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ABSTRACT

Actor-critic (AC) algorithms have been the powerhouse behind many successful
yet challenging applications. However, the theoretical understanding of finite-
time convergence in AC’s most practical form remains elusive. Existing research
often oversimplifies the algorithm and only considers simple finite state and action
spaces. We analyze the more practical single-timescale AC on continuous state
and action spaces and use deep neural network approximations for both critic and
actor. Our analysis reveals that the iterates of the more practical framework we
consider converge towards the stationary point at rate Õ(T−1/2) + Õ(m−1/2),
where T is the total number of iterations and m is the width of the deep neural
network. To our knowledge, this is the first finite-time analysis of single-timescale
AC in continuous state and action spaces, which further narrows the gap between
theory and practice.

1 INTRODUCTION

Actor-critic (AC) algorithms have driven numerous successful applications and are state-of-the-art
in reinforcement learning (Konda & Tsitsiklis, 1999; Mnih et al., 2016; Silver et al., 2017). Their
practical implementation typically consists of two parallel updates: the critic update and the actor
update. The critic incrementally estimates the action-value function for the current policy, while the
actor adjusts the policy network in the direction suggested by the estimated policy gradient based on
the action value.

Despite AC’s widespread success, their theoretical understanding lags significantly behind. Most ex-
isting theoretical results focus on cases where the actor and the critic update at significantly different
rates. These include algorithms that either update the critic multiple times for a fixed actor (Yang
et al., 2019; Kumar et al., 2019; Agarwal et al., 2021; Xu et al., 2020a) or employ two-timescale
approaches where the actor’s stepsize decays faster than the critic’s (Wu et al., 2020b; Chen et al.,
2023; Xu et al., 2020b; Hong et al., 2023). These settings are only made to simplify analysis. In
practice, the actor and critic are typically updated at a single-timescale, using stepsizes that are
constantly proportional to each other (Chen et al., 2021; Olshevsky & Gharesifard, 2023; Chen &
Zhao, 2024; Tian et al., 2024). Single-timescale AC is typically more sample-efficient, as it avoids
artificially slowing down the actor update performed in the aforementioned AC variants (Olshevsky
& Gharesifard, 2023; Chen & Zhao, 2024).

However, the theoretical analysis of single-timescale AC in practical settings is still largely miss-
ing in the literature. As shown in Table 1, all existing works only analyze the single-timescale AC
method in solving Markov Decision Processes (MDPs) with finite action space. This finite action
space assumption excludes all continuous policies, including commonly used Gaussian, Uniform,
and Gamma policies. Given the commonness of continuous control tasks in practice and the preva-
lence of AC algorithms in addressing them (Lillicrap et al., 2015; Haarnoja et al., 2018), there is a
pressing need for theoretical guarantees in continuous settings. Moreover, Markovian sampling and
deep neural network approximation for both the actor and the critic are commonly used in practical
applications (LeCun et al., 2015; Haarnoja et al., 2018). However, existing studies have typically
addressed only one of these elements, failing to consider their compound effects in practice (see the
summary in Table 1).
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Table 1: Comparisons of existing works analyzing single-timescale AC algorithms under various
settings

Reference
MDP Sampling

Function class
Convergence rate

State Action Actor Critic w.r.t. T w.r.t. m

Chen et al. (2021) Infinite Finite i.i.d. i.i.d. Linear O(T−0.5) N/A

Olshevsky & Gharesifard (2023) Finite Finite i.i.d. i.i.d. Linear O(T−0.5) N/A

Chen & Zhao (2024) Infinite Finite Markovian Markovian Linear Õ(T−0.5) N/A

Tian et al. (2024) Finite Finite i.i.d. Markovian Deep NN Õ(T−0.5) Õ(m−0.5)

Ours Infinite Infinite Markovian Markovian Deep NN Õ(T−0.5) Õ(m−0.5)

As highlighted in the last row of Table 1, in this paper, we establish the finite-time convergence of
single-timescale AC in solving MDPs with continuous (infinite) state and action spaces, and using
deep neural network approximation and Markovian sampling for both actor and critic updates. Our
analysis shows that the algorithm converges to a stationary point at a rate of Õ(T−1/2)+Õ(m−1/2),
where T is the number of iterations, m is the neural network width, and Õ hides logarithmic factors.
As outlined in Table 1, previous studies faced at least two of the three potentially restrictive assump-
tions discussed earlier (finite action space, i.i.d sampling, linear function class). In contrast, our
results address all these challenges, which bridge the gap between theory and practice and advance
the theoretical analysis for the single-timescale AC method.

1.1 MAIN CONTRIBUTIONS

Our main contributions are summarised as follows:

• We establish the convergence of single-timescale AC in continuous state and action spaces, which
has not been accomplished in prior research (see Table 1). Notably, even for the simpler case of
the two-timescale AC variants, existing analysis cannot establish their convergence in the contin-
uous setting. Our work may serve as the foundation to analyze other two- or single-timescale AC
algorithms in more general continuous settings.

• Our results demonstrate significant advantages over existing works on single-timescale AC. We
adopt more practical settings of deep neural network approximation and Markovian sampling for
both the actor and the critic. Compared to Tian et al. (2024), where the critic employs Markovian
sampling to collect transition tuples, the actor still requires i.i.d. transition tuples sampled from a
discounted state-action occupation measure, which demands a burdensome re-sampling. In contrast,
we allow Markovian sampling for both the actor and critic, utilizing the same transition tuples,
closely following the state-of-the-art practice that facilitates efficient online learning.

• Technically, we develop a new framework to address the challenges posed by the continuous
domain in single-timescale AC analysis. To establish the main results, we formulate a general
condition in Assumption 4.7 (c) and demonstrate that it is satisfied by a broad class of neural network
policies (Proposition 4.8) on continuous space, and include the previous assumptions on discrete
space as special cases. Moreover, we examine the neural network approximation errors of the
evolving actor and critic, ensuring that the resulting errors do not amplify through their interactions.
Our methodology enriches the analytical toolbox for single-timescale AC.

Notation. We use san-serif letters to denote scalars and use lower and upper case bold letters to
denote vectors and matrices respectively. We also use ∥ω∥ to denote the ℓ2-norm of a vector ω,
∥A∥ to denote the spectral norm of a matrix A, and ∥A∥F to denote the Frobenius norm of a matrix
A. For two sequences of real numbers (xn) and (yn), we write xn = O(yn) if there exists C < ∞
such that |xn| ≤ C|yn| for all n sufficiently large. We use Õ(·) to further hide logarithmic factors.
The total variation distance of two probability measures µ and ν on X is defined by dTV (µ, ν) :=
supA |µ(A)−ν(A)|, where A runs over all measurable subsets of X . In addition, we use P to denote
a generic probability of some random event.
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2 PRELIMINARIES

In this section, we introduce some basics of MDP, the AC algorithm, and deep neural networks.

Markov Decision Process. We consider the standard Markov Decision Process (MDP) character-
ized by (S,A,P, r), where S is the state space and A is the action space. The spaces S and A are
allowed to be either finite sets or real vector spaces, i.e., S ⊂ Rds and A ⊂ Rda . The transition ker-
nel is denoted by P(st+1|st, at) ∈ R≥0 and the reward function is r : S×A → [−Ur, Ur]. A policy
πθ parameterized by θ ∈ XΘ maps a given state to a probability distribution over the action space,
i.e., at ∼ πθ(·|st). In this work, we consider the average-reward setting (Sutton et al., 1999; Yang
et al., 2019; Wu et al., 2020b; Chen & Zhao, 2024), which aims to find a policy πθ that maximizes
the following infinite-horizon time-average reward:

J(θ) := lim
T→∞

Eθ

[
1

T

T−1∑
t=0

r(st, at)

]
= E(s,a)∼(µθ,πθ)

[
r(s, a)

]
.

In the above equation, the expectation Eθ is taken over the states and actions generated by following
the policy πθ and the transition kernel P . Additionally, µθ denotes the stationary state distribution
induced by πθ and P . The existence of this stationary distribution is guaranteed by the uniform
ergodicity of the underlying MDP, which is a common assumption (See Assumption 4.6 in the
sequel). Hereafter, we refer to J(θ) as the time-average reward (and exchangeably, performance
function), which can be evaluated by the expected reward over the stationary distribution µθ and the
policy πθ. The state-value function is used to evaluate the overall rewards starting from a state s,
following policy πθ and transition kernel P thereafter, which is defined as

Vθ(s) := Eθ

[ ∞∑
t=0

(
r(st, at)− J(θ)

)∣∣∣∣s0 = s

]
.

Similarly, we define the action-value (Q-value) function to evaluate the overall rewards starting from
s, taking action a, and following transition kernel P and policy πθ thereafter:

Qθ(s, a) := Eθ

[ ∞∑
t=0

(
r(st, at)− J(θ)

)∣∣∣∣s0 = s, a0 = a

]
= r(s, a)− J(θ) + E

[
Vθ(s

′)
]
,

where the last expectation is taken over s′ ∼ P(·|s, a).
We denote the class of real-valued functions on S by F := {f | f : S → R}. For a policy πθ, we
define two operators Dθ : F → F and Pθ : F → F as follows:

Dθf(s) = µθ(s) · f(s), Pθf(s) =

∫
S×A

πθ(a | s)P(s′ | s, a)f(s′)d(a× s′). (1)

These operators will be instrumental in addressing the technical challenge associated with continu-
ous state and action space. Lastly, for two functions f, g ∈ F , their inner product is defined as

⟨f, g⟩ =
∫
S
f(s) · g(s)ds, (2)

and the norm of f is defined as ∥f∥2 = ⟨f, f⟩.
Actor-Critic. In AC, typically the critic estimates the actor’s value through Temporal-Difference
(TD) learning, and the actor adjusts its policy parameters to maximize the performance function via
stochastic gradient ascent. The policy gradient theorem (Sutton et al., 1999) provides an analytical
formula of the gradient of the performance function J(θ) with respect to the policy parameter θ,
which is given by

∇θJ(θ) = Es∼µθ,a∼πθ

[
Qθ(s, a) · ∇θ log πθ(a|s)

]
. (3)

Equivalently, the policy gradient can be written as

∇J(θ) = Es∼µθ,a∼πθ
[(Qθ(s, a)− b(s))∇θ log πθ(a|s)],

3
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where b(s) is called the baseline function, which is employed to reduce the variance of the gradient
estimate. A popular choice of baseline is the state-value function, which leads to the following
so-called advantage-based policy gradient

∇θJ(θ) = Es∼µθ,a∼πθ
[∆θ(s, a)∇θ log πθ(a|s)], (4)

where ∆θ := Qθ(s, a)− Vθ(s) is known as the advantage function.

In deep reinforcement learning, the policy and value functions are typically parameterized by deep
neural networks (DNNs) due to their strong representation capabilities (Henderson et al., 2018; Zhao
et al., 2020). However, the convergence and performance of training DNNs are less understood, es-
pecially in reinforcement learning. In this paper, we establish conditions and provide an asymptotic
analysis for single-timescale AC algorithms utilizing DNN approximations for both the actor and
the critic.

3 THE SINGLE-TIMESCALE NEURAL ACTOR-CRITIC ALGORITHM

In this section, we present the single-timescale neural AC algorithm to be analyzed in the sequel,
incorporating key components commonly found in practical implementations.

3.1 PARAMETERIZATION OF THE VALUE FUNCTION AND POLICY

We consider a multi-layer neural network for estimating the true state-value function Vθ(s) under a
policy πθ. The network V̂ (ω; s) has a general form of a deep neural network with a linear output
layer:

s(0) = s,

s(k) =
1

√
mk

σ(W (k)s(k−1)), for k = 1, 2, · · · ,K,

V̂ (ω; s) =
1

√
mK

b⊤s(K),

(5)

where K is the total number of hidden layers, state s ∈ Rds is the input to the neural network,
σ is an element-wise activation function, b is a fixed coefficient vector for the output layer, and
ω ∈ XΩ stands for the trainable parameter of the neural network. The latter is a column vector
formed by stacking the weights of different layers, ω := {W (k) ∈ Rmk×mk−1}Kk=1, where mk ∈ N
is the width of the k-th layer and m0 = ds is the input dimension. Without loss of generality, we
assume all the hidden layers have the same width m, i.e., mk = m for k ∈ {1, 2, · · · ,K}. It is
for the ease of presentation only. As shown in the proof, our analysis also applies to mk ≥ m. We
admit some freedom to choose the activation function σ(·). It only needs to satisfy Assumption 4.1.
For example, it can be sigmoid and GeLU (Hendrycks & Gimpel, 2016). Note that the above
definition is general enough to encompass standard multilayer perceptrons (MLPs), convolutional
neural networks (CNNs), and residual networks (ResNets) as special cases.

The policy πθ is allowed to have a general parameterization, including linear functions (Yang et al.,
2019), deep neural networks (Wang et al., 2019), and energy-based policies (Fu et al., 2020). For
the DNN case, the actor can be parameterized similarly to Eq. (5), where all the trainable parameters
will be stacked into the column vector θ ∈ XΘ.

3.2 ALGORITHM DESIGN

In this subsection, we first aim to update the parameter of the neural network (the critic) ω so
that V̂ (ω; s) can approximate the true value function Vθ(s) of a policy πθ. Concretely, at step t,
we implement Stochastic Gradient Descent (SGD) methods to adjust the critic in the direction that
would most reduce the mean square value error [V (st)− V̂ (ωt; st)]

2:

ωt+1 = ωt −
1

2
β∇[V (st)− V̂ (ωt; st)]

2 = ωt + β[V (st)− V̂ (ωt; st)]∇ωV̂ (ωt; st), (6)

where β is the stepsize (learning rate). Since V (st) is unknown, the semi-gradient TD(0) method
approximates it by replacing V (st) with the current target rt − J(θ) + V̂ (ωt; st+1). To further
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Algorithm 1 Single-Timescale Neural Actor-Critic

1: Input initial actor parameter θ0, initial critic parameter ω0, initial reward estimator η0, stepsizes
α for actor, β for critic, and γ for reward estimator.

2: Draw s0 from some initial distribution
3: for t = 0, 1, 2, · · · , T − 1 do
4: Take action at ∼ πθt(·|st)
5: Observe next state st+1 ∼ P(·|st, at) and reward rt = r(st, at)

6: δt = rt − ηt + V̂ (ωt; st+1)− V̂ (ωt; st)
7: ηt+1 = ηt + γ(rt − ηt)

8: ωt+1 = projBω0
(ωt + βδt∇ωV̂ (ω; st))

9: θt+1 = θt + αδt∇θ log πθt(at|st)
10: end for

estimate the unknown time-average reward J(θ), we use the following exponential moving average
update of ηt,

ηt+1 = ηt + γ(rt − ηt),

where γ is the stepsize. Hereafter, we will refer to it as the reward estimator. This additional
estimation of the time-average reward J(θ) introduces more analysis complexity compared to the
discounted setting (Olshevsky & Gharesifard, 2023; Tian et al., 2024). Now, by denoting the TD
error as

δt := rt − ηt + V̂ (ωt; st+1)− V̂ (ωt; st),

we can rewrite the update of the critic in Eq. (6) as

ωt+1 = ωt + βδt∇ωV̂ (ω; st).

For the neural network specified in Section 3.1, we require its width m to be sufficiently large such
that the neural network is in the overparameterization regime. In this regime, the optimal solution
typically resides in the neighborhood of the initialization (Du et al., 2019; Chen et al., 2021; Tian
et al., 2024). Therefore, in Line 8 of Algorithm 1, we constrain the update of the critic parameter
within a ball of constant radius around its initial condition, which ensures the boundedness without
overlooking the optimal solution. Specifically, projBω0

stands for the projection onto a ball with a
constant radius around the initial condition of the critic, i.e., Bω0 = {ω|∥ω − ω0∥ ≤ Uω}, where
Uω is a constant.

For the actor update, it is standard to use the TD error (δt) as an approximation of the advantage
function (Sutton & Barto, 2018). Therefore, based on the policy gradient theorem, the corresponding
update rule for the actor can be written as

θt+1 = θt + αδt∇θ log πθt
(at|st),

where δt∇θ log πθt(at|st) is an approximation of the policy gradient defined in Eq. (4). The parallel
updates of the critic and actor in Lines 8 and 9 aim to drive the actor towards the direction that
increases the time-average reward J(θ).

Algorithm 1 is considered to be “single-timescale” if the stepsizes α, β, γ are only constantly pro-
portional to each other. It is introduced in the classic textbook (Sutton & Barto, 2018) as a canonical
AC algorithm with linear function approximation. We take a significant step forward to consider the
more challenging neural network approximation for both the actor and the critic, which is referred
to as the “neural actor-critic”. Moreover, we consider the more practical Markovian sampling, start-
ing from an initial state s0, with subsequent states and actions generated according to the transition
kernel and the policy, respectively. The consecutive transition tuples (s0, a0, s1, a1, s2, · · · ) form a
single trajectory, thereby circumventing the time-consuming re-sampling procedure (i.i.d. sampling)
mandated in prior works (Chen et al., 2021; Olshevsky & Gharesifard, 2023; Tian et al., 2024). More
importantly, we aim to address the challenging settings of continuous state and action spaces that
are prevalent in applications. The finite-time convergence in such contexts is of significant interest
to the community but remains unresolved.

5
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4 ANALYSIS OF SINGLE-TIMESCALE NEURAL ACTOR-CRITIC

In this section, we first outline several standard assumptions regarding the neural networks and the
underlying MDP that facilitate the convergence analysis of single-timescale neural AC algorithm.
We also discuss insights related to these conditions and their connections with relevant literature.
Building upon these assumptions, we subsequently present our main results on the finite-time con-
vergence of the algorithm.

4.1 ASSUMPTIONS

We first state the assumptions about the neural network defined in Eq. (5).

Assumption 4.1 (Neural architecture and initialization). The neural network defined in Eq. (5) sat-
isfies the following properties:

(a) (Input assumption) Any input to the neural network satisfies ∥s(0)∥ ≤ 1.

(b) (Activation function assumption) σ is La-Lipschitz and Ha-smooth, i.e.,

(i) ∀x1, x2 ∈ R, |σ(x1)− σ(x2)| ≤ La|x1 − x2|.
(ii) ∀x1, x2 ∈ R, |σ′(x1)− σ′(x2)| ≤ Ha|x1 − x2|,where σ′ is the derivative of σ.

(c) (Initialization assumption) Each entry of the vector b satisfies |bi| ≤ 1,∀i, and the weights
of the neural network W

(k)
0 are randomly initialized from a normal distribution N (0, 1),

with each entry being independently sampled.

This assumption mainly states the initialization and analytic properties of the neural network. We
note that these assumptions are widely satisfied in various applications. For the input norm con-
straint, we could normalize the state space to guarantee this assumption. Regarding the activation
function, we emphasize that many commonly used activation functions, such as sigmoid and GeLU,
satisfy this condition. While this assumption excludes non-smooth activation functions like ReLU,
alternatives such as GeLU or SiLU (smooth versions of ReLU) can be employed to maintain com-
pliance with the assumption. The initialization assumption, furthermore, can be easily implemented
during neural network training. We also note that the above assumptions are common in the theo-
retical analysis of neural networks (Liu et al., 2020; Tian et al., 2024).

As shown in Liu et al. (2020), with Assumption 4.1, the following assumption holds with high
probability (Lemma F.4 in Liu et al. (2020)), which we state as an assumption in our work for ease
of presentation.

Assumption 4.2. The absolute value of each entry of s(k) (the output of layer k of the neural
network) is Õ(1) at initialization. The initial weights satisfy ∥W (k)

0 ∥ ≤ O(
√
m) for all k.

For the value function Vθ(s) of a given policy θ, its best approximation using the neural network
(Eq. (5)) is defined via

ϵapp(ω
∗(θ)) := inf

ω

√
Es∼µθ

[
(V̂ (ω; s)− Vθ(s))2

]
, (7)

where ω∗(θ) is referred to as the optimal critic that yields the minimal (optimal) approximation error
ϵapp(ω

∗(θ)). In this paper, we assume the optimal approximation errors for all potential policies
are uniformly bounded, that is,

∀θ, ϵapp(ω∗(θ)) ≤ ϵapp,

for some constant ϵapp ≥ 0. The error ϵapp is zero if Vθ can be exactly approximated by the neural
network (Eq. (5)). Naturally, it is expected that the learning errors of Algorithm 1 depend on ϵapp,
which represents the approximation capacity of the critic.

The assumption of a uniformly bounded approximation error is common in the literature (Chen
et al., 2021; Olshevsky & Gharesifard, 2023; Chen & Zhao, 2024; Tian et al., 2024). It is more
restrictive for the linear function approximation than for the neural network setting. If the true
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value function is not linear, which is typically the case in practice, the approximation error ϵapp
can be significantly large. In contrast, the neural network approximation can arbitrarily closely
approximate any continuous function according to the Universal Approximation Theorem (Hornik,
1991), and therefore can potentially keep the approximation error arbitrarily small.

We then make the following assumption for the optimal critic.
Assumption 4.3 (Smoothness of optimal critic). For any θ1,θ2 ∈ XΘ, we have

∥ω∗(θ1)− ω∗(θ2)∥ ≤ L∗∥θ1 − θ2∥,
∥∇ω∗(θ1)−∇ω∗(θ2)∥ ≤ Ls∥θ1 − θ2∥,

where L∗ and Ls are finite positive constants.

The above assumption states that the optimal critic is L∗-Lipschitz and Ls-smooth. This assumption
is commonly employed for the single-timescale AC with neural network approximation (Tian et al.,
2024). In the case of linear function approximation, the above assumption is trivially implied by the
linearity of the value function (Olshevsky & Gharesifard, 2023; Chen & Zhao, 2024).

Furthermore, we specify the regularity of the neural network.
Assumption 4.4 (Regularity of the neural network). For the neural network defined in Eq. (5), there
exists some constant λ1 > 0 such that

∥V̂ (ω)− V̂ (ω∗(θ))∥ ≥ λ1∥ω − ω∗(θ)∥, ∀θ ∈ XΘ,ω ∈ XΩ,

where the norm of a function is defined based on the inner product given in Eq. (2), which involves
the product of function values integrated over s. Assumption 4.4 states the regularity of the neural
network in terms of learning the optimal value. Intuitively, it requires that the perturbation of the
critic parameter around the optimal one will cause a non-zero change of the critic neural network
output for any given input (the state). From the point of view of the optimization landscape of the
neural network, it merely assumes that optimal and suboptimal points are distinguished. This is also
a standing assumption of other analysis of AC methods with neural network approximation (Tian
et al., 2024).

The next assumption pertains to the exploration of the policy πθ in continuous settings.
Assumption 4.5 (Exploration). There exists a constant λ2 > 0 such that〈
V̂ (ω), Dθ(I − Pθ)V̂ (ω)

〉
≥ λ2

∥∥V̂ (ω)
∥∥2, for any θ ∈ XΘ and neural network V̂ (ω) ∈ F , where

Dθ, Pθ are operators defined in Eq. (1), I denotes the identity operator, and the inner product is
defined in Eq. (2).

This assumption was first introduced by us for the continuous setting with general function ap-
proximation classes. To demonstrate its connection to exploration, we show that if exploration is
insufficient, the assumption fails to hold. Consequently, when the assumption holds, it implies suf-
ficient exploration. First note that the operator Dθ essentially multiplies the stationary distribution
µθ to the function on its right (see the definition in Eq. (1)). If the policy πθ does not sufficiently
explore, there exists a subset of the state space U ⊂ S such that µθ(U) = 0. Furthermore, we can
choose V̂ (ω) such that V̂ (ω; s) = 0,∀s ∈ S \ U and V̂ (ω; s) ≥ 0,∀s ∈ U . With this choice,
the left-hand side of the inequality evaluates to 0, while the right-hand side becomes positive. This
violates the condition stated in Assumption 4.5. Thus, the contrapositive holds: if Assumption 4.5
is satisfied, it ensures sufficient exploration of the state space under the policy πθ.

Note that sufficient exploration assumption is standard in the literature of analyzing the convergence
of on-policy RL algorithms (Bhandari et al., 2018; Zou et al., 2019; Wu et al., 2020b; Olshevsky &
Gharesifard, 2023; Chen & Zhao, 2024). We can also drop this condition by analyzing the off-policy
version of the algorithm under some sufficiently-exploring behavior policy that can be arbitrarily
specified, and relates to the target policy by importance sampling. However, this is not the core
focus of the problem. Therefore, we adopt Assumption 4.5 directly and concentrate on the primary
challenge of analyzing the algorithm in the continuous state-action space.

The following assumption is made on the underlying MDP.
Assumption 4.6 (Uniform ergodicity). For a Markov chain generated by the policy πθ and transition
kernel P , let P denote the corresponding state transition probability. Then there exists C > 0 and
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ρ ∈ (0, 1) such that the total variation distance between the state distribution at time τ and the
stationary distribution µθ satisfies: dTV (P(sτ ∈ ·|s0 = s), µθ(·)) ≤ Cρτ , for all τ ≥ 0, s ∈ S.

Assumption 4.6 assumes the Markov chain is geometrically mixing, which is implied by the uniform
ergodicity of the chain. It is commonly employed to characterize the noise induced by Markovian
sampling in reinforcement learning algorithms (Bhandari et al., 2018; Zou et al., 2019; Wu et al.,
2020b; Chen et al., 2021; Olshevsky & Gharesifard, 2023).

To justify this assumption in the continuous space, we note that all the distributions specified by
the Ornstein–Uhlenbeck process satisfy this property. The OU process converges to a Gaussian
distribution with the exponential mixing time. Moreover, it can also be shown that this property
holds for more general diffusion processes (Del Moral & Villemonais, 2018).

Finally, we need some regularity assumptions on the policy.

Assumption 4.7 (Smoothness of the policy). Let πθ(a|s) be a policy parameterized by θ ∈ XΘ.
There exists positive constants B,Ll and Lπ such that for any θ, s, and a, it holds that

(a) ∥∇ log πθ(a|s)∥ ≤ B,

(b) ∥∇ log πθ1(a|s)−∇ log πθ2(a|s)∥ ≤ Ll∥θ1 − θ2∥,

(c) dTV (πθ1
(·|s), πθ2

(·|s)) ≤ Lπ∥θ1 − θ2∥.

Assumption 4.7 (a) and (b) are standard and widely adopted across the prior results presented in
Table 1. For Assumption 4.7 (c), previous research considers the finite action space only and relies
on a degenerated version of the condition, which is simply the Lipschitz continuity of the policy, i.e.,
|πθ1

(a|s) − πθ2
(a|s)| ≤ L∥θ1 − θ2∥, where the absolute distance on the left is evaluated between

two function values at a single action point. In contrast, we generalize this condition by employing
the Lipschitz continuity of two distributions (either probability mass or density functions) under
the total variation distance. Our assumption naturally accommodates continuous action spaces and
encompasses the finite action space conditions considered in prior research as a special case.

Under the continuous state and action spaces settings, we further justify that Assumption 4.7 (c)
is sufficiently general and can be satisfied by a broad range of parameterization methods in the
following proposition.

Proposition 4.8 (Generality of Assumption 4.7 (c)). Under the following conditions:

(a) (Support Compactness) For any θ, the policy πθ(a|s) has compact support XA ⊂ Rda .

(b) (Density Lipschitzness) For any θ, the policy πθ(a|s) is Lipschitz w.r.t a, i.e., |πθ(a1|s) −
πθ(a2|s)| ≤ L1∥a1 − a2∥ for some constant L1 > 0 and all a1, a2 ∈ Rda .

(c) (Neural Network Lipschitzness) Let the policy πθ(·|s) be a distribution with its mean value
parameterized by the neural network µ̄θ(s). For any s, µ̄θ(·) is Lipschitz w.r.t. θ, i.e.,
|µ̄θ1(s)− µ̄θ2(s)| ≤ L2∥θ1 − θ2∥ for some constant L2 > 0 and all θ1,θ2 ∈ XΘ,

Assumption 4.7 (c) holds with Lπ = L1L2|XA|, where XA is the volume of XA, i.e., |XA| =
∫
XA

da.

Conditions (a) and (b) assert that the policy πθ(·|s) has compact support and is Lipschitz continu-
ous with respect to a. These conditions are sufficiently general to be satisfied by a wide range of
distributions, including the uniform distribution, the truncated Gaussian distribution, and the Beta
distribution with α, β > 1. Condition (c) holds for commonly used neural networks such as MLP
and Transformer (Bartlett et al., 2017; Zhang et al., 2022). Consequently, Assumption 4.7 (c) is
satisfied by a wide range of distributions with their mean parameterized by MLP or Transformer,
thus demonstrating the generality of the newly proposed Assumption 4.7 (c).

4.2 FINITE-TIME ANALYSIS

We define the integer τT := min{i ≥ 0 | Cρi−1 ≤ T−1/2} given T the total number of iterations
(see Algorithm 1), where C, ρ are the same constants defined in Assumption 4.6. The integer τT
represents a certain mixing time of an ergodic Markov chain, which will be used to control the
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Markovian noise in the analysis. In our main results, we require that T ≥ 2τT to ensure that the
Markov chain is well-mixed and the Markovian noise is effectively bounded. We can estimate that
τT = logCρ−1

log ρ−1 + log T
2 log ρ−1 = O(log T ) which results in CρτT−1 ≤ 1√

T
.

We quantify the learning errors by defining yt := ηt − J(θt), which is the difference between
the reward estimator and the true time-average reward J(θt) at time t. For the critic, we define
zt := ωt − ω∗

t with ω∗
t := ω∗(θt) to measure the error between the critic and its target value at

iteration t. The following theorem summarizes our main results.

Theorem 4.9. Consider Algorithm 1 with α = c√
T
, β = 1√

T
, γ = 1√

T
, where c is a constant

depending on problem parameters. Suppose Assumption 4.1-4.7 hold, for T ≥ 2τT , we have

1

T − τT

T−1∑
t=τT

E[y2t ] = O(
log2 T√

T
) + Õ(

1√
m
) +O(ϵapp),

1

T − τT

T−1∑
t=τT

E∥zt∥2 = O(
log2 T√

T
) + Õ(

1√
m
) +O(ϵapp),

1

T − τT

T−1∑
t=τT

E∥∇J(θt)∥2 = O(
log2 T√

T
) + Õ(

1√
m
) +O(ϵapp).

Given that the problem is inherently non-convex in general, it is common to prove convergence to
a stationary point. The error term O(ϵapp) represents the critic approximation error that commonly
appears in the analysis of AC methods (Wu et al., 2020b; Chen & Zhao, 2024; Tian et al., 2024). If
the critic approximation error ϵapp is zero, the reward estimator, the critic, and the actor estimation
errors all vanish at a rate of Õ(T− 1

2 ) + Õ(m− 1
2 ), where again m denotes the width of the neural

networks adopted. The Õ notation hides the polynomials of all other problem parameters that do not
depend on T,m and ϵapp. The additional logarithmic term with respect to T arises from the mixing
time of the Markov chain, which can be further eliminated if considering the i.i.d. sampling model.

Compared to previous results on single-timescale AC methods, we achieve the same convergence
rate of Õ(T− 1

2 ) with respect to the number of total iterations T . The term Õ(m− 1
2 ) emerges from

neural network analysis, which is consistent with previous findings (Liu et al., 2020; Tian et al.,
2024). It is important to note that in linear function approximation cases, the approximation error
(ϵapp) serves as the primary source of learning errors due to its limited expressive capacity.

Our proof analyzes and tracks the interactions of the three errors (yt, zt,∇J(θt)) by deriving their
implicit bounds that are dependent on each other. Subsequently, we prove their simultaneous con-
vergence under a series of technical developments. Considering continuous spaces and deep neural
networks substantially complicate the bounding of the error terms. For example, to analyze the inner
product between zt and the critic’s mean-path update ḡ(ωt,θt) as defined in Eq. (10), we employ
the Bellman equation and neural network approximation to manage error propagation. This error is
controlled by leveraging the approximation capability of the neural network, the linearity of wide
networks, and sufficient policy exploration (see Section E in Appendix for a detailed proof sketch).
In contrast, (Chen & Zhao, 2024) manages this term through direct computation by exploiting the
linearity of the value function.

Moreover, we manage to control Markovian noise in continuous state and action spaces, which in-
volves novel results established in Lemma C.1, which characterizes the distance between stationary
distributions in these continuous spaces. This approach is distinct from the finite action space setting
(Chen & Zhao, 2024) and is considerably more intricate than the i.i.d. sampling scheme (Olshevsky
& Gharesifard, 2023; Tian et al., 2024). Compared with the Neural Tangent Kernel (NTK) analysis
(Jacot et al., 2018; Allen-Zhu et al., 2019; Liu et al., 2020) where the neural network is trained to
learn a fixed mapping, the neural network in our algorithm is trained to estimate the value function of
an evolving policy, which requires a novel design of the update rates and less conservative treatment
of the coupling learning errors.
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Figure 1: Experimental results of Algorithm 1 on the pendulum problem.

5 EXPERIMENTS

We evaluate the performance of Algorithm 1 in the classic benchmark “Pendulum” environment.
The Pendulum environment features a continuous state space represented by [cos(θ), sin(θ), θ̇],
where θ is the pendulum angle and θ̇ is the angular velocity. The action space is also continu-
ous, consisting of a single torque value τ typically ranging from −2 to 2. The reward function is
designed to penalize deviations from the upright position and the magnitude of the applied torque,
calculated as R = −(θ2 +0.1θ̇2 +0.001τ2). In our experiment, episodes terminate after 1000 time
steps. At the beginning of each run, the state is initialized at a random angle in [−π, π] and a random
angular velocity in [−1, 1].

We employ a truncated Gaussian policy defined as πθ = Truncated(N (θ, 1),−1, 1) for the actor,
where the mean θ is learned using Algorithm 1, while the variance remains fixed at 1. The mean
value θ is parameterized by the neural network defined in Eq. (5) with 2 hidden layers and 64
neurons in each layer, i.e., K = 2,m = 64. The parameterization of the critic ω is specified in
Eq. (5) as outlined in Section 3.1. To verify our theoretical findings, we evaluate the performance of
Algorithm 1 with varying widths and depths for the critic. The tanh activation function is employed,
adhering to Assumption 4.1b.

In Fig. 1, the solid lines correspond to the mean and the shaded regions correspond to 95% confi-
dence interval over 10 independent runs. The dashed line corresponds to a value of 0, representing
the theoretically achievable optimal value for this task. The average return is calculated as the mean
of the last 40 returns. When the average return is around -200, it indicates that the pendulum is
being kept upright. Fig. 1a and 1b show the performance of Algorithm 1 under different widths m
and depths K, respectively. In our experiment, we set the stepsizes as 5e−6 for both the critic and
the actor. In Figures 1a, the number of hidden layers of the network is fixed at 2 while in Fig. 1b,
the network width of each hidden layer is fixed at 200. These results indicate that the neural net-
works with larger sizes can outperform the smaller neural networks, which strongly corroborates
our theoretical findings.

6 CONCLUSION AND DISCUSSION

In this paper, we present a finite-time analysis for single-timescale AC methods, achieving a con-
vergence rate of Õ(T−1/2) + Õ(m−1/2). Our results surpass those of existing works by effectively
addressing continuous state and action spaces, utilizing Markovian sampling, and employing deep
neural network approximations for both critic and actor. Note that we focus on overparameterized
neural networks in terms of having a much larger width than depth, i.e., m ≫ K. In this regime,
the depth has a relatively minor influence on the performance of learning (Jacot et al., 2018). In our
result, the dependence of the depth is implicitly captured by the constants defined in Lemma C.5.
Characterizing more general cases where depth is prominent in influencing the learning performance
and its dependence order explicitly remains an open and challenging problem.
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A RELATED WORK

AC methods. The AC algorithm was initially proposed by Konda & Tsitsiklis (1999). Subsequently,
Kakade (2001) extended it to the natural AC algorithm. The asymptotic convergence of AC algo-
rithms has been well established under various settings, as demonstrated in works by Kakade (2001),
Bhatnagar et al. (2009), Castro & Meir (2010), and Zhang et al. (2020b). More recently, many stud-
ies have focused on the finite-time convergence of AC methods. Under the double-loop setting,
Kumar et al. (2019) investigated the finite-time local convergence of several AC variants with linear
function approximation. Wang et al. (2019) explored the global convergence of AC methods with
both the actor and the critic parameterized by neural networks with single hidden layers. Cayci
et al. (2022) improved upon the work of Wang et al. (2019) by considering Markovian sampling and
reducing sample complexity.

Under the two-timescale AC setting, Wu et al. (2020b) established the finite-time local convergence
to a stationary point at a sample complexity of Õ(ϵ−2.5) under the undiscounted time-average reward
setting. Xu et al. (2020b) studied both local convergence and global convergence for two-timescale
(natural) AC, with Õ(ϵ−2.5) and Õ(ϵ−4) sample complexity, respectively, under the discounted ac-
cumulated reward. The algorithm collects multiple samples to update the critic. Hong et al. (2023)
proposed a two-timescale stochastic approximation algorithm for bilevel optimization and the algo-
rithm was subsequently employed in the context of two-timescale AC. Chen et al. (2023) established
the global convergence of two-timescale AC methods for solving linear quadratic regulator (LQR),
where only a single sample is used to update the critic in each iteration. However, none of these
previous results utilized neural network approximation for the value function (the critic).

Under the most challenging single-timescale setting, Fu et al. (2020) considered the least-squares
temporal difference (LSTD) update for the critic and obtained the optimal policy within the energy-
based policy class for both linear function approximation and neural network approximation. (Zhou
& Lu, 2023) studied single-timescale AC on LQR. In addition, Chen et al. (2021); Olshevsky &
Gharesifard (2023); Chen & Zhao (2024) considered the single-timescale AC in general MDP cases
with linear function approximation. Recently, Tian et al. (2024) built upon the results of Olshevsky
& Gharesifard (2023) and improved to neural network approximation. A comprehensive review and

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

comparison of all existing results on single-timescale AC in general MDP settings are presented in
Table 1.

B ADDITIONAL NOTATIONS

We make use of the following auxiliary Markov chain which was introduced in (Zou et al., 2019) to
deal with the Markovian noise.

Auxiliary Markov Chain:

st−τ
θt−τ−−−→ at−τ

P−→ st−τ+1
θt−τ−−−→ ãt−τ+1

P−→ s̃t−τ+2
θt−τ−−−→ ãt−τ+2 · · ·

P−→ s̃t
θt−τ−−−→ ãt

P−→ s̃t+1.
(8)

For reference, we also show the original Markov chain.

Original Markov Chain:

st−τ
θt−τ−−−→ at−τ

P−→ st−τ+1
θt−τ+1−−−−→ ãt−τ+1

P−→ st−τ+2
θt−τ+2−−−−→ at−τ+2 · · ·

P−→ st
θt−→ at

P−→ st+1.
(9)

In the sequel, we denote by Õt := (s̃t, ãt, s̃t+1) the tuple generated from the auxiliary Markov chain
in Eq. (8) while Ot := (st, at, st+1) denotes the tuple generated from the original Markov chain in
Eq. (9).

We define the following functions, which will benefit to decompose the errors and simplify the
presentation.

∆g(O, η,θ) := [J(θ)− η]∇ωV̂ (ω; s),

g(O,ω,θ) := [r(s, a)− J(θ) + V̂ (ω; s′)− V̂ (ω; s)]∇ωV̂ (ω; s),

ḡ(ω,θ) := E(s,a,s′)∼(µθ,πθ,P)[(r(s, a)− J(θ) + V̂ (ω; s′)− V̂ (ω; s))∇ωV̂ (ω; s)],

∆h(O, η,ω,θ) := (J(θ)− η + V̂ (ω; s′)− V̂ (ω; s)− V̂ (ω∗(θ); s′) + V̂ (ω∗(θ); s))∇ log πθ(a|s),
h(O,θ) := (r(s, a)− J(θ) + V̂ (ω∗(θ); s′)− V̂ (ω∗(θ); s))∇ log πθ(a|s),

∆h′(O,θ) := ((V̂ (ω∗(θ); s′)− Vθ(s
′))− (V̂ (ω∗(θ); s)− Vθ(s)))∇ log πθ(a|s).

(10)
We also define the following functions, which characterize the Markovian noise.

Φ(O, η,θ) := (η − J(θ))(r(s, a)− J(θ)),

Ψ(O,ω,θ) := ⟨ω − ω∗
θ, g(O,ω,θ)− ḡ(ω,θ)⟩,

Ξ(O,ω,θ) := ⟨ω − ω∗
θ, (∇ω∗

θ)
⊤(EO′

θ
[h(O′

θ,θ)]− h(O,θ))⟩,
Θ(O,θ) := ⟨∇J(θ),EO′

θ
[h(O′

θ,θ)]− h(O,θ)⟩,

(11)

where O′
θ is a shorthand for an independent sample from stationary distribution s ∼ µθ, a ∼

πθ, s
′ ∼ P .

To demonstrate the main ideas of the proof of Theorem 4.9, we use the notations YT , ZT and GT

for the three errors that we seek to bound, namely,

YT :=
1

T − τT

T−1∑
t=τT

Ey2t , ZT :=
1

T − τT

T−1∑
t=τT

E∥zt∥2, GT :=
1

T − τT

T−1∑
t=τT

E∥∇J(θt)∥2. (12)

Here YT , ZT , and GT represent the reward estimation error, critic error, and actor error (policy
gradient norm), respectively. Our proof of Theorem 4.9 primarily involves analyzing and bounding
these three errors relative to one another. The difficulty of this work lies in the continuous state and
action spaces and the neural network approximation.
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C PRELIMINARY LEMMAS

Lemma C.1 (Distance between stationary distributions). For any θ1 and θ2, it holds that

dTV (µθ1 , µθ2) ≤ Lπ(⌈logρ C−1⌉+ 1

1− ρ
)∥θ1 − θ2∥,

dTV (µθ1 ⊗ πθ1 , µθ2 ⊗ πθ2) ≤ Lπ(1 + ⌈logρ C−1⌉+ 1

1− ρ
)∥θ1 − θ2∥,

dTV (µθ1
⊗ πθ1

⊗ P, µθ2
⊗ πθ2

⊗ P) ≤ Lπ(1 + ⌈logρ C−1⌉+ 1

1− ρ
)∥θ1 − θ2∥.

Lemma C.2 (Wu et al. (2020b)). Given time indexes t and τ such that t ≥ τ > 0, consider the
auxiliary Markov chain in Eq. (8). Conditioning on st−τ+1 and θt−τ , we have

dTV (P(st+1 ∈ ·),P(s̃t+1 ∈ ·)) ≤ dTV (P(Ot ∈ ·),P(Õt ∈ ·)),
dTV (P(Ot ∈ ·),P(Õt ∈ ·)) = dTV (P((st, at) ∈ ·),P((s̃t, ãt) ∈ ·)),

dTV (P((st, at) ∈ ·),P((s̃t, ãt) ∈ ·)) ≤ dTV (P(st ∈ ·),P(s̃t ∈ ·)) + 1

2
LπE[∥θt − θt−τ∥].

Lemma C.3 (Wu et al. (2020b)). For any θ1,θ2, we have

|J(θ1)− J(θ2)| ≤ LJ∥θ1 − θ2∥,

where LJ = 2UrLπ(1 + ⌈logρ C−1⌉+ 1
1−ρ ).

Lemma C.4 (Zhang et al. (2020a)). For the performance function J(θ), there exists a constant
LJ′ > 0 such that for all θ1,θ2 ∈ Rd, it holds that

∥∇J(θ1)−∇J(θ2)∥ ≤ LJ′∥θ1 − θ2∥, (13)

which further implies

J(θ2) ≥ J(θ1) + ⟨∇J(θ1),θ2 − θ1⟩ −
LJ′

2
∥θ1 − θ2∥2, (14)

J(θ2) ≤ J(θ1) + ⟨∇J(θ1),θ2 − θ1⟩+
LJ′

2
∥θ1 − θ2∥2. (15)

Lemma C.5 (Boundedness, Lipschitzness, and smoothness of the neural network). There exists
scalars Uv, Lv, and Hv such that for any s ∈ S and ω1,ω2 ∈ XΩ,

∥V̂ (ω; s)∥ ≤ Uv,

∥V̂ (ω1; s)− V̂ (ω2; s)∥ ≤ Lv∥ω1 − ω2∥,
∥∇ωV̂ (ω1; s)−∇ωV̂ (ω2; s)∥ ≤ Hv∥ω1 − ω2∥,

where Uv = O(1), Lv = O(1) and Hv = Õ( 1√
m
) with respect to width m.

D PROOF OF PROPOSITIONS

We provide the proof of Proposition 4.8 which justifies the generality of the newly proposed As-
sumption 4.7 (c).

Proof of Proposition 4.8.

Proof. We adopt neural networks to parameterize the mean value µ̄θ(·) of a distribution, where
θ ∈ XΘ is the neural network parameter. Then the policy can be denoted as πθ(·|s) = L(X+µθ(s)),
where L(·) is the law of the random variables, X is some zero-mean random variable, and µ̄θ(·) is
the neural network with parameter θ that takes state s as its input. We denote density function of X
as π(a|s) whose mean value is zero. With the conditions specified in Proposition 4.8, we show that
Assumption 4.7 (c) holds, i.e., dTV (πθ1(·|s), πθ2(·|s)) ≤ Lπ|θ1 − θ2| for some Lπ .
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It holds that

dTV (πθ1
(·|s), πθ2

(·|s))
= dTV (L(X + µ̄θ1(s)),L(X + µ̄θ2(s)))

=
1

2

∫
Rda

∣∣∣π(a− µ̄θ1(s)|s
)
− π

(
a− µ̄θ2(s)|s

)∣∣∣da
=

1

2

∫
YA

∣∣∣π(a− µ̄θ1
(s)|s

)
− π

(
a− µ̄θ2

(s)|s
)∣∣∣dx

≤ 1

2

∫
YA

L1|µ̄θ1(s)− µ̄θ2(s)|dx

≤ L1 · |XA| · |µ̄θ1
(s)− µ̄θ2

(s)|,
where YA in the third equality is defined as YA = (XA+ µ̄θ1

(s))∪ (XA+ µ̄θ2
(s)). Combining this

with the neural network Lipschitzness, we have that

dTV (πθ1
(·|s), πθ2

(·|s)) ≤ L1 · L2 · |X | · |θ1 − θ2|.
Thus, we conclude the proof of this proposition.

E PROOF SKETCH

In this subsection, we sketch the main proof steps of Theorem 4.9. The key challenges and new
techniques developed are also highlighted correspondingly. We first derive implicit (coupled) up-
per bounds for the reward estimation error yt, the critic error zt, and the policy gradient ∇J(θt),
respectively. Then, we solve a system of inequalities to establish finite-time convergence.

Step 1: Reward estimation error analysis. Using the reward estimator update rule (Line 7 of Algo-
rithm 1), we decompose the reward estimation error into:

y2t+1 = (1− 2γ)y2t + 2γyt(rt − J(θt))

+ 2yt(J(θt)− J(θt+1)) + (J(θt)− J(θt+1) + γ(rt − ηt))
2.

(16)

The second term on the right-hand side of Eq. (16) is a bias term caused by the Markovian sample,
which requires characterizing the distance between stationary distributions under continuous
state and action spaces as shown in Lemma C.1. This error term is further handled in Lemma F.1.
The third term captures the variation of the moving targets J(θt) tracked by the reward estimation
error. We employ the smoothness of J(θ) (see Lemma C.4) and derive an implicit upper bound for
this term as a function of the norm of yt and ∇J(θt). This bound will be combined with the implicit
bounds derived in Step 2 and Step 3 below to establish the non-asymptotic convergence altogether.
The last term in Eq. (16) reflects the variance in reward estimation, which is bounded by O(γ) after
utilizing the Lipschitzness of J(θ) in Lemma C.3.

Step 2: Critic error analysis. Using the critic update rule (Line 8 of Algorithm 1), we decompose
the squared error by (we neglect the projection for the time being for the ease of comprehension.
The complete analysis can be found in the appendix.)

∥zt+1∥2 =∥zt∥2 + 2β⟨zt, ḡ(ωt,θt)⟩+ 2βΨ(Ot,ωt,θt) + 2β⟨zt,∆g(Ot, ηt,θt)⟩
+ 2⟨zt,ω∗

t − ω∗
t+1⟩+ ∥ω∗

t − ω∗
t+1 + β(g(Ot,ωt,θt) + ∆g(Ot, ηt,θt))∥2,

(17)

where Ot := (st, at, st+1) denotes the tuple generated from the original Markov chain in Eq. (9)
and the definitions of g, ḡ,∆g, and Ψ can be found in Eq. (10) and Eq. (11) in Appendix B. Without
diving into the detailed definitions, here we focus on illustrating the high-level insights of our proof.
First of all, the second term on the right-hand side of Eq. (17) is the inner product between the critic
error zt and the critic’s mean-path update ḡ(ωt,θt), which serves as the key to the convergence.
Our analysis for this term is distinct from all previous results since considering continuous spaces
and deep neural networks substantially complicate the bounding process. we employ the Bellman
equation and neural network approximation to manage error propagation and control the error by
leveraging the approximation capability of the neural network (Eq. (7)), the linearity of wide
networks (third inequality in Lemma C.5), and sufficient policy exploration (see Eq. (22)). It pro-
vides an explicit characterization of how sufficient exploration can help the convergence of learning.
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The third term is a Markovian noise, which is again characterized by the distance between sta-
tionary distributions under continuous state and action spaces and further bounded implicitly
in Lemma F.3. The fourth term is caused by inaccurate reward and critic estimations, which can be
bounded by the norm of yt and zt after applying the Lipschitzness of V̂ as shown in Lemma C.5.
The fifth term tracks both the critic estimation performance zt and the difference between the drift-
ing critic targets ω∗

t . Similar to the case of Step 1, we establish an implicit upper bound for this term
as a function of yt and zt by utilizing the smoothness of the optimal critic proved in Assumption 4.3.
Finally, the last term reflects the variances of various estimations, which is bounded by O(β).

Step 3: Policy gradient norm analysis. Using the actor update rule (Line 9 of Algorithm 1) and the
smoothness property of J(θ) (see Lemma C.4), we derive

∥∇J(θt)∥2 ≤ 1

α
(J(θt+1)− J(θt)) + Θ(Ot,θt)− ⟨∇J(θt),∆h(Ot, ηt,ωt,θt)⟩

− ⟨∇J(θt),EO′
t
[∆h′(O′

t,θt)]⟩+ α
LJ′

2
∥δt∇ log πθt(at|st)∥2,

(18)

where O′
t is a shorthand for an independent sample from stationary distribution s ∼ µθt , a ∼

πθt , s
′ ∼ P(·|s, a), Θ is defined in Eq. (11), and LJ′ is a constant. The first term on the right-

hand side of Eq. (18) compares the actor’s performances between consecutive updates, which can
be bounded via Abel summation by parts. The second term is a noise term introduced by Markovian
sampling, which is characterized by the distance between stationary distributions under con-
tinuous state and action spaces and handled in Lemma F.6. The third term is an error introduced
by the inaccurate estimations of both the time-average reward and the critic. After employing the the
Lipschitzness of V̂ as shown in Lemma C.5, we control this term by providing an implicit bound
depending on yt, zt, and ∇J(θt). The fourth term comes from the linear function approximation
error. The final term represents the variance of the stochastic gradient update, which is controlled
by O(α) due to the boundedness of V̂ , a result we specifically derived in Lemma C.5.

Step 4: Interconnected iteration system analysis. Taking the expectation of and summing Eq. (16),
Eq. (17), and Eq. (18) from τT to T −1, respectively, we obtain the following system of inequalities
in terms of YT , ZT , GT :

YT ≤ O(
log2 T√

T
) + l1

√
YTGT ,

ZT ≤ O(
log2 T√

T
) +O(ϵapp) + Õ(

1√
m
) + l2

√
YTZT + l3

√
ZT (2YT + l4ZT ) + l5

√
ZTGT ,

GT ≤ O(
log2 T√

T
) +O(ϵapp) + l6

√
GT (2YT + l4ZT ).

where l1, l2, l3, l4, l5, l6 are positive constants. By solving the above system of inequalities, we
further prove that if

(1 +
1

2
l4)l3 ≤ 1

4
, 2l4l

2
5l

2
6 ≤ 1

2
, l1(1 + 2l26 + 4l4l

2
6(l

2
2 + l3 + 2l25l

2
6)) ≤ 1,

then YT , ZT , GT converge at a rate of O( log
2 T√
T

)+O(ϵapp)+ Õ( 1√
m
). This condition can be easily

satisfied by choosing the stepsize ratio c to be smaller than a threshold identified in Equation (34).
Thus, it completes the proof.

F PROOF OF MAIN THEOREM

In this section, we aim to show the proof of Theorem 4.9. Define Uδ := 2Ur + 2Uω + 2Uv so that
we have |δt| ≤ Uδ , where Uv is defined in Lemma C.5 and δt is the TD error which comes from
Line 6 in Algorithm 1. Note that from Assumption 4.7, we have ∥δ∇ log πθ∥ ≤ G := UδB. The

norm of ω is defined by ∥ω∥ =: (
K∑

k=1

∥W (k)∥2F)1/2, where ∥ · ∥F is the Frobenius norm of a matrix.

We decompose the whole proof into four steps.
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F.1 STEP 1: REWARD ESTIMATION ERROR ANALYSIS

In this subsection, we will establish an implicit bound for estimator.

Lemma F.1. From any t ≥ τ > 0, we have

E[Φ(Ot, ηt,θt)] ≤ 4UrLJ∥θt − θt−τ∥+ 2Ur|ηt − ηt−τ |

+ 2U2
rLπ

t∑
i=t−τ

E∥θi − θt−τ∥+ 4U2
rCρτ−1.

Theorem F.2. Choose α = c√
T
, β = γ = 1√

T
, we have

YT ≤ O(
log2 T√

T
) + cG

√
YTGT . (19)

Proof. From the update rule of reward estimator in Line 7 of Algorithm 1, we have

ηt+1 − J(θt+1) = ηt − J(θt) + J(θt)− J(θt+1) + γ(rt − ηt),

which implies

y2t+1 = (yt + J(θt)− J(θt+1) + γ(rt − ηt))
2

≤ y2t + 2yt(J(θt)− J(θt+1)) + 2γyt(rt − ηt)

+ 2(J(θt)− J(θt+1))
2 + 2γ2(rt − ηt)

2

= (1− 2γ)y2t + 2γyt(rt − J(θt)) + 2yt(J(θt)− J(θt+1))

+ 2(J(θt)− J(θt+1))
2 + 2γ2(rt − ηt)

2.

Taking expectation up to st+1 (the whole trajectory), rearranging and summing from τT to T − 1,
we have

T−1∑
t=τT

E[y2t ] ≤
T−1∑
t=τT

1

2γ
E(y2t − y2t+1)︸ ︷︷ ︸

I1

+

T−1∑
t=τT

E[yt(rt − J(θt))]︸ ︷︷ ︸
I2

+

T−1∑
t=τT

1

γ
E[yt(J(θt)− J(θt+1)]︸ ︷︷ ︸

I3

+

T−1∑
t=τT

1

γ
E[(J(θt)− J(θt+1))

2]︸ ︷︷ ︸
I4

+

T−1∑
t=τT

γE[(rt − ηt)
2]︸ ︷︷ ︸

I5

.

For term I1, from Abel summation by parts, we have

I1 =

T−1∑
t=τT

1

2γ
E(y2t − y2t+1)

≤ 2U2
r

γ

= 2U2
r

√
T .

For term I2, from Lemma F.1, we have

E[yt(rt − J(θt))] ≤ 4UrLJ∥θt − θt−τ∥+ 2Ur|ηt − ηt−τ |

+ 2U2
rLπ

t∑
i=t−τ

E∥θi − θt−τ∥+ 4U2
rCρτ−1

≤ 4UrLJGτα+ 4U2
r τγ + 2U2

rLπτ(τ + 1)Gα+ 4U2
rCρτ−1

≤ (4UrLJGτ + 2U2
rLπGτ(τ + 1))α+ 4U2

r τγ + 4U2
rCρτ−1.
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Choose τ = τT , we have

I2 =

T−1∑
t=τT

E[yt(rt − J(θt))]

≤ (4UrLJGτT + 2U2
rLπGτT (τT + 1))

T−1∑
t=τT

α

+ 4U2
r τT

T−1∑
t=τT

γ + 4U2
r

T−1∑
t=τT

1√
T

= (4cUrLJGτT + 2cU2
rLπGτT (τT + 1) + 4U2

r τT + 4U2
r )

T − τT√
T

.

For I3, if yt > 0, from Eq. (14), we have

yt(J(θt)− J(θt+1)) ≤ yt(
LJ′

2
∥θt − θt+1∥2 + ⟨∇J(θt),θt − θt+1⟩)

≤ LJ′Ur∥θt − θt+1∥2 + |yt|∥θt − θt+1∥∥∇J(θt)∥.
If yt ≤ 0, from Eq. (15), we have

yt(J(θt)− J(θt+1)) ≤ yt(−
LJ′

2
∥θt − θt+1∥2 + ⟨∇J(θt),θt − θt+1⟩)

≤ LJ′Ur∥θt − θt+1∥2 + |yt|∥θt − θt+1∥∥∇J(θt)∥.
Overall, we get

I3 =

T−1∑
t=τT

1

γ
E[yt(J(θt)− J(θt+1))]

≤
T−1∑
t=τT

1

γ
E[LJ′Ur∥θt − θt+1∥2 + |yt|∥θt − θt+1∥∥∇J(θt)∥]

≤
T−1∑
t=τT

E[cLJ′UrG
2α+ cG|yt|∥∇J(θt)∥]

≤ c2LJ′UrG
2T − τT√

T
+ cG(

T−1∑
t=τT

Ey2t )
1
2 (

T−1∑
t=τT

E∥∇J(θt)∥2)
1
2 .

For term I4, we have

I4 =

T−1∑
t=τT

1

γ
E[(J(θt)− J(θt+1))

2]

≤
T−1∑
t=τT

1

γ
L2
JE∥θt − θt+1∥2

≤
T−1∑
t=τT

1

γ
L2
JG

2α2 = L2
JG

2c2
T − τT√

T
.

For term I5, we have

I5 =

T−1∑
t=τT

γE[(rt − J(θt))
2]

≤
T−1∑
t=τT

4U2
r γ = 4U2

r

T − τT√
T

.
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Therefore, we get
T−1∑
t=τT

E[y2t ] ≤ (4cUrLJGτT + 2cU2
rLπGτT (τT + 1)

+ 4U2
r (τT + 2) + c2G2(LJ′Ur + L2

J))
T − τT√

T

+ 2U2
r

√
T + cG(

T−1∑
t=τT

Ey2t )
1
2 (

T−1∑
t=τT

E∥∇J(θt)∥2)
1
2 .

Since τT = O(log T ), we have
√
T

T−τT
≤ 2√

T
for large T . Then we get

1

T − τT

T−1∑
t=τT

E[y2t ] ≤ (4cUrLJGτT + 2cU2
rLπGτT (τT + 1)

+ 4U2
r (τT + 3) + c2G2(LJ′Ur + L2

J))
1√
T

+ cG(
1

T − τT

T−1∑
t=τT

Ey2t )
1
2 (

1

T − τT

T−1∑
t=τT

E∥∇J(θt)∥2)
1
2

= O(
log2 T√

T
) + cG(

1

T − τT

T−1∑
t=τT

Ey2t )
1
2 (

1

T − τT

T−1∑
t=τT

E∥∇J(θt)∥2)
1
2 .

Thus we finish the proof.

F.2 STEP 2: CRITIC ERROR ANALYSIS

In this subsection, we will establish an implicit upper bound for critic.
Lemma F.3. For any t ≥ τ > 0, we have

E[Ψ(Ot,ωt,θt)] ≤ C1∥θt − θt−τ∥+ C2∥ωt − ωt−τ∥+ U2
δLvLπGτ(τ + 1)α+ 2U2

δLvCρτ−1,

where

C1 = 2U2
δLπ(1 + ⌈logρ C−1⌉+ 1

1− ρ
) + 2UδLJLv + 2UδL∗Lv,

C2 = 2Uδ(UvHv + L2
v + UrHv + Lv).

Lemma F.4. For any t ≥ τ > 0, we have

E[Ξ(Ot,ωt,θt)] ≤ C3∥θt − θt−τ∥+ 2UδBL∗∥ωt − ωt−τ∥
+ 2U2

δBL∗LπGτ(τ + 1)α+ 4U2
δBL∗Cρτ−1.

where C3 := 3UδL∗(UδLl + 4BUδLJ + 2BLvL∗) + 2UδBL2
∗ + 2U2

δBLs.

Theorem F.5. Choose α = c√
T
, β = γ = 1√

T
, we have

ZT ≤ O(
log2 T√

T
) + Õ(

1√
m
) +O(ϵapp) +

2Uv

λ

√
YTZT

+
2cBL∗

λ

√
ZT (2YT + 8L2

vZT ) +
2cL∗

λ

√
ZTGT

(20)

Proof. From the update rule of critic in Line 8 of Algorithm 1, we have

∥ωt+1 − ω∗
t+1∥ = ∥ΠUω (ωt + βδt∇ωV̂ (ωt; st))− ω∗

t+1∥
= ∥ΠUω (ωt + βδt∇ωV̂ (ωt; st))−ΠUω (ω

∗
t+1)∥

≤ ∥ωt + βδt∇ωV̂ (ωt; st)− ω∗
t+1∥

= ∥ωt − ω∗
t + ω∗

t − ω∗
t+1 + βδt∇ωV̂ (ωt; st)∥
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Therefore, we have

∥zt+1∥2 = ∥zt + β(g(Ot,ωt,θt) + ∆g(Ot, ηt,θt)) + ω∗
t − ω∗

t+1∥2

= ∥zt∥2 + 2β⟨zt, g(Ot,ωt,θt)⟩+ 2β⟨zt,∆g(Ot, ηt,θt)⟩
+ 2⟨zt,ω∗

t − ω∗
t+1⟩+ ∥β(g(Ot,ωt,θt) + ∆g(Ot, ηt,θt)) + ω∗

t − ω∗
t+1∥2

= ∥zt∥2 + 2β⟨zt, ḡ(ωt,θt)⟩+ 2βΨ(Ot,ωt,θt) + 2β⟨zt,∆g(Ot, ηt,θt)⟩
+ 2⟨zt,ω∗

t − ω∗
t+1⟩+ ∥β(g(Ot,ωt,θt) + ∆g(Ot, ηt,θt)) + ω∗

t − ω∗
t+1∥2

≤ ∥zt∥2 + 2β⟨zt, ḡ(ωt,θt)⟩+ 2βΨ(Ot,ωt,θt) + 2β⟨zt,∆g(Ot, ηt,θt)⟩
+ 2⟨zt,ω∗

t − ω∗
t+1⟩+ 2U2

δL
2
vβ

2 + 2∥ω∗
t − ω∗

t+1∥2.

(21)

We then analyse the mean-path update ḡ(ωt,θt). From the definition in Eq. (10), we have

ḡ(ωt,θt) := Est,at,st+1
[(r(st, at)− J(θt) + V̂ (ωt; st+1)− V̂ (ωt; st))∇ωV̂ (ωt; st)]

(1)
= Est,at,st+1

[(V (st)− V (st+1) + V̂ (ωt; st+1)− V̂ (ωt; st))∇ωV̂ (ωt; st)]

= Est [(V (st)− V̂ (ωt, st)− Est+1,at
[V (st+1)− V̂ (ωt, st+1)|st])∇ωV̂ (ωt; st)]

where (1) comes from the Bellman equation. For Est+1,at
[V (st+1) − V̂ (ωt, st+1)|st], it can be

shown that

Est+1,at
[V (st+1)− V̂ (ωt, st+1)|st]

=

∫
S

∫
A
πθt

(at|st)P(st+1|st, at)(V (st+1)− V̂ (ωt; st+1))d(at × st+1).

By the definition of operator Pθ, we have

Pθ(V (s)− V̂ (ω, s)) =

∫
S

∫
A
πθ(a|s)P(s′|s, a)(V (s′)− V̂ (ω; s′))d(a× s′).

Then for ḡ(ωt,θt), it follows that

ḡ(ωt,θt) = Est [(I − Pθt
)(V (st)− V̂ (ωt, st))∇ωV̂ (ωt; st)],

where I is the identity operator. Therefore, we have

⟨zt, ḡ(ωt,θt)⟩ =E⟨zt, (I − Pθt
)(V (st)− V̂ (ωt; st))∇ωV̂ (ωt; st)⟩

=E⟨zt, (I − Pθt
)(V (st)− V̂ (ω∗

t ; st) + V̂ (ω∗
t ; st)− V̂ (ωt; st))∇ωV̂ (ωt; st)⟩

=E⟨zt, (I − Pθt)(V (st)− V̂ (ω∗
t ; st))∇ωV̂ (ωt; st)⟩

+ E⟨zt, (I − Pθt
)(V̂ (ω∗

t ; st)− V̂ (ωt; st))∇ωV̂ (ωt; st)⟩
=4UωLvϵapp + E[(z⊤

t ∇ωV̂ (ωt; st) + (V̂ (ω∗
t ; st)− V̂ (ωt; st))

− (V̂ (ω∗
t ; st)− V̂ (ωt, st)))(I − Pθt)(V̂ (ω∗

t ; st)− V̂ (ωt; st))]

(1)
=E[z⊤

t (∇ωV̂ (ωt; st)−∇ωV̂ (ωmid; st))(I − Pθt)(V̂ (ω∗
t ; st)− V̂ (ωt; st))]

− ⟨V̂ (ω∗
t )− V̂ (ωt), Dθ(I − Pθt

)(V̂ (ω∗
t )− V̂ (ωt))⟩+ 2UδLvϵapp

(2)

≤ − λ2
1λ2∥zt∥2 + 2LvHv∥zt∥3 + 2UδLvϵapp

(22)
where (1) comes from the mean-value theorem with ωmid = λ3ωt + (1− λ3)ω

∗
t where λ3 ∈ [0, 1];

(2) follows from Assumption 4.4 and Assumption 4.5. Hereafter, we define λ := λ2
1λ2.

Substituting the above result into Eq. (21), it holds that

∥zt+1∥2 ≤∥zt∥2 − 2λβ∥zt∥2 + 2βΨ(Ot,ωt,θt) + 2β⟨zt,∆g(Ot, ηt,θt)⟩
+ 2⟨zt,ω∗

t − ω∗
t+1⟩+ 2∥ω∗

t − ω∗
t+1∥2 + 2U2

δ β
2 + 4βLvHvU

3
δ + 4UδLvβϵapp
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Taking expectation up to st+1, we have

E∥zt+1∥2 ≤ (1− 2λβ)E∥zt∥2 + 2βEΨ(Ot,ωt,θt) + 2βE⟨zt,∆g(Ot, ηt,θt)⟩
+2E⟨zt,ω∗

t − ω∗
t+1⟩+ 2E∥ω∗

t − ω∗
t+1∥2 + 2U2

δ β
2 + 4βLvHvU

3
δ + 4UδLvβϵapp

≤ (1− 2λβ)E∥zt∥2 + 2βEΨ(Ot,ωt,θt) + 2βE⟨zt,∆g(Ot, ηt,θt)⟩
+ 2E⟨zt,ω∗

t − ω∗
t+1⟩+ 2U2

δ β
2 + 2E∥ω∗

t − ω∗
t+1∥2 + 4βLvHvU

3
δ + 4UδLvβϵapp

≤ (1− 2λβ)E∥zt∥2 + 2βEΨ(Ot,ωt,θt) + 2βE⟨zt,∆g(Ot, ηt,θt)⟩
+ 2E⟨zt,ω∗

t − ω∗
t+1 + (∇ω∗

t )
⊤(θt+1 − θt)⟩+ 2E⟨zt, (∇ω∗

t )
⊤(θt − θt+1)⟩

+ 2U2
δ β

2 + 2E∥ω∗
t − ω∗

t+1∥2 + 4βLvHvU
3
δ + 4UδLvβϵapp

It can be shown that

E∥zt+1∥2
(1)

≤ (1− 2λβ)E∥zt∥2 + 2βEΨ(Ot,ωt,θt) + 2βUvE∥zt∥|yt|+ LsE∥zt∥∥θt+1 − θt∥2

+ 2αE⟨zt,−(∇ω∗
t )

⊤δt∇ log πθt
(at|st)⟩+ 2U2

δ β
2

+ 2L2
∗E∥θt − θt+1∥2 + 4βLvHvU

3
δ + 4UδLvβϵapp

≤ (1− 2λβ)E∥zt∥2 + 2βEΨ(Ot,ωt,θt) + 2βUv

√
Ey2t

√
E∥zt∥2

+
Ls

2
E∥zt∥2∥θt+1 − θt∥2 +

Ls

2
E∥θt+1 − θt∥2 + 2U2

δ β
2 + 2L2

∗G
2α2

+ 2αE⟨zt,−(∇ω∗
t )

⊤δt∇ log πθt
(at|st)⟩+ 4βLvHvU

3
δ + 4UδLvβϵapp

≤ (1− 2λβ)E∥zt∥2 + 2βEΨ(Ot,ωt,θt) + 2βUv

√
Ey2t

√
E∥zt∥2 +

LsG
2

2
α2E∥zt∥2

+ 2U2
δ β

2 + (2L2
∗ +

Ls

2
)G2α2 + 2αE⟨zt,−(∇ω∗

t )
⊤δt∇ log πθt(at|st)⟩

+ 4βLvHvU
3
δ + 4UδLvβϵapp

(2)

≤ (1− λβ)E∥zt∥2 + 2βEΨ(Ot,ωt,θt) + 2βUv

√
Ey2t

√
E∥zt∥2

+ 2U2
δ β

2 + (2L2
∗ +

Ls

2
)G2α2 + 2αE⟨zt,−(∇ω∗

t )
⊤δt∇ log πθt(at|st)⟩

+ 4βLvHvU
3
δ + 4UδLvβϵapp

(23)
where (1) follows from the Ls-smoothness of ω∗ in Assumption 4.3; (2) uses LsG

2

2 α2 ≤ λβ for
large T .

For term E⟨zt,−(∇ω∗
t )

⊤δt∇ log πθt
(at|st)⟩, we have

E⟨zt,−(∇ω∗
t )

⊤δt∇ log πθt
(at|st)⟩

= E⟨zt, (∇ω∗
t )

⊤(−∆h(Ot, ηt,ωt,θt)− h(Ot,θt))⟩
= −E⟨zt, (∇ω∗

t )
⊤∆h(Ot, ηt,ωt,θt)⟩

+ E⟨zt, (∇ω∗
t )

⊤(EO′
t
[h(O′

t,θt)]− h(Ot,θt)− EO′
t
[h(O′

t,θt)])⟩
= E[Ξ(Ot,ωt,θt)]− E⟨zt, (∇ω∗

t )
⊤EO′

t
[h(O′

t,θt)]⟩
− E⟨zt, (∇ω∗

t )
⊤∆h(Ot, ηt,ωt,θt)⟩

Note that from Cauchy-Schwartz inequality and L∗ is the Lipschitz constant of ω∗ in Assumption
4.3, we have

−E⟨zt, (∇ω∗
t )

⊤∆h(Ot, ηt,ωt,θt)⟩ ≤ BL∗
√
E∥zt∥2

√
2Ey2t + 8L2

vE∥zt∥2. (24)

From the fact that

EO′
t
[h(O′

t,θt)−∆h′(O′
t,θt)] = EO′

t
[(r(st, at)− J(θt) + Vθt

(s′t)− Vθt
(st))∇ log πθt

(a|s)]
= ∇J(θt),

23
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we obtain

E⟨zt, (∇ω∗
t )

⊤EO′
t
[h(O′

t,θt)]⟩ = E⟨zt, (∇ω∗
t )

⊤∇J(θt)⟩+ E⟨zt, (∇ω∗
t )

⊤EO′
t
[∆h′(O′

t,θt)]⟩.
It follows that

−E⟨zt, (∇ω∗
t )

⊤∇J(θt)⟩ ≤ L∗
√

E∥zt∥2
√
E∥∇J(θt)∥2.

Furthermore, it holds that

EO′∥∆h′(O,θ)∥2 = EO′∥((V̂ (ω∗(θ); s′)− Vθ(s
′))− (V̂ (ω∗(θ); s)− Vθ(s)))∇ log πθ(a|s)∥2

≤ EO′ [2B2((V̂ (ω∗(θ); s′)− Vθ(s
′))2 + (V̂ (ω∗(θ); s)− Vθ(s))

2)]

= 4B2EO′ [(V̂ (ω∗(θ); s)− Vθ(s))
2]

= 4B2ϵ2app.

Therefore, we have

−⟨zt, (∇ω∗
t )

⊤EO′
t
[h(O′

t,θt)]⟩ ≤ UδL∗
√
∥EO′ [∆h′(Ot,θt)]∥2 + L∗

√
E∥zt∥2

√
E∥∇J(θt)∥2

≤ UδL∗
√
EO′∥∆h′(Ot,θt)∥2 + L∗

√
E∥zt∥2

√
E∥∇J(θt)∥2

≤ 2BUδL∗ϵapp + L∗
√

E∥zt∥2
√

E∥∇J(θt)∥2. (25)

Substituting Eq. (24) and Eq. (25) into Eq. (24) yields

E⟨zt,−(∇ω∗
t )

⊤δt∇ log πθt(at|st)⟩ ≤ EΞ(Ot,ωt,θt) + 2BUδL∗ϵapp

+BL∗
√

E∥zt∥2
√
2Ey2t + 8L2

vE∥zt∥2

+ L∗
√
E∥zt∥2

√
E∥∇J(θt)∥2.

(26)

Plugging Eq. (26) into Eq. (23), we have

E∥zt+1∥2 ≤ (1− λβ)E∥zt∥2 + 2βEΨ(Ot,ωt,θt) + 2αEΞ(Ot,ωt,θt)

+ 2βUv

√
Ey2t

√
E∥zt∥2 + 2BL∗α

√
E∥zt∥2

√
2Ey2t + 8L2

vE∥zt∥2

+ 2αL∗
√

E∥zt∥2
√

E∥∇J(θt)∥2 + 2U2
δ β

2 + (2L2
∗ +

Ls

2
)G2α2

+ 4βLvHvU
3
δ + (2αBUδL∗ + 4UδLvβ)ϵapp.

(27)

Rearranging and summing from τT to T − 1 gives

λ

T−1∑
τT

E∥zt∥2 ≤
T−1∑
t=τT

1

β
(E∥zt∥2 − E∥zt+1∥2)︸ ︷︷ ︸

I1

+2

T−1∑
t=τT

EΨ(Ot,ωt,θt)︸ ︷︷ ︸
I2

+2c

T−1∑
t=τT

EΞ(Ot,ωt,θt)︸ ︷︷ ︸
I3

+ 2Uv

T−1∑
t=τT

√
Ey2t

√
E∥zt∥2︸ ︷︷ ︸

I4

+2cBL∗

T−1∑
t=τT

√
E∥zt∥2

√
2Ey2t + 8L2

vE∥zt∥2︸ ︷︷ ︸
I5

+ 2cL∗

T−1∑
t=τT

√
E∥zt∥2

√
E∥∇J(θt)∥2︸ ︷︷ ︸

I6

+

T−1∑
t=τT

(2U2
δ β + c(2L2

∗ +
Ls

2
)G2α+ (2cBUδL∗ + 4UδLv)ϵapp + 4LvHvU

3
δ ).

In the sequel, we will tackle I1, I2, I3, I4, I5, I6 respectively.

For term I1, we have

I1 =

T−1∑
t=τT

1

β
(E∥zt∥2 − E∥zt+1∥2) ≤ U2

δ

√
T .

24
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For term I2, from Lemma F.3, choose τ = τT , we have

EΨ(Ot,ωt,θt) ≤ C1∥θt − θt−τ∥+ C2∥ωt − ωt−τ∥+ U2
δLvLπGτ(τ + 1)α+ 2U2

δLvCρτ−1

≤ C1

t−1∑
k=t−τT

Gα+ C2

t−1∑
k=t−τT

Uδβ + U2
δLvLπGτT (τT + 1)α+

2U2
δLv√
T

≤ (C1GτT + U2
δLvLπGτT (τT + 1))α+ C2UδτTβ +

2U2
δ√
T
.

Then we get

I2 = 2

T−1∑
T=τT

EΨ(Ot,ωt,θt) ≤ 2

T−1∑
T=τT

((C1GτT + U2
δLvLπGτT (τT + 1))α+ C2UδτTβ +

2U2
δ√
T
).

For term I3, from Lemma F.4, choose τ = τT , we have

E[Ξ(Ot,ωt,θt)] ≤ C3∥θt − θt−τT ∥+ 2UδBL∗∥ωt − ωt−τT ∥
+ 2U2

δBL∗LπGτT (τT + 1)α+ 4U2
δBL∗CρτT−1

≤ C3

t−1∑
k=t−τT

Gα+ 2UδBL∗

t−1∑
k=t−τT

Uδβ

+ 2U2
δBL∗LπGτT (τT + 1)α+ 4U2

δBL∗CρτT−1

≤ (C3GτT + 2U2
δBL∗LπGτT (τT + 1))α+ 2U2

δBL∗τTβ +
4U2

δBL∗√
T

.

Therefore, we have

I3 = 2c

T−1∑
t=τT

EΞ(Ot,ωt,θt)

≤ 2c

T−1∑
t=τT

((C3GτT + 2U2
δBL∗LπGτT (τT + 1))α+ 2U2

δBL∗τTβ +
4U2

δBL∗√
T

).

For term I4, I5, and I6, from Cauchy-Schwartz inequality, we have

I4 ≤ 2Uv(

T−1∑
t=τT

Ey2t )
1
2 (

T−1∑
t=τT

E∥zt∥2)
1
2 ,

I5 ≤ 2cBL∗(

T−1∑
t=τT

E∥zt∥2)
1
2 (2

T−1∑
t=τT

Ey2t + 8L2
v

T−1∑
t=τT

E∥zt∥2)
1
2 ,

I6 ≤ 2cL∗(

T−1∑
t=τT

E∥zt∥2)
1
2 (

T−1∑
t=τT

E∥∇J(θt)∥)
1
2 .
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Overall, we get

λ

T−1∑
t=τT

E∥zt∥2 ≤ 2Uv(

T−1∑
t=τT

Ey2t )
1
2 (

T−1∑
t=τT

E∥zt∥2)
1
2

+ 2cBL∗(

T−1∑
t=τt

E∥zt∥2)
1
2 (2

T−1∑
t=τT

Ey2t + 8L2
v

T−1∑
t=τT

E∥zt∥2)
1
2

+ 2cL∗(

T−1∑
t=τT

E∥zt∥2)
1
2 (

T−1∑
t=τT

E∥∇J(θt)∥)
1
2

+ U2
δ

√
T + 2

T−1∑
T=τT

((C1GτT + U2
δLvLπGτT (τT + 1))α+ C2UδτTβ +

2U2
δ√
T
)

+ 2c

T−1∑
t=τT

((C3GτT + 2U2
δBL∗LπGτT (τT + 1))α+ 2U2

δBL∗τTβ +
4U2

δBL∗√
T

)

+

T−1∑
t=τT

(2U2
δ β + c(2L2

∗ +
Ls

2
)G2α+ (2cBUδL∗ + 4UδLv)ϵapp + 4LvHvU

3
δ ).

Therefore, we have

ZT

(1)

≤ 2Uv

λ
(

1

T − τT

T−1∑
t=τT

Ey2t )
1
2 (

1

T − τT

T−1∑
t=τT

E∥zt∥2)
1
2

+
2cBL∗

λ
(

1

T − τT

T−1∑
t=τt

E∥zt∥2)
1
2 (2

1

T − τT

T−1∑
t=τT

Ey2t + 8L2
v

1

T − τT

T−1∑
t=τT

E∥zt∥2)
1
2

+
2cL∗

λ
(

1

T − τT

T−1∑
t=τT

E∥zt∥2)
1
2 (

1

T − τT

T−1∑
t=τT

E∥∇J(θt)∥)
1
2

+
1

λ
(
2U2

δ√
T

+ 2((C1GτT + U2
δLvLπGτT (τT + 1))α+ C2UδτTβ +

2U2
δ√
T
)

+ 2c((C3GτT + 2U2
δBL∗LπGτT (τT + 1))α+ 2U2

δBL∗τTβ +
4U2

δBL∗√
T

)

+ 2U2
δ β + c(2L2

∗ +
Ls

2
)G2α+ (2cBUδL∗ + 4UδLv)ϵapp + 4LvHvU

3
δ )

= O(
log2 T√

T
) + Õ(

1√
m
) +O(ϵapp) +

2Uv

λ
(

1

T − τT

T−1∑
t=τT

Ey2t )
1
2 (

1

T − τT

T−1∑
t=τT

E∥zt∥2)
1
2

+
2cBL∗

λ
(

1

T − τT

T−1∑
t=τt

E∥zt∥2)
1
2 (2

1

T − τT

T−1∑
t=τT

Ey2t + 8L2
v

1

T − τT

T−1∑
t=τT

E∥zt∥2)
1
2

+
2cL∗

λ
(

1

T − τT

T−1∑
t=τT

E∥zt∥2)
1
2 (

1

T − τT

T−1∑
t=τT

E∥∇J(θt)∥)
1
2 ,

where (1) follows from τT = O(log T ) so that T − τT ≥ 1
2T for large T and the term Õ( 1√

m
)

comes from the fact Hv = Õ( 1√
m
) as shown in Lemma C.5. Therefore, we have

ZT ≤ O(
log2 T√

T
) + Õ(

1√
m
) +O(ϵapp) +

2Uv

λ

√
YTZT

+
2cBL∗

λ

√
ZT (2YT + 8L2

vZT ) +
2cL∗

λ

√
ZTGT ,

which completes the proof.
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F.3 STEP 3: POLICY GRADIENT NORM ANALYSIS

In this subsection, we will establish an implicit upper bound for policy gradient norm.

Lemma F.6. For any t ≥ τ > 0, it holds that

E[Θ(Ot,θt)] ≤ C4τ(τ + 1)Gα+ C5Cρτ−1,

where C4 = max{2UδBLJ′ +3LJ(UδLl +2BLvL∗ +4BUδLJ), 2UδBLJLπ} , C5 = 4UδBLJ .

Theorem F.7. We have

GT ≤ O(
log2 T√

T
) +O(ϵapp) +B

√
GT (2YT + 8L2

vZT ). (28)

Proof. From the update rule of actor in Line 9 of Algorithm 1 and Eq. (14), we have

J(θt+1) ≥ J(θt) + ⟨∇J(θt),θt+1 − θt⟩ −
LJ′

2
∥θt − θt+1∥2

= J(θt) + α⟨∇J(θt), δt∇ log πθt
(at|st)⟩ −

LJ′

2
α2∥δt∇ log πθt

(at|st)∥2

= J(θt) + α⟨∇J(θt),∆h(Ot, ηt,ωt,θt)⟩+ α⟨∇J(θt), h(Ot,θt)⟩

− LJ′

2
α2∥δt∇ log πθt

(at|st)∥2

= J(θt) + α⟨∇J(θt),∆h(Ot, ηt,ωt,θt)⟩ − αΘ(Ot,θt)

+ α⟨∇J(θt),EO′
t
[h(O′

t,θt)]⟩ −
LJ′

2
α2∥δt∇ log πθt

(at|st)∥2

= J(θt) + α⟨∇J(θt),∆h(Ot, ηt,ωt,θt)⟩ − αΘ(Ot,θt) + α∥∇J(θt)∥2

+ α⟨∇J(θt),EO′
t
[∆h′(O′

t,θt)]⟩ −
LJ′

2
α2∥δt∇ log πθt

(at|st)∥2,

where the last equality is due to the fact

EO′ [h(O′,θ)−∆h′(O′,θ)] = EO′ [(r(s, a)− J(θ) + Vθ(s
′)− Vθ(s))∇ log πθ(a|s)] = ∇J(θ).

Rearranging the above inequality and taking expectation, we have

E∥∇J(θt)∥2 ≤ 1

α
(E[J(θt+1)− J(θt)])− E⟨∇J(θt),∆h(Ot, ηt,ωt,θt)⟩+ E[Θ(Ot,θt)]

− E⟨∇J(θt),EO′
t
[∆h′(O′

t,θt)]⟩+
LJ′

2
αE∥δt∇ log πθt

(at|st)∥2.

Note that from Cauchy-Schwartz inequality, we have

−E⟨∇J(θt),∆h(Ot, ηt,ωt,θt)⟩ ≤ B
√

E∥∇J(θt)∥2
√

2Ey2t + 8L2
vE∥zt∥2.

From Lemma F.6 and choosing τ = τT , we have

E[Θ(Ot,θt)] ≤ C4τT (τT + 1)Gα+ C5Cρτ−1

≤ C4τT (τT + 1)Gα+ C5
1√
T
.

It has been shown that

EO′∥∆h′(O,θ)∥2 ≤ 4B2ϵ2app.

Therefore, we have

−⟨∇J(θt),EO′
t
[∆h′(O′

t,θt)]⟩ ≤ LJ

√
∥EO′ [∆h′(O′

t,θt)]∥2

≤ LJ

√
EO′∥∆h′(O′

t,θt)∥2
≤ 2BLJϵapp,
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where we use ∥∇J(θ)∥ ≤ LJ which comes from Lemma C.3. Plugging the three terms yields

E∥∇J(θt)∥2 ≤ 1

α
(E[J(θt+1)]− E[J(θt)]) +B

√
E∥∇J(θt)∥2

√
2Ey2t + 8L2

vE∥zt∥2

+ 2BLJϵapp + C4τT (τT + 1)Gα+ C5
1√
T

+
LJ′

2
G2α.

Summing over t from τT to T − 1 gives
T−1∑
t=τT

E∥∇J(θt)∥2 ≤
T−1∑
t=τT

1

α
(E[J(θt+1)− E[J(θt)])︸ ︷︷ ︸

I1

+B

T−1∑
t=τT

√
E∥∇J(θt)∥2

√
2Ey2t + 8L2

vE∥zt∥2

+ (C4τT (τT + 1)G+ C5 +
LJ′

2
G2)

T − τT√
T

+ 2BLJϵapp(T − τT ).

For term I1, we have

I1 =

T−1∑
t=τT

1

α
(E[J(θt+1)− E[J(θt)])

≤ 2Ur

c

√
T .

Overall, we have
T−1∑
t=τT

E∥∇J(θt)∥2 ≤ 2Ur

c

√
T + (C4τT (τT + 1)G+ C5 +

LJ′

2
G2)

T − τT√
T

+ 2BLJϵapp(T − τT )

+B

T−1∑
t=τT

√
E∥∇J(θt)∥2

√
2Ey2t + 8L2

vE∥zt∥2

≤ 2Ur

c

√
T + (C4τT (τT + 1)G+ C5 +

LJ′

2
G2)

T − τT√
T

+ 2BLJϵapp(T − τT )

+B(

T−1∑
t=τT

E∥∇J(θt)∥2)
1
2 (2

T−1∑
t=τT

Ey2t + 8L2
v

T−1∑
t=τT

E∥zt∥2)
1
2 .

Therefore, we get

GT ≤ (
4Ur

c
+ C4τT (τT + 1)G+ C5 + LJ′G2)

1√
T

+ 2BLJϵapp +B
√
GT (2YT + 8L2

vZT )

= O(
log2 T√

T
) +O(ϵapp) +B

√
GT (2YT + 8L2

vZT ),

which concludes the proof.

F.4 STEP 4: INTERCONNECTED ITERATION SYSTEM ANALYSIS

In this subsection, we perform an interconnected iteration system analysis to prove Theorem 4.9.

Proof of Theorem 4.9.

Proof. Combining Eq. (19), Eq. (20), and Eq. (28), we have

YT ≤ O(
log2 T√

T
) + cG

√
YTGT ,

ZT ≤ O(
log2 T√

T
) + Õ(

1√
m
) +O(ϵapp) +

2Uv

λ

√
YTZT

+
2cBL∗

λ

√
ZT (2YT + 8L2

vZT ) +
2cL∗

λ

√
ZTGT

GT ≤ O(
log2 T√

T
) +O(ϵapp) +B

√
GT (2YT + 8L2

vZT ).
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Denote

l1 := cG, l2 :=
2Uv

λ
, l3 :=

2cBL∗

λ
, l4 := 8L2

v, l5 :=
2cL∗

λ
, l6 := B. (29)

Then we have

YT ≤ O(
log2 T√

T
) + l1

√
YTGT ,

ZT ≤ O(
log2 T√

T
) +O(ϵapp) + Õ(

1√
m
) + l2

√
YTZT + l3

√
ZT (2YT + l4ZT ) + l5

√
ZTGT ,

GT ≤ O(
log2 T√

T
) +O(ϵapp) + l6

√
GT (2YT + l4ZT ).

For GT , we get

GT ≤ O(
log2 T√

T
) +O(ϵapp) +

1

2
GT + l26(YT +

1

2
l4ZT ),

GT ≤ O(
log2 T√

T
) +O(ϵapp) + l26(2YT + l4ZT ). (30)

For ZT , we have

ZT ≤ O(
log2 T√

T
) +O(ϵapp) + Õ(

1√
m
) +

1

4
ZT + l22YT + (1 +

1

2
l4)l3ZT + l3YT +

1

4
ZT + l25GT .

If it satisfies (1 + 1
2 l4)l3 ≤ 1

4 , we further have

ZT ≤ O(
log2 T√

T
) +O(ϵapp) + Õ(

1√
m
) + (2l22 + 2l3)YT + 2l25GT . (31)

Plugging Eq. (30) into Eq. (31), it holds that

ZT ≤ O(
log2 T√

T
) +O(ϵapp) + Õ(

1√
m
) + (2l22 + 2l3 + 4l25l

2
6)YT + 2l4l

2
5l

2
6ZT .

If it satisfies 2l4l25l
2
6 ≤ 1

2 , we have

ZT ≤ O(
log2 T√

T
) +O(ϵapp) + Õ(

1√
m
) + 4(l22 + l3 + 2l25l

2
6)YT . (32)

For YT , we get

YT ≤ O(
log2 T√

T
) +

l1
2
(YT +GT ). (33)

Plugging Eq. (30) and Eq. (32) into Eq. (33) gives

YT ≤ O(
log2 T√

T
) +O(ϵapp) +

l1
2
(YT + 2l26YT + l4l

2
6ZT )

≤ O(
log2 T√

T
) +O(ϵapp) + Õ(

1√
m
) +

l1
2
(YT + 2l26YT + 4l4l

2
6(l

2
2 + l3 + 2l25l

2
6))YT

= O(
log2 T√

T
) +O(ϵapp) + Õ(

1√
m
) +

l1
2
(1 + 2l26 + 4l4l

2
6(l

2
2 + l3 + 2l25l

2
6))YT .

Therefore, if l1(1 + 2l26 + 4l4l
2
6(l

2
2 + l3 + 2l25l

2
6)) ≤ 1, we have

YT ≤ O(
log2 T√

T
) +O(ϵapp) + Õ(

1√
m
).

Overall, we require

(1 +
1

2
l4)l3 ≤ 1

4
, 2l4l

2
5l

2
6 ≤ 1

2
, l1(1 + 2l26 + 4l4l

2
6(l

2
2 + l3 + 2l25l

2
6)) ≤ 1.
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According to the definition of l1, l2, l3, l4, l5, l6, we have

(1 + 4L2
v)
2cBL∗

λ
≤ 1

4
,

64L2
vc

2L2
∗B

2

λ2
≤ 1

2
,

cG(1 + 2B2 + 32L2
vB

2(
4U2

v

λ2
+

2cBL∗

λ
+

8c2B2L2
∗

λ2
)) ≤ 1.

Thus we choose

c ≤ min{ λ

16c(1 + 4L2
v)BL∗

,
λ2

G((1 + 2B2 + 32L2
vB

2)λ2 + 128L2
vU

2
vB

2)
}, (34)

which satisfies the above two inequalities. Therefore, we have

YT = O(
log2 T√

T
) +O(ϵapp) + Õ(

1√
m
),

and consequently,

ZT = O(
log2 T√

T
) +O(ϵapp) + Õ(

1√
m
),

GT = O(
log2 T√

T
) +O(ϵapp) + Õ(

1√
m
).

Thus we conclude our proof.

G PROOF OF PRELIMINARY LEMMAS

The following preliminary lemmas have been established in prior research (Zou et al., 2019; Zhang
et al., 2020a; Wu et al., 2020b; Liu et al., 2020). In this paper, we make modifications to accommo-
date continuous action spaces.

Proof of Lemma C.1.

Proof. For any θ1 and θ2, define the transition kernels respectively as follows:

Pi(s, ds
′) =

∫
A
P(ds′|s, a)πθi(a|s), i = 1, 2

Following from Theorem 3.1 in Mitrophanov (2005), we obtain

dTV (µθ1 , µθ2) ≤ (⌈logρ C−1⌉+ 1

1− ρ
)∥P1 − P2∥op,

where ∥ · ∥op is the operator norm defined in Mitrophanov (2005): ∥A∥ := sup∥q∥TV=1∥qA∥TV,
and ∥ · ∥TV denotes the total-variation norm. Then we have

∥P1 − P2∥op = sup
∥q∥TV=1

∥
∫
S
q(ds)(P1 − P2)(s, ·)∥TV

= sup
∥q∥TV=1

∫
S
|
∫
S
q(ds)(P1 − P2)(s, ds

′)|

≤ sup
∥q∥TV=1

∫
S

∫
S
q(ds)|(P1 − P2)(s, ds

′)|

= sup
∥q∥TV=1

∫
S

∫
S
q(ds)|

∫
A
P(ds′|s, a)(πθ1(da|s)− πθ2(da|s))|

= sup
∥q∥TV=1

∫
S

∫
S
q(ds)

∫
A
P(ds′|s, a)|(πθ1(da|s)− πθ2(da|s))|

= sup
∥q∥TV=1

∫
S
q(ds)

∫
A
|(πθ1(da|s)− πθ2(da|s))|

≤ Lπ∥θ1 − θ2∥.
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The first equation results from the definition of the operation norm, the second equation results from
the definition of total variation. Therefore, we have

dTV (µθ1
, µθ2

) ≤ Lπ(⌈logρ C−1⌉+ 1

1− ρ
)∥θ1 − θ2∥.

For the second inequality, we have

dTV (µθ1
⊗ πθ1

, µθ2
⊗ πθ2

) =

∫
S

∫
A
|µθ1(ds)πθ1(a|s)− µθ2(ds)πθ2(a|s)|

≤
∫
S

∫
A
|µθ1(ds)(πθ1(a|s)− πθ2(a|s))|

+

∫
S

∫
A
|(µθ1(ds)− µθ2(ds))πθ2(a|s))|

= dTV (πθ1 , πθ2) + dTV (µθ1 , µθ2)

≤ Lπ∥θ1 − θ2∥+ C(⌈logρ C−1⌉+ 1

1− ρ
)∥θ1 − θ2∥

= Lπ(1 + ⌈logρ C−1⌉+ 1

1− ρ
)∥θ1 − θ2∥.

For the third inequality, we have

dTV (µθ1
⊗ πθ1

⊗ P, µθ2
⊗ πθ2

⊗ P)

=
1

2

∫
S

∫
A

∫
S
|µθ1(ds)πθ1(a|s)P(ds′|s, a)− µθ2(ds)πθ2(a|s)P(ds′|s, a)|

=
1

2

∫
S

∫
A
|µθ1(ds)πθ1(a|s)− µθ2(ds)πθ2(a|s)|

= dTV (µθ1
⊗ πθ1

, µθ2
⊗ πθ2

),

which concludes the proof.

Proof of Lemma C.2.

Proof. From the fact that

P(st+1 ∈ ·) =
∫
S

∫
A
P(st = ds, at = da, st+1 ∈ ·),

we have

2dTV (P(st+1 ∈ ·),P(s̃t+1 ∈ ·))

=

∫
S
|
∫
S

∫
A
P(st = ds, at = da, st+1 = ds′)−

∫
S

∫
A
P(s̃t = ds, ãt = da, s̃t+1 = ds′)|

≤
∫
S

∫
S

∫
A
|P(st = ds, at = da, st+1 = ds′)− P(s̃t = ds, ãt = da, s̃t+1 = ds′)|

=

∫
S

∫
S

∫
A
|P(Ot = (ds, da, ds′))− P(Õt = (ds, da, ds′))|

= 2dTV (P(Ot ∈ ·),P(Õ ∈ ·)),

where the last equality requires the exchange of integral which is guaranteed by Fubini’s theorem
since P is an absolute integrable function.
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For the second equality, we have

2dTV (P(Ot ∈ ·),P(Õt ∈ ·))

=

∫
S

∫
A

∫
S
|P(Ot = (ds, da, ds′))− P(Õt = (ds, da, ds′))|

=

∫
S

∫
A

∫
S
|P(ds′|s, a)P((st, at) = (ds, da))− P(ds′|s, a)P((s̃t, ãt) = (ds, da))|

=

∫
S

∫
A

∫
S
P(ds′|s, a)|P((st, at) = (ds, da))− P((s̃t, ãt) = (ds, da))|

=

∫
S

∫
A
|P((st, at) = (ds, da))− P((s̃t, ãt) = (ds, da))|

= 2dTV (P((st, at) ∈ ·),P((s̃t, ãt) ∈ ·)).

For the third inequality, since θt is dependent on st as shown in Eq. (9), it holds that

2dTV (P((st, at) ∈ ·),P((s̃t, ãt) ∈ ·))

=

∫
S

∫
A
|P(st = ds, at = da)− P(s̃t = ds, ãt = da)|

=

∫
S

∫
A
|
∫
θ

P(st = ds)P(θt = dθ|st = s)P(at = da|st = s,θt = θ)− P(s̃t = ds, ãt = da)|

=

∫
S

∫
A
|P(st = ds)

∫
θ

P(θt = dθ|st = s)πθt
(da|s)− P(s̃t = ds)πθt−τ

(da|s)|

=

∫
S

∫
A
|P(st = ds)E[πθt(da|s)|st = s]− P(s̃t = ds)πθt−τ (da|s)|

=

∫
S

∫
A
|P(st = ds)E[πθt

(da|s)|st = s]− P(st = ds)πθt−τ
(da|s)|

+

∫
S

∫
A
|P(st = ds)πθt−τ

(da|s)− P(s̃t = ds)πθt−τ
(da|s)|

=

∫
S
P(st = ds)

∫
A
|E[πθt(da|s)|st = s]− πθt−τ (da|s)|

+ 2dTV (P(st ∈ ·),P(s̃t ∈ ·))
≤ LπE∥θt − θt−τ∥+ 2dTV (P(st ∈ ·),P(s̃t ∈ ·)),

where the last inequality holds due to the Lipschitz continuity of policy made in Assumption 4.7.

Proof of Lemma C.3.

Proof. By definition, we have

J(θ1)− J(θ2) = E[r(s1, a1)− r(s2, a2)],

where si ∼ µθi
, ai ∼ πθi

. Therefore, it holds that

J(θ1)− J(θ2) = E[r(s1, a1)− r(s1, a1)]

≤ 2UrdTV (µθ1 ⊗ πθ1 , µθ2 ⊗ πθ2)

≤ 2UrLπ(1 + ⌈logρ C−1⌉+ 1

1− ρ
)∥θ1 − θ2∥

= LJ∥θ1 − θ2∥.

Proof of Lemma C.4.

Proof. The proof of this lemma can be found in Lemma 3.2 of (Zhang et al., 2020a).
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Proof of Lemma C.5.

Proof. We will divide the proof of this lemma into four steps.

Step 1: show that for all k ∈ {1, 2, · · · ,K}, we have

∥W (k)∥ ≤ O(
√
m). (35)

It can be shown that

∥W (k)∥ ≤ ∥W (k) −W
(k)
0 ∥+ ∥W (K)

0 ∥

≤ Uω + ∥W (k)
0 ∥

≤ O(
√
m),

where the last inequality id due to Assumption 4.2 and the fact that Uω is constant to m.

Step 2: show that for all k ∈ {1, 2, · · · ,K}, we have

∥s(k)∥ ≤ O(
√
m). (36)

From Assumption 4.1, we have ∥s(0)∥ ≤ 1. From Eq. (35), it holds that

∥s(1)∥ = ∥ 1√
m
σ(W (1)s(0))∥

≤ 1

m
L2
a∥W (1)∥2∥s(0)∥2 + ∥σ(0)∥2

≤ O(m).

By induction, suppose ∥s(k)∥2 ≤ O(m). We have

∥s(k+1)∥2 = ∥ 1√
m
σ(W (k+1)s(k))∥2

≤ 1

m
L2
a∥W (k+1)∥2∥s(k)∥2 + ∥σ(0)∥2

≤ O(m),

which concludes the proof. Therefore, from Eq. (36), it can be shown that

∥V̂ (ω; s)∥ = ∥ 1√
m
b⊤s(K)∥ ≤ O(1).

Step 3: show that for all k ∈ {1, 2, · · · ,K}, we have

∥∇s(k−1)s(k)∥ ≤ O(1). (37)

From the chain rule, we have

∇s(k−1)s(k)(i, j) =
1√
m
σ′(

∑
j

W (k)(i, j)s(k−1)(j))W (k)(i, j).

Therefore, we get

∥∇s(k−1)s(k)∥2 = sup
∥v∥=1

m∑
i=1

(
∑
j

∇s(k−1)s(k)(i, j)vj)
2

= sup
∥v∥=1

1

m
∥Σ′W (k)v∥2

≤ 1

m
∥Σ′∥2 · ∥W (k)∥2

≤ O(1),

where Σ′ is a diagonal matrix with Σ′(i, i) = σ′(ΣjW
(k)(i, j)s(k−1)(j)) := ξ(i).
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Step 4: show that for all k ∈ {1, 2, · · · ,K}, we have

∥∇W (k)s(k)∥ ≤ O(1), (38)

where ∇W (k)s(k) is defined to be a matrix whose (I, (j − i)m + h)’th entry ∇W (k)s(k)(i, j, h) is
given by

∇W (k)s(k)(i, j, h) =
∂s(k)(i)

∂W (k)(j, h)
.

It holds that

∇W (k)s(k)(i, j, j′) =
1√
m
1{i− j}σ′(

∑
h

W (k)(i, h)s(k−1)(h))s(k−1)(j′),

which can be written as

∇W (k)s(k)(i, j, j′) =
1√
m
1{i = j}ξ(i)s(k−1)(j′).

Therefore, we get

∥∇W (k)s(k)∥2 = sup
∥V ∥F=1

m∑
i=1

(
∑
j,j′

∇W (k)s(k)(i, j, j′)Vj,j′)
2

=
1

m
sup

∥V ∥F=1

m∑
i=1

(
∑
j,j′

1{i = j}ξ(i)s(k−1)(j′)Vj,j′)
2

=
1

m
sup

∥V ∥F=1

m∑
i=1

(
∑
j,j′

1{i = j}ξ(i)[V s(k−1)]j)
2

=
1

m
sup

∥V ∥F=1

m∑
i=1

ξ(i)2[V s(k−1)]2i

= sup
∥V ∥F=1

1

m
∥Σ′V s(k−1)∥2

≤ 1

m
∥Σ′∥2 · ∥s(k−1)∥2

≤ O(1),

where the last inequality follows Eq. (36).

We then show the Lipschitzness of the neural network. Since each entry of b satisfies |bi| ≤ 1, it is
easy to see that

∥∇s(K) V̂ (ω; s)∥ =
1√
m
∥b∥ ≤ 1.

By Eq. (37),Eq. (38), and the chain rule, we have

∥∇W (k)V (ω; s) = ∥∇W (K)V (ω; s)∇W (K−1)s(K) · · · ∇s(k)s(k+1)∇W (k)s(k)∥ ≤ O(1).

It can be shown that

∥∇ωV̂ (ω; s)∥2 = sup
∥V ∥F=1

K∑
k=1

(∇W (k) V̂ (ω; s)Vk)
2 ≤ O(1),

which concludes the proof of Lipschitzness.

The proof of smoothness property has been shown in Liu et al. (2020).
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H PROOF OF SUPPORTING LEMMAS

The following four lemmas only deal with the Markovian noise, which are originally proved in Wu
et al. (2020b) and updated in Wu et al. (2020a). We include the proof with slight modifications for
proving Theorem 4.9.

Proof of Lemma F.1.

Proof. We will divide the proof of this lemma into four steps.

Step 1: show that for any θ1,θ2, η, O = (s, a, s′), we have

|Φ(O, η,θ1)− Φ(O, η,θ2)| ≤ 4UrLJ∥θ1 − θ2∥. (39)

By the definition of Φ(O, η,θ) in Eq. (11), we have

|Φ(O, η,θ1)− Φ(O,θ,θ2)| = |(η − J(θ1))(r − J(θ1))− (η − J(θ2))(r − J(θ2))|
≤ |(η − J(θ1))(r − J(θ1))− (η − J(θ1))(r − J(θ2))|

+ |(η − J(θ1))(r − J(θ2))− (η − J(θ2))(r − J(θ2))|
≤ 4Ur|J(θ1)− J(θ2)|
≤ 4UrLJ∥θ1 − θ2∥.

Step 2: show that for any θ, η1, η2, O, we have

|Φ(O, η1,θ)− Φ(O, η2,θ) ≤ 2Ur|η1 − η2|. (40)

By definition, we have

|Φ(O, η1,θ)− Φ(O, η2,θ)| = |(η1 − J(θ))(r − J(θ))− (η2 − J(θ))(r − J(θ))|
≤ 2Ur|η1 − η2|.

Step 3: show that for original tuple Ot and the auxiliary tuple Õt, conditioned on st−τ+1 and θt−τ ,
we have

|E[Φ(Ot, ηt−τ ,θt−τ )− E[Φ(Õt, ηt−τ ,θt−τ )]| ≤ 2U2
rLπ

t∑
k=t−τ

E∥θk − θt−τ∥. (41)

By definition, we have

E[Φ(Ot, ηt−τ ,θt−τ )− E[Φ(Õt, ηt−τ ,θt−τ )] = (ηt−τ − J(θt−τ ))E[r(st, at)− r(s̃t, ãt)].

By definition of total variation norm, we have

E[r(st, at)− r(s̃t, ãt)] ≤ 2UrdTV (P(Ot ∈ ·|st−τ+1,θt−τ ),P(Õt ∈ ·|st−τ+1,θt−τ )). (42)

By Lemma C.2, we get

dTV (P(Ot ∈ ·|st−τ+1,θt−τ ),P(Õt ∈ ·|st−τ+1,θt−τ ))

= dTV (P((st, at) ∈ ·|st−τ+1,θt−τ ),P((s̃t, ãt) ∈ ·|st−τ+1,θt−τ ))

≤ dTV (P(st ∈ ·|st−τ+1,θt−τ ),P(s̃t ∈ ·|st−τ+1,θt−τ )) +
1

2
LπE∥θt − θt−τ∥

≤ dTV (P(Ot−1 ∈ ·|st−τ+1,θt−τ ),P(Õt−1 ∈ ·|st−τ+1,θt−τ )) +
1

2
LπE∥θt − θt−τ∥.

Repeat the above argument from t to t− τ , we have

dTV (P(Ot ∈ ·|st−τ+1,θt−τ ),P(Õt ∈ ·|st−τ+1,θt−τ )) ≤
1

2
Lπ

t∑
k=t−τ

E∥θk − θt−τ∥. (43)

Plugging Eq. (43) into Eq. (42), we have

|E[Φ(Ot, ηt−τ ,θt−τ )− E[Φ(Õt, ηt−τ ,θt−τ )]| ≤ 2U2
rLπ

t∑
k=t−τ

E∥θk − θt−τ∥.
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Step 4: show that conditioned on st−τ+1 and θt−τ , we have

E[Φ(Õt, ηt−τ ,θt−τ )] ≤ 4U2
rCρτ−1. (44)

Note that according to definition, we have

E[Φ(O′
t−τ , ηt−τ ,θt−τ )|θt−τ ] = 0,

where O′
t−τ = (s′t−τ , a

′
t−τ , s

′
t−τ+1) is the tuple generated by s′t−τ ∼ µθt−τ

, a′t−τ ∼
πθt−τ

, s′t−τ+1 ∼ P . From the uniform ergodicity in Assumption 4.6, it shows that

dTV (P(s̃t = ·|st−τ+1,θt−τ ), µθt−τ ) ≤ Cρτ−1.

Then we have

E[Φ(Õt, ηt−τ ,θt−τ )] = E[Φ(Õt, ηt−τ ,θt−τ )− Φ(O′
t−τ , ηt−τ ,θt−τ )]

= E[(ηt−τ − J(θt−τ ))(r(s̃t, ãt)− r(s′t−τ , a
′
t−τ ))]

≤ 4U2
r dTV (P(Õt−τ = ·|st−τ+1,θt−τ ), µθt−τ ⊗ πθt−τ ⊗ P)

≤ 4U2
rCρτ−1.

Combing Eq. (39), Eq. (40), Eq. (41), and Eq. (44), we have

E[Φ(Ot, ηt,θt)] = E[Φ(Ot, ηt,θt)− Φ(Ot, ηt,θt−τ )] + E[Φ(Ot, ηt,θt−τ )− Φ(Ot, ηt−τ ,θt−τ )]

+ E[Φ(Ot, ηt−τ ,θt−τ )− Φ(Õt, ηt−τ ,θt−τ )] + E[Φ(Õt, ηt−τ ,θt−τ )]

≤ 4UrLJ∥θt − θt−τ∥+ 2Ur|ηt − ηt−τ |+ 2U2
rLπ

t∑
i=t−τ

E∥θi − θt−τ∥

+ 4U2
rCρτ−1,

which concludes the proof.

Proof of Lemma F.3.

Proof. We will divide the proof of this lemma into four steps.

Step 1: show that for any θ1,θ2,ω and tuple O = (s, a, s′), we have

|Ψ(O,ω,θ1)−Ψ(O,ω,θ2) ≤ C1∥θ1 − θ2∥, (45)

where C1 = 2U2
δLπ(1 + ⌈logρ C−1⌉+ 1

1−ρ ) + 2UδLJLv + 2UδL∗Lv .

By definition of Ψ(O,ω,θ) in Eq. (11), we have

|Ψ(O,ω,θ1)−Ψ(O,ω,θ2)|
= |⟨ω − ω∗

1 , g(O,ω,θ1)− ḡ(ω,θ1)⟩ − ⟨ω − ω∗
2 , g(O,ω,θ2)− ḡ(ω,θ2)⟩|

≤ |⟨ω − ω∗
1 , g(O,ω,θ1)− ḡ(ω,θ1)⟩ − ⟨ω − ω∗

1 , g(O,ω,θ2)− ḡ(ω,θ2)⟩|︸ ︷︷ ︸
I1

+ |⟨ω − ω∗
1 , g(O,ω,θ2)− ḡ(ω,θ2)⟩ − ⟨ω − ω∗

2 , g(O,ω,θ2)− ḡ(ω,θ2)⟩|︸ ︷︷ ︸
I2

.

For term I1, we have

I1 = |⟨ω − ω∗
1 , g(O,ω,θ1)− ḡ(ω,θ1)⟩ − ⟨ω − ω∗

1 , g(O,ω,θ2)− ḡ(ω,θ2)⟩|
= |⟨ω − ω∗

1 , g(O,ω,θ1)− g(O,ω,θ2)⟩|+ |⟨ω − ω∗
1 , ḡ(ω,θ1)− ḡ(ω,θ2)⟩|

= |⟨ω − ω∗
1 , (J(θ1)− J(θ2))∇ωV̂ (ω; s)⟩|+ |⟨ω − ω∗

1 , ḡ(ω,θ1)− ḡ(ω,θ2)⟩|
≤ 2UωLJLv∥θ1 − θ2∥+ 2Uω∥ḡ(ω,θ1)− ḡ(ω,θ2)∥
≤ 2UωLJLv∥θ1 − θ2∥+ 2Uω · 2UδdTV (µθ1

⊗ πθ1
⊗ P, µθ2

⊗ πθ2
⊗ P)

≤ 2UωLJLv∥θ1 − θ2∥+ 2U2
δ dTV (µθ1

⊗ πθ1
⊗ P, µθ2

⊗ πθ2
⊗ P)

≤ (2UδLJLv + 2U2
δLπ(1 + ⌈logρ C−1⌉+ 1

1− ρ
))∥θ1 − θ2∥,
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where we use the fact that Uδ = 2Ur + 2Uω + 2Uv and the last inequality comes from Lemma C.1.

For term I2, from Cauchy-Schwartz inequality, we have

I2 = |⟨ω − ω∗
1 , g(O,ω,θ2)− ḡ(ω,θ2)⟩ − ⟨ω − ω∗

2 , g(O,ω,θ2)− ḡ(ω,θ2)⟩|
= |⟨ω∗

1 − ω∗
2 , g(O,ω,θ2)− ḡ(ω,θ2)⟩|

≤ 2UδLv∥ω∗
1 − ω∗

2∥
≤ 2UδLvL∗∥θ1 − θ2∥.

Combining the results from I1 and I2, we get

|Ψ(O,ω,θ1)−Ψ(O,ω,θ2) ≤ C1∥θ1 − θ2∥,
where C1 = 2U2

δLπ(1 + ⌈logρ C−1⌉+ 1
1−ρ ) + 2UδLJLv + 2UδL∗Lv .

Step 2: show that for any θ,ω1,ω2 and tuple O(s, a, s′), we have

|Ψ(O,ω1,θ)−Ψ(O,ω2,θ)| ≤ 2Uδ(UvHv + L2
v + UrHv + Lv)∥ω1 − ω2∥. (46)

By definition, we have

|Ψ(O,ω1,θ)−Ψ(O,ω2,θ)|
= |⟨ω1 − ω∗, g(O,ω1,θ)− ḡ(ω1,θ)⟩ − ⟨ω2 − ω∗, g(O,ω2,θ)− ḡ(ω2,θ)⟩|
≤ |⟨ω1 − ω∗, g(O,ω1,θ)− ḡ(ω1,θ)⟩ − ⟨ω1 − ω∗, g(O,ω2,θ)− ḡ(ω2,θ)⟩|

+ |⟨ω1 − ω∗, g(O,ω2,θ)− ḡ(ω2,θ)⟩ − ⟨ω2 − ω∗, g(O,ω2,θ)− ḡ(ω2,θ)⟩|
≤ 2Uω∥(g(O,ω1,θ)− g(O,ω2,θ))− (ḡ(ω1,θ)− ḡ(ω2,θ))∥+ 2UδLv∥ω1 − ω2∥.

It follows that

∥(g(O,ω1,θ)− g(O,ω2,θ))− (ḡ(ω1,θ)− ḡ(ω2,θ))∥
=∥(r(s, a)− J(θ))(∇ωV̂ (ω1; s)−∇ωV̂ (ω2; s))

+ V̂ (ω1; s
′)∇ωV̂ (ω1; s)− V̂ (ω2; s

′)∇ω(ω2; s)

+ V̂ (ω2; s)∇ωV̂ (ω2; s)− V̂ (ω1; s)∇ωV̂ (ω1; s)∥
≤∥V̂ (ω1; s

′)∇ωV̂ (ω1; s)− V̂ (ω1; s
′)∇ωV̂ (ω2; s)

+ V̂ (ω1; s
′)∇ωV̂ (ω2; s)− V̂ (ω2; s

′)∇ωV̂ (ω2; s)∥
+ ∥V̂ (ω2; s)∇ωV̂ (ω2; s)− V̂ (ω1; s)∇ωV̂ (ω2; s)

+ V̂ (ω1; s)∇ωV̂ (ω2; s)− V̂ (ω1; s)∇ωV̂ (ω1; s)∥+ 2UrHv∥ω1 − ω2∥
≤2UvHv∥ω1 − ω2∥+ 2L2

v∥ω1 − ω2∥+ 2UrHv∥ω1 − ω2∥
=(2UvHv + 2L2

v + 2UrHv)∥ω1 − ω2∥.
Therefore, we obtain

|Ψ(O,ω1,θ)−Ψ(O,ω2,θ)| ≤ C2∥ω1 − ω2∥,
where C2 = 2Uδ(UvHv + L2

v + UrHv + Lv).

Step 3: show that for tuples Ot = (st, at, st+1) and Õt = (s̃t, ãt, s̃t+1). Conditioning on st−τ+1

and θt−τ , we have

E[Ψ(Ot,ωt−τ ,θt−τ )−Ψ(Õt,ωt−τ ,θt−τ )] ≤ U2
δLvLπGτ(τ + 1)α. (47)

By the definition of total variation norm, we have

E[Ψ(Ot,ωt−τ ,θt−τ )−Ψ(Õt,ωt−τ ,θt−τ )]

= E[⟨ωt−τ − ω∗
t−τ , g(Ot,ωt−τ ,θt−τ )− g(Õt,ωt−τ ,θt−τ ))]

≤ 2U2
δLvdTV (P(Ot ∈ ·|st−τ+1,θ−τ ),P(Õt ∈ ·|st−τ+1,θt−τ ))

(1)

≤ U2
δLvLπ

t∑
k=t−τ

E∥θk − θt−τ∥

≤ U2
δLvLπGτ(τ + 1)α,
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where (1) follows from Eq. (43).

Step 4: show that conditioning on st−τ+1 and θt−τ ,

E[Ψ(Õt,ωt−τ ,θt−τ )] ≤ 2U2
δCρτ−1 (48)

From the definition of Ψ(O,ω,θ), we have
E[Ψ(O′

t−τ ,ωt−τ ,θt−τ )|st−τ+1,θt−τ ] = 0,

where O′
t−τ is the tuple generated by s′t−τ ∼ µθt−τ , a

′
t−τ ∼ πθt−τ , s

′
t−τ+1 ∼ P . From Assumption

4.6, we have
dTV (P(s̃t = ·|st−τ+1,θt−τ ), µθt−τ

) ≤ Cρτ−1.

Then, it holds that

E[Ψ(Õt,ωt−τ ,θt−τ )] = E[Ψ(Õt,ωt−τ ,θt−τ )−Ψ(O′
t−τ ,ωt−τ ,θt−τ )]

= E⟨ωt−τ − ω∗
t−τ , g(Õt,ωt−τ ,θt−τ )− g(O′

t−τ ,ωt−τ ,θt−τ )⟩
≤ 2U2

δLvdTV (P(Õt = ·|st−τ+1,θt−τ ), µθt−τ ⊗ πθt−τ ⊗ P)

= 2U2
δLvdTV (P((s̃t, ãt) ∈ ·|st−τ+1,θt−τ ), µθt−τ

⊗ πθt−τ
)

= 2U2
δLvdTV (P(s̃t = ·|st−τ+1,θt−τ ), µθt−τ

)

≤ 2U2
δLvCρτ−1.

Combining Eq. (45), Eq. (46), Eq. (47), and Eq. (48), we have
E[Ψ(Ot,ωt,θt)] = E[Ψ(Ot,ωt,θt)−Ψ(Ot,ωt,θt−τ )]

+ E[Ψ(Ot,ωt,θt−τ )−Ψ(Ot,ωt−τ ,θt−τ )]

+ E[Ψ(Ot,ωt−τ ,θt−τ )−Ψ(Õt,ωt−τ ,θt−τ )]

+ E[Ψ(Õt,ωt−τ ,θt−τ )]

≤ C1∥θt − θt−τ∥+ C2∥ωt − ωt−τ∥
+ U2

δLvLπGτ(τ + 1)α+ 2U2
δLvCρτ−1,

where C1 = 2U2
δLπ(1+⌈logρ C−1⌉+ 1

1−ρ )+2UδLJLv+2UδL∗Lv and C2 = 2Uδ(UvHv+L2
v+

UrHv + Lv).

Proof of Lemma F.4.

Proof. We will divide the proof of this lemma into four steps.

Step 1: show that for any O,ω,θ1,θ2, we have
∥Ξ(O,ω,θ1)− Ξ(O,ω,θ2)∥ ≤ (3UδLh + 2UδBL∗)∥θ1 − θ2∥ (49)

Since Ξ(O,ω,θ) = ⟨ω − ω∗, (∇ω∗
θ)

⊤(EO′ [h(O′,θ)] − h(O,θ))⟩, we define Eθ[h(O
′,θ)] :=

EO′ [h(O′,θ)], where Eθ is the shorthand of EO′∼(µθ,πθ,P). In the following, we will show that
each term in Ξ(O,ω,θ) is Lipschitz with respect to θ.

Term ω is not related to θ, term ω∗ := ω∗(θ) is L∗-Lipschitz, and term ∇ω∗
θ is Ls-Lipschitz.

For term h(O,θ), denote δ(O,θ) := r(s, a)− J(θ) + V̂ (ω∗(θ); s′)− V̂ (ω∗(θ); s), we have
∥h(O,θ1)− h(O,θ2)∥

= ∥δ(O,θ1)∇ log πθ1
(a|s)− δ(O,θ2)∇ log πθ2

(a|s)∥
≤ ∥δ(O,θ1)∇ log πθ1(a|s)− δ(O,θ1)∇ log πθ2(a|s)∥

+ ∥δ(O,θ1)∇ log πθ2
(a|s)− δ(O,θ2)∇ log πθ2

(a|s)∥
≤ UδLl∥θ1 − θ2∥+B|δ(O,θ1)− δ(O,θ2)|
≤ UδLl∥θ1 − θ2∥+B(|J(θ1)− J(θ2)|+ ∥V̂ (ω∗(θ1); s

′)− V̂ (ω∗(θ2); s
′)∥

+ ∥V̂ (ω∗(θ1); s)− V̂ (ω∗(θ2); s)∥
≤ (UδLl + 2BLJ)∥θ1 − θ2∥+ 2BLv∥ω∗(θ1)− ω∗(θ2)∥
≤ Lh∥θ1 − θ2∥.
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Hence we have h(O,θ) is Lh-Lipschitz, where Lh = UδLl + 2BLvL∗ + 4BUδLJ .

For term Eθ[h(O
′,θ)], we have

∥Eθ1
[h(O′,θ1)]− Eθ2

[h(O′,θ2)]∥
≤ ∥Eθ1 [h(O

′,θ1)]− Eθ1 [h(O
′,θ2)]∥+ ∥Eθ1 [h(O

′,θ2)]− Eθ2 [h(O
′,θ2)]∥

≤ Eθ1
[∥h(O′,θ1)− h(O′,θ2)∥] + ∥Eθ1

[h(O′,θ2)]− Eθ2
[h(O′,θ2)]∥

≤ Lh∥θ1 − θ2∥+ ∥Eθ1
[h(O′,θ2)]− Eθ2

[h(O′,θ2)]∥
≤ Lh∥θ1 − θ2∥+ 2BUδdTV (µθ1 ⊗ πθ1 , µθ2 ⊗ πθ2)

≤ (Lh + 2BUδLπ(1 + ⌈logρ C−1⌉+ 1

1− ρ
))∥θ1 − θ2∥

≤ (Lh + 2BUδLJ)∥θ1 − θ2∥
≤ 2Lh∥θ1 − θ2∥.

Then we have ω − ω∗
θ is Uδ-bounded and L∗-Lipschitz; ∇ω∗

θ is L∗-bounded and Ls-Lipschitz;
Eθ[h(O

′,θ)]− h(O,θ) is 2UδB-bounded and 3Lh-Lipschitz. By the triangle inequality, we have

∥Ξ(O,ω,θ1)− Ξ(O,ω,θ2)∥ ≤ (2UδBL2
∗ + 2U2

δBLs + 3UδL∗Lh)∥θ1 − θ2∥ ≤ C3∥θ1 − θ2∥,

where C3 := 3UδL∗(UδLl + 4BUδLJ + 2BLvL∗) + 2UδBL2
∗ + 2U2

δBLs.

Step 2: show that

∥Ξ(O,ω1,θ)− Ξ(O,ω2,θ)∥ ≤ 2UδBL∗∥ω1 − ω2∥. (50)

Actually, we have

∥Ξ(O,ω1,θ)− Ξ(O,ω2,θ)∥ = ∥⟨ω1 − ω2, (∇ω∗
θ)

⊤EO′ [h(O′,θ)]− h(O,θ)⟩∥
≤ 2UδBL∗∥ω1 − ω2∥.

Step 3: show that for tuples Ot = (st, at, st+1) and Õt = (s̃t, ãt, s̃t+1). Conditioning on st−τ+1

and θt−τ , we have

E[Ξ(Ot,ωt−τ ,θt−τ )− Ξ(Õt,ωt−τ ,θt−τ )] ≤ 2U2
δBLπ

t∑
k=t−τ

E∥θk − θt−τ∥. (51)

By definition of Ξ(O,ω,θ), we have

∥E[Ξ(Ot,ωt−τ ,θt−τ )− Ξ(Õt,ωt−τ ,θt−τ )]∥
= ∥E[⟨ωt−τ − ω∗

t−τ , (∇ω∗
t−τ )

⊤(h(Õt,θt−τ )− h(Ot,θt−τ ))]∥
≤ 4U2

δBL∗dTV (P(Ot ∈ ·|st−τ+1,θt−τ ),P(Õt ∈ ·|st−τ+1,θt−τ )), (52)

where the inequality comes from the definition of total variation distance. The total variation norm
between Ot and Õt has been computed in Eq. (43). Plugging Eq. (43) into Eq. (52), we get

∥E[Ξ(Ot,ωt−τ ,θt−τ )− Ξ(Õt,ωt−τ ,θt−τ )]∥ ≤ 2U2
δBL∗Lπ

t∑
k=t−τ

E∥θk − θt−τ∥

≤ 2U2
δBL∗LπGτ(τ + 1)α.

Step 4: Show that conditioning on st−τ+1 and θt−τ , we have

∥E[Ξ(Õt,ωt−τ ,θt−τ )]∥ ≤ 4U2
δBCρτ−1. (53)

It can be shown that

∥E[Ξ(Õt,ωt−τ ,θt−τ )]∥
(1)
= ∥E[Ξ(Õt,ωt−τ ,θt−τ )− Ξ(O′

t−τ ,ωt−τ ,θt−τ )]∥
(2)

≤ 4U2
δBL∗dTV (P(Õt ∈ ·|st−τ+1,θt−τ ), µθt−τ

⊗ πθt−τ
⊗ P),
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where (1) is due to the fact that O′
t is from the stationary distribution which satisfies

E[Ξ(O′
t−τ ,ωt−τ ,θt−τ )|θt−τ , st−τ+1] = 0 and (2) follows from the definition of total variation

distance. From Assumption 4.6, we know that

dTV (P(s̃t ∈ ·), µθt−τ
) ≤ Cρτ−1.

Therefore, we have

∥E[Ξ(Õt,ωt−τ ,θt−τ )∥ ≤ 4U2
δBL∗dTV (P(Õt = ·|st−τ+1,θt−τ ), µθt−τ

⊗ πθt−τ
⊗ P)

= 4U2
δBL∗dTV (P((s̃t, ãt) ∈ ·|st−τ+1,θt−τ ), µθt−τ

⊗ πθt−τ
)

= 4U2
δBL∗dTV (P(s̃t = ·|st−τ+1,θt−τ ), µθt−τ )

≤ 4U2
δBL∗Cρτ−1.

Combining Eq. (49)-Eq. (53), we can decompose the Markovian bias as

E[Ξ(Ot,ωt,θt)] = E[Ξ(Ot,ωt,θt)− Ξ(Ot,ωt,θt−τ )]

+ E[Ξ(Ot,ωt,θt−τ )− Ξ(Ot,ωt−τ ,θt−τ )]

+ E[Ξ(Ot,ωt−τ ,θt−τ )− Ξ(Õt,ωt−τ ,θt−τ )]

+ E[Ξ(Õt,ωt−τ ,θt−τ )]

≤ C3∥θt − θt−τ∥+ 2UδBL∗∥ωt − ωt−τ∥
+ 2U2

δBL∗LπGτ(τ + 1)α+ 4U2
δBL∗Cρτ−1.

Thus we conclude our proof.

Proof of Lemma F.6.

Proof. We will divide the proof of this lemma into three steps.

Step 1: show that

|Θ(O,θ1)−Θ(O,θ2)| ≤ (2UδBLJ′ + 3LJLh)∥θ1 − θ2∥, (54)

where Lh = UδLl + 2BLvL∗ + 4BUδLJ is defined in the proof of Lemma F.4.

Since Θ(O,θ) = ⟨∇J(θ),EO′
θ
[h(O′

θ,θ)] − h(O,θ)⟩, we will show that each term in Θ(O,θ) is
Lipschitz.

For the term ∇J(θ), we know it’s LJ -bounded and LJ′ -Lipschitz. For term Eθ[h(O
′,θ)]−h(O,θ),

we have shown in the proof of Lemma F.4 that it’s 2UδB-bounded and 3Lh-Lipschitz. By the
triangle inequality, we have

|Θ(O,θ1)−Θ(O, θ2)| ≤ (2UδBLJ′ + 3LJLh)∥θ1 − θ2∥

Step 2: show that conditioning on st−τ+1 and θt−τ , we have

|E[Θ(Ot,θt−τ )−Θ(Õt,θt−τ )]| ≤ 2UδBLJLπ

t∑
k=t−τ

∥θk − θt−τ∥ (55)

By definition of Θ(O,θ), we have

|E[Θ(Ot,θt−τ )−Θ(Õt,θt−τ )]|
= |E[⟨∇J(θt−τ ), h(Õt,θt−τ )− h(Ot,θt−τ )⟩]|
≤ 4UδBLJdTV (P(Ot ∈ ·|st−τ+1,θt−τ ),P(Õt ∈ ·|st−τ+1,θt−τ )), (56)

where the inequality comes from the definition of total variation distance. The total variation dis-
tance between Ot and Õt has been computed in Eq. (43). Plugging Eq. (43) into Eq. (56), we get

|E[Θ(Ot,θt−τ )−Θ(Õt,θt−τ )]| ≤ 2UδBLJLπ

t∑
k=t−τ

∥θk − θt−τ∥.
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Step 3: show that conditioning on st−τ+1 and θt−τ , we have

|E[Θ(Õt,θt−τ )−Θ(O′
t−τ ,θt−τ )]| ≤ 4UδBLJCρτ−1. (57)

From the definition of Θ(O,θ), we have

|E[Θ(Õt,θt−τ )−Θ(O′
t−τ ,θt−τ )]| = |E[⟨∇J(θt−τ ), h(O

′
t,θt−τ )⟩ − ⟨∇J(θt−τ ), h(Õt,θt−τ )⟩]|

≤ 4UδBLJdTV (P(Õt ∈ ·|st−τ+1,θt−τ ), µθt−τ ⊗ πθt−τ ⊗ P)

= 4UδBLJdTV (P((s̃t, ãt) ∈ ·|st−τ+1,θt−τ ), µθt−τ ⊗ πθt−τ )

= 4UδBLJdTV (P(s̃t = ·|st−τ+1,θt−τ ), µθt−τ
)

≤ 4UδBLJCρτ−1,

where the last inequality follows from Assumption 4.6. Therefore, we have

|E[Θ(Õt,θt−τ )−Θ(O′
t−τ ,θt−τ )]| ≤ 4UδBLJCρτ−1.

Combining Eq. (54), Eq. (55), and Eq. (57), we can decompose the Markovian bias as

E[Θ(Ot,θt)] = E[Θ(Ot,θt)−Θ(Ot,θt−τ )]

+ E[Θ(Ot,θt−τ )−Θ(Õt,θt−τ )]

+ E[Θ(Õt,θt−τ )−Θ(O′
t−τ ,θt−τ )]

+ E[Θ(O′
t−τ ,θt−τ )],

where Õt is from the auxiliary Markovian chain defined in Eq. (8) and O′
t−τ is from the stationary

distribution which satisfies E[Θ(O′
t−τ ,θt−τ )|θt−τ ] = 0.

Then we have

E[Θ(Ot,θt)] ≤ (2UδBLJ′ + 3LJLh)E∥θt − θt−τ∥

+ 2UδBLJLπ

t∑
k=t−τ

∥θk − θt−τ∥+ 4UδBLJCρτ−1

≤ (2UδBLJ′ + 3LJLh)

t∑
k=t−τ+1

E∥θk − θk−1∥

+ 2UδBLJLπ

t∑
k=t−τ+1

k∑
j=t−τ+1

E∥θj − θj−1∥+ 4UδBLJCρτ−1

≤ (2UδBLJ′ + 3LJLh)

t∑
k=t−τ+1

E∥θk − θk−1∥

+ 2UδBLJLπτ

t∑
j=t−τ+1

E∥θj − θj−1∥+ 4UδBLJCρτ−1

≤ C4(τ + 1)

t∑
k=t−τ+1

E∥θk − θk−1∥+ C5Cρτ−1

≤ C4(τ + 1)2Gα+ C5Cρτ−1

where C4 = max{2UδBLJ′ +3LJLh, 2UδBLJLπ} and C5 = 4UδBLJ . Substituting Lh into C4,
we conclude the proof.
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