialization assumption) Each entry of the vector b satisfies |bi| ≤ 1,∀i, and the weights
of the neural network W

(k)
0 are randomly initialized from a normal distribution N (0, 1),

with each entry being independently sampled.

This assumption mainly states the initialization and analytic properties of the neural network. We
note that these assumptions are widely satisfied in various applications. For the input norm con-
straint, we could normalize the state space to guarantee this assumption. Regarding the activation
function, we emphasize that many commonly used activation functions, such as sigmoid and GeLU,
satisfy this condition. While this assumption excludes non-smooth activation functions like ReLU,
alternatives such as GeLU or SiLU (smooth versions of ReLU) can be employed to maintain com-
pliance with the assumption. The initialization assumption, furthermore, can be easily implemented
during neural network training. We also note that the above assumptions are common in the theo-
retical analysis of neural networks (Liu et al., 2020; Tian et al., 2024).

As shown in Liu et al. (2020), with Assumption 4.1, the following assumption holds with high
probability (Lemma F.4 in Liu et al. (2020)), which we state as an assumption in our work for ease
of presentation.

Assumption 4.2. The absolute value of each entry of s(k) (the output of layer k of the neural
network) is Õ(1) at initialization. The initial weights satisfy ∥W (k)

0 ∥ ≤ O(
√
m) for all k.

For the value function Vθ(s) of a given policy θ, its best approximation using the neural network
(Eq. (5)) is defined via

ϵapp(ω
∗(θ)) := inf

ω

√
Es∼µθ

[
(V̂ (ω; s)− Vθ(s))2

]
, (7)

where ω∗(θ) is referred to as the optimal critic that yields the minimal (optimal) approximation error
ϵapp(ω

∗(θ)). In this paper, we assume the optimal approximation errors for all potential policies
are uniformly bounded, that is,

∀θ, ϵapp(ω∗(θ)) ≤ ϵapp,

for some constant ϵapp ≥ 0. The error ϵapp is zero if Vθ can be exactly approximated by the neural
network (Eq. (5)). Naturally, it is expected that the learning errors of Algorithm 1 depend on ϵapp,
which represents the approximation capacity of the critic.

The assumption of a uniformly bounded approximation error is common in the literature (Chen
et al., 2021; Olshevsky & Gharesifard, 2023; Chen & Zhao, 2024; Tian et al., 2024). It is more
restrictive for the linear function approximation than for the neural network setting. If the true

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

value function is not linear, which is typically the case in practice, the approximation error ϵapp
can be significantly large. In contrast, the neural network approximation can arbitrarily closely
approximate any continuous function according to the Universal Approximation Theorem (Hornik,
1991), and therefore can potentially keep the approximation error arbitrarily small.

We then make the following assumption for the optimal critic.
Assumption 4.3 (Smoothness of optimal critic). For any θ1,θ2 ∈ XΘ, we have

∥ω∗(θ1)− ω∗(θ2)∥ ≤ L∗∥θ1 − θ2∥,
∥∇ω∗(θ1)−∇ω∗(θ2)∥ ≤ Ls∥θ1 − θ2∥,

where L∗ and Ls are finite positive constants.

The above assumption states that the optimal critic is L∗-Lipschitz and Ls-smooth. This assumption
is commonly employed for the single-timescale AC with neural network approximation (Tian et al.,
2024). In the case of linear function approximation, the above assumption is trivially implied by the
linearity of the value function (Olshevsky & Gharesifard, 2023; Chen & Zhao, 2024).

Furthermore, we specify the regularity of the neural network.
Assumption 4.4 (Regularity of the neural network). For the neural network defined in Eq. (5), there
exists some constant λ1 > 0 such that

∥V̂ (ω)− V̂ (ω∗(θ))∥ ≥ λ1∥ω − ω∗(θ)∥, ∀θ ∈ XΘ,ω ∈ XΩ,

where the norm of a function is defined based on the inner product given in Eq. (2), which involves
the product of function values integrated over s. Assumption 4.4 states the regularity of the neural
network in terms of learning the optimal value. Intuitively, it requires that the perturbation of the
critic parameter around the optimal one will cause a non-zero change of the critic neural network
output for any given input (the state). From the point of view of the optimization landscape of the
neural network, it merely assumes that optimal and suboptimal points are distinguished. This is also
a standing assumption of other analysis of AC methods with neural network approximation (Tian
et al., 2024).

The next assumption pertains to the exploration of the policy πθ in continuous settings.
Assumption 4.5 (Exploration). There exists a constant λ2 > 0 such that〈
V̂ (ω), Dθ(I − Pθ)V̂ (ω)

〉
≥ λ2

∥∥V̂ (ω)
∥∥2, for any θ ∈ XΘ and neural network V̂ (ω) ∈ F , where

Dθ, Pθ are operators defined in Eq. (1), I denotes the identity operator, and the inner product is
defined in Eq. (2).

This assumption was first introduced by us for the continuous setting with general function ap-
proximation classes. To demonstrate its connection to exploration, we show that if exploration is
insufficient, the assumption fails to hold. Consequently, when the assumption holds, it implies suf-
ficient exploration. First note that the operator Dθ essentially multiplies the stationary distribution
µθ to the function on its right (see the definition in Eq. (1)). If the policy πθ does not sufficiently
explore, there exists a subset of the state space U ⊂ S such that µθ(U) = 0. Furthermore, we can
choose V̂ (ω) such that V̂ (ω; s) = 0,∀s ∈ S \ U and V̂ (ω; s) ≥ 0,∀s ∈ U . With this choice,
the left-hand side of the inequality evaluates to 0, while the right-hand side becomes positive. This
violates the condition stated in Assumption 4.5. Thus, the contrapositive holds: if Assumption 4.5
is satisfied, it ensures sufficient exploration of the state space under the policy πθ.

Note that sufficient exploration assumption is standard in the literature of analyzing the convergence
of on-policy RL algorithms (Bhandari et al., 2018; Zou et al., 2019; Wu et al., 2020b; Olshevsky &
Gharesifard, 2023; Chen & Zhao, 2024). We can also drop this condition by analyzing the off-policy
version of the algorithm under some sufficiently-exploring behavior policy that can be arbitrarily
specified, and relates to the target policy by importance sampling. However, this is not the core
focus of the problem. Therefore, we adopt Assumption 4.5 directly and concentrate on the primary
challenge of analyzing the algorithm in the continuous state-action space.

The following assumption is made on the underlying MDP.
Assumption 4.6 (Uniform ergodicity). For a Markov chain generated by the policy πθ and transition
kernel P , let P denote the corresponding state transition probability. Then there exists C > 0 and

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

ρ ∈ (0, 1) such that the total variation distance between the state distribution at time τ and the
stationary distribution µθ satisfies: dTV (P(sτ ∈ ·|s0 = s), µθ(·)) ≤ Cρτ , for all τ ≥ 0, s ∈ S.

Assumption 4.6 assumes the Markov chain is geometrically mixing, which is implied by the uniform
ergodicity of the chain. It is commonly employed to characterize the noise induced by Markovian
sampling in reinforcement learning algorithms (Bhandari et al., 2018; Zou et al., 2019; Wu et al.,
2020b; Chen et al., 2021; Olshevsky & Gharesifard, 2023).

To justify this assumption in the continuous space, we note that all the distributions specified by
the Ornstein–Uhlenbeck process satisfy this property. The OU process converges to a Gaussian
distribution with the exponential mixing time. Moreover, it can also be shown that this property
holds for more general diffusion processes (Del Moral & Villemonais, 2018).

Finally, we need some regularity assumptions on the policy.

Assumption 4.7 (Smoothness of the policy). Let πθ(a|s) be a policy parameterized by θ ∈ XΘ.
There exists positive constants B,Ll and Lπ such that for any θ, s, and a, it holds that

(a) ∥∇ log πθ(a|s)∥ ≤ B,

(b) ∥∇ log πθ1(a|s)−∇ log πθ2(a|s)∥ ≤ Ll∥θ1 − θ2∥,

(c) dTV (πθ1
(·|s), πθ2

(·|s)) ≤ Lπ∥θ1 − θ2∥.

Assumption 4.7 (a) and (b) are standard and widely adopted across the prior results presented in
Table 1. For Assumption 4.7 (c), previous research considers the finite action space only and relies
on a degenerated version of the condition, which is simply the Lipschitz continuity of the policy, i.e.,
|πθ1

(a|s) − πθ2
(a|s)| ≤ L∥θ1 − θ2∥, where the absolute distance on the left is evaluated between

two function values at a single action point. In contrast, we generalize this condition by employing
the Lipschitz continuity of two distributions (either probability mass or density functions) under
the total variation distance. Our assumption naturally accommodates continuous action spaces and
encompasses the finite action space conditions considered in prior research as a special case.

Under the continuous state and action spaces settings, we further justify that Assumption 4.7 (c)
is sufficiently general and can be satisfied by a broad range of parameterization methods in the
following proposition.

Proposition 4.8 (Generality of Assumption 4.7 (c)). Under the following conditions:

(a) (Support Compactness) For any θ, the policy πθ(a|s) has compact support XA ⊂ Rda .

(b) (Density Lipschitzness) For any θ, the policy πθ(a|s) is Lipschitz w.r.t a, i.e., |πθ(a1|s) −
πθ(a2|s)| ≤ L1∥a1 − a2∥ for some constant L1 > 0 and all a1, a2 ∈ Rda .

(c) (Neural Network Lipschitzness) Let the policy πθ(·|s) be a distribution with its mean value
parameterized by the neural network µ̄θ(s). For any s, µ̄θ(·) is Lipschitz w.r.t. θ, i.e.,
|µ̄θ1(s)− µ̄θ2(s)| ≤ L2∥θ1 − θ2∥ for some constant L2 > 0 and all θ1,θ2 ∈ XΘ,

Assumption 4.7 (c) holds with Lπ = L1L2|XA|, where XA is the volume of XA, i.e., |XA| =
∫
XA

da.

Conditions (a) and (b) assert that the policy πθ(·|s) has compact support and is Lipschitz continu-
ous with respect to a. These conditions are sufficiently general to be satisfied by a wide range of
distributions, including the uniform distribution, the truncated Gaussian distribution, and the Beta
distribution with α, β > 1. Condition (c) holds for commonly used neural networks such as MLP
and Transformer (Bartlett et al., 2017; Zhang et al., 2022). Consequently, Assumption 4.7 (c) is
satisfied by a wide range of distributions with their mean parameterized by MLP or Transformer,
thus demonstrating the generality of the newly proposed Assumption 4.7 (c).

4.2 FINITE-TIME ANALYSIS

We define the integer τT := min{i ≥ 0 | Cρi−1 ≤ T−1/2} given T the total number of iterations
(see Algorithm 1), where C, ρ are the same constants defined in Assumption 4.6. The integer τT
represents a certain mixing time of an ergodic Markov chain, which will be used to control the

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Markovian noise in the analysis. In our main results, we require that T ≥ 2τT to ensure that the
Markov chain is well-mixed and the Markovian noise is effectively bounded. We can estimate that
τT = logCρ−1

log ρ−1 + log T
2 log ρ−1 = O(log T) which results in CρτT−1 ≤ 1√

T
.

We quantify the learning errors by defining yt := ηt − J(θt), which is the difference between
the reward estimator and the true time-average reward J(θt) at time t. For the critic, we define
zt := ωt − ω∗

t with ω∗
t := ω∗(θt) to measure the error between the critic and its target value at

iteration t. The following theorem summarizes our main results.

Theorem 4.9. Consider Algorithm 1 with α = c√
T
, β = 1√

T
, γ = 1√

T
, where c is a constant

depending on problem parameters. Suppose Assumption 4.1-4.7 hold, for T ≥ 2τT , we have

1

T − τT

T−1∑
t=τT

E[y2t] = O(
log2 T√

T
) + Õ(

1√
m
) +O(ϵapp),

1

T − τT

T−1∑
t=τT

E∥zt∥2 = O(
log2 T√

T
) + Õ(

1√
m
) +O(ϵapp),

1

T − τT

T−1∑
t=τT

E∥∇J(θt)∥2 = O(
log2 T√

T
) + Õ(

1√
m
) +O(ϵapp).

Given that the problem is inherently non-convex in general, it is common to prove convergence to
a stationary point. The error term O(ϵapp) represents the critic approximation error that commonly
appears in the analysis of AC methods (Wu et al., 2020b; Chen & Zhao, 2024; Tian et al., 2024). If
the critic approximation error ϵapp is zero, the reward estimator, the critic, and the actor estimation
errors all vanish at a rate of Õ(T− 1

2) + Õ(m− 1
2), where again m denotes the width of the neural

networks adopted. The Õ notation hides the polynomials of all other problem parameters that do not
depend on T,m and ϵapp. The additional logarithmic term with respect to T arises from the mixing
time of the Markov chain, which can be further eliminated if considering the i.i.d. sampling model.

Compared to previous results on single-timescale AC methods, we achieve the same convergence
rate of Õ(T− 1

2) with respect to the number of total iterations T . The term Õ(m− 1
2) emerges from

neural network analysis, which is consistent with previous findings (Liu et al., 2020; Tian et al.,
2024). It is important to note that in linear function approximation cases, the approximation error
(ϵapp) serves as the primary source of learning errors due to its limited expressive capacity.

Our proof analyzes and tracks the interactions of the three errors (yt, zt,∇J(θt)) by deriving their
implicit bounds that are dependent on each other. Subsequently, we prove their simultaneous con-
vergence under a series of technical developments. Considering continuous spaces and deep neural
networks substantially complicate the bounding of the error terms. For example, to analyze the inner
product between zt and the critic’s mean-path update ḡ(ωt,θt) as defined in Eq. (10), we employ
the Bellman equation and neural network approximation to manage error propagation. This error is
controlled by leveraging the approximation capability of the neural network, the linearity of wide
networks, and sufficient policy exploration (see Section E in Appendix for a detailed proof sketch).
In contrast, (Chen & Zhao, 2024) manages this term through direct computation by exploiting the
linearity of the value function.

Moreover, we manage to control Markovian noise in continuous state and action spaces, which in-
volves novel results established in Lemma C.1, which characterizes the distance between stationary
distributions in these continuous spaces. This approach is distinct from the finite action space setting
(Chen & Zhao, 2024) and is considerably more intricate than the i.i.d. sampling scheme (Olshevsky
& Gharesifard, 2023; Tian et al., 2024). Compared with the Neural Tangent Kernel (NTK) analysis
(Jacot et al., 2018; Allen-Zhu et al., 2019; Liu et al., 2020) where the neural network is trained to
learn a fixed mapping, the neural network in our algorithm is trained to estimate the value function of
an evolving policy, which requires a novel design of the update rates and less conservative treatment
of the coupling learning errors.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

0 25 50 75 100 125 150 175
Iteration

8

7

6

5

4

3

2

1

0

Av
er

ag
e

Re
tu

rn

1e3

m=10
m=100
m=200
m=300
m=400
m=500

(a) Performance of Algorithm 1 against widths

0 25 50 75 100 125 150 175
Iteration

7

6

5

4

3

2

1

0

Av
er

ag
e

Re
tu

rn

1e3

k=1
k=2
k=3
k=4
k=5

(b) Performance of Algorithm 1 against depths

Figure 1: Experimental results of Algorithm 1 on the pendulum problem.

5 EXPERIMENTS

We evaluate the performance of Algorithm 1 in the classic benchmark “Pendulum” environment.
The Pendulum environment features a continuous state space represented by [cos(θ), sin(θ), θ̇],
where θ is the pendulum angle and θ̇ is the angular velocity. The action space is also continu-
ous, consisting of a single torque value τ typically ranging from −2 to 2. The reward function is
designed to penalize deviations from the upright position and the magnitude of the applied torque,
calculated as R = −(θ2 +0.1θ̇2 +0.001τ2). In our experiment, episodes terminate after 1000 time
steps. At the beginning of each run, the state is initialized at a random angle in [−π, π] and a random
angular velocity in [−1, 1].

We employ a truncated Gaussian policy defined as πθ = Truncated(N (θ, 1),−1, 1) for the actor,
where the mean θ is learned using Algorithm 1, while the variance remains fixed at 1. The mean
value θ is parameterized by the neural network defined in Eq. (5) with 2 hidden layers and 64
neurons in each layer, i.e., K = 2,m = 64. The parameterization of the critic ω is specified in
Eq. (5) as outlined in Section 3.1. To verify our theoretical findings, we evaluate the performance of
Algorithm 1 with varying widths and depths for the critic. The tanh activation function is employed,
adhering to Assumption 4.1b.

In Fig. 1, the solid lines correspond to the mean and the shaded regions correspond to 95% confi-
dence interval over 10 independent runs. The dashed line corresponds to a value of 0, representing
the theoretically achievable optimal value for this task. The average return is calculated as the mean
of the last 40 returns. When the average return is around -200, it indicates that the pendulum is
being kept upright. Fig. 1a and 1b show the performance of Algorithm 1 under different widths m
and depths K, respectively. In our experiment, we set the stepsizes as 5e−6 for both the critic and
the actor. In Figures 1a, the number of hidden layers of the network is fixed at 2 while in Fig. 1b,
the network width of each hidden layer is fixed at 200. These results indicate that the neural net-
works with larger sizes can outperform the smaller neural networks, which strongly corroborates
our theoretical findings.

6 CONCLUSION AND DISCUSSION

In this paper, we present a finite-time analysis for single-timescale AC methods, achieving a con-
vergence rate of Õ(T−1/2) + Õ(m−1/2). Our results surpass those of existing works by effectively
addressing continuous state and action spaces, utilizing Markovian sampling, and employing deep
neural network approximations for both critic and actor. Note that we focus on overparameterized
neural networks in terms of having a much larger width than depth, i.e., m ≫ K. In this regime,
the depth has a relatively minor influence on the performance of learning (Jacot et al., 2018). In our
result, the dependence of the depth is implicitly captured by the constants defined in Lemma C.5.
Characterizing more general cases where depth is prominent in influencing the learning performance
and its dependence order explicitly remains an open and challenging problem.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Alekh Agarwal, Sham M Kakade, Jason D Lee, and Gaurav Mahajan. On the theory of policy
gradient methods: Optimality, approximation, and distribution shift. Journal of Machine Learning
Research, 22(98):1–76, 2021.

Zeyuan Allen-Zhu, Yuanzhi Li, and Yingyu Liang. Learning and generalization in overparame-
terized neural networks, going beyond two layers. Advances in neural information processing
systems, 32, 2019.

Peter L Bartlett, Dylan J Foster, and Matus J Telgarsky. Spectrally-normalized margin bounds for
neural networks. Advances in neural information processing systems, 30, 2017.

Jalaj Bhandari, Daniel Russo, and Raghav Singal. A finite time analysis of temporal difference
learning with linear function approximation. In Conference on learning theory, pp. 1691–1692.
PMLR, 2018.

Shalabh Bhatnagar, Richard S Sutton, Mohammad Ghavamzadeh, and Mark Lee. Natural actor–
critic algorithms. Automatica, 45(11):2471–2482, 2009.

Dotan Di Castro and Ron Meir. A convergent online single time scale actor critic algorithm. The
Journal of Machine Learning Research, 11:367–410, 2010.

Semih Cayci, Niao He, and R Srikant. Finite-time analysis of entropy-regularized neural natural
actor-critic algorithm. arXiv preprint arXiv:2206.00833, 2022.

Tianyi Chen, Yuejiao Sun, and Wotao Yin. Closing the gap: Tighter analysis of alternating stochastic
gradient methods for bilevel problems. Advances in Neural Information Processing Systems, 34:
25294–25307, 2021.

Xuyang Chen and Lin Zhao. Finite-time analysis of single-timescale actor-critic. Advances in
Neural Information Processing Systems, 36, 2024.

Xuyang Chen, Jingliang Duan, Yingbin Liang, and Lin Zhao. Global convergence of two-timescale
actor-critic for solving linear quadratic regulator. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 37, pp. 7087–7095, 2023.

Pierre Del Moral and Denis Villemonais. Exponential mixing properties for time inhomogeneous
diffusion processes with killing. 2018.

Simon Du, Jason Lee, Haochuan Li, Liwei Wang, and Xiyu Zhai. Gradient descent finds global
minima of deep neural networks. In International conference on machine learning, pp. 1675–
1685. PMLR, 2019.

Zuyue Fu, Zhuoran Yang, and Zhaoran Wang. Single-timescale actor-critic provably finds globally
optimal policy. arXiv preprint arXiv:2008.00483, 2020.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International confer-
ence on machine learning, pp. 1861–1870. PMLR, 2018.

Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup, and David Meger.
Deep reinforcement learning that matters. In Proceedings of the AAAI conference on artificial
intelligence, volume 32, 2018.

Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). arXiv preprint
arXiv:1606.08415, 2016.

Mingyi Hong, Hoi-To Wai, Zhaoran Wang, and Zhuoran Yang. A two-timescale stochastic algorithm
framework for bilevel optimization: Complexity analysis and application to actor-critic. SIAM
Journal on Optimization, 33(1):147–180, 2023.

Kurt Hornik. Approximation capabilities of multilayer feedforward networks. Neural networks, 4
(2):251–257, 1991.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and gen-
eralization in neural networks. Advances in neural information processing systems, 31, 2018.

Sham M Kakade. A natural policy gradient. Advances in neural information processing systems,
14, 2001.

Vijay Konda and John Tsitsiklis. Actor-critic algorithms. Advances in neural information processing
systems, 12, 1999.

Harshat Kumar, Alec Koppel, and Alejandro Ribeiro. On the sample complexity of actor-
critic method for reinforcement learning with function approximation. arXiv preprint
arXiv:1910.08412, 2019.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 521(7553):436–444,
2015.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971, 2015.

Chaoyue Liu, Libin Zhu, and Misha Belkin. On the linearity of large non-linear models: when
and why the tangent kernel is constant. Advances in Neural Information Processing Systems, 33:
15954–15964, 2020.

A Yu Mitrophanov. Sensitivity and convergence of uniformly ergodic markov chains. Journal of
Applied Probability, 42(4):1003–1014, 2005.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
learning. In International conference on machine learning, pp. 1928–1937. PMLR, 2016.

Alex Olshevsky and Bahman Gharesifard. A small gain analysis of single timescale actor critic.
SIAM Journal on Control and Optimization, 61(2):980–1007, 2023.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of go
without human knowledge. nature, 550(7676):354–359, 2017.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradient meth-
ods for reinforcement learning with function approximation. Advances in neural information
processing systems, 12, 1999.

Haoxing Tian, Alex Olshevsky, and Yannis Paschalidis. Convergence of actor-critic with multi-layer
neural networks. Advances in Neural Information Processing Systems, 36, 2024.

Lingxiao Wang, Qi Cai, Zhuoran Yang, and Zhaoran Wang. Neural policy gradient methods: Global
optimality and rates of convergence. arXiv preprint arXiv:1909.01150, 2019.

Yue Wu, Weitong Zhang, Pan Xu, and Quanquan Gu. A finite time analysis of two time-scale actor
critic methods. arXiv preprint arXiv:2005.01350, 2020a.

Yue Frank Wu, Weitong Zhang, Pan Xu, and Quanquan Gu. A finite-time analysis of two time-scale
actor-critic methods. Advances in Neural Information Processing Systems, 33:17617–17628,
2020b.

Tengyu Xu, Zhe Wang, and Yingbin Liang. Improving sample complexity bounds for (natural) actor-
critic algorithms. Advances in Neural Information Processing Systems, 33:4358–4369, 2020a.

Tengyu Xu, Zhe Wang, and Yingbin Liang. Non-asymptotic convergence analysis of two time-scale
(natural) actor-critic algorithms. arXiv preprint arXiv:2005.03557, 2020b.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Zhuoran Yang, Yongxin Chen, Mingyi Hong, and Zhaoran Wang. Provably global convergence of
actor-critic: A case for linear quadratic regulator with ergodic cost. Advances in neural informa-
tion processing systems, 32, 2019.

Kaiqing Zhang, Alec Koppel, Hao Zhu, and Tamer Basar. Global convergence of policy gradient
methods to (almost) locally optimal policies. SIAM Journal on Control and Optimization, 58(6):
3586–3612, 2020a.

Shangtong Zhang, Bo Liu, Hengshuai Yao, and Shimon Whiteson. Provably convergent two-
timescale off-policy actor-critic with function approximation. In International Conference on
Machine Learning, pp. 11204–11213. PMLR, 2020b.

Yufeng Zhang, Boyi Liu, Qi Cai, Lingxiao Wang, and Zhaoran Wang. An analysis of attention via
the lens of exchangeability and latent variable models. arXiv preprint arXiv:2212.14852, 2022.

Wenshuai Zhao, Jorge Peña Queralta, and Tomi Westerlund. Sim-to-real transfer in deep rein-
forcement learning for robotics: a survey. In 2020 IEEE symposium series on computational
intelligence (SSCI), pp. 737–744. IEEE, 2020.

Mo Zhou and Jianfeng Lu. Single timescale actor-critic method to solve the linear quadratic regula-
tor with convergence guarantees. Journal of Machine Learning Research, 24(222):1–34, 2023.

Shaofeng Zou, Tengyu Xu, and Yingbin Liang. Finite-sample analysis for sarsa with linear function
approximation. Advances in neural information processing systems, 32, 2019.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

APPENDIX

Table of Contents
A Related Work 14

B Additional Notations 15

C Preliminary Lemmas 16

D Proof of Propositions 16

E Proof Sketch 17

F Proof of Main Theorem 18
F.1 Step 1: Reward estimation error analysis . 19
F.2 Step 2: Critic error analysis . 21
F.3 Step 3: Policy gradient norm analysis . 27
F.4 Step 4: Interconnected iteration system analysis 28

G Proof of Preliminary Lemmas 30

H Proof of Supporting Lemmas 35

A RELATED WORK

AC methods. The AC algorithm was initially proposed by Konda & Tsitsiklis (1999). Subsequently,
Kakade (2001) extended it to the natural AC algorithm. The asymptotic convergence of AC algo-
rithms has been well established under various settings, as demonstrated in works by Kakade (2001),
Bhatnagar et al. (2009), Castro & Meir (2010), and Zhang et al. (2020b). More recently, many stud-
ies have focused on the finite-time convergence of AC methods. Under the double-loop setting,
Kumar et al. (2019) investigated the finite-time local convergence of several AC variants with linear
function approximation. Wang et al. (2019) explored the global convergence of AC methods with
both the actor and the critic parameterized by neural networks with single hidden layers. Cayci
et al. (2022) improved upon the work of Wang et al. (2019) by considering Markovian sampling and
reducing sample complexity.

Under the two-timescale AC setting, Wu et al. (2020b) established the finite-time local convergence
to a stationary point at a sample complexity of Õ(ϵ−2.5) under the undiscounted time-average reward
setting. Xu et al. (2020b) studied both local convergence and global convergence for two-timescale
(natural) AC, with Õ(ϵ−2.5) and Õ(ϵ−4) sample complexity, respectively, under the discounted ac-
cumulated reward. The algorithm collects multiple samples to update the critic. Hong et al. (2023)
proposed a two-timescale stochastic approximation algorithm for bilevel optimization and the algo-
rithm was subsequently employed in the context of two-timescale AC. Chen et al. (2023) established
the global convergence of two-timescale AC methods for solving linear quadratic regulator (LQR),
where only a single sample is used to update the critic in each iteration. However, none of these
previous results utilized neural network approximation for the value function (the critic).

Under the most challenging single-timescale setting, Fu et al. (2020) considered the least-squares
temporal difference (LSTD) update for the critic and obtained the optimal policy within the energy-
based policy class for both linear function approximation and neural network approximation. (Zhou
& Lu, 2023) studied single-timescale AC on LQR. In addition, Chen et al. (2021); Olshevsky &
Gharesifard (2023); Chen & Zhao (2024) considered the single-timescale AC in general MDP cases
with linear function approximation. Recently, Tian et al. (2024) built upon the results of Olshevsky
& Gharesifard (2023) and improved to neural network approximation. A comprehensive review and

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

comparison of all existing results on single-timescale AC in general MDP settings are presented in
Table 1.

B ADDITIONAL NOTATIONS

We make use of the following auxiliary Markov chain which was introduced in (Zou et al., 2019) to
deal with the Markovian noise.

Auxiliary Markov Chain:

st−τ
θt−τ−−−→ at−τ

P−→ st−τ+1
θt−τ−−−→ ãt−τ+1

P−→ s̃t−τ+2
θt−τ−−−→ ãt−τ+2 · · ·

P−→ s̃t
θt−τ−−−→ ãt

P−→ s̃t+1.
(8)

For reference, we also show the original Markov chain.

Original Markov Chain:

st−τ
θt−τ−−−→ at−τ

P−→ st−τ+1
θt−τ+1−−−−→ ãt−τ+1

P−→ st−τ+2
θt−τ+2−−−−→ at−τ+2 · · ·

P−→ st
θt−→ at

P−→ st+1.
(9)

In the sequel, we denote by Õt := (s̃t, ãt, s̃t+1) the tuple generated from the auxiliary Markov chain
in Eq. (8) while Ot := (st, at, st+1) denotes the tuple generated from the original Markov chain in
Eq. (9).

We define the following functions, which will benefit to decompose the errors and simplify the
presentation.

∆g(O, η,θ) := [J(θ)− η]∇ωV̂ (ω; s),

g(O,ω,θ) := [r(s, a)− J(θ) + V̂ (ω; s′)− V̂ (ω; s)]∇ωV̂ (ω; s),

ḡ(ω,θ) := E(s,a,s′)∼(µθ,πθ,P)[(r(s, a)− J(θ) + V̂ (ω; s′)− V̂ (ω; s))∇ωV̂ (ω; s)],

∆h(O, η,ω,θ) := (J(θ)− η + V̂ (ω; s′)− V̂ (ω; s)− V̂ (ω∗(θ); s′) + V̂ (ω∗(θ); s))∇ log πθ(a|s),
h(O,θ) := (r(s, a)− J(θ) + V̂ (ω∗(θ); s′)− V̂ (ω∗(θ); s))∇ log πθ(a|s),

∆h′(O,θ) := ((V̂ (ω∗(θ); s′)− Vθ(s
′))− (V̂ (ω∗(θ); s)− Vθ(s)))∇ log πθ(a|s).

(10)
We also define the following functions, which characterize the Markovian noise.

Φ(O, η,θ) := (η − J(θ))(r(s, a)− J(θ)),

Ψ(O,ω,θ) := ⟨ω − ω∗
θ, g(O,ω,θ)− ḡ(ω,θ)⟩,

Ξ(O,ω,θ) := ⟨ω − ω∗
θ, (∇ω∗

θ)
⊤(EO′

θ
[h(O′

θ,θ)]− h(O,θ))⟩,
Θ(O,θ) := ⟨∇J(θ),EO′

θ
[h(O′

θ,θ)]− h(O,θ)⟩,

(11)

where O′
θ is a shorthand for an independent sample from stationary distribution s ∼ µθ, a ∼

πθ, s
′ ∼ P .

To demonstrate the main ideas of the proof of Theorem 4.9, we use the notations YT , ZT and GT

for the three errors that we seek to bound, namely,

YT :=
1

T − τT

T−1∑
t=τT

Ey2t , ZT :=
1

T − τT

T−1∑
t=τT

E∥zt∥2, GT :=
1

T − τT

T−1∑
t=τT

E∥∇J(θt)∥2. (12)

Here YT , ZT , and GT represent the reward estimation error, critic error, and actor error (policy
gradient norm), respectively. Our proof of Theorem 4.9 primarily involves analyzing and bounding
these three errors relative to one another. The difficulty of this work lies in the continuous state and
action spaces and the neural network approximation.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

C PRELIMINARY LEMMAS

Lemma C.1 (Distance between stationary distributions). For any θ1 and θ2, it holds that

dTV (µθ1 , µθ2) ≤ Lπ(⌈logρ C−1⌉+ 1

1− ρ
)∥θ1 − θ2∥,

dTV (µθ1 ⊗ πθ1 , µθ2 ⊗ πθ2) ≤ Lπ(1 + ⌈logρ C−1⌉+ 1

1− ρ
)∥θ1 − θ2∥,

dTV (µθ1
⊗ πθ1

⊗ P, µθ2
⊗ πθ2

⊗ P) ≤ Lπ(1 + ⌈logρ C−1⌉+ 1

1− ρ
)∥θ1 − θ2∥.

Lemma C.2 (Wu et al. (2020b)). Given time indexes t and τ such that t ≥ τ > 0, consider the
auxiliary Markov chain in Eq. (8). Conditioning on st−τ+1 and θt−τ , we have

dTV (P(st+1 ∈ ·),P(s̃t+1 ∈ ·)) ≤ dTV (P(Ot ∈ ·),P(Õt ∈ ·)),
dTV (P(Ot ∈ ·),P(Õt ∈ ·)) = dTV (P((st, at) ∈ ·),P((s̃t, ãt) ∈ ·)),

dTV (P((st, at) ∈ ·),P((s̃t, ãt) ∈ ·)) ≤ dTV (P(st ∈ ·),P(s̃t ∈ ·)) + 1

2
LπE[∥θt − θt−τ∥].

Lemma C.3 (Wu et al. (2020b)). For any θ1,θ2, we have

|J(θ1)− J(θ2)| ≤ LJ∥θ1 − θ2∥,

where LJ = 2UrLπ(1 + ⌈logρ C−1⌉+ 1
1−ρ).

Lemma C.4 (Zhang et al. (2020a)). For the performance function J(θ), there exists a constant
LJ′ > 0 such that for all θ1,θ2 ∈ Rd, it holds that

∥∇J(θ1)−∇J(θ2)∥ ≤ LJ′∥θ1 − θ2∥, (13)

which further implies

J(θ2) ≥ J(θ1) + ⟨∇J(θ1),θ2 − θ1⟩ −
LJ′

2
∥θ1 − θ2∥2, (14)

J(θ2) ≤ J(θ1) + ⟨∇J(θ1),θ2 − θ1⟩+
LJ′

2
∥θ1 − θ2∥2. (15)

Lemma C.5 (Boundedness, Lipschitzness, and smoothness of the neural network). There exists
scalars Uv, Lv, and Hv such that for any s ∈ S and ω1,ω2 ∈ XΩ,

∥V̂ (ω; s)∥ ≤ Uv,

∥V̂ (ω1; s)− V̂ (ω2; s)∥ ≤ Lv∥ω1 − ω2∥,
∥∇ωV̂ (ω1; s)−∇ωV̂ (ω2; s)∥ ≤ Hv∥ω1 − ω2∥,

where Uv = O(1), Lv = O(1) and Hv = Õ(1√
m
) with respect to width m.

D PROOF OF PROPOSITIONS

We provide the proof of Proposition 4.8 which justifies the generality of the newly proposed As-
sumption 4.7 (c).

Proof of Proposition 4.8.

Proof. We adopt neural networks to parameterize the mean value µ̄θ(·) of a distribution, where
θ ∈ XΘ is the neural network parameter. Then the policy can be denoted as πθ(·|s) = L(X+µθ(s)),
where L(·) is the law of the random variables, X is some zero-mean random variable, and µ̄θ(·) is
the neural network with parameter θ that takes state s as its input. We denote density function of X
as π(a|s) whose mean value is zero. With the conditions specified in Proposition 4.8, we show that
Assumption 4.7 (c) holds, i.e., dTV (πθ1(·|s), πθ2(·|s)) ≤ Lπ|θ1 − θ2| for some Lπ .

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

It holds that

dTV (πθ1
(·|s), πθ2

(·|s))
= dTV (L(X + µ̄θ1(s)),L(X + µ̄θ2(s)))

=
1

2

∫
Rda

∣∣∣π(a− µ̄θ1(s)|s
)
− π

(
a− µ̄θ2(s)|s

)∣∣∣da
=

1

2

∫
YA

∣∣∣π(a− µ̄θ1
(s)|s

)
− π

(
a− µ̄θ2

(s)|s
)∣∣∣dx

≤ 1

2

∫
YA

L1|µ̄θ1(s)− µ̄θ2(s)|dx

≤ L1 · |XA| · |µ̄θ1
(s)− µ̄θ2

(s)|,
where YA in the third equality is defined as YA = (XA+ µ̄θ1

(s))∪ (XA+ µ̄θ2
(s)). Combining this

with the neural network Lipschitzness, we have that

dTV (πθ1
(·|s), πθ2

(·|s)) ≤ L1 · L2 · |X | · |θ1 − θ2|.
Thus, we conclude the proof of this proposition.

E PROOF SKETCH

In this subsection, we sketch the main proof steps of Theorem 4.9. The key challenges and new
techniques developed are also highlighted correspondingly. We first derive implicit (coupled) up-
per bounds for the reward estimation error yt, the critic error zt, and the policy gradient ∇J(θt),
respectively. Then, we solve a system of inequalities to establish finite-time convergence.

Step 1: Reward estimation error analysis. Using the reward estimator update rule (Line 7 of Algo-
rithm 1), we decompose the reward estimation error into:

y2t+1 = (1− 2γ)y2t + 2γyt(rt − J(θt))

+ 2yt(J(θt)− J(θt+1)) + (J(θt)− J(θt+1) + γ(rt − ηt))
2.

(16)

The second term on the right-hand side of Eq. (16) is a bias term caused by the Markovian sample,
which requires characterizing the distance between stationary distributions under continuous
state and action spaces as shown in Lemma C.1. This error term is further handled in Lemma F.1.
The third term captures the variation of the moving targets J(θt) tracked by the reward estimation
error. We employ the smoothness of J(θ) (see Lemma C.4) and derive an implicit upper bound for
this term as a function of the norm of yt and ∇J(θt). This bound will be combined with the implicit
bounds derived in Step 2 and Step 3 below to establish the non-asymptotic convergence altogether.
The last term in Eq. (16) reflects the variance in reward estimation, which is bounded by O(γ) after
utilizing the Lipschitzness of J(θ) in Lemma C.3.

Step 2: Critic error analysis. Using the critic update rule (Line 8 of Algorithm 1), we decompose
the squared error by (we neglect the projection for the time being for the ease of comprehension.
The complete analysis can be found in the appendix.)

∥zt+1∥2 =∥zt∥2 + 2β⟨zt, ḡ(ωt,θt)⟩+ 2βΨ(Ot,ωt,θt) + 2β⟨zt,∆g(Ot, ηt,θt)⟩
+ 2⟨zt,ω∗

t − ω∗
t+1⟩+ ∥ω∗

t − ω∗
t+1 + β(g(Ot,ωt,θt) + ∆g(Ot, ηt,θt))∥2,

(17)

where Ot := (st, at, st+1) denotes the tuple generated from the original Markov chain in Eq. (9)
and the definitions of g, ḡ,∆g, and Ψ can be found in Eq. (10) and Eq. (11) in Appendix B. Without
diving into the detailed definitions, here we focus on illustrating the high-level insights of our proof.
First of all, the second term on the right-hand side of Eq. (17) is the inner product between the critic
error zt and the critic’s mean-path update ḡ(ωt,θt), which serves as the key to the convergence.
Our analysis for this term is distinct from all previous results since considering continuous spaces
and deep neural networks substantially complicate the bounding process. we employ the Bellman
equation and neural network approximation to manage error propagation and control the error by
leveraging the approximation capability of the neural network (Eq. (7)), the linearity of wide
networks (third inequality in Lemma C.5), and sufficient policy exploration (see Eq. (22)). It pro-
vides an explicit characterization of how sufficient exploration can help the convergence of learning.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

The third term is a Markovian noise, which is again characterized by the distance between sta-
tionary distributions under continuous state and action spaces and further bounded implicitly
in Lemma F.3. The fourth term is caused by inaccurate reward and critic estimations, which can be
bounded by the norm of yt and zt after applying the Lipschitzness of V̂ as shown in Lemma C.5.
The fifth term tracks both the critic estimation performance zt and the difference between the drift-
ing critic targets ω∗

t . Similar to the case of Step 1, we establish an implicit upper bound for this term
as a function of yt and zt by utilizing the smoothness of the optimal critic proved in Assumption 4.3.
Finally, the last term reflects the variances of various estimations, which is bounded by O(β).

Step 3: Policy gradient norm analysis. Using the actor update rule (Line 9 of Algorithm 1) and the
smoothness property of J(θ) (see Lemma C.4), we derive

∥∇J(θt)∥2 ≤ 1

α
(J(θt+1)− J(θt)) + Θ(Ot,θt)− ⟨∇J(θt),∆h(Ot, ηt,ωt,θt)⟩

− ⟨∇J(θt),EO′
t
[∆h′(O′

t,θt)]⟩+ α
LJ′

2
∥δt∇ log πθt(at|st)∥2,

(18)

where O′
t is a shorthand for an independent sample from stationary distribution s ∼ µθt , a ∼

πθt , s
′ ∼ P(·|s, a), Θ is defined in Eq. (11), and LJ′ is a constant. The first term on the right-

hand side of Eq. (18) compares the actor’s performances between consecutive updates, which can
be bounded via Abel summation by parts. The second term is a noise term introduced by Markovian
sampling, which is characterized by the distance between stationary distributions under con-
tinuous state and action spaces and handled in Lemma F.6. The third term is an error introduced
by the inaccurate estimations of both the time-average reward and the critic. After employing the the
Lipschitzness of V̂ as shown in Lemma C.5, we control this term by providing an implicit bound
depending on yt, zt, and ∇J(θt). The fourth term comes from the linear function approximation
error. The final term represents the variance of the stochastic gradient update, which is controlled
by O(α) due to the boundedness of V̂ , a result we specifically derived in Lemma C.5.

Step 4: Interconnected iteration system analysis. Taking the expectation of and summing Eq. (16),
Eq. (17), and Eq. (18) from τT to T −1, respectively, we obtain the following system of inequalities
in terms of YT , ZT , GT :

YT ≤ O(
log2 T√

T
) + l1

√
YTGT ,

ZT ≤ O(
log2 T√

T
) +O(ϵapp) + Õ(

1√
m
) + l2

√
YTZT + l3

√
ZT (2YT + l4ZT) + l5

√
ZTGT ,

GT ≤ O(
log2 T√

T
) +O(ϵapp) + l6

√
GT (2YT + l4ZT).

where l1, l2, l3, l4, l5, l6 are positive constants. By solving the above system of inequalities, we
further prove that if

(1 +
1

2
l4)l3 ≤ 1

4
, 2l4l

2
5l

2
6 ≤ 1

2
, l1(1 + 2l26 + 4l4l

2
6(l

2
2 + l3 + 2l25l

2
6)) ≤ 1,

then YT , ZT , GT converge at a rate of O(log
2 T√
T

)+O(ϵapp)+ Õ(1√
m
). This condition can be easily

satisfied by choosing the stepsize ratio c to be smaller than a threshold identified in Equation (34).
Thus, it completes the proof.

F PROOF OF MAIN THEOREM

In this section, we aim to show the proof of Theorem 4.9. Define Uδ := 2Ur + 2Uω + 2Uv so that
we have |δt| ≤ Uδ , where Uv is defined in Lemma C.5 and δt is the TD error which comes from
Line 6 in Algorithm 1. Note that from Assumption 4.7, we have ∥δ∇ log πθ∥ ≤ G := UδB. The

norm of ω is defined by ∥ω∥ =: (
K∑

k=1

∥W (k)∥2F)1/2, where ∥ · ∥F is the Frobenius norm of a matrix.

We decompose the whole proof into four steps.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

F.1 STEP 1: REWARD ESTIMATION ERROR ANALYSIS

In this subsection, we will establish an implicit bound for estimator.

Lemma F.1. From any t ≥ τ > 0, we have

E[Φ(Ot, ηt,θt)] ≤ 4UrLJ∥θt − θt−τ∥+ 2Ur|ηt − ηt−τ |

+ 2U2
rLπ

t∑
i=t−τ

E∥θi − θt−τ∥+ 4U2
rCρτ−1.

Theorem F.2. Choose α = c√
T
, β = γ = 1√

T
, we have

YT ≤ O(
log2 T√

T
) + cG

√
YTGT . (19)

Proof. From the update rule of reward estimator in Line 7 of Algorithm 1, we have

ηt+1 − J(θt+1) = ηt − J(θt) + J(θt)− J(θt+1) + γ(rt − ηt),

which implies

y2t+1 = (yt + J(θt)− J(θt+1) + γ(rt − ηt))
2

≤ y2t + 2yt(J(θt)− J(θt+1)) + 2γyt(rt − ηt)

+ 2(J(θt)− J(θt+1))
2 + 2γ2(rt − ηt)

2

= (1− 2γ)y2t + 2γyt(rt − J(θt)) + 2yt(J(θt)− J(θt+1))

+ 2(J(θt)− J(θt+1))
2 + 2γ2(rt − ηt)

2.

Taking expectation up to st+1 (the whole trajectory), rearranging and summing from τT to T − 1,
we have

T−1∑
t=τT

E[y2t] ≤
T−1∑
t=τT

1

2γ
E(y2t − y2t+1)︸ ︷︷ ︸

I1

+

T−1∑
t=τT

E[yt(rt − J(θt))]︸ ︷︷ ︸
I2

+

T−1∑
t=τT

1

γ
E[yt(J(θt)− J(θt+1)]︸ ︷︷ ︸

I3

+

T−1∑
t=τT

1

γ
E[(J(θt)− J(θt+1))

2]︸ ︷︷ ︸
I4

+

T−1∑
t=τT

γE[(rt − ηt)
2]︸ ︷︷ ︸

I5

.

For term I1, from Abel summation by parts, we have

I1 =

T−1∑
t=τT

1

2γ
E(y2t − y2t+1)

≤ 2U2
r

γ

= 2U2
r

√
T .

For term I2, from Lemma F.1, we have

E[yt(rt − J(θt))] ≤ 4UrLJ∥θt − θt−τ∥+ 2Ur|ηt − ηt−τ |

+ 2U2
rLπ

t∑
i=t−τ

E∥θi − θt−τ∥+ 4U2
rCρτ−1

≤ 4UrLJGτα+ 4U2
r τγ + 2U2

rLπτ(τ + 1)Gα+ 4U2
rCρτ−1

≤ (4UrLJGτ + 2U2
rLπGτ(τ + 1))α+ 4U2

r τγ + 4U2
rCρτ−1.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Choose τ = τT , we have

I2 =

T−1∑
t=τT

E[yt(rt − J(θt))]

≤ (4UrLJGτT + 2U2
rLπGτT (τT + 1))

T−1∑
t=τT

α

+ 4U2
r τT

T−1∑
t=τT

γ + 4U2
r

T−1∑
t=τT

1√
T

= (4cUrLJGτT + 2cU2
rLπGτT (τT + 1) + 4U2

r τT + 4U2
r)

T − τT√
T

.

For I3, if yt > 0, from Eq. (14), we have

yt(J(θt)− J(θt+1)) ≤ yt(
LJ′

2
∥θt − θt+1∥2 + ⟨∇J(θt),θt − θt+1⟩)

≤ LJ′Ur∥θt − θt+1∥2 + |yt|∥θt − θt+1∥∥∇J(θt)∥.
If yt ≤ 0, from Eq. (15), we have

yt(J(θt)− J(θt+1)) ≤ yt(−
LJ′

2
∥θt − θt+1∥2 + ⟨∇J(θt),θt − θt+1⟩)

≤ LJ′Ur∥θt − θt+1∥2 + |yt|∥θt − θt+1∥∥∇J(θt)∥.
Overall, we get

I3 =

T−1∑
t=τT

1

γ
E[yt(J(θt)− J(θt+1))]

≤
T−1∑
t=τT

1

γ
E[LJ′Ur∥θt − θt+1∥2 + |yt|∥θt − θt+1∥∥∇J(θt)∥]

≤
T−1∑
t=τT

E[cLJ′UrG
2α+ cG|yt|∥∇J(θt)∥]

≤ c2LJ′UrG
2T − τT√

T
+ cG(

T−1∑
t=τT

Ey2t)
1
2 (

T−1∑
t=τT

E∥∇J(θt)∥2)
1
2 .

For term I4, we have

I4 =

T−1∑
t=τT

1

γ
E[(J(θt)− J(θt+1))

2]

≤
T−1∑
t=τT

1

γ
L2
JE∥θt − θt+1∥2

≤
T−1∑
t=τT

1

γ
L2
JG

2α2 = L2
JG

2c2
T − τT√

T
.

For term I5, we have

I5 =

T−1∑
t=τT

γE[(rt − J(θt))
2]

≤
T−1∑
t=τT

4U2
r γ = 4U2

r

T − τT√
T

.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Therefore, we get
T−1∑
t=τT

E[y2t] ≤ (4cUrLJGτT + 2cU2
rLπGτT (τT + 1)

+ 4U2
r (τT + 2) + c2G2(LJ′Ur + L2

J))
T − τT√

T

+ 2U2
r

√
T + cG(

T−1∑
t=τT

Ey2t)
1
2 (

T−1∑
t=τT

E∥∇J(θt)∥2)
1
2 .

Since τT = O(log T), we have
√
T

T−τT
≤ 2√

T
for large T . Then we get

1

T − τT

T−1∑
t=τT

E[y2t] ≤ (4cUrLJGτT + 2cU2
rLπGτT (τT + 1)

+ 4U2
r (τT + 3) + c2G2(LJ′Ur + L2

J))
1√
T

+ cG(
1

T − τT

T−1∑
t=τT

Ey2t)
1
2 (

1

T − τT

T−1∑
t=τT

E∥∇J(θt)∥2)
1
2

= O(
log2 T√

T
) + cG(

1

T − τT

T−1∑
t=τT

Ey2t)
1
2 (

1

T − τT

T−1∑
t=τT

E∥∇J(θt)∥2)
1
2 .

Thus we finish the proof.

F.2 STEP 2: CRITIC ERROR ANALYSIS

In this subsection, we will establish an implicit upper bound for critic.
Lemma F.3. For any t ≥ τ > 0, we have

E[Ψ(Ot,ωt,θt)] ≤ C1∥θt − θt−τ∥+ C2∥ωt − ωt−τ∥+ U2
δLvLπGτ(τ + 1)α+ 2U2

δLvCρτ−1,

where

C1 = 2U2
δLπ(1 + ⌈logρ C−1⌉+ 1

1− ρ
) + 2UδLJLv + 2UδL∗Lv,

C2 = 2Uδ(UvHv + L2
v + UrHv + Lv).

Lemma F.4. For any t ≥ τ > 0, we have

E[Ξ(Ot,ωt,θt)] ≤ C3∥θt − θt−τ∥+ 2UδBL∗∥ωt − ωt−τ∥
+ 2U2

δBL∗LπGτ(τ + 1)α+ 4U2
δBL∗Cρτ−1.

where C3 := 3UδL∗(UδLl + 4BUδLJ + 2BLvL∗) + 2UδBL2
∗ + 2U2

δBLs.

Theorem F.5. Choose α = c√
T
, β = γ = 1√

T
, we have

ZT ≤ O(
log2 T√

T
) + Õ(

1√
m
) +O(ϵapp) +

2Uv

λ

√
YTZT

+
2cBL∗

λ

√
ZT (2YT + 8L2

vZT) +
2cL∗

λ

√
ZTGT

(20)

Proof. From the update rule of critic in Line 8 of Algorithm 1, we have

∥ωt+1 − ω∗
t+1∥ = ∥ΠUω (ωt + βδt∇ωV̂ (ωt; st))− ω∗

t+1∥
= ∥ΠUω (ωt + βδt∇ωV̂ (ωt; st))−ΠUω (ω

∗
t+1)∥

≤ ∥ωt + βδt∇ωV̂ (ωt; st)− ω∗
t+1∥

= ∥ωt − ω∗
t + ω∗

t − ω∗
t+1 + βδt∇ωV̂ (ωt; st)∥

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Therefore, we have

∥zt+1∥2 = ∥zt + β(g(Ot,ωt,θt) + ∆g(Ot, ηt,θt)) + ω∗
t − ω∗

t+1∥2

= ∥zt∥2 + 2β⟨zt, g(Ot,ωt,θt)⟩+ 2β⟨zt,∆g(Ot, ηt,θt)⟩
+ 2⟨zt,ω∗

t − ω∗
t+1⟩+ ∥β(g(Ot,ωt,θt) + ∆g(Ot, ηt,θt)) + ω∗

t − ω∗
t+1∥2

= ∥zt∥2 + 2β⟨zt, ḡ(ωt,θt)⟩+ 2βΨ(Ot,ωt,θt) + 2β⟨zt,∆g(Ot, ηt,θt)⟩
+ 2⟨zt,ω∗

t − ω∗
t+1⟩+ ∥β(g(Ot,ωt,θt) + ∆g(Ot, ηt,θt)) + ω∗

t − ω∗
t+1∥2

≤ ∥zt∥2 + 2β⟨zt, ḡ(ωt,θt)⟩+ 2βΨ(Ot,ωt,θt) + 2β⟨zt,∆g(Ot, ηt,θt)⟩
+ 2⟨zt,ω∗

t − ω∗
t+1⟩+ 2U2

δL
2
vβ

2 + 2∥ω∗
t − ω∗

t+1∥2.

(21)

We then analyse the mean-path update ḡ(ωt,θt). From the definition in Eq. (10), we have

ḡ(ωt,θt) := Est,at,st+1
[(r(st, at)− J(θt) + V̂ (ωt; st+1)− V̂ (ωt; st))∇ωV̂ (ωt; st)]

(1)
= Est,at,st+1

[(V (st)− V (st+1) + V̂ (ωt; st+1)− V̂ (ωt; st))∇ωV̂ (ωt; st)]

= Est [(V (st)− V̂ (ωt, st)− Est+1,at
[V (st+1)− V̂ (ωt, st+1)|st])∇ωV̂ (ωt; st)]

where (1) comes from the Bellman equation. For Est+1,at
[V (st+1) − V̂ (ωt, st+1)|st], it can be

shown that

Est+1,at
[V (st+1)− V̂ (ωt, st+1)|st]

=

∫
S

∫
A
πθt

(at|st)P(st+1|st, at)(V (st+1)− V̂ (ωt; st+1))d(at × st+1).

By the definition of operator Pθ, we have

Pθ(V (s)− V̂ (ω, s)) =

∫
S

∫
A
πθ(a|s)P(s′|s, a)(V (s′)− V̂ (ω; s′))d(a× s′).

Then for ḡ(ωt,θt), it follows that

ḡ(ωt,θt) = Est [(I − Pθt
)(V (st)− V̂ (ωt, st))∇ωV̂ (ωt; st)],

where I is the identity operator. Therefore, we have

⟨zt, ḡ(ωt,θt)⟩ =E⟨zt, (I − Pθt
)(V (st)− V̂ (ωt; st))∇ωV̂ (ωt; st)⟩

=E⟨zt, (I − Pθt
)(V (st)− V̂ (ω∗

t ; st) + V̂ (ω∗
t ; st)− V̂ (ωt; st))∇ωV̂ (ωt; st)⟩

=E⟨zt, (I − Pθt)(V (st)− V̂ (ω∗
t ; st))∇ωV̂ (ωt; st)⟩

+ E⟨zt, (I − Pθt
)(V̂ (ω∗

t ; st)− V̂ (ωt; st))∇ωV̂ (ωt; st)⟩
=4UωLvϵapp + E[(z⊤

t ∇ωV̂ (ωt; st) + (V̂ (ω∗
t ; st)− V̂ (ωt; st))

− (V̂ (ω∗
t ; st)− V̂ (ωt, st)))(I − Pθt)(V̂ (ω∗

t ; st)− V̂ (ωt; st))]

(1)
=E[z⊤

t (∇ωV̂ (ωt; st)−∇ωV̂ (ωmid; st))(I − Pθt)(V̂ (ω∗
t ; st)− V̂ (ωt; st))]

− ⟨V̂ (ω∗
t)− V̂ (ωt), Dθ(I − Pθt

)(V̂ (ω∗
t)− V̂ (ωt))⟩+ 2UδLvϵapp

(2)

≤ − λ2
1λ2∥zt∥2 + 2LvHv∥zt∥3 + 2UδLvϵapp

(22)
where (1) comes from the mean-value theorem with ωmid = λ3ωt + (1− λ3)ω

∗
t where λ3 ∈ [0, 1];

(2) follows from Assumption 4.4 and Assumption 4.5. Hereafter, we define λ := λ2
1λ2.

Substituting the above result into Eq. (21), it holds that

∥zt+1∥2 ≤∥zt∥2 − 2λβ∥zt∥2 + 2βΨ(Ot,ωt,θt) + 2β⟨zt,∆g(Ot, ηt,θt)⟩
+ 2⟨zt,ω∗

t − ω∗
t+1⟩+ 2∥ω∗

t − ω∗
t+1∥2 + 2U2

δ β
2 + 4βLvHvU

3
δ + 4UδLvβϵapp

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Taking expectation up to st+1, we have

E∥zt+1∥2 ≤ (1− 2λβ)E∥zt∥2 + 2βEΨ(Ot,ωt,θt) + 2βE⟨zt,∆g(Ot, ηt,θt)⟩
+2E⟨zt,ω∗

t − ω∗
t+1⟩+ 2E∥ω∗

t − ω∗
t+1∥2 + 2U2

δ β
2 + 4βLvHvU

3
δ + 4UδLvβϵapp

≤ (1− 2λβ)E∥zt∥2 + 2βEΨ(Ot,ωt,θt) + 2βE⟨zt,∆g(Ot, ηt,θt)⟩
+ 2E⟨zt,ω∗

t − ω∗
t+1⟩+ 2U2

δ β
2 + 2E∥ω∗

t − ω∗
t+1∥2 + 4βLvHvU

3
δ + 4UδLvβϵapp

≤ (1− 2λβ)E∥zt∥2 + 2βEΨ(Ot,ωt,θt) + 2βE⟨zt,∆g(Ot, ηt,θt)⟩
+ 2E⟨zt,ω∗

t − ω∗
t+1 + (∇ω∗

t)
⊤(θt+1 − θt)⟩+ 2E⟨zt, (∇ω∗

t)
⊤(θt − θt+1)⟩

+ 2U2
δ β

2 + 2E∥ω∗
t − ω∗

t+1∥2 + 4βLvHvU
3
δ + 4UδLvβϵapp

It can be shown that

E∥zt+1∥2
(1)

≤ (1− 2λβ)E∥zt∥2 + 2βEΨ(Ot,ωt,θt) + 2βUvE∥zt∥|yt|+ LsE∥zt∥∥θt+1 − θt∥2

+ 2αE⟨zt,−(∇ω∗
t)

⊤δt∇ log πθt
(at|st)⟩+ 2U2

δ β
2

+ 2L2
∗E∥θt − θt+1∥2 + 4βLvHvU

3
δ + 4UδLvβϵapp

≤ (1− 2λβ)E∥zt∥2 + 2βEΨ(Ot,ωt,θt) + 2βUv

√
Ey2t

√
E∥zt∥2

+
Ls

2
E∥zt∥2∥θt+1 − θt∥2 +

Ls

2
E∥θt+1 − θt∥2 + 2U2

δ β
2 + 2L2

∗G
2α2

+ 2αE⟨zt,−(∇ω∗
t)

⊤δt∇ log πθt
(at|st)⟩+ 4βLvHvU

3
δ + 4UδLvβϵapp

≤ (1− 2λβ)E∥zt∥2 + 2βEΨ(Ot,ωt,θt) + 2βUv

√
Ey2t

√
E∥zt∥2 +

LsG
2

2
α2E∥zt∥2

+ 2U2
δ β

2 + (2L2
∗ +

Ls

2
)G2α2 + 2αE⟨zt,−(∇ω∗

t)
⊤δt∇ log πθt(at|st)⟩

+ 4βLvHvU
3
δ + 4UδLvβϵapp

(2)

≤ (1− λβ)E∥zt∥2 + 2βEΨ(Ot,ωt,θt) + 2βUv

√
Ey2t

√
E∥zt∥2

+ 2U2
δ β

2 + (2L2
∗ +

Ls

2
)G2α2 + 2αE⟨zt,−(∇ω∗

t)
⊤δt∇ log πθt(at|st)⟩

+ 4βLvHvU
3
δ + 4UδLvβϵapp

(23)
where (1) follows from the Ls-smoothness of ω∗ in Assumption 4.3; (2) uses LsG

2

2 α2 ≤ λβ for
large T .

For term E⟨zt,−(∇ω∗
t)

⊤δt∇ log πθt
(at|st)⟩, we have

E⟨zt,−(∇ω∗
t)

⊤δt∇ log πθt
(at|st)⟩

= E⟨zt, (∇ω∗
t)

⊤(−∆h(Ot, ηt,ωt,θt)− h(Ot,θt))⟩
= −E⟨zt, (∇ω∗

t)
⊤∆h(Ot, ηt,ωt,θt)⟩

+ E⟨zt, (∇ω∗
t)

⊤(EO′
t
[h(O′

t,θt)]− h(Ot,θt)− EO′
t
[h(O′

t,θt)])⟩
= E[Ξ(Ot,ωt,θt)]− E⟨zt, (∇ω∗

t)
⊤EO′

t
[h(O′

t,θt)]⟩
− E⟨zt, (∇ω∗

t)
⊤∆h(Ot, ηt,ωt,θt)⟩

Note that from Cauchy-Schwartz inequality and L∗ is the Lipschitz constant of ω∗ in Assumption
4.3, we have

−E⟨zt, (∇ω∗
t)

⊤∆h(Ot, ηt,ωt,θt)⟩ ≤ BL∗
√
E∥zt∥2

√
2Ey2t + 8L2

vE∥zt∥2. (24)

From the fact that

EO′
t
[h(O′

t,θt)−∆h′(O′
t,θt)] = EO′

t
[(r(st, at)− J(θt) + Vθt

(s′t)− Vθt
(st))∇ log πθt

(a|s)]
= ∇J(θt),

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

we obtain

E⟨zt, (∇ω∗
t)

⊤EO′
t
[h(O′

t,θt)]⟩ = E⟨zt, (∇ω∗
t)

⊤∇J(θt)⟩+ E⟨zt, (∇ω∗
t)

⊤EO′
t
[∆h′(O′

t,θt)]⟩.
It follows that

−E⟨zt, (∇ω∗
t)

⊤∇J(θt)⟩ ≤ L∗
√

E∥zt∥2
√
E∥∇J(θt)∥2.

Furthermore, it holds that

EO′∥∆h′(O,θ)∥2 = EO′∥((V̂ (ω∗(θ); s′)− Vθ(s
′))− (V̂ (ω∗(θ); s)− Vθ(s)))∇ log πθ(a|s)∥2

≤ EO′ [2B2((V̂ (ω∗(θ); s′)− Vθ(s
′))2 + (V̂ (ω∗(θ); s)− Vθ(s))

2)]

= 4B2EO′ [(V̂ (ω∗(θ); s)− Vθ(s))
2]

= 4B2ϵ2app.

Therefore, we have

−⟨zt, (∇ω∗
t)

⊤EO′
t
[h(O′

t,θt)]⟩ ≤ UδL∗
√
∥EO′ [∆h′(Ot,θt)]∥2 + L∗

√
E∥zt∥2

√
E∥∇J(θt)∥2

≤ UδL∗
√
EO′∥∆h′(Ot,θt)∥2 + L∗

√
E∥zt∥2

√
E∥∇J(θt)∥2

≤ 2BUδL∗ϵapp + L∗
√

E∥zt∥2
√

E∥∇J(θt)∥2. (25)

Substituting Eq. (24) and Eq. (25) into Eq. (24) yields

E⟨zt,−(∇ω∗
t)

⊤δt∇ log πθt(at|st)⟩ ≤ EΞ(Ot,ωt,θt) + 2BUδL∗ϵapp

+BL∗
√

E∥zt∥2
√
2Ey2t + 8L2

vE∥zt∥2

+ L∗
√
E∥zt∥2

√
E∥∇J(θt)∥2.

(26)

Plugging Eq. (26) into Eq. (23), we have

E∥zt+1∥2 ≤ (1− λβ)E∥zt∥2 + 2βEΨ(Ot,ωt,θt) + 2αEΞ(Ot,ωt,θt)

+ 2βUv

√
Ey2t

√
E∥zt∥2 + 2BL∗α

√
E∥zt∥2

√
2Ey2t + 8L2

vE∥zt∥2

+ 2αL∗
√

E∥zt∥2
√

E∥∇J(θt)∥2 + 2U2
δ β

2 + (2L2
∗ +

Ls

2
)G2α2

+ 4βLvHvU
3
δ + (2αBUδL∗ + 4UδLvβ)ϵapp.

(27)

Rearranging and summing from τT to T − 1 gives

λ

T−1∑
τT

E∥zt∥2 ≤
T−1∑
t=τT

1

β
(E∥zt∥2 − E∥zt+1∥2)︸ ︷︷ ︸

I1

+2

T−1∑
t=τT

EΨ(Ot,ωt,θt)︸ ︷︷ ︸
I2

+2c

T−1∑
t=τT

EΞ(Ot,ωt,θt)︸ ︷︷ ︸
I3

+ 2Uv

T−1∑
t=τT

√
Ey2t

√
E∥zt∥2︸ ︷︷ ︸

I4

+2cBL∗

T−1∑
t=τT

√
E∥zt∥2

√
2Ey2t + 8L2

vE∥zt∥2︸ ︷︷ ︸
I5

+ 2cL∗

T−1∑
t=τT

√
E∥zt∥2

√
E∥∇J(θt)∥2︸ ︷︷ ︸

I6

+

T−1∑
t=τT

(2U2
δ β + c(2L2

∗ +
Ls

2
)G2α+ (2cBUδL∗ + 4UδLv)ϵapp + 4LvHvU

3
δ).

In the sequel, we will tackle I1, I2, I3, I4, I5, I6 respectively.

For term I1, we have

I1 =

T−1∑
t=τT

1

β
(E∥zt∥2 − E∥zt+1∥2) ≤ U2

δ

√
T .

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

For term I2, from Lemma F.3, choose τ = τT , we have

EΨ(Ot,ωt,θt) ≤ C1∥θt − θt−τ∥+ C2∥ωt − ωt−τ∥+ U2
δLvLπGτ(τ + 1)α+ 2U2

δLvCρτ−1

≤ C1

t−1∑
k=t−τT

Gα+ C2

t−1∑
k=t−τT

Uδβ + U2
δLvLπGτT (τT + 1)α+

2U2
δLv√
T

≤ (C1GτT + U2
δLvLπGτT (τT + 1))α+ C2UδτTβ +

2U2
δ√
T
.

Then we get

I2 = 2

T−1∑
T=τT

EΨ(Ot,ωt,θt) ≤ 2

T−1∑
T=τT

((C1GτT + U2
δLvLπGτT (τT + 1))α+ C2UδτTβ +

2U2
δ√
T
).

For term I3, from Lemma F.4, choose τ = τT , we have

E[Ξ(Ot,ωt,θt)] ≤ C3∥θt − θt−τT ∥+ 2UδBL∗∥ωt − ωt−τT ∥
+ 2U2

δBL∗LπGτT (τT + 1)α+ 4U2
δBL∗CρτT−1

≤ C3

t−1∑
k=t−τT

Gα+ 2UδBL∗

t−1∑
k=t−τT

Uδβ

+ 2U2
δBL∗LπGτT (τT + 1)α+ 4U2

δBL∗CρτT−1

≤ (C3GτT + 2U2
δBL∗LπGτT (τT + 1))α+ 2U2

δBL∗τTβ +
4U2

δBL∗√
T

.

Therefore, we have

I3 = 2c

T−1∑
t=τT

EΞ(Ot,ωt,θt)

≤ 2c

T−1∑
t=τT

((C3GτT + 2U2
δBL∗LπGτT (τT + 1))α+ 2U2

δBL∗τTβ +
4U2

δBL∗√
T

).

For term I4, I5, and I6, from Cauchy-Schwartz inequality, we have

I4 ≤ 2Uv(

T−1∑
t=τT

Ey2t)
1
2 (

T−1∑
t=τT

E∥zt∥2)
1
2 ,

I5 ≤ 2cBL∗(

T−1∑
t=τT

E∥zt∥2)
1
2 (2

T−1∑
t=τT

Ey2t + 8L2
v

T−1∑
t=τT

E∥zt∥2)
1
2 ,

I6 ≤ 2cL∗(

T−1∑
t=τT

E∥zt∥2)
1
2 (

T−1∑
t=τT

E∥∇J(θt)∥)
1
2 .

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Overall, we get

λ

T−1∑
t=τT

E∥zt∥2 ≤ 2Uv(

T−1∑
t=τT

Ey2t)
1
2 (

T−1∑
t=τT

E∥zt∥2)
1
2

+ 2cBL∗(

T−1∑
t=τt

E∥zt∥2)
1
2 (2

T−1∑
t=τT

Ey2t + 8L2
v

T−1∑
t=τT

E∥zt∥2)
1
2

+ 2cL∗(

T−1∑
t=τT

E∥zt∥2)
1
2 (

T−1∑
t=τT

E∥∇J(θt)∥)
1
2

+ U2
δ

√
T + 2

T−1∑
T=τT

((C1GτT + U2
δLvLπGτT (τT + 1))α+ C2UδτTβ +

2U2
δ√
T
)

+ 2c

T−1∑
t=τT

((C3GτT + 2U2
δBL∗LπGτT (τT + 1))α+ 2U2

δBL∗τTβ +
4U2

δBL∗√
T

)

+

T−1∑
t=τT

(2U2
δ β + c(2L2

∗ +
Ls

2
)G2α+ (2cBUδL∗ + 4UδLv)ϵapp + 4LvHvU

3
δ).

Therefore, we have

ZT

(1)

≤ 2Uv

λ
(

1

T − τT

T−1∑
t=τT

Ey2t)
1
2 (

1

T − τT

T−1∑
t=τT

E∥zt∥2)
1
2

+
2cBL∗

λ
(

1

T − τT

T−1∑
t=τt

E∥zt∥2)
1
2 (2

1

T − τT

T−1∑
t=τT

Ey2t + 8L2
v

1

T − τT

T−1∑
t=τT

E∥zt∥2)
1
2

+
2cL∗

λ
(

1

T − τT

T−1∑
t=τT

E∥zt∥2)
1
2 (

1

T − τT

T−1∑
t=τT

E∥∇J(θt)∥)
1
2

+
1

λ
(
2U2

δ√
T

+ 2((C1GτT + U2
δLvLπGτT (τT + 1))α+ C2UδτTβ +

2U2
δ√
T
)

+ 2c((C3GτT + 2U2
δBL∗LπGτT (τT + 1))α+ 2U2

δBL∗τTβ +
4U2

δBL∗√
T

)

+ 2U2
δ β + c(2L2

∗ +
Ls

2
)G2α+ (2cBUδL∗ + 4UδLv)ϵapp + 4LvHvU

3
δ)

= O(
log2 T√

T
) + Õ(

1√
m
) +O(ϵapp) +

2Uv

λ
(

1

T − τT

T−1∑
t=τT

Ey2t)
1
2 (

1

T − τT

T−1∑
t=τT

E∥zt∥2)
1
2

+
2cBL∗

λ
(

1

T − τT

T−1∑
t=τt

E∥zt∥2)
1
2 (2

1

T − τT

T−1∑
t=τT

Ey2t + 8L2
v

1

T − τT

T−1∑
t=τT

E∥zt∥2)
1
2

+
2cL∗

λ
(

1

T − τT

T−1∑
t=τT

E∥zt∥2)
1
2 (

1

T − τT

T−1∑
t=τT

E∥∇J(θt)∥)
1
2 ,

where (1) follows from τT = O(log T) so that T − τT ≥ 1
2T for large T and the term Õ(1√

m
)

comes from the fact Hv = Õ(1√
m
) as shown in Lemma C.5. Therefore, we have

ZT ≤ O(
log2 T√

T
) + Õ(

1√
m
) +O(ϵapp) +

2Uv

λ

√
YTZT

+
2cBL∗

λ

√
ZT (2YT + 8L2

vZT) +
2cL∗

λ

√
ZTGT ,

which completes the proof.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

F.3 STEP 3: POLICY GRADIENT NORM ANALYSIS

In this subsection, we will establish an implicit upper bound for policy gradient norm.

Lemma F.6. For any t ≥ τ > 0, it holds that

E[Θ(Ot,θt)] ≤ C4τ(τ + 1)Gα+ C5Cρτ−1,

where C4 = max{2UδBLJ′ +3LJ(UδLl +2BLvL∗ +4BUδLJ), 2UδBLJLπ} , C5 = 4UδBLJ .

Theorem F.7. We have

GT ≤ O(
log2 T√

T
) +O(ϵapp) +B

√
GT (2YT + 8L2

vZT). (28)

Proof. From the update rule of actor in Line 9 of Algorithm 1 and Eq. (14), we have

J(θt+1) ≥ J(θt) + ⟨∇J(θt),θt+1 − θt⟩ −
LJ′

2
∥θt − θt+1∥2

= J(θt) + α⟨∇J(θt), δt∇ log πθt
(at|st)⟩ −

LJ′

2
α2∥δt∇ log πθt

(at|st)∥2

= J(θt) + α⟨∇J(θt),∆h(Ot, ηt,ωt,θt)⟩+ α⟨∇J(θt), h(Ot,θt)⟩

− LJ′

2
α2∥δt∇ log πθt

(at|st)∥2

= J(θt) + α⟨∇J(θt),∆h(Ot, ηt,ωt,θt)⟩ − αΘ(Ot,θt)

+ α⟨∇J(θt),EO′
t
[h(O′

t,θt)]⟩ −
LJ′

2
α2∥δt∇ log πθt

(at|st)∥2

= J(θt) + α⟨∇J(θt),∆h(Ot, ηt,ωt,θt)⟩ − αΘ(Ot,θt) + α∥∇J(θt)∥2

+ α⟨∇J(θt),EO′
t
[∆h′(O′

t,θt)]⟩ −
LJ′

2
α2∥δt∇ log πθt

(at|st)∥2,

where the last equality is due to the fact

EO′ [h(O′,θ)−∆h′(O′,θ)] = EO′ [(r(s, a)− J(θ) + Vθ(s
′)− Vθ(s))∇ log πθ(a|s)] = ∇J(θ).

Rearranging the above inequality and taking expectation, we have

E∥∇J(θt)∥2 ≤ 1

α
(E[J(θt+1)− J(θt)])− E⟨∇J(θt),∆h(Ot, ηt,ωt,θt)⟩+ E[Θ(Ot,θt)]

− E⟨∇J(θt),EO′
t
[∆h′(O′

t,θt)]⟩+
LJ′

2
αE∥δt∇ log πθt

(at|st)∥2.

Note that from Cauchy-Schwartz inequality, we have

−E⟨∇J(θt),∆h(Ot, ηt,ωt,θt)⟩ ≤ B
√

E∥∇J(θt)∥2
√

2Ey2t + 8L2
vE∥zt∥2.

From Lemma F.6 and choosing τ = τT , we have

E[Θ(Ot,θt)] ≤ C4τT (τT + 1)Gα+ C5Cρτ−1

≤ C4τT (τT + 1)Gα+ C5
1√
T
.

It has been shown that

EO′∥∆h′(O,θ)∥2 ≤ 4B2ϵ2app.

Therefore, we have

−⟨∇J(θt),EO′
t
[∆h′(O′

t,θt)]⟩ ≤ LJ

√
∥EO′ [∆h′(O′

t,θt)]∥2

≤ LJ

√
EO′∥∆h′(O′

t,θt)∥2
≤ 2BLJϵapp,

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

where we use ∥∇J(θ)∥ ≤ LJ which comes from Lemma C.3. Plugging the three terms yields

E∥∇J(θt)∥2 ≤ 1

α
(E[J(θt+1)]− E[J(θt)]) +B

√
E∥∇J(θt)∥2

√
2Ey2t + 8L2

vE∥zt∥2

+ 2BLJϵapp + C4τT (τT + 1)Gα+ C5
1√
T

+
LJ′

2
G2α.

Summing over t from τT to T − 1 gives
T−1∑
t=τT

E∥∇J(θt)∥2 ≤
T−1∑
t=τT

1

α
(E[J(θt+1)− E[J(θt)])︸ ︷︷ ︸

I1

+B

T−1∑
t=τT

√
E∥∇J(θt)∥2

√
2Ey2t + 8L2

vE∥zt∥2

+ (C4τT (τT + 1)G+ C5 +
LJ′

2
G2)

T − τT√
T

+ 2BLJϵapp(T − τT).

For term I1, we have

I1 =

T−1∑
t=τT

1

α
(E[J(θt+1)− E[J(θt)])

≤ 2Ur

c

√
T .

Overall, we have
T−1∑
t=τT

E∥∇J(θt)∥2 ≤ 2Ur

c

√
T + (C4τT (τT + 1)G+ C5 +

LJ′

2
G2)

T − τT√
T

+ 2BLJϵapp(T − τT)

+B

T−1∑
t=τT

√
E∥∇J(θt)∥2

√
2Ey2t + 8L2

vE∥zt∥2

≤ 2Ur

c

√
T + (C4τT (τT + 1)G+ C5 +

LJ′

2
G2)

T − τT√
T

+ 2BLJϵapp(T − τT)

+B(

T−1∑
t=τT

E∥∇J(θt)∥2)
1
2 (2

T−1∑
t=τT

Ey2t + 8L2
v

T−1∑
t=τT

E∥zt∥2)
1
2 .

Therefore, we get

GT ≤ (
4Ur

c
+ C4τT (τT + 1)G+ C5 + LJ′G2)

1√
T

+ 2BLJϵapp +B
√
GT (2YT + 8L2

vZT)

= O(
log2 T√

T
) +O(ϵapp) +B

√
GT (2YT + 8L2

vZT),

which concludes the proof.

F.4 STEP 4: INTERCONNECTED ITERATION SYSTEM ANALYSIS

In this subsection, we perform an interconnected iteration system analysis to prove Theorem 4.9.

Proof of Theorem 4.9.

Proof. Combining Eq. (19), Eq. (20), and Eq. (28), we have

YT ≤ O(
log2 T√

T
) + cG

√
YTGT ,

ZT ≤ O(
log2 T√

T
) + Õ(

1√
m
) +O(ϵapp) +

2Uv

λ

√
YTZT

+
2cBL∗

λ

√
ZT (2YT + 8L2

vZT) +
2cL∗

λ

√
ZTGT

GT ≤ O(
log2 T√

T
) +O(ϵapp) +B

√
GT (2YT + 8L2

vZT).

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Denote

l1 := cG, l2 :=
2Uv

λ
, l3 :=

2cBL∗

λ
, l4 := 8L2

v, l5 :=
2cL∗

λ
, l6 := B. (29)

Then we have

YT ≤ O(
log2 T√

T
) + l1

√
YTGT ,

ZT ≤ O(
log2 T√

T
) +O(ϵapp) + Õ(

1√
m
) + l2

√
YTZT + l3

√
ZT (2YT + l4ZT) + l5

√
ZTGT ,

GT ≤ O(
log2 T√

T
) +O(ϵapp) + l6

√
GT (2YT + l4ZT).

For GT , we get

GT ≤ O(
log2 T√

T
) +O(ϵapp) +

1

2
GT + l26(YT +

1

2
l4ZT),

GT ≤ O(
log2 T√

T
) +O(ϵapp) + l26(2YT + l4ZT). (30)

For ZT , we have

ZT ≤ O(
log2 T√

T
) +O(ϵapp) + Õ(

1√
m
) +

1

4
ZT + l22YT + (1 +

1

2
l4)l3ZT + l3YT +

1

4
ZT + l25GT .

If it satisfies (1 + 1
2 l4)l3 ≤ 1

4 , we further have

ZT ≤ O(
log2 T√

T
) +O(ϵapp) + Õ(

1√
m
) + (2l22 + 2l3)YT + 2l25GT . (31)

Plugging Eq. (30) into Eq. (31), it holds that

ZT ≤ O(
log2 T√

T
) +O(ϵapp) + Õ(

1√
m
) + (2l22 + 2l3 + 4l25l

2
6)YT + 2l4l

2
5l

2
6ZT .

If it satisfies 2l4l25l
2
6 ≤ 1

2 , we have

ZT ≤ O(
log2 T√

T
) +O(ϵapp) + Õ(

1√
m
) + 4(l22 + l3 + 2l25l

2
6)YT . (32)

For YT , we get

YT ≤ O(
log2 T√

T
) +

l1
2
(YT +GT). (33)

Plugging Eq. (30) and Eq. (32) into Eq. (33) gives

YT ≤ O(
log2 T√

T
) +O(ϵapp) +

l1
2
(YT + 2l26YT + l4l

2
6ZT)

≤ O(
log2 T√

T
) +O(ϵapp) + Õ(

1√
m
) +

l1
2
(YT + 2l26YT + 4l4l

2
6(l

2
2 + l3 + 2l25l

2
6))YT

= O(
log2 T√

T
) +O(ϵapp) + Õ(

1√
m
) +

l1
2
(1 + 2l26 + 4l4l

2
6(l

2
2 + l3 + 2l25l

2
6))YT .

Therefore, if l1(1 + 2l26 + 4l4l
2
6(l

2
2 + l3 + 2l25l

2
6)) ≤ 1, we have

YT ≤ O(
log2 T√

T
) +O(ϵapp) + Õ(

1√
m
).

Overall, we require

(1 +
1

2
l4)l3 ≤ 1

4
, 2l4l

2
5l

2
6 ≤ 1

2
, l1(1 + 2l26 + 4l4l

2
6(l

2
2 + l3 + 2l25l

2
6)) ≤ 1.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

According to the definition of l1, l2, l3, l4, l5, l6, we have

(1 + 4L2
v)
2cBL∗

λ
≤ 1

4
,

64L2
vc

2L2
∗B

2

λ2
≤ 1

2
,

cG(1 + 2B2 + 32L2
vB

2(
4U2

v

λ2
+

2cBL∗

λ
+

8c2B2L2
∗

λ2
)) ≤ 1.

Thus we choose

c ≤ min{ λ

16c(1 + 4L2
v)BL∗

,
λ2

G((1 + 2B2 + 32L2
vB

2)λ2 + 128L2
vU

2
vB

2)
}, (34)

which satisfies the above two inequalities. Therefore, we have

YT = O(
log2 T√

T
) +O(ϵapp) + Õ(

1√
m
),

and consequently,

ZT = O(
log2 T√

T
) +O(ϵapp) + Õ(

1√
m
),

GT = O(
log2 T√

T
) +O(ϵapp) + Õ(

1√
m
).

Thus we conclude our proof.

G PROOF OF PRELIMINARY LEMMAS

The following preliminary lemmas have been established in prior research (Zou et al., 2019; Zhang
et al., 2020a; Wu et al., 2020b; Liu et al., 2020). In this paper, we make modifications to accommo-
date continuous action spaces.

Proof of Lemma C.1.

Proof. For any θ1 and θ2, define the transition kernels respectively as follows:

Pi(s, ds
′) =

∫
A
P(ds′|s, a)πθi(a|s), i = 1, 2

Following from Theorem 3.1 in Mitrophanov (2005), we obtain

dTV (µθ1 , µθ2) ≤ (⌈logρ C−1⌉+ 1

1− ρ
)∥P1 − P2∥op,

where ∥ · ∥op is the operator norm defined in Mitrophanov (2005): ∥A∥ := sup∥q∥TV=1∥qA∥TV,
and ∥ · ∥TV denotes the total-variation norm. Then we have

∥P1 − P2∥op = sup
∥q∥TV=1

∥
∫
S
q(ds)(P1 − P2)(s, ·)∥TV

= sup
∥q∥TV=1

∫
S
|
∫
S
q(ds)(P1 − P2)(s, ds

′)|

≤ sup
∥q∥TV=1

∫
S

∫
S
q(ds)|(P1 − P2)(s, ds

′)|

= sup
∥q∥TV=1

∫
S

∫
S
q(ds)|

∫
A
P(ds′|s, a)(πθ1(da|s)− πθ2(da|s))|

= sup
∥q∥TV=1

∫
S

∫
S
q(ds)

∫
A
P(ds′|s, a)|(πθ1(da|s)− πθ2(da|s))|

= sup
∥q∥TV=1

∫
S
q(ds)

∫
A
|(πθ1(da|s)− πθ2(da|s))|

≤ Lπ∥θ1 − θ2∥.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

The first equation results from the definition of the operation norm, the second equation results from
the definition of total variation. Therefore, we have

dTV (µθ1
, µθ2

) ≤ Lπ(⌈logρ C−1⌉+ 1

1− ρ
)∥θ1 − θ2∥.

For the second inequality, we have

dTV (µθ1
⊗ πθ1

, µθ2
⊗ πθ2

) =

∫
S

∫
A
|µθ1(ds)πθ1(a|s)− µθ2(ds)πθ2(a|s)|

≤
∫
S

∫
A
|µθ1(ds)(πθ1(a|s)− πθ2(a|s))|

+

∫
S

∫
A
|(µθ1(ds)− µθ2(ds))πθ2(a|s))|

= dTV (πθ1 , πθ2) + dTV (µθ1 , µθ2)

≤ Lπ∥θ1 − θ2∥+ C(⌈logρ C−1⌉+ 1

1− ρ
)∥θ1 − θ2∥

= Lπ(1 + ⌈logρ C−1⌉+ 1

1− ρ
)∥θ1 − θ2∥.

For the third inequality, we have

dTV (µθ1
⊗ πθ1

⊗ P, µθ2
⊗ πθ2

⊗ P)

=
1

2

∫
S

∫
A

∫
S
|µθ1(ds)πθ1(a|s)P(ds′|s, a)− µθ2(ds)πθ2(a|s)P(ds′|s, a)|

=
1

2

∫
S

∫
A
|µθ1(ds)πθ1(a|s)− µθ2(ds)πθ2(a|s)|

= dTV (µθ1
⊗ πθ1

, µθ2
⊗ πθ2

),

which concludes the proof.

Proof of Lemma C.2.

Proof. From the fact that

P(st+1 ∈ ·) =
∫
S

∫
A
P(st = ds, at = da, st+1 ∈ ·),

we have

2dTV (P(st+1 ∈ ·),P(s̃t+1 ∈ ·))

=

∫
S
|
∫
S

∫
A
P(st = ds, at = da, st+1 = ds′)−

∫
S

∫
A
P(s̃t = ds, ãt = da, s̃t+1 = ds′)|

≤
∫
S

∫
S

∫
A
|P(st = ds, at = da, st+1 = ds′)− P(s̃t = ds, ãt = da, s̃t+1 = ds′)|

=

∫
S

∫
S

∫
A
|P(Ot = (ds, da, ds′))− P(Õt = (ds, da, ds′))|

= 2dTV (P(Ot ∈ ·),P(Õ ∈ ·)),

where the last equality requires the exchange of integral which is guaranteed by Fubini’s theorem
since P is an absolute integrable function.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

For the second equality, we have

2dTV (P(Ot ∈ ·),P(Õt ∈ ·))

=

∫
S

∫
A

∫
S
|P(Ot = (ds, da, ds′))− P(Õt = (ds, da, ds′))|

=

∫
S

∫
A

∫
S
|P(ds′|s, a)P((st, at) = (ds, da))− P(ds′|s, a)P((s̃t, ãt) = (ds, da))|

=

∫
S

∫
A

∫
S
P(ds′|s, a)|P((st, at) = (ds, da))− P((s̃t, ãt) = (ds, da))|

=

∫
S

∫
A
|P((st, at) = (ds, da))− P((s̃t, ãt) = (ds, da))|

= 2dTV (P((st, at) ∈ ·),P((s̃t, ãt) ∈ ·)).

For the third inequality, since θt is dependent on st as shown in Eq. (9), it holds that

2dTV (P((st, at) ∈ ·),P((s̃t, ãt) ∈ ·))

=

∫
S

∫
A
|P(st = ds, at = da)− P(s̃t = ds, ãt = da)|

=

∫
S

∫
A
|
∫
θ

P(st = ds)P(θt = dθ|st = s)P(at = da|st = s,θt = θ)− P(s̃t = ds, ãt = da)|

=

∫
S

∫
A
|P(st = ds)

∫
θ

P(θt = dθ|st = s)πθt
(da|s)− P(s̃t = ds)πθt−τ

(da|s)|

=

∫
S

∫
A
|P(st = ds)E[πθt(da|s)|st = s]− P(s̃t = ds)πθt−τ (da|s)|

=

∫
S

∫
A
|P(st = ds)E[πθt

(da|s)|st = s]− P(st = ds)πθt−τ
(da|s)|

+

∫
S

∫
A
|P(st = ds)πθt−τ

(da|s)− P(s̃t = ds)πθt−τ
(da|s)|

=

∫
S
P(st = ds)

∫
A
|E[πθt(da|s)|st = s]− πθt−τ (da|s)|

+ 2dTV (P(st ∈ ·),P(s̃t ∈ ·))
≤ LπE∥θt − θt−τ∥+ 2dTV (P(st ∈ ·),P(s̃t ∈ ·)),

where the last inequality holds due to the Lipschitz continuity of policy made in Assumption 4.7.

Proof of Lemma C.3.

Proof. By definition, we have

J(θ1)− J(θ2) = E[r(s1, a1)− r(s2, a2)],

where si ∼ µθi
, ai ∼ πθi

. Therefore, it holds that

J(θ1)− J(θ2) = E[r(s1, a1)− r(s1, a1)]

≤ 2UrdTV (µθ1 ⊗ πθ1 , µθ2 ⊗ πθ2)

≤ 2UrLπ(1 + ⌈logρ C−1⌉+ 1

1− ρ
)∥θ1 − θ2∥

= LJ∥θ1 − θ2∥.

Proof of Lemma C.4.

Proof. The proof of this lemma can be found in Lemma 3.2 of (Zhang et al., 2020a).

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

Proof of Lemma C.5.

Proof. We will divide the proof of this lemma into four steps.

Step 1: show that for all k ∈ {1, 2, · · · ,K}, we have

∥W (k)∥ ≤ O(
√
m). (35)

It can be shown that

∥W (k)∥ ≤ ∥W (k) −W
(k)
0 ∥+ ∥W (K)

0 ∥

≤ Uω + ∥W (k)
0 ∥

≤ O(
√
m),

where the last inequality id due to Assumption 4.2 and the fact that Uω is constant to m.

Step 2: show that for all k ∈ {1, 2, · · · ,K}, we have

∥s(k)∥ ≤ O(
√
m). (36)

From Assumption 4.1, we have ∥s(0)∥ ≤ 1. From Eq. (35), it holds that

∥s(1)∥ = ∥ 1√
m
σ(W (1)s(0))∥

≤ 1

m
L2
a∥W (1)∥2∥s(0)∥2 + ∥σ(0)∥2

≤ O(m).

By induction, suppose ∥s(k)∥2 ≤ O(m). We have

∥s(k+1)∥2 = ∥ 1√
m
σ(W (k+1)s(k))∥2

≤ 1

m
L2
a∥W (k+1)∥2∥s(k)∥2 + ∥σ(0)∥2

≤ O(m),

which concludes the proof. Therefore, from Eq. (36), it can be shown that

∥V̂ (ω; s)∥ = ∥ 1√
m
b⊤s(K)∥ ≤ O(1).

Step 3: show that for all k ∈ {1, 2, · · · ,K}, we have

∥∇s(k−1)s(k)∥ ≤ O(1). (37)

From the chain rule, we have

∇s(k−1)s(k)(i, j) =
1√
m
σ′(

∑
j

W (k)(i, j)s(k−1)(j))W (k)(i, j).

Therefore, we get

∥∇s(k−1)s(k)∥2 = sup
∥v∥=1

m∑
i=1

(
∑
j

∇s(k−1)s(k)(i, j)vj)
2

= sup
∥v∥=1

1

m
∥Σ′W (k)v∥2

≤ 1

m
∥Σ′∥2 · ∥W (k)∥2

≤ O(1),

where Σ′ is a diagonal matrix with Σ′(i, i) = σ′(ΣjW
(k)(i, j)s(k−1)(j)) := ξ(i).

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

Step 4: show that for all k ∈ {1, 2, · · · ,K}, we have

∥∇W (k)s(k)∥ ≤ O(1), (38)

where ∇W (k)s(k) is defined to be a matrix whose (I, (j − i)m + h)’th entry ∇W (k)s(k)(i, j, h) is
given by

∇W (k)s(k)(i, j, h) =
∂s(k)(i)

∂W (k)(j, h)
.

It holds that

∇W (k)s(k)(i, j, j′) =
1√
m
1{i− j}σ′(

∑
h

W (k)(i, h)s(k−1)(h))s(k−1)(j′),

which can be written as

∇W (k)s(k)(i, j, j′) =
1√
m
1{i = j}ξ(i)s(k−1)(j′).

Therefore, we get

∥∇W (k)s(k)∥2 = sup
∥V ∥F=1

m∑
i=1

(
∑
j,j′

∇W (k)s(k)(i, j, j′)Vj,j′)
2

=
1

m
sup

∥V ∥F=1

m∑
i=1

(
∑
j,j′

1{i = j}ξ(i)s(k−1)(j′)Vj,j′)
2

=
1

m
sup

∥V ∥F=1

m∑
i=1

(
∑
j,j′

1{i = j}ξ(i)[V s(k−1)]j)
2

=
1

m
sup

∥V ∥F=1

m∑
i=1

ξ(i)2[V s(k−1)]2i

= sup
∥V ∥F=1

1

m
∥Σ′V s(k−1)∥2

≤ 1

m
∥Σ′∥2 · ∥s(k−1)∥2

≤ O(1),

where the last inequality follows Eq. (36).

We then show the Lipschitzness of the neural network. Since each entry of b satisfies |bi| ≤ 1, it is
easy to see that

∥∇s(K) V̂ (ω; s)∥ =
1√
m
∥b∥ ≤ 1.

By Eq. (37),Eq. (38), and the chain rule, we have

∥∇W (k)V (ω; s) = ∥∇W (K)V (ω; s)∇W (K−1)s(K) · · · ∇s(k)s(k+1)∇W (k)s(k)∥ ≤ O(1).

It can be shown that

∥∇ωV̂ (ω; s)∥2 = sup
∥V ∥F=1

K∑
k=1

(∇W (k) V̂ (ω; s)Vk)
2 ≤ O(1),

which concludes the proof of Lipschitzness.

The proof of smoothness property has been shown in Liu et al. (2020).

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

H PROOF OF SUPPORTING LEMMAS

The following four lemmas only deal with the Markovian noise, which are originally proved in Wu
et al. (2020b) and updated in Wu et al. (2020a). We include the proof with slight modifications for
proving Theorem 4.9.

Proof of Lemma F.1.

Proof. We will divide the proof of this lemma into four steps.

Step 1: show that for any θ1,θ2, η, O = (s, a, s′), we have

|Φ(O, η,θ1)− Φ(O, η,θ2)| ≤ 4UrLJ∥θ1 − θ2∥. (39)

By the definition of Φ(O, η,θ) in Eq. (11), we have

|Φ(O, η,θ1)− Φ(O,θ,θ2)| = |(η − J(θ1))(r − J(θ1))− (η − J(θ2))(r − J(θ2))|
≤ |(η − J(θ1))(r − J(θ1))− (η − J(θ1))(r − J(θ2))|

+ |(η − J(θ1))(r − J(θ2))− (η − J(θ2))(r − J(θ2))|
≤ 4Ur|J(θ1)− J(θ2)|
≤ 4UrLJ∥θ1 − θ2∥.

Step 2: show that for any θ, η1, η2, O, we have

|Φ(O, η1,θ)− Φ(O, η2,θ) ≤ 2Ur|η1 − η2|. (40)

By definition, we have

|Φ(O, η1,θ)− Φ(O, η2,θ)| = |(η1 − J(θ))(r − J(θ))− (η2 − J(θ))(r − J(θ))|
≤ 2Ur|η1 − η2|.

Step 3: show that for original tuple Ot and the auxiliary tuple Õt, conditioned on st−τ+1 and θt−τ ,
we have

|E[Φ(Ot, ηt−τ ,θt−τ)− E[Φ(Õt, ηt−τ ,θt−τ)]| ≤ 2U2
rLπ

t∑
k=t−τ

E∥θk − θt−τ∥. (41)

By definition, we have

E[Φ(Ot, ηt−τ ,θt−τ)− E[Φ(Õt, ηt−τ ,θt−τ)] = (ηt−τ − J(θt−τ))E[r(st, at)− r(s̃t, ãt)].

By definition of total variation norm, we have

E[r(st, at)− r(s̃t, ãt)] ≤ 2UrdTV (P(Ot ∈ ·|st−τ+1,θt−τ),P(Õt ∈ ·|st−τ+1,θt−τ)). (42)

By Lemma C.2, we get

dTV (P(Ot ∈ ·|st−τ+1,θt−τ),P(Õt ∈ ·|st−τ+1,θt−τ))

= dTV (P((st, at) ∈ ·|st−τ+1,θt−τ),P((s̃t, ãt) ∈ ·|st−τ+1,θt−τ))

≤ dTV (P(st ∈ ·|st−τ+1,θt−τ),P(s̃t ∈ ·|st−τ+1,θt−τ)) +
1

2
LπE∥θt − θt−τ∥

≤ dTV (P(Ot−1 ∈ ·|st−τ+1,θt−τ),P(Õt−1 ∈ ·|st−τ+1,θt−τ)) +
1

2
LπE∥θt − θt−τ∥.

Repeat the above argument from t to t− τ , we have

dTV (P(Ot ∈ ·|st−τ+1,θt−τ),P(Õt ∈ ·|st−τ+1,θt−τ)) ≤
1

2
Lπ

t∑
k=t−τ

E∥θk − θt−τ∥. (43)

Plugging Eq. (43) into Eq. (42), we have

|E[Φ(Ot, ηt−τ ,θt−τ)− E[Φ(Õt, ηt−τ ,θt−τ)]| ≤ 2U2
rLπ

t∑
k=t−τ

E∥θk − θt−τ∥.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

Step 4: show that conditioned on st−τ+1 and θt−τ , we have

E[Φ(Õt, ηt−τ ,θt−τ)] ≤ 4U2
rCρτ−1. (44)

Note that according to definition, we have

E[Φ(O′
t−τ , ηt−τ ,θt−τ)|θt−τ] = 0,

where O′
t−τ = (s′t−τ , a

′
t−τ , s

′
t−τ+1) is the tuple generated by s′t−τ ∼ µθt−τ

, a′t−τ ∼
πθt−τ

, s′t−τ+1 ∼ P . From the uniform ergodicity in Assumption 4.6, it shows that

dTV (P(s̃t = ·|st−τ+1,θt−τ), µθt−τ) ≤ Cρτ−1.

Then we have

E[Φ(Õt, ηt−τ ,θt−τ)] = E[Φ(Õt, ηt−τ ,θt−τ)− Φ(O′
t−τ , ηt−τ ,θt−τ)]

= E[(ηt−τ − J(θt−τ))(r(s̃t, ãt)− r(s′t−τ , a
′
t−τ))]

≤ 4U2
r dTV (P(Õt−τ = ·|st−τ+1,θt−τ), µθt−τ ⊗ πθt−τ ⊗ P)

≤ 4U2
rCρτ−1.

Combing Eq. (39), Eq. (40), Eq. (41), and Eq. (44), we have

E[Φ(Ot, ηt,θt)] = E[Φ(Ot, ηt,θt)− Φ(Ot, ηt,θt−τ)] + E[Φ(Ot, ηt,θt−τ)− Φ(Ot, ηt−τ ,θt−τ)]

+ E[Φ(Ot, ηt−τ ,θt−τ)− Φ(Õt, ηt−τ ,θt−τ)] + E[Φ(Õt, ηt−τ ,θt−τ)]

≤ 4UrLJ∥θt − θt−τ∥+ 2Ur|ηt − ηt−τ |+ 2U2
rLπ

t∑
i=t−τ

E∥θi − θt−τ∥

+ 4U2
rCρτ−1,

which concludes the proof.

Proof of Lemma F.3.

Proof. We will divide the proof of this lemma into four steps.

Step 1: show that for any θ1,θ2,ω and tuple O = (s, a, s′), we have

|Ψ(O,ω,θ1)−Ψ(O,ω,θ2) ≤ C1∥θ1 − θ2∥, (45)

where C1 = 2U2
δLπ(1 + ⌈logρ C−1⌉+ 1

1−ρ) + 2UδLJLv + 2UδL∗Lv .

By definition of Ψ(O,ω,θ) in Eq. (11), we have

|Ψ(O,ω,θ1)−Ψ(O,ω,θ2)|
= |⟨ω − ω∗

1 , g(O,ω,θ1)− ḡ(ω,θ1)⟩ − ⟨ω − ω∗
2 , g(O,ω,θ2)− ḡ(ω,θ2)⟩|

≤ |⟨ω − ω∗
1 , g(O,ω,θ1)− ḡ(ω,θ1)⟩ − ⟨ω − ω∗

1 , g(O,ω,θ2)− ḡ(ω,θ2)⟩|︸ ︷︷ ︸
I1

+ |⟨ω − ω∗
1 , g(O,ω,θ2)− ḡ(ω,θ2)⟩ − ⟨ω − ω∗

2 , g(O,ω,θ2)− ḡ(ω,θ2)⟩|︸ ︷︷ ︸
I2

.

For term I1, we have

I1 = |⟨ω − ω∗
1 , g(O,ω,θ1)− ḡ(ω,θ1)⟩ − ⟨ω − ω∗

1 , g(O,ω,θ2)− ḡ(ω,θ2)⟩|
= |⟨ω − ω∗

1 , g(O,ω,θ1)− g(O,ω,θ2)⟩|+ |⟨ω − ω∗
1 , ḡ(ω,θ1)− ḡ(ω,θ2)⟩|

= |⟨ω − ω∗
1 , (J(θ1)− J(θ2))∇ωV̂ (ω; s)⟩|+ |⟨ω − ω∗

1 , ḡ(ω,θ1)− ḡ(ω,θ2)⟩|
≤ 2UωLJLv∥θ1 − θ2∥+ 2Uω∥ḡ(ω,θ1)− ḡ(ω,θ2)∥
≤ 2UωLJLv∥θ1 − θ2∥+ 2Uω · 2UδdTV (µθ1

⊗ πθ1
⊗ P, µθ2

⊗ πθ2
⊗ P)

≤ 2UωLJLv∥θ1 − θ2∥+ 2U2
δ dTV (µθ1

⊗ πθ1
⊗ P, µθ2

⊗ πθ2
⊗ P)

≤ (2UδLJLv + 2U2
δLπ(1 + ⌈logρ C−1⌉+ 1

1− ρ
))∥θ1 − θ2∥,

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

where we use the fact that Uδ = 2Ur + 2Uω + 2Uv and the last inequality comes from Lemma C.1.

For term I2, from Cauchy-Schwartz inequality, we have

I2 = |⟨ω − ω∗
1 , g(O,ω,θ2)− ḡ(ω,θ2)⟩ − ⟨ω − ω∗

2 , g(O,ω,θ2)− ḡ(ω,θ2)⟩|
= |⟨ω∗

1 − ω∗
2 , g(O,ω,θ2)− ḡ(ω,θ2)⟩|

≤ 2UδLv∥ω∗
1 − ω∗

2∥
≤ 2UδLvL∗∥θ1 − θ2∥.

Combining the results from I1 and I2, we get

|Ψ(O,ω,θ1)−Ψ(O,ω,θ2) ≤ C1∥θ1 − θ2∥,
where C1 = 2U2

δLπ(1 + ⌈logρ C−1⌉+ 1
1−ρ) + 2UδLJLv + 2UδL∗Lv .

Step 2: show that for any θ,ω1,ω2 and tuple O(s, a, s′), we have

|Ψ(O,ω1,θ)−Ψ(O,ω2,θ)| ≤ 2Uδ(UvHv + L2
v + UrHv + Lv)∥ω1 − ω2∥. (46)

By definition, we have

|Ψ(O,ω1,θ)−Ψ(O,ω2,θ)|
= |⟨ω1 − ω∗, g(O,ω1,θ)− ḡ(ω1,θ)⟩ − ⟨ω2 − ω∗, g(O,ω2,θ)− ḡ(ω2,θ)⟩|
≤ |⟨ω1 − ω∗, g(O,ω1,θ)− ḡ(ω1,θ)⟩ − ⟨ω1 − ω∗, g(O,ω2,θ)− ḡ(ω2,θ)⟩|

+ |⟨ω1 − ω∗, g(O,ω2,θ)− ḡ(ω2,θ)⟩ − ⟨ω2 − ω∗, g(O,ω2,θ)− ḡ(ω2,θ)⟩|
≤ 2Uω∥(g(O,ω1,θ)− g(O,ω2,θ))− (ḡ(ω1,θ)− ḡ(ω2,θ))∥+ 2UδLv∥ω1 − ω2∥.

It follows that

∥(g(O,ω1,θ)− g(O,ω2,θ))− (ḡ(ω1,θ)− ḡ(ω2,θ))∥
=∥(r(s, a)− J(θ))(∇ωV̂ (ω1; s)−∇ωV̂ (ω2; s))

+ V̂ (ω1; s
′)∇ωV̂ (ω1; s)− V̂ (ω2; s

′)∇ω(ω2; s)

+ V̂ (ω2; s)∇ωV̂ (ω2; s)− V̂ (ω1; s)∇ωV̂ (ω1; s)∥
≤∥V̂ (ω1; s

′)∇ωV̂ (ω1; s)− V̂ (ω1; s
′)∇ωV̂ (ω2; s)

+ V̂ (ω1; s
′)∇ωV̂ (ω2; s)− V̂ (ω2; s

′)∇ωV̂ (ω2; s)∥
+ ∥V̂ (ω2; s)∇ωV̂ (ω2; s)− V̂ (ω1; s)∇ωV̂ (ω2; s)

+ V̂ (ω1; s)∇ωV̂ (ω2; s)− V̂ (ω1; s)∇ωV̂ (ω1; s)∥+ 2UrHv∥ω1 − ω2∥
≤2UvHv∥ω1 − ω2∥+ 2L2

v∥ω1 − ω2∥+ 2UrHv∥ω1 − ω2∥
=(2UvHv + 2L2

v + 2UrHv)∥ω1 − ω2∥.
Therefore, we obtain

|Ψ(O,ω1,θ)−Ψ(O,ω2,θ)| ≤ C2∥ω1 − ω2∥,
where C2 = 2Uδ(UvHv + L2

v + UrHv + Lv).

Step 3: show that for tuples Ot = (st, at, st+1) and Õt = (s̃t, ãt, s̃t+1). Conditioning on st−τ+1

and θt−τ , we have

E[Ψ(Ot,ωt−τ ,θt−τ)−Ψ(Õt,ωt−τ ,θt−τ)] ≤ U2
δLvLπGτ(τ + 1)α. (47)

By the definition of total variation norm, we have

E[Ψ(Ot,ωt−τ ,θt−τ)−Ψ(Õt,ωt−τ ,θt−τ)]

= E[⟨ωt−τ − ω∗
t−τ , g(Ot,ωt−τ ,θt−τ)− g(Õt,ωt−τ ,θt−τ))]

≤ 2U2
δLvdTV (P(Ot ∈ ·|st−τ+1,θ−τ),P(Õt ∈ ·|st−τ+1,θt−τ))

(1)

≤ U2
δLvLπ

t∑
k=t−τ

E∥θk − θt−τ∥

≤ U2
δLvLπGτ(τ + 1)α,

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

where (1) follows from Eq. (43).

Step 4: show that conditioning on st−τ+1 and θt−τ ,

E[Ψ(Õt,ωt−τ ,θt−τ)] ≤ 2U2
δCρτ−1 (48)

From the definition of Ψ(O,ω,θ), we have
E[Ψ(O′

t−τ ,ωt−τ ,θt−τ)|st−τ+1,θt−τ] = 0,

where O′
t−τ is the tuple generated by s′t−τ ∼ µθt−τ , a

′
t−τ ∼ πθt−τ , s

′
t−τ+1 ∼ P . From Assumption

4.6, we have
dTV (P(s̃t = ·|st−τ+1,θt−τ), µθt−τ

) ≤ Cρτ−1.

Then, it holds that

E[Ψ(Õt,ωt−τ ,θt−τ)] = E[Ψ(Õt,ωt−τ ,θt−τ)−Ψ(O′
t−τ ,ωt−τ ,θt−τ)]

= E⟨ωt−τ − ω∗
t−τ , g(Õt,ωt−τ ,θt−τ)− g(O′

t−τ ,ωt−τ ,θt−τ)⟩
≤ 2U2

δLvdTV (P(Õt = ·|st−τ+1,θt−τ), µθt−τ ⊗ πθt−τ ⊗ P)

= 2U2
δLvdTV (P((s̃t, ãt) ∈ ·|st−τ+1,θt−τ), µθt−τ

⊗ πθt−τ
)

= 2U2
δLvdTV (P(s̃t = ·|st−τ+1,θt−τ), µθt−τ

)

≤ 2U2
δLvCρτ−1.

Combining Eq. (45), Eq. (46), Eq. (47), and Eq. (48), we have
E[Ψ(Ot,ωt,θt)] = E[Ψ(Ot,ωt,θt)−Ψ(Ot,ωt,θt−τ)]

+ E[Ψ(Ot,ωt,θt−τ)−Ψ(Ot,ωt−τ ,θt−τ)]

+ E[Ψ(Ot,ωt−τ ,θt−τ)−Ψ(Õt,ωt−τ ,θt−τ)]

+ E[Ψ(Õt,ωt−τ ,θt−τ)]

≤ C1∥θt − θt−τ∥+ C2∥ωt − ωt−τ∥
+ U2

δLvLπGτ(τ + 1)α+ 2U2
δLvCρτ−1,

where C1 = 2U2
δLπ(1+⌈logρ C−1⌉+ 1

1−ρ)+2UδLJLv+2UδL∗Lv and C2 = 2Uδ(UvHv+L2
v+

UrHv + Lv).

Proof of Lemma F.4.

Proof. We will divide the proof of this lemma into four steps.

Step 1: show that for any O,ω,θ1,θ2, we have
∥Ξ(O,ω,θ1)− Ξ(O,ω,θ2)∥ ≤ (3UδLh + 2UδBL∗)∥θ1 − θ2∥ (49)

Since Ξ(O,ω,θ) = ⟨ω − ω∗, (∇ω∗
θ)

⊤(EO′ [h(O′,θ)] − h(O,θ))⟩, we define Eθ[h(O
′,θ)] :=

EO′ [h(O′,θ)], where Eθ is the shorthand of EO′∼(µθ,πθ,P). In the following, we will show that
each term in Ξ(O,ω,θ) is Lipschitz with respect to θ.

Term ω is not related to θ, term ω∗ := ω∗(θ) is L∗-Lipschitz, and term ∇ω∗
θ is Ls-Lipschitz.

For term h(O,θ), denote δ(O,θ) := r(s, a)− J(θ) + V̂ (ω∗(θ); s′)− V̂ (ω∗(θ); s), we have
∥h(O,θ1)− h(O,θ2)∥

= ∥δ(O,θ1)∇ log πθ1
(a|s)− δ(O,θ2)∇ log πθ2

(a|s)∥
≤ ∥δ(O,θ1)∇ log πθ1(a|s)− δ(O,θ1)∇ log πθ2(a|s)∥

+ ∥δ(O,θ1)∇ log πθ2
(a|s)− δ(O,θ2)∇ log πθ2

(a|s)∥
≤ UδLl∥θ1 − θ2∥+B|δ(O,θ1)− δ(O,θ2)|
≤ UδLl∥θ1 − θ2∥+B(|J(θ1)− J(θ2)|+ ∥V̂ (ω∗(θ1); s

′)− V̂ (ω∗(θ2); s
′)∥

+ ∥V̂ (ω∗(θ1); s)− V̂ (ω∗(θ2); s)∥
≤ (UδLl + 2BLJ)∥θ1 − θ2∥+ 2BLv∥ω∗(θ1)− ω∗(θ2)∥
≤ Lh∥θ1 − θ2∥.

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

Hence we have h(O,θ) is Lh-Lipschitz, where Lh = UδLl + 2BLvL∗ + 4BUδLJ .

For term Eθ[h(O
′,θ)], we have

∥Eθ1
[h(O′,θ1)]− Eθ2

[h(O′,θ2)]∥
≤ ∥Eθ1 [h(O

′,θ1)]− Eθ1 [h(O
′,θ2)]∥+ ∥Eθ1 [h(O

′,θ2)]− Eθ2 [h(O
′,θ2)]∥

≤ Eθ1
[∥h(O′,θ1)− h(O′,θ2)∥] + ∥Eθ1

[h(O′,θ2)]− Eθ2
[h(O′,θ2)]∥

≤ Lh∥θ1 − θ2∥+ ∥Eθ1
[h(O′,θ2)]− Eθ2

[h(O′,θ2)]∥
≤ Lh∥θ1 − θ2∥+ 2BUδdTV (µθ1 ⊗ πθ1 , µθ2 ⊗ πθ2)

≤ (Lh + 2BUδLπ(1 + ⌈logρ C−1⌉+ 1

1− ρ
))∥θ1 − θ2∥

≤ (Lh + 2BUδLJ)∥θ1 − θ2∥
≤ 2Lh∥θ1 − θ2∥.

Then we have ω − ω∗
θ is Uδ-bounded and L∗-Lipschitz; ∇ω∗

θ is L∗-bounded and Ls-Lipschitz;
Eθ[h(O

′,θ)]− h(O,θ) is 2UδB-bounded and 3Lh-Lipschitz. By the triangle inequality, we have

∥Ξ(O,ω,θ1)− Ξ(O,ω,θ2)∥ ≤ (2UδBL2
∗ + 2U2

δBLs + 3UδL∗Lh)∥θ1 − θ2∥ ≤ C3∥θ1 − θ2∥,

where C3 := 3UδL∗(UδLl + 4BUδLJ + 2BLvL∗) + 2UδBL2
∗ + 2U2

δBLs.

Step 2: show that

∥Ξ(O,ω1,θ)− Ξ(O,ω2,θ)∥ ≤ 2UδBL∗∥ω1 − ω2∥. (50)

Actually, we have

∥Ξ(O,ω1,θ)− Ξ(O,ω2,θ)∥ = ∥⟨ω1 − ω2, (∇ω∗
θ)

⊤EO′ [h(O′,θ)]− h(O,θ)⟩∥
≤ 2UδBL∗∥ω1 − ω2∥.

Step 3: show that for tuples Ot = (st, at, st+1) and Õt = (s̃t, ãt, s̃t+1). Conditioning on st−τ+1

and θt−τ , we have

E[Ξ(Ot,ωt−τ ,θt−τ)− Ξ(Õt,ωt−τ ,θt−τ)] ≤ 2U2
δBLπ

t∑
k=t−τ

E∥θk − θt−τ∥. (51)

By definition of Ξ(O,ω,θ), we have

∥E[Ξ(Ot,ωt−τ ,θt−τ)− Ξ(Õt,ωt−τ ,θt−τ)]∥
= ∥E[⟨ωt−τ − ω∗

t−τ , (∇ω∗
t−τ)

⊤(h(Õt,θt−τ)− h(Ot,θt−τ))]∥
≤ 4U2

δBL∗dTV (P(Ot ∈ ·|st−τ+1,θt−τ),P(Õt ∈ ·|st−τ+1,θt−τ)), (52)

where the inequality comes from the definition of total variation distance. The total variation norm
between Ot and Õt has been computed in Eq. (43). Plugging Eq. (43) into Eq. (52), we get

∥E[Ξ(Ot,ωt−τ ,θt−τ)− Ξ(Õt,ωt−τ ,θt−τ)]∥ ≤ 2U2
δBL∗Lπ

t∑
k=t−τ

E∥θk − θt−τ∥

≤ 2U2
δBL∗LπGτ(τ + 1)α.

Step 4: Show that conditioning on st−τ+1 and θt−τ , we have

∥E[Ξ(Õt,ωt−τ ,θt−τ)]∥ ≤ 4U2
δBCρτ−1. (53)

It can be shown that

∥E[Ξ(Õt,ωt−τ ,θt−τ)]∥
(1)
= ∥E[Ξ(Õt,ωt−τ ,θt−τ)− Ξ(O′

t−τ ,ωt−τ ,θt−τ)]∥
(2)

≤ 4U2
δBL∗dTV (P(Õt ∈ ·|st−τ+1,θt−τ), µθt−τ

⊗ πθt−τ
⊗ P),

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2025

where (1) is due to the fact that O′
t is from the stationary distribution which satisfies

E[Ξ(O′
t−τ ,ωt−τ ,θt−τ)|θt−τ , st−τ+1] = 0 and (2) follows from the definition of total variation

distance. From Assumption 4.6, we know that

dTV (P(s̃t ∈ ·), µθt−τ
) ≤ Cρτ−1.

Therefore, we have

∥E[Ξ(Õt,ωt−τ ,θt−τ)∥ ≤ 4U2
δBL∗dTV (P(Õt = ·|st−τ+1,θt−τ), µθt−τ

⊗ πθt−τ
⊗ P)

= 4U2
δBL∗dTV (P((s̃t, ãt) ∈ ·|st−τ+1,θt−τ), µθt−τ

⊗ πθt−τ
)

= 4U2
δBL∗dTV (P(s̃t = ·|st−τ+1,θt−τ), µθt−τ)

≤ 4U2
δBL∗Cρτ−1.

Combining Eq. (49)-Eq. (53), we can decompose the Markovian bias as

E[Ξ(Ot,ωt,θt)] = E[Ξ(Ot,ωt,θt)− Ξ(Ot,ωt,θt−τ)]

+ E[Ξ(Ot,ωt,θt−τ)− Ξ(Ot,ωt−τ ,θt−τ)]

+ E[Ξ(Ot,ωt−τ ,θt−τ)− Ξ(Õt,ωt−τ ,θt−τ)]

+ E[Ξ(Õt,ωt−τ ,θt−τ)]

≤ C3∥θt − θt−τ∥+ 2UδBL∗∥ωt − ωt−τ∥
+ 2U2

δBL∗LπGτ(τ + 1)α+ 4U2
δBL∗Cρτ−1.

Thus we conclude our proof.

Proof of Lemma F.6.

Proof. We will divide the proof of this lemma into three steps.

Step 1: show that

|Θ(O,θ1)−Θ(O,θ2)| ≤ (2UδBLJ′ + 3LJLh)∥θ1 − θ2∥, (54)

where Lh = UδLl + 2BLvL∗ + 4BUδLJ is defined in the proof of Lemma F.4.

Since Θ(O,θ) = ⟨∇J(θ),EO′
θ
[h(O′

θ,θ)] − h(O,θ)⟩, we will show that each term in Θ(O,θ) is
Lipschitz.

For the term ∇J(θ), we know it’s LJ -bounded and LJ′ -Lipschitz. For term Eθ[h(O
′,θ)]−h(O,θ),

we have shown in the proof of Lemma F.4 that it’s 2UδB-bounded and 3Lh-Lipschitz. By the
triangle inequality, we have

|Θ(O,θ1)−Θ(O, θ2)| ≤ (2UδBLJ′ + 3LJLh)∥θ1 − θ2∥

Step 2: show that conditioning on st−τ+1 and θt−τ , we have

|E[Θ(Ot,θt−τ)−Θ(Õt,θt−τ)]| ≤ 2UδBLJLπ

t∑
k=t−τ

∥θk − θt−τ∥ (55)

By definition of Θ(O,θ), we have

|E[Θ(Ot,θt−τ)−Θ(Õt,θt−τ)]|
= |E[⟨∇J(θt−τ), h(Õt,θt−τ)− h(Ot,θt−τ)⟩]|
≤ 4UδBLJdTV (P(Ot ∈ ·|st−τ+1,θt−τ),P(Õt ∈ ·|st−τ+1,θt−τ)), (56)

where the inequality comes from the definition of total variation distance. The total variation dis-
tance between Ot and Õt has been computed in Eq. (43). Plugging Eq. (43) into Eq. (56), we get

|E[Θ(Ot,θt−τ)−Θ(Õt,θt−τ)]| ≤ 2UδBLJLπ

t∑
k=t−τ

∥θk − θt−τ∥.

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2025

Step 3: show that conditioning on st−τ+1 and θt−τ , we have

|E[Θ(Õt,θt−τ)−Θ(O′
t−τ ,θt−τ)]| ≤ 4UδBLJCρτ−1. (57)

From the definition of Θ(O,θ), we have

|E[Θ(Õt,θt−τ)−Θ(O′
t−τ ,θt−τ)]| = |E[⟨∇J(θt−τ), h(O

′
t,θt−τ)⟩ − ⟨∇J(θt−τ), h(Õt,θt−τ)⟩]|

≤ 4UδBLJdTV (P(Õt ∈ ·|st−τ+1,θt−τ), µθt−τ ⊗ πθt−τ ⊗ P)

= 4UδBLJdTV (P((s̃t, ãt) ∈ ·|st−τ+1,θt−τ), µθt−τ ⊗ πθt−τ)

= 4UδBLJdTV (P(s̃t = ·|st−τ+1,θt−τ), µθt−τ
)

≤ 4UδBLJCρτ−1,

where the last inequality follows from Assumption 4.6. Therefore, we have

|E[Θ(Õt,θt−τ)−Θ(O′
t−τ ,θt−τ)]| ≤ 4UδBLJCρτ−1.

Combining Eq. (54), Eq. (55), and Eq. (57), we can decompose the Markovian bias as

E[Θ(Ot,θt)] = E[Θ(Ot,θt)−Θ(Ot,θt−τ)]

+ E[Θ(Ot,θt−τ)−Θ(Õt,θt−τ)]

+ E[Θ(Õt,θt−τ)−Θ(O′
t−τ ,θt−τ)]

+ E[Θ(O′
t−τ ,θt−τ)],

where Õt is from the auxiliary Markovian chain defined in Eq. (8) and O′
t−τ is from the stationary

distribution which satisfies E[Θ(O′
t−τ ,θt−τ)|θt−τ] = 0.

Then we have

E[Θ(Ot,θt)] ≤ (2UδBLJ′ + 3LJLh)E∥θt − θt−τ∥

+ 2UδBLJLπ

t∑
k=t−τ

∥θk − θt−τ∥+ 4UδBLJCρτ−1

≤ (2UδBLJ′ + 3LJLh)

t∑
k=t−τ+1

E∥θk − θk−1∥

+ 2UδBLJLπ

t∑
k=t−τ+1

k∑
j=t−τ+1

E∥θj − θj−1∥+ 4UδBLJCρτ−1

≤ (2UδBLJ′ + 3LJLh)

t∑
k=t−τ+1

E∥θk − θk−1∥

+ 2UδBLJLπτ

t∑
j=t−τ+1

E∥θj − θj−1∥+ 4UδBLJCρτ−1

≤ C4(τ + 1)

t∑
k=t−τ+1

E∥θk − θk−1∥+ C5Cρτ−1

≤ C4(τ + 1)2Gα+ C5Cρτ−1

where C4 = max{2UδBLJ′ +3LJLh, 2UδBLJLπ} and C5 = 4UδBLJ . Substituting Lh into C4,
we conclude the proof.

41

	Introduction
	Main Contributions

	Preliminaries
	The Single-Timescale Neural Actor-Critic Algorithm
	Parameterization of the Value function and Policy
	Algorithm Design

	Analysis of Single-Timescale Neural Actor-Critic
	Assumptions
	Finite-Time Analysis

	Experiments
	Conclusion and Discussion
	
	Related Work
	Additional Notations
	Preliminary Lemmas
	Proof of Propositions
	Proof Sketch
	Proof of Main Theorem
	Step 1: Reward estimation error analysis
	Step 2: Critic error analysis
	Step 3: Policy gradient norm analysis
	Step 4: Interconnected iteration system analysis

	Proof of Preliminary Lemmas
	Proof of Supporting Lemmas

