Under review as a conference paper at ICLR 2025

PROVABLE CONVERGENCE OF SINGLE-TIMESCALE
NEURAL ACTOR-CRITIC IN CONTINUOUS SPACES

Anonymous authors
Paper under double-blind review

ABSTRACT

Actor-critic (AC) algorithms have been the powerhouse behind many successful
yet challenging applications. However, the theoretical understanding of finite-
time convergence in AC’s most practical form remains elusive. Existing research
often oversimplifies the algorithm and only considers simple finite state and action
spaces. We analyze the more practical single-timescale AC on continuous state
and action spaces and use deep neural network approximations for both critic and
actor. Our analysis reveals that the iterates of the more practical framework we

consider converge towards the stationary point at rate O(T~/2) 4+ O(m~1/?),
where 7' is the total number of iterations and m is the width of the deep neural
network. To our knowledge, this is the first finite-time analysis of single-timescale
AC in continuous state and action spaces, which further narrows the gap between
theory and practice.

1 INTRODUCTION

Actor-critic (AC) algorithms have driven numerous successful applications and are state-of-the-art
in reinforcement learning (Konda & Tsitsiklis, |1999; Mnih et al., 2016 |Silver et al., |2017). Their
practical implementation typically consists of two parallel updates: the critic update and the actor
update. The critic incrementally estimates the action-value function for the current policy, while the
actor adjusts the policy network in the direction suggested by the estimated policy gradient based on
the action value.

Despite AC’s widespread success, their theoretical understanding lags significantly behind. Most ex-
isting theoretical results focus on cases where the actor and the critic update at significantly different
rates. These include algorithms that either update the critic multiple times for a fixed actor (Yang
et al., 2019; | Kumar et al.l [2019; |Agarwal et al.l 2021; Xu et al., [2020a)) or employ two-timescale
approaches where the actor’s stepsize decays faster than the critic’s (Wu et al., [2020b; [Chen et al.,
2023} | Xu et al, 2020b; [Hong et al. 2023). These settings are only made to simplify analysis. In
practice, the actor and critic are typically updated at a single-timescale, using stepsizes that are
constantly proportional to each other (Chen et al.| [2021} (Olshevsky & Gharesifard, 2023} |Chen &
Zhaol |2024; Tian et al.| |2024). Single-timescale AC is typically more sample-efficient, as it avoids
artificially slowing down the actor update performed in the aforementioned AC variants (Olshevsky
& Gharesifard, 2023} |Chen & Zhao, [2024).

However, the theoretical analysis of single-timescale AC in practical settings is still largely miss-
ing in the literature. As shown in Table |1} all existing works only analyze the single-timescale AC
method in solving Markov Decision Processes (MDPs) with finite action space. This finite action
space assumption excludes all continuous policies, including commonly used Gaussian, Uniform,
and Gamma policies. Given the commonness of continuous control tasks in practice and the preva-
lence of AC algorithms in addressing them (Lillicrap et al.l 2015} [Haarnoja et al., 2018)), there is a
pressing need for theoretical guarantees in continuous settings. Moreover, Markovian sampling and
deep neural network approximation for both the actor and the critic are commonly used in practical
applications (LeCun et al., 2015} |[Haarnoja et al.l [2018). However, existing studies have typically
addressed only one of these elements, failing to consider their compound effects in practice (see the
summary in Table|[T).

Under review as a conference paper at ICLR 2025

Table 1: Comparisons of existing works analyzing single-timescale AC algorithms under various
settings

MDP Sampling Convergence rate
Reference Function class
State | Action Actor Critic wrt. T w.It. m

Chen et al.[(2021) Infinite | Finite iid. iid. Linear O(T—95) N/A
Olshevsky & Gharesifard|(2023) | Finite | Finite iid. iid. Linear O(T—95) N/A
Chen & Zhao, (2024) Infinite | Finite | Markovian | Markovian Linear (5(T*0‘5) N/A

Tian et al.|(2024) Finite | Finite iid. Markovian | Deep NN | O(T~%5) | O(m=0-5)

Ours Infinite | Infinite | Markovian | Markovian | Deep NN | O(T=0-3) | O(m~0-5)

As highlighted in the last row of Table|[l} in this paper, we establish the finite-time convergence of
single-timescale AC in solving MDPs with continuous (infinite) state and action spaces, and using
deep neural network approximation and Markovian sampling for both actor and critic updates. Our
analysis shows that the algorithm converges to a stationary point at a rate of o (T -1/)+ o (m~Y),

where T is the number of iterations, m is the neural network width, and O hides logarithmic factors.
As outlined in Table[I] previous studies faced at least two of the three potentially restrictive assump-
tions discussed earlier (finite action space, i.i.d sampling, linear function class). In contrast, our
results address all these challenges, which bridge the gap between theory and practice and advance
the theoretical analysis for the single-timescale AC method.

1.1 MAIN CONTRIBUTIONS
Our main contributions are summarised as follows:

® We establish the convergence of single-timescale AC in continuous state and action spaces, which
has not been accomplished in prior research (see Table [I)). Notably, even for the simpler case of
the two-timescale AC variants, existing analysis cannot establish their convergence in the contin-
uous setting. Our work may serve as the foundation to analyze other two- or single-timescale AC
algorithms in more general continuous settings.

® Our results demonstrate significant advantages over existing works on single-timescale AC. We
adopt more practical settings of deep neural network approximation and Markovian sampling for
both the actor and the critic. Compared to Tian et al.| (2024), where the critic employs Markovian
sampling to collect transition tuples, the actor still requires i.i.d. transition tuples sampled from a
discounted state-action occupation measure, which demands a burdensome re-sampling. In contrast,
we allow Markovian sampling for both the actor and critic, utilizing the same transition tuples,
closely following the state-of-the-art practice that facilitates efficient online learning.

® Technically, we develop a new framework to address the challenges posed by the continuous
domain in single-timescale AC analysis. To establish the main results, we formulate a general
condition in Assumption[4.7](c) and demonstrate that it is satisfied by a broad class of neural network
policies (Proposition .8 on continuous space, and include the previous assumptions on discrete
space as special cases. Moreover, we examine the neural network approximation errors of the
evolving actor and critic, ensuring that the resulting errors do not amplify through their interactions.
Our methodology enriches the analytical toolbox for single-timescale AC.

Notation. We use san-serif letters to denote scalars and use lower and upper case bold letters to
denote vectors and matrices respectively. We also use |jw|| to denote the ¢2-norm of a vector w,
|| A|| to denote the spectral norm of a matrix A, and || A||r to denote the Frobenius norm of a matrix
A. For two sequences of real numbers (x,,) and (y,,), we write x,, = O(yy,) if there exists C' < oo
such that |z,,| < C|y,| for all n sufficiently large. We use O(-) to further hide logarithmic factors.
The total variation distance of two probability measures x4 and v on X is defined by dry (u, v) :=
sup 4 |u(A)—v(A)|, where A runs over all measurable subsets of X. In addition, we use P to denote
a generic probability of some random event.

Under review as a conference paper at ICLR 2025

2 PRELIMINARIES

In this section, we introduce some basics of MDP, the AC algorithm, and deep neural networks.

Markov Decision Process. We consider the standard Markov Decision Process (MDP) character-
ized by (S, A, P,r), where S is the state space and A is the action space. The spaces S and A are
allowed to be either finite sets or real vector spaces, i.e., S C R% and A C R%. The transition ker-
nel is denoted by P(s;4+1]s¢t, ar) € R>¢ and the reward functionis r : S x A — [—U,, U,]. A policy
g parameterized by 6 € Xo maps a given state to a probability distribution over the action space,
i.e., a; ~ mg(-|s;). In this work, we consider the average-reward setting (Sutton et al.,|{1999; |Yang
et al.,2019; |Wu et al.,[2020b}; |Chen & Zhao, |2024), which aims to find a policy 7g that maximizes
the following infinite-horizon time-average reward:

T-1
. 1
J(6) := lim Eg [T Z r(st, at)} =E(s,0)~(n0,m0) [T(5,0)]-

T—o0
t=0

In the above equation, the expectation Eg is taken over the states and actions generated by following
the policy mg and the transition kernel P. Additionally, pg denotes the stationary state distribution
induced by mg and P. The existence of this stationary distribution is guaranteed by the uniform
ergodicity of the underlying MDP, which is a common assumption (See Assumption [4.6|in the
sequel). Hereafter, we refer to J(0) as the time-average reward (and exchangeably, performance
function), which can be evaluated by the expected reward over the stationary distribution jg and the
policy 7. The state-value function is used to evaluate the overall rewards starting from a state s,
following policy 7g and transition kernel P thereafter, which is defined as

SQ_S:|.

Similarly, we define the action-value (Q-value) function to evaluate the overall rewards starting from
s, taking action a, and following transition kernel P and policy mg thereafter:

o0

Vo(s) :=Eq [Z (r(se,ar) — J(0))

t=0

o0

Qo(s,a) :=Eq [Z (r(st, ag) — J(G))

t=0

S0 = 8,09 = a} =r(s,a) — J(0) + E[Va(s)],

where the last expectation is taken over s’ ~ P(-|s, a).

We denote the class of real-valued functions on S by F := {f| f : S — R}. For a policy g, we
define two operators Dy : F — F and Pp : F — F as follows:

Dof(s) = pe(s) - f(s), Fof(s) =/S Aﬂe(a\S)P(S’Is,a)f(S’)d(a x). (1)

These operators will be instrumental in addressing the technical challenge associated with continu-
ous state and action space. Lastly, for two functions f, g € F, their inner product is defined as

/ £(s @)

and the norm of f is defined as || > = (f, f).

Actor-Critic. In AC, typically the critic estimates the actor’s value through Temporal-Difference
(TD) learning, and the actor adjusts its policy parameters to maximize the performance function via
stochastic gradient ascent. The policy gradient theorem (Sutton et al.||{1999) provides an analytical
formula of the gradient of the performance function J(@) with respect to the policy parameter 8,
which is given by

VoJ(0) = Espg.anme |Qo(s,a) - Vglogma(als)]. 3)

Equivalently, the policy gradient can be written as

VJ(G) = ESNMS,ELNWQ [(QB (S’ a) - b<5>)v9 log g (CL|S)],

Under review as a conference paper at ICLR 2025

where b(s) is called the baseline function, which is employed to reduce the variance of the gradient
estimate. A popular choice of baseline is the state-value function, which leads to the following
so-called advantage-based policy gradient

VoJ(0) = Esnpig.anme[Da(s,a) Vo logme(als)],)
where Ag := Qg (s, a) — Vp(s) is known as the advantage function.
In deep reinforcement learning, the policy and value functions are typically parameterized by deep
neural networks (DNNs) due to their strong representation capabilities (Henderson et al.,2018;|{Zhao
et al.| 2020). However, the convergence and performance of training DNNs are less understood, es-
pecially in reinforcement learning. In this paper, we establish conditions and provide an asymptotic

analysis for single-timescale AC algorithms utilizing DNN approximations for both the actor and
the critic.

3 THE SINGLE-TIMESCALE NEURAL ACTOR-CRITIC ALGORITHM

In this section, we present the single-timescale neural AC algorithm to be analyzed in the sequel,
incorporating key components commonly found in practical implementations.

3.1 PARAMETERIZATION OF THE VALUE FUNCTION AND POLICY

We consider a multi-layer neural network for estimating the true state-value function Vg(s) under a

policy mg. The network ‘A/(w; s) has a general form of a deep neural network with a linear output
layer:
s© =g,

sk = b oc(WWR =) fork=1,2,--- K,

VM ®)
V(w;s) = 7;“(b s,

where K is the total number of hidden layers, state s € R% is the input to the neural network,
o is an element-wise activation function, b is a fixed coefficient vector for the output layer, and
w € Xq stands for the trainable parameter of the neural network. The latter is a column vector
formed by stacking the weights of different layers, w := {W*) € R™»*mx—1 S |, where my, € N
is the width of the k-th layer and mg = d; is the input dimension. Without loss of generality, we
assume all the hidden layers have the same width m, i.e., m = m for k € {1,2,--- ,K}. Itis
for the ease of presentation only. As shown in the proof, our analysis also applies to my > m. We
admit some freedom to choose the activation function o (). It only needs to satisfy Assumption
For example, it can be sigmoid and GeLU (Hendrycks & Gimpel, 2016). Note that the above
definition is general enough to encompass standard multilayer perceptrons (MLPs), convolutional
neural networks (CNNs), and residual networks (ResNets) as special cases.

The policy mg is allowed to have a general parameterization, including linear functions (Yang et al.,
2019), deep neural networks (Wang et al.l [2019), and energy-based policies (Fu et al.,|2020). For
the DNN case, the actor can be parameterized similarly to Eq. (3)), where all the trainable parameters
will be stacked into the column vector 8 € Xg.

3.2 ALGORITHM DESIGN

In this subsection, we first aim to update the parameter of the neural network (the critic) w so

that ‘7(w; s) can approximate the true value function Vp(s) of a policy mg. Concretely, at step ¢,
we implement Stochastic Gradient Descent (SGD) methods to adjust the critic in the direction that

~

would most reduce the mean square value error [V (s;) — V (wy; s¢)]?:
1 - ~ ~
Wi = wy — 55V[V(st) — V(ws;80)]? = wi + B[V (st) — V(wy; 5¢)]V V(wis 51), (6)

where [is the stepsize (learning rate). Since V'(s;) is unknown, the semi-gradient TD(0) method
approximates it by replacing V' (s;) with the current target r; — J(0) + V (w¢; s¢11). To further

Under review as a conference paper at ICLR 2025

Algorithm 1 Single-Timescale Neural Actor-Critic

1: Input initial actor parameter 6, initial critic parameter wy, initial reward estimator 7, stepsizes
« for actor, 3 for critic, and y for reward estimator.

2: Draw sg from some initial distribution

3. fort=0,1,2,--- , T —1do

4: Take action a; ~ 7g, (-|s¢)

5: Observe next state s;41 ~ P(-|s;, a;) and reward r; = (s, ar)

6 5t =T¢ —T]t+V(wt;St+1) —V(wt;st)

7o e =g+ (re — ne) R

8 w1 = proijD (wi + B VL,V (w; st))

9: 0t+1 = Ot +O[(5tVQ logﬂgt(at\st)

10: end for

estimate the unknown time-average reward J (@), we use the following exponential moving average
update of 7,

Neg1 = N +Y(re —nt)s

where ~ is the stepsize. Hereafter, we will refer to it as the reward estimator. This additional
estimation of the time-average reward J(0) introduces more analysis complexity compared to the
discounted setting (Olshevsky & Gharesitard, [2023; [Tian et al.l 2024). Now, by denoting the TD
error as

Opi=ry —mp + V(wﬁ St41) — V(wt? st),

we can rewrite the update of the critic in Eq. (6)) as
Wiyl = Wy + BétiV(w, St)~

For the neural network specified in Section [3.1] we require its width m to be sufficiently large such
that the neural network is in the overparameterization regime. In this regime, the optimal solution
typically resides in the neighborhood of the initialization (Du et al., 2019; |Chen et al., 2021} [Tian
et al., 2024)). Therefore, in Line 8 of Algorithm m we constrain the update of the critic parameter
within a ball of constant radius around its initial condition, which ensures the boundedness without
overlooking the optimal solution. Specifically, proijo stands for the projection onto a ball with a

constant radius around the initial condition of the critic, i.e., B, = {w||w — wo| < U, }, where
U,, is a constant.

For the actor update, it is standard to use the TD error (d;) as an approximation of the advantage
function (Sutton & Bartol|2018)). Therefore, based on the policy gradient theorem, the corresponding
update rule for the actor can be written as

0,411 =0, + ad; Vg logme, (ar|s:),

where 6, Vg log e, (at|s;) is an approximation of the policy gradient defined in Eq. (4). The parallel
updates of the critic and actor in Lines 8 and 9 aim to drive the actor towards the direction that
increases the time-average reward .J(6).

Algorithm [1]is considered to be “single-timescale” if the stepsizes «, 3,y are only constantly pro-
portional to each other. It is introduced in the classic textbook (Sutton & Barto},|2018)) as a canonical
AC algorithm with linear function approximation. We take a significant step forward to consider the
more challenging neural network approximation for both the actor and the critic, which is referred
to as the “neural actor-critic”. Moreover, we consider the more practical Markovian sampling, start-
ing from an initial state sg, with subsequent states and actions generated according to the transition
kernel and the policy, respectively. The consecutive transition tuples (sg, ag, S1, a1, 2, -+) form a
single trajectory, thereby circumventing the time-consuming re-sampling procedure (i.i.d. sampling)
mandated in prior works (Chen et al.,[2021};|Olshevsky & Gharesifard,[2023; Tian et al.,[2024)). More
importantly, we aim to address the challenging settings of continuous state and action spaces that
are prevalent in applications. The finite-time convergence in such contexts is of significant interest
to the community but remains unresolved.

Under review as a conference paper at ICLR 2025

4 ANALYSIS OF SINGLE-TIMESCALE NEURAL ACTOR-CRITIC

In this section, we first outline several standard assumptions regarding the neural networks and the
underlying MDP that facilitate the convergence analysis of single-timescale neural AC algorithm.
We also discuss insights related to these conditions and their connections with relevant literature.
Building upon these assumptions, we subsequently present our main results on the finite-time con-
vergence of the algorithm.

4.1 ASSUMPTIONS

We first state the assumptions about the neural network defined in Eq. (5).

Assumption 4.1 (Neural architecture and initialization). The neural network defined in Eq. (3) sat-
isfies the following properties:

(a) (Input assumption) Any input to the neural network satisfies ||s(®)|| < 1.
(b) (Activation function assumption) o is L,-Lipschitz and H,-smooth, i.e.,

(1) Vaqi,x9 €]R, |0’(.’E1) — O'(ZL'Q)| < La|x1 — £C2|.

(ii) Vo1, 9 € R, |0’ (21) — 0/ (22)| < Hylx1 — 2], where o is the derivative of o.

(c) (Initialization assumption) Each entry of the vector b satisfies |b;| < 1, Vi, and the weights

of the neural network VVO(k) are randomly initialized from a normal distribution N (0, 1),
with each entry being independently sampled.

This assumption mainly states the initialization and analytic properties of the neural network. We
note that these assumptions are widely satisfied in various applications. For the input norm con-
straint, we could normalize the state space to guarantee this assumption. Regarding the activation
function, we emphasize that many commonly used activation functions, such as sigmoid and GeLU,
satisfy this condition. While this assumption excludes non-smooth activation functions like ReLLU,
alternatives such as GeLU or SiLU (smooth versions of ReLU) can be employed to maintain com-
pliance with the assumption. The initialization assumption, furthermore, can be easily implemented
during neural network training. We also note that the above assumptions are common in the theo-
retical analysis of neural networks (Liu et al.,|2020; |Tian et al., [2024).

As shown in |Liu et al.| (2020), with Assumption the following assumption holds with high
probability (Lemma F.4 in[Liu et al.| (2020)), which we state as an assumption in our work for ease
of presentation.

Assumption 4.2. The absolute value of each entry of s(*) (the output of layer k of the neural
network) is O(1) at initialization. The initial weights satisfy || Wo(k) | < O(/m) for all k.

For the value function Vp(s) of a given policy 6, its best approximation using the neural network
(Eq. (B)) is defined via

€app (" (0)) 1= inf \/ By [(V (w5 5) = Va(s))2], ™

where w*(0) is referred to as the optimal critic that yields the minimal (optimal) approximation error
€app(w*(0)). In this paper, we assume the optimal approximation errors for all potential policies
are uniformly bounded, that is,

VO, €app(w™(0)) < €app,

for some constant €,,, > 0. The error e, is zero if Vg can be exactly approximated by the neural
network (Eq. (3)). Naturally, it is expected that the learning errors of Algorithmm depend on €,pp,
which represents the approximation capacity of the critic.

The assumption of a uniformly bounded approximation error is common in the literature (Chen
et al., 2021} |Olshevsky & Gharesifard} 2023; Chen & Zhao| 2024} [Tian et al., [2024)). It is more
restrictive for the linear function approximation than for the neural network setting. If the true

Under review as a conference paper at ICLR 2025

value function is not linear, which is typically the case in practice, the approximation error €,p,p
can be significantly large. In contrast, the neural network approximation can arbitrarily closely
approximate any continuous function according to the Universal Approximation Theorem
[1991), and therefore can potentially keep the approximation error arbitrarily small.
We then make the following assumption for the optimal critic.
Assumption 4.3 (Smoothness of optimal critic). For any 81,02 € Xg, we have
lw*(61) — w™(02)|| < L.[|601 — 0,

VW™ (61) — V™ (02)|| < Ls[|61 — 65,
where L, and L are finite positive constants.
The above assumption states that the optimal critic is L,-Lipschitz and L¢-smooth. This assumption

is commonly employed for the single-timescale AC with neural network approximation (Tian et al.,
2024)). In the case of linear function approximation, the above assumption is trivially implied by the

linearity of the value function (Olshevsky & Gharesifard, 2023} [Chen & Zhao|, [2024).
Furthermore, we specify the regularity of the neural network.

Assumption 4.4 (Regularity of the neural network). For the neural network defined in Eq. (3)), there
exists some constant A; > 0 such that

IV(w) = V(@ (@)l = Mfw —w(0)], VO E€Xe,we X,

where the norm of a function is defined based on the inner product given in Eq.), which involves
the product of function values integrated over s. Assumption [.4] states the regularity of the neural
network in terms of learning the optimal value. Intuitively, it requires that the perturbation of the
critic parameter around the optimal one will cause a non-zero change of the critic neural network
output for any given input (the state). From the point of view of the optimization landscape of the
neural network, it merely assumes that optimal and suboptimal points are distinguished. This is also
a standing assumption of other analysis of AC methods with neural network approximation (Tian

2024).
The next assumption pertains to the exploration of the policy mg in continuous settings.
Assumption 4.5 (Exploration). There exists a constant Ao > 0 such that

<X7(w), Do(I — Pg)IA/(w)> >)\2”‘?(6‘))’ ? for any 6 € Xo and neural network V (w) € F, where
Dg, Py are operators defined in Eq. (I), I denotes the identity operator, and the inner product is
defined in Eq. (2).

This assumption was first introduced by us for the continuous setting with general function ap-
proximation classes. To demonstrate its connection to exploration, we show that if exploration is
insufficient, the assumption fails to hold. Consequently, when the assumption holds, it implies suf-
ficient exploration. First note that the operator Dy essentially multiplies the stationary distribution
po to the function on its right (see the definition in Eq. (I)). If the policy 7y does not sufficiently
explore, there exists a subset of the state space U C S such that 114(U) = 0. Furthermore, we can
choose V(w) such that V(w;s) = 0,¥s € S\ U and V(w;s) > 0,¥s € U. With this choice,
the left-hand side of the inequality evaluates to 0, while the right-hand side becomes positive. This
violates the condition stated in Assumption 4.5. Thus, the contrapositive holds: if Assumption 4.5
is satisfied, it ensures sufficient exploration of the state space under the policy 7.

Note that sufficient exploration assumption is standard in the literature of analyzing the convergence

of on-policy RL algorithms (Bhandari et al 2018} [Zou et al| 2019} [Wu et al.| [2020b} [Olshevsky &]

Gharesifard, 2023}, [Chen & Zhao}[2024). We can also drop this condition by analyzing the off-policy
version of the algorithm under some sufficiently-exploring behavior policy that can be arbitrarily

specified, and relates to the target policy by importance sampling. However, this is not the core
focus of the problem. Therefore, we adopt Assumption 4.5 directly and concentrate on the primary
challenge of analyzing the algorithm in the continuous state-action space.

The following assumption is made on the underlying MDP.

Assumption 4.6 (Uniform ergodicity). For a Markov chain generated by the policy 7g and transition
kernel P, let P denote the corresponding state transition probability. Then there exists C' > 0 and

Under review as a conference paper at ICLR 2025

p € (0,1) such that the total variation distance between the state distribution at time 7 and the
stationary distribution pg satisfies: dry (P(sr € *[so = s),pe(-)) < Cp7, forallT >0, s € S.

Assumption[4.6|assumes the Markov chain is geometrically mixing, which is implied by the uniform
ergodicity of the chain. It is commonly employed to characterize the noise induced by Markovian
sampling in reinforcement learning algorithms (Bhandari et al., |2018; [Zou et al.| 2019; [Wu et al.,
2020b; |Chen et al.| 2021} |Olshevsky & Gharesifard, 2023).

To justify this assumption in the continuous space, we note that all the distributions specified by
the Ornstein—Uhlenbeck process satisfy this property. The OU process converges to a Gaussian
distribution with the exponential mixing time. Moreover, it can also be shown that this property
holds for more general diffusion processes (Del Moral & Villemonais| [2018]).

Finally, we need some regularity assumptions on the policy.

Assumption 4.7 (Smoothness of the policy). Let mg(als) be a policy parameterized by 6 € Xo.
There exists positive constants B, L; and L, such that for any 0, s, and a, it holds that

(@) ||Vlogme(als)| < B,
(b) ||Vlogme,(als) — Vlogme,(als)|| < Li]|61 — 02,
(©) drv (7o, (15), m0, (1)) < L1101 — 6.

Assumption (a) and (b) are standard and widely adopted across the prior results presented in
Table[I} For Assumption[.7](c), previous research considers the finite action space only and relies
on a degenerated version of the condition, which is simply the Lipschitz continuity of the policy, i.e.,
|o, (als) — e, (als)| < L||61 — O2]|, where the absolute distance on the left is evaluated between
two function values at a single action point. In contrast, we generalize this condition by employing
the Lipschitz continuity of two distributions (either probability mass or density functions) under
the total variation distance. Our assumption naturally accommodates continuous action spaces and
encompasses the finite action space conditions considered in prior research as a special case.

Under the continuous state and action spaces settings, we further justify that Assumption [4.7] (c)
is sufficiently general and can be satisfied by a broad range of parameterization methods in the
following proposition.

Proposition 4.8 (Generality of Assumption 4.7 (c)). Under the following conditions:

(a) (Support Compactness) For any , the policy mg(a|s) has compact support X4 C R%.

(b) (Density Lipschitzness) For any 0, the policy wg(a|s) is Lipschitz w.rt a, i.e., |mg(a1|s) —
7e(az|s)| < Li|lay — az|| for some constant Ly > 0 and all a;,as € R,

(¢) (Neural Network Lipschitzness) Let the policy wg(-|s) be a distribution with its mean value
parameterized by the neural network [ig(s). For any s, fig(-) is Lipschitz w.r.t. 0, ie.,
|fig, (s) — g, (8)| < Lo||@1 — 02| for some constant Ly > 0 and all 61,05 € Xg,

Assumption(c) holds with L, = L1Ls|X 4|, where X4 is the volume of X4, i.e., |X4| = fXA da.

Conditions (a) and (b) assert that the policy mg(-|s) has compact support and is Lipschitz continu-
ous with respect to a. These conditions are sufficiently general to be satisfied by a wide range of
distributions, including the uniform distribution, the truncated Gaussian distribution, and the Beta
distribution with «, 5 > 1. Condition (c) holds for commonly used neural networks such as MLP
and Transformer (Bartlett et al., 2017; Zhang et al.l 2022). Consequently, Assumption (c) is
satisfied by a wide range of distributions with their mean parameterized by MLP or Transformer,
thus demonstrating the generality of the newly proposed Assumption[&.7](c).

4.2 FINITE-TIME ANALYSIS

We define the integer 77 := min{i > 0 | Cp*~' < T~1/2} given T the total number of iterations
(see Algorithm [T)), where C, p are the same constants defined in Assumption #.6] The integer 7
represents a certain mixing time of an ergodic Markov chain, which will be used to control the

Under review as a conference paper at ICLR 2025

Markovian noise in the analysis. In our main results, we require that 7' > 27r to ensure that the
Markov chain is well-mixed and the Markovian noise is effectively bounded. We can estimate that

1 C -1 1 T . .
T = (l)t%g pp_l + 21§ggp_1 = O(log T') which results in Cp™~ L <

f

We quantify the learning errors by defining y, := 1, — J(6;), which is the difference between
the reward estimator and the true time-average reward J(6;) at time ¢. For the critic, we define
z, = w; — w; with w; := w*(6;) to measure the error between the critic and its target value at
iteration ¢. The following theorem summarizes our main results.

Theorem 4.9. Consider Algorithm |l| with o« = ﬁ,ﬁ = %77 = \/T’ where c is a constant
depending on problem parameters. Suppose Assumption hold, for T > 27y, we have
T-1 2
1 log=T ~ 1
E[y?] = O + O(—=) + O(€app)s
T — T t_ZTT [yt] (\/T) (m) (app)
g*T
) + O(\/m) + O<Eapp)7
T-1 2
1 log”T
E||VJ(6,)* = O +O(—=) + Oe
T—TT;TT VIO = O+ O—=) + Oleary).

Given that the problem is inherently non-convex in general, it is common to prove convergence to
a stationary point. The error term O(e,pp) represents the critic approximation error that commonly
appears in the analysis of AC methods (Wu et al.| 2020b; |Chen & Zhao, [2024; Tian et al.| 2024)). If
the critic approximation error €, is zero, the reward estimator, the critic, and the actor estimation

errors all vanish at a rate of (5(T’%) + (’3(m’%), where again m denotes the width of the neural

networks adopted. The O notation hides the polynomials of all other problem parameters that do not
depend on T',m and €,p;,. The additional logarithmic term with respect to 7" arises from the mixing
time of the Markov chain, which can be further eliminated if considering the i.i.d. sampling model.

Compared to prev1ous results on single-timescale AC methods, we achieve the same convergence

rate of O(T~2) with respect to the number of total iterations 7. The term O(m ™2) emerges from
neural network analysis, which is consistent with previous findings (Liu et al. 2020; [Tian et al.,
2024). It is important to note that in linear function approximation cases, the approximation error
(eapp) serves as the primary source of learning errors due to its limited expressive capacity.

Our proof analyzes and tracks the interactions of the three errors (y¢, z;, V.J(8;)) by deriving their
implicit bounds that are dependent on each other. Subsequently, we prove their simultaneous con-
vergence under a series of technical developments. Considering continuous spaces and deep neural
networks substantially complicate the bounding of the error terms. For example, to analyze the inner
product between z; and the critic’s mean-path update g(w, 6;) as defined in Eq. (I0), we employ
the Bellman equation and neural network approximation to manage error propagation. This error is
controlled by leveraging the approximation capability of the neural network, the linearity of wide
networks, and sufficient policy exploration (see Section[E|in Appendix for a detailed proof sketch).
In contrast, (Chen & Zhao| [2024) manages this term through direct computation by exploiting the
linearity of the value function.

Moreover, we manage to control Markovian noise in continuous state and action spaces, which in-
volves novel results established in Lemma[C.I] which characterizes the distance between stationary
distributions in these continuous spaces. This approach is distinct from the finite action space setting
(Chen & Zhao| |2024) and is considerably more intricate than the i.i.d. sampling scheme (Olshevsky
& Gharesifard, 2023} Tian et al., |2024)). Compared with the Neural Tangent Kernel (NTK) analysis
(Jacot et al., 2018 |Allen-Zhu et al.l 2019; [Liu et al.| 2020) where the neural network is trained to
learn a fixed mapping, the neural network in our algorithm is trained to estimate the value function of
an evolving policy, which requires a novel design of the update rates and less conservative treatment
of the coupling learning errors.

Under review as a conference paper at ICLR 2025

|
[

|
N

|
w

m=10
m=100
— m=200
— m=300
— m=400
— m=500 -7 —

0 25 50 75 100 125 150 175 0 25 50 75 100 125 150 175
Iteration Iteration

|
EN

Average Return
I
Average Return
&
~ X X X~ X
| I [|
v A WN

(a) Performance of Algorithm against widths (b) Performance of Algorithm against depths

Figure 1: Experimental results of Algorithm on the pendulum problem.

5 EXPERIMENTS

We evaluate the performance of Algorithm (1| in the classic benchmark “Pendulum” environment.
The Pendulum environment features a continuous state space represented by [cos(0), sin(6),],
where 6 is the pendulum angle and 6 is the angular velocity. The action space is also continu-
ous, consisting of a single torque value 7 typically ranging from —2 to 2. The reward function is
designed to penalize deviations from the upright position and the magnitude of the applied torque,
calculated as R = — (6% + 0.162 4 0.00172). In our experiment, episodes terminate after 1000 time
steps. At the beginning of each run, the state is initialized at a random angle in [—7, 7] and a random
angular velocity in [—1, 1].

We employ a truncated Gaussian policy defined as 79 = Truncated(N (0,1),—1,1) for the actor,
where the mean 6 is learned using Algorithm [T while the variance remains fixed at 1. The mean
value @ is parameterized by the neural network defined in Eq. (5) with 2 hidden layers and 64
neurons in each layer, i.e., K = 2,m = 64. The parameterization of the critic w is specified in
Eq. (8) as outlined in Section[3.1]} To verify our theoretical findings, we evaluate the performance of
Algorithm [T] with varying widths and depths for the critic. The tanh activation function is employed,
adhering to Assumption &.Tb.

In Fig.[I] the solid lines correspond to the mean and the shaded regions correspond to 95% confi-
dence interval over 10 independent runs. The dashed line corresponds to a value of 0, representing
the theoretically achievable optimal value for this task. The average return is calculated as the mean
of the last 40 returns. When the average return is around -200, it indicates that the pendulum is
being kept upright. Fig.|[Taand[Tb|show the performance of Algorithm [Tjunder different widths m
and depths K, respectively. In our experiment, we set the stepsizes as 5e~% for both the critic and
the actor. In Figures[Ia] the number of hidden layers of the network is fixed at 2 while in Fig. [Tb]
the network width of each hidden layer is fixed at 200. These results indicate that the neural net-
works with larger sizes can outperform the smaller neural networks, which strongly corroborates
our theoretical findings.

6 CONCLUSION AND DISCUSSION

In this paper, we present a finite-time analysis for single-timescale AC methods, achieving a con-

vergence rate of O(T~'/2) + O(m~'/2). Our results surpass those of existing works by effectively
addressing continuous state and action spaces, utilizing Markovian sampling, and employing deep
neural network approximations for both critic and actor. Note that we focus on overparameterized
neural networks in terms of having a much larger width than depth, i.e., m > K. In this regime,
the depth has a relatively minor influence on the performance of learning (Jacot et al.,|2018)). In our
result, the dependence of the depth is implicitly captured by the constants defined in Lemma [C.5]
Characterizing more general cases where depth is prominent in influencing the learning performance
and its dependence order explicitly remains an open and challenging problem.

10

Under review as a conference paper at ICLR 2025

REFERENCES

Alekh Agarwal, Sham M Kakade, Jason D Lee, and Gaurav Mahajan. On the theory of policy
gradient methods: Optimality, approximation, and distribution shift. Journal of Machine Learning
Research, 22(98):1-76, 2021.

Zeyuan Allen-Zhu, Yuanzhi Li, and Yingyu Liang. Learning and generalization in overparame-
terized neural networks, going beyond two layers. Advances in neural information processing
systems, 32, 2019.

Peter L Bartlett, Dylan J Foster, and Matus J Telgarsky. Spectrally-normalized margin bounds for
neural networks. Advances in neural information processing systems, 30, 2017.

Jalaj Bhandari, Daniel Russo, and Raghav Singal. A finite time analysis of temporal difference
learning with linear function approximation. In Conference on learning theory, pp. 1691-1692.
PMLR, 2018.

Shalabh Bhatnagar, Richard S Sutton, Mohammad Ghavamzadeh, and Mark Lee. Natural actor—
critic algorithms. Automatica, 45(11):2471-2482, 2009.

Dotan Di Castro and Ron Meir. A convergent online single time scale actor critic algorithm. The
Journal of Machine Learning Research, 11:367-410, 2010.

Semih Cayci, Niao He, and R Srikant. Finite-time analysis of entropy-regularized neural natural
actor-critic algorithm. arXiv preprint arXiv:2206.00833, 2022.

Tianyi Chen, Yuejiao Sun, and Wotao Yin. Closing the gap: Tighter analysis of alternating stochastic
gradient methods for bilevel problems. Advances in Neural Information Processing Systems, 34:
25294-25307, 2021.

Xuyang Chen and Lin Zhao. Finite-time analysis of single-timescale actor-critic. Advances in
Neural Information Processing Systems, 36, 2024.

Xuyang Chen, Jingliang Duan, Yingbin Liang, and Lin Zhao. Global convergence of two-timescale
actor-critic for solving linear quadratic regulator. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 37, pp. 7087-7095, 2023.

Pierre Del Moral and Denis Villemonais. Exponential mixing properties for time inhomogeneous
diffusion processes with killing. 2018.

Simon Du, Jason Lee, Haochuan Li, Liwei Wang, and Xiyu Zhai. Gradient descent finds global
minima of deep neural networks. In International conference on machine learning, pp. 1675—
1685. PMLR, 2019.

Zuyue Fu, Zhuoran Yang, and Zhaoran Wang. Single-timescale actor-critic provably finds globally
optimal policy. arXiv preprint arXiv:2008.00483, 2020.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International confer-
ence on machine learning, pp. 1861-1870. PMLR, 2018.

Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup, and David Meger.
Deep reinforcement learning that matters. In Proceedings of the AAAI conference on artificial
intelligence, volume 32, 2018.

Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). arXiv preprint
arXiv:1606.08415, 2016.

Mingyi Hong, Hoi-To Wai, Zhaoran Wang, and Zhuoran Yang. A two-timescale stochastic algorithm
framework for bilevel optimization: Complexity analysis and application to actor-critic. SIAM
Journal on Optimization, 33(1):147-180, 2023.

Kurt Hornik. Approximation capabilities of multilayer feedforward networks. Neural networks, 4
(2):251-257, 1991.

11

Under review as a conference paper at ICLR 2025

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and gen-
eralization in neural networks. Advances in neural information processing systems, 31, 2018.

Sham M Kakade. A natural policy gradient. Advances in neural information processing systems,
14, 2001.

Vijay Konda and John Tsitsiklis. Actor-critic algorithms. Advances in neural information processing
systems, 12, 1999.

Harshat Kumar, Alec Koppel, and Alejandro Ribeiro. On the sample complexity of actor-
critic method for reinforcement learning with function approximation. arXiv preprint
arXiv:1910.08412, 2019.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 521(7553):436-444,
2015.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971, 2015.

Chaoyue Liu, Libin Zhu, and Misha Belkin. On the linearity of large non-linear models: when
and why the tangent kernel is constant. Advances in Neural Information Processing Systems, 33:
15954-15964, 2020.

A Yu Mitrophanov. Sensitivity and convergence of uniformly ergodic markov chains. Journal of
Applied Probability, 42(4):1003-1014, 2005.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
learning. In International conference on machine learning, pp. 1928—-1937. PMLR, 2016.

Alex Olshevsky and Bahman Gharesifard. A small gain analysis of single timescale actor critic.
SIAM Journal on Control and Optimization, 61(2):980-1007, 2023.

David Silver, Julian Schrittwieser, Karen Simonyan, loannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of go
without human knowledge. nature, 550(7676):354-359, 2017.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradient meth-
ods for reinforcement learning with function approximation. Advances in neural information
processing systems, 12, 1999.

Haoxing Tian, Alex Olshevsky, and Yannis Paschalidis. Convergence of actor-critic with multi-layer
neural networks. Advances in Neural Information Processing Systems, 36, 2024.

Lingxiao Wang, Qi Cai, Zhuoran Yang, and Zhaoran Wang. Neural policy gradient methods: Global
optimality and rates of convergence. arXiv preprint arXiv:1909.01150, 2019.

Yue Wu, Weitong Zhang, Pan Xu, and Quanquan Gu. A finite time analysis of two time-scale actor
critic methods. arXiv preprint arXiv:2005.01350, 2020a.

Yue Frank Wu, Weitong Zhang, Pan Xu, and Quanquan Gu. A finite-time analysis of two time-scale
actor-critic methods. Advances in Neural Information Processing Systems, 33:17617-17628,
2020b.

Tengyu Xu, Zhe Wang, and Yingbin Liang. Improving sample complexity bounds for (natural) actor-
critic algorithms. Advances in Neural Information Processing Systems, 33:4358-4369, 2020a.

Tengyu Xu, Zhe Wang, and Yingbin Liang. Non-asymptotic convergence analysis of two time-scale
(natural) actor-critic algorithms. arXiv preprint arXiv:2005.03557, 2020b.

12

Under review as a conference paper at ICLR 2025

Zhuoran Yang, Yongxin Chen, Mingyi Hong, and Zhaoran Wang. Provably global convergence of
actor-critic: A case for linear quadratic regulator with ergodic cost. Advances in neural informa-
tion processing systems, 32, 2019.

Kaiqing Zhang, Alec Koppel, Hao Zhu, and Tamer Basar. Global convergence of policy gradient
methods to (almost) locally optimal policies. SIAM Journal on Control and Optimization, 58(6):
3586-3612, 2020a.

Shangtong Zhang, Bo Liu, Hengshuai Yao, and Shimon Whiteson. Provably convergent two-
timescale off-policy actor-critic with function approximation. In International Conference on
Machine Learning, pp. 11204-11213. PMLR, 2020b.

Yufeng Zhang, Boyi Liu, Qi Cai, Lingxiao Wang, and Zhaoran Wang. An analysis of attention via
the lens of exchangeability and latent variable models. arXiv preprint arXiv:2212.14852, 2022.

Wenshuai Zhao, Jorge Pefla Queralta, and Tomi Westerlund. Sim-to-real transfer in deep rein-
forcement learning for robotics: a survey. In 2020 IEEE symposium series on computational
intelligence (SSCI), pp. 737-744. IEEE, 2020.

Mo Zhou and Jianfeng Lu. Single timescale actor-critic method to solve the linear quadratic regula-
tor with convergence guarantees. Journal of Machine Learning Research, 24(222):1-34, 2023.

Shaofeng Zou, Tengyu Xu, and Yingbin Liang. Finite-sample analysis for sarsa with linear function
approximation. Advances in neural information processing systems, 32, 2019.

13

Under review as a conference paper at ICLR 2025

APPENDIX
Table of Contents
[A_Related Work] 14
B Additional Nofations 15
|C Preliminary Lemmas| 16
ID Proof of Propositions| 16
[E_Proof Sketch 17
[F_Proof of Main Theorem| 18
|E.1 Step 1: Reward estimation error analysis| 19
IE2 Step 2: Criticerror analysis| L oL 21
IE.3 Step 3: Policy gradient norm analysis| L. 27
|4 Step 4: Interconnected iteration system analysis|] 0L 28
|G Proof of Preliminary Lemmas| 30
[Proof of Supporting Lemmas| 35

A RELATED WORK

AC methods. The AC algorithm was initially proposed by Konda & Tsitsiklis|(1999). Subsequently,
extended it to the natural AC algorithm. The asymptotic convergence of AC algo-
rithms has been well established under various settings, as demonstrated in works by Kakade| (2001),
Bhatnagar et al| (2009), [Castro & Meir| (2010), and [Zhang et al.|(2020b). More recently, many stud-
ies have focused on the finite-time convergence of AC methods. Under the double-loop setting,
Kumar et al.|(2019) investigated the finite-time local convergence of several AC variants with linear
function approximation. [Wang et al.| (2019) explored the global convergence of AC methods with
both the actor and the critic parameterized by neural networks with single hidden layers. Cayci

(2022) improved upon the work of (2019) by considering Markovian sampling and

reducing sample complexity.

Under the two-timescale AC setting, established the finite-time local convergence
to a stationary point at a sample complexity of O(e~2-%) under the undiscounted time-average reward
setting. studied both local convergence and global convergence for two-timescale
(natural) AC, with O(¢=2-%) and O(e~*) sample complexity, respectively, under the discounted ac-
cumulated reward. The algorithm collects multiple samples to update the critic. |Hong et al.| (2023))
proposed a two-timescale stochastic approximation algorithm for bilevel optimization and the algo-
rithm was subsequently employed in the context of two-timescale AC. (2023) established
the global convergence of two-timescale AC methods for solving linear quadratic regulator (LQR),
where only a single sample is used to update the critic in each iteration. However, none of these
previous results utilized neural network approximation for the value function (the critic).

Under the most challenging single-timescale setting, (2020) considered the least-squares
temporal difference (LSTD) update for the critic and obtained the optimal policy within the energy-
based policy class for both linear function approximation and neural network approximation. (Zhou

& Lul 2023) studied single-timescale AC on LQR. In addition, [Chen et al) (2021); [Olshevsky &
Gharesifard| (2023); |(Chen & Zhao|(2024) considered the single-timescale AC in general MDP cases

with linear function approximation. Recently, (2024) built upon the results of
& Gharesifard (2023) and improved to neural network approximation. A comprehensive review and

14

Under review as a conference paper at ICLR 2025

comparison of all existing results on single-timescale AC in general MDP settings are presented in
Table[Il

B ADDITIONAL NOTATIONS

We make use of the following auxiliary Markov chain which was introduced in (Zou et al.||2019) to
deal with the Markovian noise.

Auxiliary Markov Chain:

9 t—71 P 0 P et T o~ P~ et— P
St—r —> Qt—7 —7 St— r+1—>at 41— St—r42 ——> Ap—gqp - —> S ——> Qg —> Sy41.
(®)
For reference, we also show the original Markov chain.
Original Markov Chain:
6:_ - P Or_r41 ~ 0742 P 0, P
St—r —> Qt—7 —7 St—741 —7 At—741 —>5t 742 T Qg—g42 " —> St —> At —> Sg41.
9)

In the sequel, we denote by O, = (8¢, at, Sp11) the tuple generated from the auxiliary Markov chain
in Eq. () while O; := (s¢, at, s¢41) denotes the tuple generated from the original Markov chain in
Eq. (9).

We define the following functions, which will benefit to decompose the errors and simplify the
presentation.

Ag(0,n,8) :=[J(8) — V.V (w;s),
9(0,0,0) := [r(s,0) = J(6) + V(w;) = V(w;)]V V (w; s),
G(w,0) :=E (s 0.5 ~(g,m0,P)(7(s,0) — J(0) + Viw;s') = V(w;s)) VoV (w;s)],
AW(O,m,w,0) := (J(8) —n+ V(w;s) = V(w;s) = V(w"(8); 8') + V(w"(6); 5))V log me (als),
h(0,8) := (r(s,a) — J(0) + V(w*(6); s') — V(w"(0); 5))V log ma(als),
1(0,0) = (V(w*(8);5") = Va(s) — (V(w"(8); 5) — Va(s)))V log me (a]). 10
We also define the following functions, which characterize the Markovian noise.
®(0,n,0) = (n— J()(r(s,a) = J(8)),
U(O,w,0
(11

w - ‘*’ea(vwe) (Eo, [1(0g,0)] — h(0,0))),

(

(W —wp,9(0,w,0) — g(w,0)),

(

(VJ(6),Eo, (0, 0)] — 1(0,6)),

)=
E(0,w,0) =
©(0,0) =

where Op is a shorthand for an independent sample from stationary distribution s ~ pg,a ~
/
T, s ~ P.

To demonstrate the main ideas of the proof of Theorem@], we use the notations Yr, Z7 and G
for the three errors that we seek to bound, namely,

1 T-1 1 T—1
Ey?, Z E|z|? Gr = E|VJ(6,)% (12)
_TTtZTT vi, Zr : T:Z B es T—TT;TT IV.7(6,)]]

Here Y, Zp, and G represent the reward estimation error, critic error, and actor error (policy
gradient norm), respectively. Our proof of Theorem [4.9] primarily involves analyzing and bounding
these three errors relative to one another. The difficulty of this work lies in the continuous state and
action spaces and the neural network approximation.

15

Under review as a conference paper at ICLR 2025

C PRELIMINARY LEMMAS
Lemma C.1 (Distance between stationary distributions). For any 01 and 05, it holds that
drv i p0,) < Lo([log, €11+ 1261 = .
A1 (t0, @ ovs 10, © 7o) < Ln(1+ (108, O]+ 72101 = .

1
dTV(:uel ® o, ® P,/ng ® O, ® 7)) < Lﬂ'(l + “ng C_l-‘ + fp)”ol - 02”

Lemma C.2 (Wu et al.| (2020b)). Given time indexes t and T such that t > T > 0, consider the
auxiliary Markov chain in Eq. (8). Conditioning on s;_,41 and 6,_., we have

drv (P(si11 € -),P(3i11 €) < dpv(P(O; €), P(O; €),
dry (P(O; € -),P(Oy € 1)) = drv (B((se, ar) € -),P((3,) €),
v (B((s1,) €), P((Gos) €)) < dry (Plsy €),BGr €) + 5 LaE[I6, ~ 01]|
Lemma C.3 (Wu et al.|(2020b)). For any 81, 05, we have
| J(01) — J(02)] < L,||01 — 02,
where Ly = 2U, L (1 + [log, C~'] + 1%-).

Lemma C.4 (Zhang et al.| (2020a)). For the performance function J(0), there exists a constant
Ly > 0 such that for all 01,05 € RY, it holds that

IVJ(61) = VJ(0:)] < Ly |61 — s, (13)

which further implies
LJ/
2
L /
J(82) < J(81) + (VI (61),02 — 01) + =01 — 0. (15)

J(62) > J(01) + (VJ(6:),05 — 01) — 61 — 6], (14)

Lemma C.5 (Boundedness, Lipschitzness, and smoothness of the neural network). There exists
scalars U,,, L,,, and H,, such that for any s € S and wy,ws € X,

[V (w;s)|| < U,
[V (w1;8) — V(wa;s)|| < Ly|lwi — wall,
IV V(wi;s) — VoV (ws; 8)|| < Hyllwr — wo,

where U, = O(1), L, = O(1) and H,, = O(—=) with respect to width m.

&

m

D PROOF OF PROPOSITIONS

We provide the proof of Proposition 4.8 which justifies the generality of the newly proposed As-
sumption[4.7] (c).
Proof of Proposition

Proof. We adopt neural networks to parameterize the mean value fig(-) of a distribution, where
6 € Xpo is the neural network parameter. Then the policy can be denoted as 7o (-|s) = L(X +pe(s)),
where L(-) is the law of the random variables, X is some zero-mean random variable, and fig(-) is
the neural network with parameter @ that takes state s as its input. We denote density function of X
as 7(a|s) whose mean value is zero. With the conditions specified in Proposition we show that
Assumption[4.7] (c) holds, i.e., drv (g, (+]s), 7o, (+]s)) < Lr|61 — 62| for some L.

16

Under review as a conference paper at ICLR 2025

It holds that

v (7e, (+[5), 7, (*]3))
= drv (L(X + fie, (s)), L(X + f19,(5)))

L
8
% /yA Lilpie, (s) — fig,(s)|dx

<L |XA| ’ ‘lael(s) - /7’92(5)'7

where)4 in the third equality is defined as Y4 = (X4 + fig, (8)) U (X4 + [ig, (s)). Combining this
with the neural network Lipschitzness, we have that

drv (7e, (-[s), o, (s)) < L - Ly - [X] - [0 — 62].

Thus, we conclude the proof of this proposition. O

| =

m(a — fio,(s)|s) = (a — figy (s)]s) | da

| =

7(a fio, (5)]s) = (a fio, (s)]s) |da

IN

E PROOF SKETCH

In this subsection, we sketch the main proof steps of Theorem .9} The key challenges and new
techniques developed are also highlighted correspondingly. We first derive implicit (coupled) up-
per bounds for the reward estimation error y;, the critic error z, and the policy gradient V.J(6;),
respectively. Then, we solve a system of inequalities to establish finite-time convergence.

Step 1: Reward estimation error analysis. Using the reward estimator update rule (Line 7 of Algo-
rithm I)), we decompose the reward estimation error into:

Yier = (1= 27)y7 + 2yyu(re — J(6y))
+ 20 (J(0r) — J(0¢41)) + (J(0r) — J(Bri1) +y(re — mi))?.

The second term on the right-hand side of Eq. (I6) is a bias term caused by the Markovian sample,
which requires characterizing the distance between stationary distributions under continuous
state and action spaces as shown in Lemma This error term is further handled in Lemma
The third term captures the variation of the moving targets J(6;) tracked by the reward estimation
error. We employ the smoothness of J(6) (see Lemma|C.4) and derive an implicit upper bound for
this term as a function of the norm of y; and V.J(6;). This bound will be combined with the implicit
bounds derived in Step 2 and Step 3 below to establish the non-asymptotic convergence altogether.
The last term in Eq. (T6)) reflects the variance in reward estimation, which is bounded by O(y) after
utilizing the Lipschitzness of J(6) in Lemma|[C.3]

Step 2: Critic error analysis. Using the critic update rule (Line 8 of Algorithm [I)), we decompose
the squared error by (we neglect the projection for the time being for the ease of comprehension.
The complete analysis can be found in the appendix.)

Hzt+1||2 —||ZtH2 +2B(z¢, g(wi, 01)) + 28V (O, wy, ;) + 28(z¢, Ag(Or, m1,0;))
+2(z¢, wy — wt+1> + [Jwi — “1?4-1 + B(9(O¢, wy, 0;) + Ag(Otant,Ot))HQv

where O; := (s, a¢, 5¢11) denotes the tuple generated from the original Markov chain in Eq. (9)
and the definitions of g, g, Ag, and ¥ can be found in Eq. and Eq. in Appendix[B] Without
diving into the detailed definitions, here we focus on illustrating the high-level insights of our proof.
First of all, the second term on the right-hand side of Eq. is the inner product between the critic
error z; and the critic’s mean-path update g(w;, 0;), which serves as the key to the convergence.
Our analysis for this term is distinct from all previous results since considering continuous spaces
and deep neural networks substantially complicate the bounding process. we employ the Bellman
equation and neural network approximation to manage error propagation and control the error by
leveraging the approximation capability of the neural network (Eq. (7)), the linearity of wide
networks (third inequality in Lemma C.5), and sufficient policy exploration (see Eq. (22)). It pro-
vides an explicit characterization of how sufficient exploration can help the convergence of learning.

(16)

a7

17

Under review as a conference paper at ICLR 2025

The third term is a Markovian noise, which is again characterized by the distance between sta-
tionary distributions under continuous state and action spaces and further bounded implicitly
in Lemma[F3] The fourth term is caused by inaccurate reward and critic estimations, which can be

bounded by the norm of y; and z, after applying the Lipschitzness of " as shown in Lemma
The fifth term tracks both the critic estimation performance z; and the difference between the drift-
ing critic targets w; . Similar to the case of Step 1, we establish an implicit upper bound for this term
as a function of y; and z; by utilizing the smoothness of the optimal critic proved in Assumption[4.3]
Finally, the last term reflects the variances of various estimations, which is bounded by O(3).

Step 3: Policy gradient norm analysis. Using the actor update rule (Line 9 of Algorithm|I]) and the
smoothness property of J(6) (see Lemmal|C.4), we derive
1
IVJ(8:)]* < ~(J(0rr1) = J(0:)) + O(0r, 0t) — (VI (6:), AR(Or, e, we, 64))
(18)
Ly
— (VJ(0,), Eoy (AW (0}, 0,))) + a2 6,V log e, (ar]s0)|1>

where O; is a shorthand for an independent sample from stationary distribution s ~ pug,,a ~
7o, 8" ~ P(-s,a), O is defined in Eq. (TIT), and L is a constant. The first term on the right-
hand side of Eq. (I8) compares the actor’s performances between consecutive updates, which can
be bounded via Abel summation by parts. The second term is a noise term introduced by Markovian
sampling, which is characterized by the distance between stationary distributions under con-
tinuous state and action spaces and handled in Lemma[F.6] The third term is an error introduced
by the inaccurate estimations of both the time-average reward and the critic. After employing the the
Lipschitzness of V as shown in Lemma we control this term by providing an implicit bound
depending on y, z;, and V.J(0;). The fourth term comes from the linear function approximation
error. The final term represents the variance of the stochastic gradient update, which is controlled

by O(«) due to the boundedness of 17, a result we specifically derived in Lemma
Step 4: Interconnected iteration system analysis. Taking the expectation of and summing Eq. (I6),

Eq. (T7), and Eq. (I8) from 7 to T' — 1, respectively, we obtain the following system of inequalities
in terms of Yp, Zr, Gr:

log“T

Yr < O O\gf) + L/ YrGr,

Zr < O(\/T)+(’)(eapp)+(’) \/» +12\/YTZT—|—13\/ZT QYT—I—Z4ZT + s\ Z7Gr,
log? T

Gr < O(T)+ Oleapp) + l6\/Gr (27 + 14 Z7).

where [1,15,13,14,15,ls are positive constants. By solving the above system of inequalities, we
further prove that if

1 1
(L+ Sla)ls < 214151 (14 202 + 41402313 + 13 + 21212)) < 1

1
2’

then Y7, Zr, G converge at a rate of O(log” T) + O(€app) + O(\F) This condition can be easily

satisfied by choosing the stepsize ratio c to be smaller than a threshold identified in Equation (34).
Thus, it completes the proof.

F PROOF OF MAIN THEOREM

we have |0;| < Us, where U, is defined in Lemma [C.5| and §; is the TD error which comes from

In this section, we aim to show the proof of Theorem[4.9] Define U := 2U,. + 2U,, + 2U, so that
C.5
Line 6 in Algorithm |I} Note that from Assumption 4.7} we have ||dV log mg|| < G := UsB. The

K
norm of w is defined by ||w|| =: (3" ||[W *)||2)!/2, where | - || is the Frobenius norm of a matrix.
e

We decompose the whole proof into four steps.

18

Under review as a conference paper at ICLR 2025

F.1 STEP 1: REWARD ESTIMATION ERROR ANALYSIS

In this subsection, we will establish an implicit bound for estimator.

Lemma F.1. From anyt > 7 > 0, we have

E[®(O¢, 1, 6,)) < 4U,L |0y — 01— || + 2Uy |0y — 1|

t
+2U2L. Y E[6; — 0| +4U7Cp .

i1=t—T
Theorem F.2. Choose a = =, =17 = % we have

2

log? T
% 1y 4 eG/YrGr.

Proof. From the update rule of reward estimator in Line 7 of Algorithm[I] we have

Ner1 — J(Orr1) =1 — J(0¢) + J(0r) — J(Ory1) +¥(1e — M),
which implies
Yirr = (e + J(0:) = J(Ory1) +(re — m))”
< i +2y(J(0;) — J(8r11)) + 27y: (re — 1)
+2(J(8:) = J(0:41))* + 292 (re — 1)
= (1= 27)y7 + 27y (re — J(01)) + 204 (J (6) — J(B¢41))
+2(J(6:) — J(0:41))* + 292 (re — m0)?.

19)

Taking expectation up to s;4; (the whole trajectory), rearranging and summing from 77 to 7' — 1,

we have

T-1 T-1 T-1

Z E[y] < Z %E(y? ~ Y1) + Z Ely:(re — J(6))] + Z_: %E[yt(t](et) — J(0141)]

t=11 t=1p t=1p t=T1r
I Iz I3
T-1 1 T-1
+ > —E[(J(0:) = J(0:+1))°] + Y AE[(re — m)?].
t=1p 7 t=1p
I4 15

For term I;, from Abel summation by parts, we have

=1y o
I = Z %]E(yt ~ Yiy1)

t=7r
202

v
= 2U2VT.

For term I, from LemmalEI] we have

Ely:(re — J(6r))] < 4ULj|0; — 0; || + 2Up |0 — 17|

<

t
+207Ly Y E|6; — 0, _|| +4U2Cp™"

i=t—T1

<
<

19

AU, L;Gra + AUty + 22U L, 7(1 + 1)Ga + 4U2Cp™t
(AU, LG + U L,G7(1 + 1))a + AUy + 4U>Cp™ L.

Under review as a conference paper at ICLR 2025

Choose 7 = 7, we have

T-1
L= Ely(r, — J(6,))]

t=717
T—1
< (AU.L,Grp + 22U LoGrr(rr +1)) > o
t=1p
T-1 T-1 1
+4U7T +4U2 Y —=
T t; vy t; \/T

T—TT

ol

= (4cU, L ;G7p + 2cU L. Grr(tp + 1) + 4U%rp 4 4U?)
For I, if y; > 0, from Eq. (T4), we have

Ly
Ye(J(0r) — J(0141)) < yt(TJHOt =01 |* +(VJ(6:),0; — 0:11))
< LyUp||0: = Ot |” + |ye[|6: — i1 [[[[V T (6¢)]-
If y, < 0, from Eq. (I5), we have
L ’
ye(T(00) = J(Or41)) < e (=110 = Bra|* + (VI (8). 60, — Or1))
< LyUp|0; = 041]1* + [ye] 10 — 014 (VI (6,)]-

Overall, we get

T-1

1
=Y ;E[yt(J(et) — J(6141))]
t=1p
-1
<y ;E[LJ/UTIIG% = 01 |* + [y]10: — 01 [[[[V T (8:)]]
t=1p
T—1
< Z E[cL U, G?a + cGly: |||V (6:)]
t=1r
A T—1 T—1
— T 1 1
< ALyUG? 77 +cG(Y By () E[VI(0,)]%)7.
T t=711 t=711
For term 14, we have
-1
L= ~E[(J(6:) — J(6:+1))]
t=1r
-1
< Y —L3E[6, — 0
t:TT
T—1
1 T— TT
< ~LAG?%0? = [AG?* ———.
t;:T y J J \/T

For term I5, we have

Iy = " AEl(r, — J(8)

t=7p
T-1
T — TT
<) AUy =4U7
t=11 \/T

20

Under review as a conference paper at ICLR 2025

Therefore, we get
T—1

> Elyf] < (4eU,LyGrp + 2¢U2 LyGrp(rr + 1)
t=1p
+4U2(t7 +2) + *G*(L U, + L?,))T_J
VT
T-1 T-1
+2UPVT +cG(Y Byf)2 (Y EVJI(6:)]%)7.
t=711 t=1p
: _ VT 2
Since 77 = O(log T'), we have 72— < NG for large T'. Then we get
;| Tl
T 2: Ely?] < (4cU,L;Grr + 2cU Lo Grr(Tr + 1)
—r
1
+ AU (1 4 3) + AG*(Ly U, + L%)) —
(7o 43) + G Lo, + 1))
T-1 =
+cG Ey?)? E(V.J(6,)|?)2
(7 2 B G, 3 EIVI@0IP)
log®> T 1 = a1, 1 = o1
=0 G E E|VJ(O .
o)+ Ol X B (g 3 EIVT@I)?
Thus we finish the proof. O

F.2 STEP 2: CRITIC ERROR ANALYSIS

In this subsection, we will establish an implicit upper bound for critic.
Lemma F.3. Foranyt > 7 > 0, we have

IE[\IJ(Ot,wt, Ht)] S CIHBt — Gt,TH + CQ”(.Ut — wt,TH + U(?LruLﬂ—GT(T + l)a + 2U52LvCpT_1,
where

1
Cy =2U5 L (1 + [log, C~] + 17) +2UsL L, + 2UsL, L,
—p

Co = 2Us(UpH, + L2 + U, H, + Ly).
Lemma F.4. Foranyt > 7 > 0, we have
E[2(O¢, wy, 01)] < C3|0: — 0:— || + 2Us BL, ||wi — wi— .||
+2UZBL.L.G7(T + 1)a+4U;BL.Cp™ .
where C3 := 3UsL.(UsL; + 4BUs Ly + 2BL,L.) + 2Us BL? + 2U2 BLs.

Theorem E.5. Choose o« = ﬁ, B=v= , we have

1
vT

)+ O(—=) + Oleap) + 222 ¥rZr

Jm)
9L,
VZr(2Y7 + 8L2Z7) + CA N en

log? T

Zp < O o\g/T
2cBL,

A

(20)

Proof. From the update rule of critic in Line 8 of Algorithm[I} we have
w1 — Wil = [Ty, (@i + B8 Vo V(Wi 50)) — wig |
= Mo, (wi + B8V V (wis 1)) — o, (@i
< jw + ﬁ5tvu‘7(wt; 5¢) — Wiy ||

= |lw; — Wi + W — Wiy + B8 VLV (Wi s0)|

21

Under review as a conference paper at ICLR 2025

Therefore, we have
ze1 11> = |z + B(g(Or, wi, 0;) + Ag(Oy, i, 01)) + wif — wiy||?

= ||z¢]|* + 2B(z¢, 9(Or, wy, 0;)) + 28(z¢, Ag(Oy, e, 64))
+ 2(zp, wi — wi) + [|B(g(Or, wi, 0:) + Ag(Oyp, i, 0)) + wi — w4 |
= ||z¢||? + 28(z¢, G(ws, 0;,)) + 2B (Oy, wy, 0;) + 28(z¢, Ag(Oy, 1z, 6,)) 21
+2(z,w; — wiy) + 18(9(0r, w1, 01) + Ag(Op, 1, 01)) + wf — wiyy |2

< lzel? + 26(z1, g(wi, 00)) + 28Y(0y, wi, 01) + 26(z1, Ag(Oy, 11, 01))
+2(zp,wp — wiyg) +2UF L6 4 2||wp — wipy |

We then analyse the mean-path update g(wy, 6;). From the definition in Eq. (I0), we have

9w, 0;) =By, 0,50 [(1(50,a0) — J(0:) + V(wes s001) — Viwes 56)) ViV (wes 1))
e Espans0is [(V(56) = V(seq1) + V(ws se1) — V(we: 50)) VeV (wy; 50)]
=E,,[(V(st) = V(W st) = B0 [V (se41) = VI, se1)|se)) VeV (wis 50)]

where (1) comes from the Bellman equation. For E,, o, [V (s¢41) — V(wy, se41)|5¢], it can be
shown that

Eso 10, [V (s041) = V(we, se41) 5]

//7701 (at|st)P(ses1lse, ar)(V(st41) — ‘7(wt;5t+1))d(at><5t+1)-

By the definition of operator Py, we have

Po(V(s) — V(w, s) // ro(als)P(s']s, a)(V(s') — V(w; &'))d(a x).
Then for g(wy, 8;), it follows that

9w, 0:) = Eg,[(I — Po,)(V(s¢) — V(wr, 50)) Ve V (wis 5¢)],

where [is the identity operator. Therefore, we have

(21, g(wi, 01)) =E(2t, (I — Po,)(V (st) —
=E(z, (I — Po,)(V(st) —
=E(z, (I — Po,)(V(s) —

+E(z, (I — Po,)(V(w}

=AU, Ly€app + E[(2; Ve (wt,st) + (Ww;‘- s1) — V(wg: s¢))
— (V(w};50) = Vi(w, 5:))(I = Pa,)
YR (Vo V(wi; 5¢) — VoV (Wimid; 5¢)
— (V{(w}) = V(w), Do(I = Po,)(V (w}

(2 — Mo|l2e)|? + 2Ly Hy || 2¢ | + 2Us Ly €app

(22)

where (1) comes from the mean-value theorem with wyyiq = Asw; + (1 — A3)w; where A3 € [0, 1];
(2) follows from Assumption and Assumption Hereafter, we define X := A2 \,.

Substituting the above result into Eq. (ZI)), it holds that

lze1 I <l|ze)l” = 2X8|[2e[|* + 2B (Oy, w, 6;) + 2B8(z¢, Ag(Oy, 1, 6))
+ 2(zp, Wi — wiy) + 2||lw; — w2+ 205 8% + 4BL, H U3 + AUs Ly Beapy

22

Under review as a conference paper at ICLR 2025

Taking expectation up to s;1, we have
Bz]|* < (1= 2AB)E| 2| + 28EW(Or, wi, 0;) + 28E (21, Ag(Oy, 11, 61))
+2E (2, w; — wyyq) + 2E|w; — w4 ||? +2U5 8% + 4BLy H Uy + 4Us Ly, Beapp
< (1 = 20B)E||2¢||* + 2BEW(Oy, wy, 0;) + 2BE(zs, Ag(Oy, m¢, 0:))
+ 2E(z, w; — wyy) + 203 8% 4 2E|w; — wi || +4BLHyUj + 4Us Ly Béapp
< (1 = 20B)E||z¢||? + 2BEW(Oy, wy, 0;) + 26E(z;, Ag(Oy, 11, 0;))
+ 2B (2, w7 — wiyy + (Vw;) T (041 — 61)) + 2E(zt, (Vo;) T (6, — 0:41))
+2U3 8% + 2E|lw; — wyyq||* + 4BL, H,U3 + AUs Ly Beapy

It can be shown that

1)
Bz 2 < (1 - 2AB)E]| 2,2 + 28E9 (01, w1, 6,) + 28U,E| 24 |lysl + LE|z4]|[|60+1 — 6,1

+ 20K (z;, —(Vw)) 6,V log me, (ar|s;)) + 2U2 32
+2L2E|0; — 0111 [|* + 48L, H,U§ + AUs Ly Beapp
< (1= 2)\B)E| 2| + 2BEW (0, w, 8,) + 26Uv\/@\/lw
BP0 — 0 + B 0,1 — 0,7 + 20367 + 202G
+ 20E(z;, —(Vw;) 16,V log m, (ar|st)) + 4BLy HyU3 + 4Us Ly Beapyp
< (1= 200)E 2 + 28EH(0 1. 01) + 28U, B VET P + Lo 02

Ls
+2U5 8% + (2L2 + ?)G20‘2 + 20B(z;, —(Vw;) 76,V log g, (ar]st))
+48LyH, U} + 4Us Ly Beapp

(2)
< (1= AB)E| z¢||? + 2BEW(Oy, wy, 8;) + 28U, 1/ Ey2/E| 22

L,
+2UZB* + (212 + 7)G2a2 + 20Kz, —(Vw;) "6,V log me, (as|s:))

+4BL,H,U} + AUs Ly, Beapp
(23)
2
where (1) follows from the L¢-smoothness of w™* in Assumption (2) uses %az < A\g for
large T

For term E(z;, —(Vw;) "8,V log 7, (a¢|s:)), we have
E(z;, —(Vw]) 6,V log g, (as:))
=E(z, (Vw;) T (=A(Og, 1, we, 0;) — h(O4, 6y)))
= —FE(z, (V) TAR(Oy, my, wy, 6;))
+ E(z4, (VW:)T(EO; [h(O1,6:)] — h(Oy, 8;) — Eo; [1(O;, 6,)]))
= E[E(O,wt,0;)] — E(z, (Vw;) "Eo [1(O}, 6,)])
— E(z, (VW:)TAh(Om Nt, W, 04))

Note that from Cauchy-Schwartz inequality and L, is the Lipschitz constant of w* in Assumption

[£3] we have
*E<Zt, (wa)TAh(Ot, Nty Wi, Ot)> S .BI/»,< vV EHZt”Z\/QEytz + SL%]E”ZtHZ (24)
From the fact that
Eo; [h(Oy, 0:) — AR (0}, 8:)] = Eo[(r(se, ar) — J(8:) + Ve, (s;) — Ve, (5¢))V log e, (als)]

=VJ(8,),

23

Under review as a conference paper at ICLR 2025

we obtain
E(zi, (Vw;) "Eo; [0}, 0,)]) = E(z1, (Vw;) VI (0;)) + Bz, (Vw]) "Eo, [AR(O;, 6,))]).
It follows that

—E(z, (Vo;) ' VJ(6,) < L VEl| 2] VE[V T (6:)]]2.
Furthermore, it holds that
Eor[|AK (0, 0)|* = Eor[|(V(w" (8); 5") — Vo (') = (V(w"(8); 8) — Va(s)))V log ma (als)|
< Eor[2B*((V(w*(8); 8') = Va(s)* + (V(w" (8); 5) — Va(s))*)]
= 4B%Eo [(V(w*(8); 5) — Va(s))?]
=4B% .
Therefore, we have
(21, (Ve}) "By (00}, 00)]) < Us Lo/ TBor AR (O, OIE + Lun/El 2 [V E[V I (@]
< UsLu/Eor | AR (01,)7 + Lo VE|2:[2 VEIV T (6]
< 2BUs Lu€app + L /E| 2 |2V/E|V I ()2 (25)
Substituting Eq. (24) and Eq. (23) into Eq. (24) yields
E(z:, —(Vw;) 6,V log e, (at|st)) < EZ(O,ws, 0;) + 2BUs Ly€app

+ BL/Ezl?\/2Ey} + SL3E|z[? (©6)
+ LoVE[= P VEVI @)

Plugging Eq. (26) into Eq. (23), we have
Elzer1]®> < (1 = AB)E| z¢]|* + 2BEY(Oy, wy, 6;) + 20EZ(0y, wy, 0;)

+ 28U, \/Eg2 VEZI? + 2BL.av/Ellzi 2y 2Ey? + 8L2E] |22

27)
L. (
+ 20 L /E| 2 |2VE(|VJ(0,) |2 + 2U28% + (2L2 + 7)G%ﬂ
+48L,H,U} + (2aBUs L. + 4Us Ly B)€app-
Rearranging and summing from 77 to 7' — 1 gives
-1 T—1 T—1 T—1
A Z EHth2 < Z B(EllthQ E||zt+1H +2 Z E\II Ot,wt,Ot +26 Z E_‘ Ot,wt,et)
T t=17 t=1p t=11
I Ip) I3
T-1 T-1
120, 3 B VE[=E +26BL. Y VE[zIPy/2Ey? + 8L2E| =
t=1p t=1r
14 15
T-1
+2cL. Y VE[z[PVEIVI(.)]?
t=1p
Ig
T-1 I
+ > (2UFB + c(2L2 + f)Gza + (2¢BUs Ly + AUs Ly,)éapp + 4L, H,US).
t=17

In the sequel, we will tackle Iy, I», I3, Iy, I, I respectively.

For term 7, we have
T-1

1
=32 GEl=]? - Elznl?) < URVT,

t=T1r

24

Under review as a conference paper at ICLR 2025

For term I5, from Lemmal[E3] choose 7 = 71, we have

E\IJ(Ot,wt, 975) S Cl||0t — 675_7-” + CgHwt — wt_TH + U(SQLULTFGT(T + 1)& —|— QU(;QLUCpT_l

t—1 t—1 2U2L
<C Y Ga+Cy Y UsB+UiLyLaGrr(rr + 1o+ —=2
k=t—1r k=t—7r \/T
> 2U3
S(CHGTT%—USL@LWGTT@7“+1»&-+C&L%Trﬂ4-4‘*.
VT
Then we get
T_1 T—1 2172
I, =2 Z E\IJ(Ot,wt, Ht) <2 Z ((ClGTT + U(;QLUL.,TGTT(TT + 1))04 + CQU(;TT,B =+ 76)
T:TT T:TT \/T
For term I3, from Lemmal[FE4} choose 7 = 71, we have
E[Z(0, wt,0:)] < Cs]|0; — 041 || + 2Us BL ||wy — wi—ry ||
+2UZBL. L Grr(r + 1)a + 4UZBL,.Cp™ ~*
t—1 t—1
<C3 Y Ga+2UsBL. Y UsB
k=t—7r k=t—7r
+2UEBL. L Grr(rr + 1)a + 4UZBL.Cp™ ~*
4U2BL,
< (C3Gtp + 2UZBL,L.Grp(tp +1))a + 2U2BL, 1§ + ——=.
VT
Therefore, we have
T-1
13 = 2c Z EE(Ot,wh Ht)
t=71r
T-1
4U2BL,
<2¢ Y ((C3G7r + 2U3 BL.LxGrr (77 + 1)) + 2U3 BL.7r3 + —=—).
t=1p \/T

For term Iy, I5, and I, from Cauchy-Schwartz inequality, we have

T-1 T-1

I <20,) Eyd)2 (Y Ell=l?)?,
t=1r t=1r
T-1 T-1 T-1
I5 <2eBL.(Y Ellze[*)?(2 > By +8L2 Y E|z)?,
t=7r t=7r t=T1r
T—-1 T—-1
Io < 2L (Y Ellz]?)2 (D EIVI(6)])*.
t=11 t=17

25

Under review as a conference paper at ICLR 2025

Overall, we get

T—1 T—1 T-1
1 1
ADE|zl® <20,()) Ey?)2 (D Ellz?)?
t=1p t=T1r t=1r
T-1 L — .
+2cBL.(Y Elz/*)2(2 Y By? +8L2 > El|z?)?
t=T1¢ t=77 t=17
T—1 T—1
1 1
+2eL. (Y Ellz)*)7 (D] E|VI(6))])>
t=711 t=711
T-1 2U2
+UNT +2) ((C1Grr + ULy L Grp(rr + 1)a + CoUsTr 3 + 716“)
T=rr
T-1
4U2BL,
+2¢ Y ((C3Grr + 2U3 BL Lo Grr(rr + 1))a + 2U3 BLu 13 + — =)
t=1p \/T
T-1 L
+ > (2UFB + (2L + 5)G%0a + (2eBUs L. + 4Us Ly)eapp + 4Lu HUY).
t=17

Therefore, we have

(1) 2U 1 —
Zp < Z D2 (5 ZEHztu)%

T—T1
T t TT

QCBL 1
+ ZEnzfu)% (2

Z E||z||?)?

t Tt t T t Tr
20L 1 1
+ Z E|lz:%)%(Z E[V.(8,))*
t=71p t T
1,202 > 2U3
—(—=2 +2((C:G UsL,L.G 1 CsU. —=
+)\(\f+ ((C1GTmr + U5 L, (1t + 1)) + CoUsr 8 + ﬁ)
AU2BL,

+2¢((C3Gr 4 2UZ BL, L Grp (17 + 1)) + 2UZ BL 113 + T)

Ls
+2U2B + (212 + 7)G%é + (2¢BUs L, + AUs Ly)éapp + 4L, H,UR)

log®> T 2U, 1 o\ 1 1 o\ 1
= i a - E E
O(=7= >+O<f>+0<e o) + (T—TT;TT yt>2<T_TTt:ZTT PARE
_ T—1 T—1
QCBL 1 1 1
+ ZEnztu)% (2 24 8L2 > Ellzl?)?
_ =TT t=1r
QCL 1
+ ZEnztn)2 (7 Z]Enw 6,)])%,

t TT t TT
where (1) follows from 77 = O(logT) so that T — 7 > 4T for large T and the term O(\%)
comes from the fact H, O(—) as shown in Lemma Therefore, we have

log? T ~ 1
ZT SO(\/T)—|—(9(ﬁ)+(’) dep \/ ZT
2 BL 2 .
1 2BLe Ve 1 812 Zr) + 22 Zr G,

A

which completes the proof.

26

Under review as a conference paper at ICLR 2025

F.3 STEP 3: POLICY GRADIENT NORM ANALYSIS
In this subsection, we will establish an implicit upper bound for policy gradient norm.
Lemma F.6. Foranyt > 7 > 0, it holds that

E[O(Oy, 8,)] < Cyr(T + 1)Ga + C5Cp™ 1,

where Cy = maX{ZU(;BLJ/ + SLJ(U(;Ll +2BL,L, + 4BU5LJ), 2U5BLJLT(} ,Cs =4UsBL.
Theorem E.7. We have

log? T

VT
Proof. From the update rule of actor in Line 9 of Algorithm[I]and Eq. (T4), we have

L
7116, — 0,41

2
L
= J(8:) +(VJ(8:). 6,V log mp, (ar]s1)) — —5-0* 6,V log mp, (a]s:)

= J(6:) + a(VJ(6:), Ah(Os, ne, wi, 0¢)) + a(VJ(6;), h(Oy, 6y))

L
_ TJQQH&VIOgWO,,(QASt)Hz

= J(0:) + a(VJ(0:), Ah(O¢, e, wi, 0y)) — aO (O, 0y)
=J

Gr < O() + Oleapp) + B/ Gr(2Yr + 8L2Z7). (28)

J(0111) > J(0r) +(VI(6), 0111 — 6;) —

| 2

Ly
+ a(J(00), oy (0, 00)]) — =L 6.7 log o, (aulsy) |
)
(

(0t + CV<VJ(07§), Ah(Ohnt,wt, 9,5)> — Ck@(Ot, 0,5) + O[||VJ(0,5)H2

L 7
+ (VT (8:), Eoy [AN (07, 80)])) — —=0? 6V log mo, (as:) ||,

where the last equality is due to the fact
Eo/ [h(O',0) — AW (O',0)] = Eo/[(r(s,a) — J(0) + Va(s') — Va(s))V logme(als)] = V.J(0).
Rearranging the above inequality and taking expectation, we have

E(VJ(6,)]* < é(E[‘](gt-&-l) — J(0:)]) — E(VJ(0:), Ah(Oy,ms, wi, 0;)) + E[O(Oy, 6,)]

L ’
~E(VJ(8:), Eo;[AN (0}, 6,)]) + —5-aEl|6:V log ma, (ar] 1)

Note that from Cauchy-Schwartz inequality, we have

“E(V.J(8), AR(Or. i1, 0,)) < BVEIVI(0)[2/2Ey? + 8L2E
From Lemma[F.6|and choosing 7 = 77, we have

E[@(Ot, Gt)] < C4TT(TT + 1)GO¢ + C5Cp7—_1

1
< Cyrp(rr + 1)Ga + C5ﬁ~

It has been shown that

Eo ||AR (O, 6)|? < 4B%¢2

app"
Therefore, we have
—(VJ(6:), Eo [AN (01, 6,)]) < Ly\/|[Eor [AW (O}, 6,)]]?

< LyvVEo AN (0}, 6,)]2
< 2BLJeappa

27

Under review as a conference paper at ICLR 2025

where we use [|[V.J(8)|| < L; which comes from Lemma|C.3] Plugging the three terms yields
1
E|[VJ(6:)[* < —(E[J(6:11)] — E[J(6:)]) + B\/E||VJ(0t)”2\/2Eyt2 +8LIE| 22

1 LJ/

2BL je, C 1)Ga + Cs— G?a.
+ J€app + Camr(7r + 1)Ga + \/T—l- 5 Ga
Summing over ¢ from 7 to T — 1 gives
T—1 -1 T—1
S E[VIO) <) - (E[J(6e41) —E[J(6,)]) +B > \/EIIVJ(Ot)IP\/?Ey? + 8LIE| 2|
t=11 t=11 t=11
I
L(’ T—7
+ (Cyrr(rr + 1)G + Cs + 2’ G?) \/TT + 2BL ey (T — 71).
For term I, we have
-1
5L = tz - (ElJ(0er1) — E[J(8)])
—r
<27
c
Overall, we have
T—1
20U, Ly T —
ST EIVI6))? < ; VT + (Cyrr(rr + 1)G + Cs + 2" G?) ﬁfT + 2BL jeq(T — 71)
t=17
T—1
+B Y VEIVI(0,)[2\/2Ey? +8L2E] z |
t:TT
2U, Ly T—71r
< - \/T+(O4TT(TT+1)G+C5+7G2) \/T +2BLJ€app(T_TT)
T-1 T—1 T-1
1 1
+B(D_E[VJ(6,)7)2(2 > Ey? +8L2 Y Eflz|?)>.
t=11 t=11 t=1r

Therefore, we get
4U,. oy 1
Gr < (? + C4TT(TT + 1)G +Cs+ LG)7

+ 2BLjeup + B\/Gr(2Yr + 8L2Z7)

VT
log? T 5
= O N) + O(€app) + BV Gr(2Y7 +8L2Z7),
which concludes the proof. O

F.4 STEP 4: INTERCONNECTED ITERATION SYSTEM ANALYSIS

In this subsection, we perform an interconnected iteration system analysis to prove Theorem[4.9]

Proof of Theorem

Proof. Combining Eq. (I9), Eq. (20), and Eq. (28), we have
log? T
Yr <O + G/ YrGr,
T < O(T) rGr
log?T. ~, 1 2U,
T) + O(ﬁ) +O(eapp) + —~V¥rZr

9¢BL, 2L,
CA VZr (Y7 + 81227 + -5\ ZrGr

Zp < O(

+

28

Under review as a conference paper at ICLR 2025

Denote

Iy :=cG,ly =

ls = ly :==8L%, 15 :=
Nl Nl v U5

2 9¢BL. 2cL,
Uo 1.2 2¢ 2= CA g := B. (29)

Then we have

log®> T
Yr < O(22) +1,/YrGr,

VT
log®> T
Zr < O _2) 4 Ofenpp) + O(—=) + Io/ Yo Zr + s/ Z0(2Yr + 12 Z1) + Is\/ Z7 G,
VT \/
log? T
Gr < O(\/T) + O(€app) + g GT(QYT + l4ZT).

For Gr, we get

_
9]
03
[\
~

1 1
) + O(€app) + §GT + lg(YT + §Z4ZT)7

_
o)
0
[V)
N~

) + O€app) + 1§ (2Y7 + s Z7). (30)

For Zr, we have
log T 1
+ O(€apn) + 10)
\/T) (Pp) (\/*

If it satisfies (1 + %l4)l3 < =, we further have

1 1
Zr < O(ZT+Z YT+(1+*Z4)132T+13YT+ 4ZT+I5GT

)+

)+ (212 4 213) Y7 + 202G 7. (31)

Plugging Eq. (30) into Eq. (3T)), it holds that
log? T

\/T

_27

~ 1
)+ O€app) + O(—=) + (203 + 213 + 41212 Y7 + 241212 Z .

If it satisfies 2[,/212 < %, we have

log? T
VT

Zr < O()+ Oleapp) + O(—=) + 4(12 + Is + 21212) Y7 (32)

\F

For Y, we get

)+ = (Yr + Gr). (33)

Plugging Eq. (30) and Eq. (32) into Eq. (33) gives
log? T

I
) + Oeapp) + %(YT + 22V + L3 Zr)

I
Ly o (V1 + 28Yr + ALIG (15 + Is + 21319)) Yo

log®T
VT
Therefore, if I1(1 + 202 + 41412(13 + I3 + 2121%)) < 1, we have

log? T ~ 1
)+ Oleapp) + O(ﬁ

=0)+ O(eapp) + O

Ella 5\

!
)+ 51(1 + 202 4+ Al 213 4 15 + 21212)) Y7

Yy < O()-

3

Overall, we require

1 1
(1+ 714)1 2141516 3 (14202 + 41402313 + 13 + 21212) < 1

29

Under review as a conference paper at ICLR 2025

According to the definition of Iy, 5, 13,14, 15, ls, we have

2%BL, 1
1+4L2 <z
(+ ’U) A — 47
64L2c2L2B% 1
v TR o
A2 =9
AU? 2¢BL, 8c*B2L?
¢G(1+2B° + 2L B> (<5 + CA + C)\2) <1

Thus we choose

A A2
¢S mi e T B G((1 1 2B 1+ B2L2 BN ¢ 138 L2025%) (34)
which satisfies the above two inequalities. Therefore, we have
log? T 1
Yr=0 O(ea O(——
T (\/T) + (6 PP) + (\/m)
and consequently,
log®> T
Zp =0 O(ea O(—
T (\/T) + (6 PP) + (\/’I’T’l)
log? T ~ 1
GT —O(\/T)"‘O(eapp) +O(\/7m)
Thus we conclude our proof. O

G PROOF OF PRELIMINARY LEMMAS

The following preliminary lemmas have been established in prior research (Zou et al.l 2019; Zhang
et al.| 2020a; Wu et al.,|2020b; [Liu et al., 2020). In this paper, we make modifications to accommo-
date continuous action spaces.

Proof of Lemma

Proof. For any 6; and 65, define the transition kernels respectively as follows:
Pi(s,ds") = / P(ds'|s,a)my, (als), i=1,2
A
Following from Theorem 3.1 in Mitrophanov| (2005)), we obtain

_ 1
drv (p, , po,) < ([log, C~1 + 7)||P1 = P2lops

where || - ||op is the operator norm defined in Mitrophanov (2005 Al == supygpy=1ll¢AlTv,
and || - || v denotes the total-variation norm. Then we have

na—%mf:mpuéawwa=&mmmv

llgllrv=1

= su ds)(P; — Py)(s,ds’
s [[atan)p P,

qulsllf 1// (ds)I(Pr — P2)(s, ds")]
= sup //sq(ds)/,47)(d8/|8’a)(7r91(da|5)_Weg(da|s))

llgllrv=1

~ sup //WwAmwmmmwm%mmm»

lgllrv=1J8 /S

— s /mgéwamwwumm

lallrv=1/s

< L |01 — 62]-

30

Under review as a conference paper at ICLR 2025

The first equation results from the definition of the operation norm, the second equation results from
the definition of total variation. Therefore, we have

1
drv (16, 116,) < Lx([log, O~ + ﬂ)”al — 0.

For the second inequality, we have

WWM®MMMWM=AAﬂMMMM$ﬂ%WWMQ

<LAmemwwwmw»

" /s /A (1o, (ds) = po, (ds))ma, (als))]

= drv (7o, , 70,) + drv (16, s te,)
1
< Ly |61 — b2 + C([log, C~1] + 1fp)”‘% — 05|

1

For the third inequality, we have
dTV /1'91 ®me, ® P, Ho, & T, @ P)
=5 | [), (el)P (a1 5.0) oy (057, als) P 5,

=5 | [Vo), al) (@), ()
SJA
= dTV (NJGl & 70,5 1O, Y 7(_92)7

which concludes the proof. O
Proof of Lemma

Proof. From the fact that

St+1 S / / St =ds ,ar = dCL St+1 €)

2dry (P(s¢41 € -), P(5i41 € 7))

/// (s = ds,a; = da, sy 1 = ds’) // (8¢ = ds,a; = da, 5141 = ds')|

S/// |P(s¢ = ds,a; = da, s41 = ds’) — P(5; = ds,a; = da, 5,11 = ds')|
sts/a

- / / / P(O, = (ds, da, ds')) — B(Oy = (ds, da, ds"))|
SJSJA
= 2dry (PO, €),P(O € 1)),

we have

where the last equality requires the exchange of integral which is guaranteed by Fubini’s theorem
since PP is an absolute integrable function.

31

Under review as a conference paper at ICLR 2025

For the second equality, we have
2d7y (P), POy € -))
// / |P(O; = (ds,da,ds’)) — P(O; = (ds, da,ds"))|
= / / / |P(ds'|s,a)P((s¢,a¢) = (ds,da)) — P(ds’|s,a)P((3¢,ar) = (ds,da))|
sJals
= / / / P(ds'|s,a)|P((s¢, ar) = (ds,da)) — P((5¢,a¢) = (ds,da))|
/ / (s, ar) = (ds, da)) — P((3e,@r) = (ds, da))
- 2dTV(]P)((3taat) € ')vP((gtvat) €))
For the third inequality, since 6, is dependent on s; as shown in Eq. (9), it holds that
2drv (P((st; at) €), P((5¢, ar) € -))
// |P(s; = ds,a; = da) — P(8; = ds, a; = da)|

_ / / |/P(st — ds)P(6, = dBls, — 5)P(ay = dals; = 5,0, — 0) — (3, = ds, @ — da)|
SJA]
- / / IP(s; = ds) / P(8, = df]s, = 5)mo, (dals) — P(5: = ds)ro, _(da]s)]
SJA 7]
- / / IP(s: = ds)E[ma, (dals)|s: = 5] — P(3, = ds)ma, _ (da]s)|
SJA
= / / [P(s; = ds)E[me, (da|s)|st = s] — P(s; = ds)me,__(dals)]
SJA
+ /s /A |P(s; = ds)me,_.(dals) — P(5; = ds)me,__ (da|s)|

= /SIF’(st =ds) /A |E[rg, (dals)|ss = s] — me,__(dals)]|

+ 2dTv(]P)(8t S),P(gt S))
< Lﬂ-E”Bt — at,-,—” + QdTv(P(St S '),]P’(gt S)),

where the last inequality holds due to the Lipschitz continuity of policy made in Assumption.7] [
Proof of Lemma

Proof. By definition, we have
J(01) — J(62) = E[r(s',a') — r(s?, a?)],

where s° ~ p1g,,a’ ~ mg,. Therefore, it holds that

J(Ql) — J(02) =]E[r(sl,al) - 7“(51,(11)]
< 2U,drv (116, @ To, , jlg, @ To,)

1
<2U, Ly(1 4 [log, 1] + fp)llel — 0

1
= L;[|61 — 02].
O
Proof of Lemma
Proof. The proof of this lemma can be found in Lemma 3.2 of (Zhang et al., [2020a)). O

32

Under review as a conference paper at ICLR 2025

Proof of Lemma

Proof. We will divide the proof of this lemma into four steps.
Step 1: show that forall k € {1,2,--- | K}, we have
W R < O(v/m). (35)
It can be shown that
WO < W W)+ g

< Uu + W5

< O(vm),
where the last inequality id due to Assumption[d.2]and the fact that U, is constant to m.
Step 2: show that for all k£ € {1,2,--- , K}, we have

Is®] < O(v/m). (36)
From Assumption we have [|s(?)|| < 1. From Eq. (33),, it holds that

1
sl = Hﬁa(W(”s(o))ll

IN

1

—La WP + [l (0)]?
< O(m).

By induction, suppose ||s(*)||2 < O(m). We have

1
e
1
— L2 WD s 1 o o))
< O(m),

(W(k+1)8(k))||2

IN

which concludes the proof. Therefore, from Eq. @, it can be shown that
~ 1
|V (w;s)|| = HﬁbTS(K)II <0(1).

Step 3: show that for all k € {1,2,--- | K}, we have

Vo1 s® || < O(1). (37)
From the chain rule, we have

1

V51, 5) = ﬁa%zjj W® G,)"V ()W,).

Therefore, we get

[V ooy s |2 = sup Z(Z Vo188 (1, §)v;)?

loll=15=7 5

1
= sup — [WHy|?

loll=1 T
1
< |17 WP
m
<0(1),
where Y’ is a diagonal matrix with X/ (i,7) = o/ (3, W ®) (i, j)sF=1(5)) := £(4).

33

Under review as a conference paper at ICLR 2025

Step 4: show that forall k € {1,2,--- , K'}, we have
IVw oo s™ < O1), (38)

where V)% is defined to be a matrix whose (1, (j — i)m + h)’th entry Vg0 5% (4, 5, h) is
given by

85(’“)(1')
(k) (; 5 Y2 T\
Vwes 0 k) = Gwm,
It holds that
1 L 1,
Vi s® (i, 4,5) = ml{z — 530’ O W, h)s* D (h))sF (),

h

which can be written as
1
Vwaws®(i,j,5) = ﬁl{i = j}e(i) st ().

Therefore, we get

IVw o a1 = o Z ZVWWS i3, 3")WVig)*

Vir=1

=1 j,j’
1 (i o(k—1))2
p” HVTFP 1; %:1{2 3@ ST (V)
_ 1 m . . (h—1)7 12

Zg)2V D)

mHVHF 11 1

= sup HZ V=12
[V[p=1"

< *HE’IIZ [l
m
<o),
where the last inequality follows Eq. (36).

We then show the Lipschitzness of the neural network. Since each entry of b satisfies |b;| < 1, it is
easy to see that

-~ 1
IVswoViws s)ll = —=lbll < 1.

By Eq. (37).Eq. (38), and the chain rule, we have
||VW(k)V(w; S) = ||VW(K)V(UJ; S)Vw(K—l)s(K) tet vs(k)S(k+l)vW(k)S(k) || < 0(1)

It can be shown that

IV = s 12 Vi V(ws s)V3)? < O(L),
F k=1

which concludes the proof of Lipschitzness.

The proof of smoothness property has been shown in |Liu et al.| (2020). [

34

Under review as a conference paper at ICLR 2025

H PROOF OF SUPPORTING LEMMAS

The following four lemmas only deal with the Markovian noise, which are originally proved in Wu
et al.| (2020b)) and updated in Wu et al.|(2020a). We include the proof with slight modifications for
proving Theorem {.9]

Proof of Lemma [E1]

Proof. We will divide the proof of this lemma into four steps.
Step 1: show that for any 01, 05,7,0 = (s,a,s’), we have

|®(0,n,61) — ®(0,n,0:)| < 4U,L;||6; — 6] (39)
By the definition of ®(O,), 8) in Eq. (I1)), we have

|2(0,1,01) — 2(0,0,02)| = |(n— J(61))(r — J(01)) — (n — J(02))(r — J(62))]
<|(n—J(61))(r — J(61)) — (n— J(61))(r — J(62))]
+[(n = J(01))(r — J(02)) — (n— J(02))(r — J(62))]

<4U,|J(01) — J(62)|
< 4U,L;|6; — 6s]].

Step 2: show that for any 8, 11, 72, O, we have
‘@(077]1’9) _‘I)(Oan279) < 2U7“|771 _772|' (40)
By definition, we have

|2(0,m,0) — 2(0,n2,0)[= [(m — J(0))(r — J(8)) — (n2 — J(8))(r — J(9))]
< 2U,|m — 2.

Step 3: show that for original tuple O, and the auxiliary tuple 5t, conditioned on s; 41 and 6y,
we have

t
E[®(Or, te—r0e—r) — E[D(Orsm—r)|l < 20°L, S Ell6x—6ir]. @4D)
k=t—T1
By definition, we have
E[(I)(Ohntha oth) -]E[(I’(étﬂ?tfn eth)] = (ntfr - J(etfr))E[T(St, at) - T(gt,at)]~
By definition of total variation norm, we have
E[r(se, ar) — r(8, ar)] < 2U.dry (P(O; € '\St—r+179t—r),P(6t € |st—ry1,0t—1)). (42)
By Lemma|[C.2] we get
dry(P(O; € ’|5t7'r+170t77)ap(5t € St—r41,0t—7))
= dTV(]P)((Sh at) S '|5t—‘r+1a Ot—‘r)a P((ghat) S '|5t—‘r+1a ot—T))
~ 1
<drv(P(s; € -[8$¢—741,0i—7),P(5; € -[$4—r41,0i—7)) + §L7TE||0t -0+

~ 1
<dpy (P(Oi=1 € “|8t—741,0:—7),P(Or_1 € “|S4—741,0,—7)) + iL'rrE”et — 0|

Repeat the above argument from ¢ to ¢ — 7, we have

L. Z E|6y — ;.|| (43)

k=

N | =

drv(P(Oy € '|5t—7+1,0t—7),P(6t € |8t—741,0;—7)) <
Plugging Eq. (3) into Eq. (42), we have

t
‘E[@(Ot,ﬂtfwatfr) - E[(I)(fovtyntfraetfr)“ < QUELw Z EH@k - 0t77—||~
k=t—r1

35

Under review as a conference paper at ICLR 2025

Step 4: show that conditioned on s;_,;1 and 8;_,, we have

E[®(Oy,m—r,0,_,)] < 4UZCp™ 1. (44)
Note that according to definition, we have

E[®(Of_r0t—7,0:—7)|0:—] = 0,

where O} | = (s;_,,a;_,,8;_,,,) is the tuple generated by s; . ~ g, ,a; , ~
70, ., Si_ry1 ~ P. From the uniform ergodicity in Assumption it shows that

dry (P(5; = *|St—r11,01—7), g,) < Cp” .
Then we have
E[® (O, 1h—r,01—7)] = E[®(O¢, np—r, 0;—r) — P(O)_., 1h—r, 0]

=E[(i—r — J(0r—7))(r(5¢, @) — r(sy_7, a;_))]
<AU2dry (P(Oy—r = -|8t—741,04—1), lt6, . @ Te, . @ P)
<4UZCp™ L.

Combing Eq. (39), Eq. (40), Eq. #I)), and Eq. (#4), we have

E[®(O¢, i, 0)] = E[®(O¢, 1, 0:) — @(Or,me, 01—1)] + E[®(Or, e, 0r—7) — 2(Or, mt—r, 61— 7)]

+E[®(Op, 1i—7,0:-7) = (O, mt—r, 01—)] + E[D(O, me—r, 017)]

t
AU Ly)|0; = 0r || + 2Ur | — | + 207 L Y EJ|6; — 6, ||

1=t—T1
+4UZCp™

which concludes the proof. O
Proof of Lemma [E3]

Proof. We will divide the proof of this lemma into four steps.
Step 1: show that for any 61, 05, w and tuple O = (s, a, s’), we have
|T(0,w,0,) — ¥(O,w,0;) < (4]0, — 0], 45)
where Cy = 2U3 L (1 + [log, C~'] + ﬁ) +2UsL L, +2UsL,L,.
By definition of ¥(O, w, 0) in Eq. (II)), we have
[P(0,w,01) — ¥(O,w,0s)]
=(w - wl,9(0,w,01) — §(w,6,)) — (w — w3, 9(0,w,0:) — §(w,)]
< [w—wl,9(0,w,0;) — §(w,01)) — {w — wi,9(0,w,0;) — g(w, 0:))]
Iy
+ [(w = wi, 9(0,w,02) — g(w, 02)) — (w — w3,9(0,w,0:) — g(w,62))].

Iz

For term [, we have
I =[(w—wi,9(0,w,01) — §g(w,01)) — (w — w7, g(0,w,6:) — g(w, 6))]
= |{w—wi,9(0,w,01) — g(O,w, 02))| + [{w — wi, g(w, 61) — g(w, B2))]
= |(w — W}, (J(61) — J(62)) VeV (w: 9))| + [{w — w], §lw, 61) — G(w, 62))]
<2UuLyLy |61 — 02| +2Us||g(w, 01) — g(w, B2
<2UGLsLy||01 — 62| +2Uy, - 2Usdrv (1o, @ mo, @ P, g, @ mo, @ P)
< 2U,LyLy||01 — 03 + 2U5 dry (1o, ® To, @ P, pig, @ me, @ P)

1
< (2UsLyLy + 2U3 Ly (1 + [log, C™' + m))uel — 0,

36

Under review as a conference paper at ICLR 2025

where we use the fact that Us = 2U,. + 2U,, + 2U, and the last inequality comes from Lemma@

For term I, from Cauchy-Schwartz inequality, we have
I =[(w - wl,9(0,w,02) — §(w,02)) — (w — w;3,9(0,w,6:) — §(w, 0))]

= |(w] —w3,9(0,w, 02) — g(w, 62))|

< 2UsL, o} — w3

< 2UsLy L |61 — 62
Combining the results from /; and I, we get

|P(0,w,0,) — ¥(O,w,0) < (4]0, — 02|,

where C1 = 2U3 L (1 + [log, C~'] + 115) + 2Us Ly Ly + 2Us L L.

Step 2: show that for any 0, w;, ws and tuple O(s, a, s'), we have
|T(0,w1,0) — (0, ws,)| < 2Us(U,H, + L? + U, H, + Ly)|jwi — ws|. (46)
By definition, we have
[T(0,w:,0) — ¥(0,ws, 0)]
= [{w1 —w", 9(0,w1,0) — g(w1,0)) — (w2 — w", (O, w2, 0) — g(w2,0))]
< w1 —w*,9(0,w1,0) — g(w1,0)) — (w1 —w", g(0, w2, 0) — g(w2,0))]
+ (w1 — w", 9(0,w2,0) — g(w2,0)) — (w2 — w", g(0, w2, 0) — g(w2,0))]|
< 2Uu[[(9(0,w1,8) — g(O, w2,0)) — (g(w1,0) — g(ws, 0))|| + 2Us Ly[|wr — wal|.
It follows that
[(9(0,w1,0) — g(O,ws,0)) — (§(w1,0) — G(w2,0))]
|(r(

+ V(wl, s)Vw‘A/(wl, s) — ‘7((.02; 8)V (wo; 8)
+ V(wa; 8) Ve V(wa; s) — Viwr; 8) Ve Vi(wr; s)||

+ ||‘7(w2; S)V“,{A/(wg; s) — ‘7(w1; S)V‘,,‘A/(wg; s)
+ V(w15 8) VoV (wa;s) — V(wr;)V V(wi; s)|| + 20U, Hy wr — ws|
<2U,H,||wy — ws 4 2L2||wi — wal| + 2U, Hy||wi — ws|
=(2U,H, +2L% +2U, H,)|w1 — wa]|.
Therefore, we obtain
U (0, w1,0) — ¥ (0,ws,0)| < Coflws — wal,
where Cy = 2Us(U,H, + L? + U, H, + L,).

Step 3: show that for tuples O; = (s¢, ay, s¢4+1) and 5t = (S, G, St+1). Conditioning on s;— 41
and 0;_ ., we have

E[¥(Or, wi—r,0;—7) — U(Op, wi—r,0;_1)] < UZL,L.Gr(1 + 1)a. (47)
By the definition of total variation norm, we have
E[\IJ(Ohwtha eth) - \I}(étawtha Bth)]
=E[(wi—r —wi_, 9O, wi—r,60;—r) — g(ét, W7, 60t7))]
< 2UF Lydry (P(O4 € “[s1—r11,0-7),P(O; € “|st—741,60;+))
L., th E[|6) — 6, |

k=t—T
< UZL,L,G7(T + 1)a,

37

Under review as a conference paper at ICLR 2025

where (1) follows from Eq. (@3).
Step 4: show that conditioning on s;_,1 and 0;_,
E[U(Oy, wi_r,0;_.)] < 202Cp™ (48)
From the definition of ¥'(O, w,), we have
E[W(O; ., wi 7,0; 7)|8t—rs1,0; -] =0,
where O;__ is the tuple generated by s;__ ~ g, ,a;_, ~ g, ,,S;_, .1 ~ P.From Assumption

[4.6] we have
dry (P(3; = -|st—r41,01+), po,_.) < Cp™ .
Then, it holds that
E[¥(Oy, wi—7,60;—+)] = E[¥(Or, wy—7,0;,+) — W (O wi_7,0,)]
=E{wi—r — w; . 9(Or,wi—r,0—7) — g(O}_,,wi—r.0,_;))
< 2U2Lydry (P(O; = “[81—r41,01—1), o, © 7o, , @ P)
= 2U§ Lydrv (P((5¢,at) € *|St—r41,0i—1), o, . ® 7o,)
= 22U Lydry (P(5; = “[St—r41,01—1), 1o,)
<2UZL,Cp L.
Combining Eq. @3), Eq. (6), Eq. (@7), and Eq. (&8), we have
E[U(O¢,ws, 01)] = E[¥ (O, wy, 0:) — U (O, wy, ;)]
+E[¥(Or, wp, Oy—r) — U(Op, wy—r, 0r—1)]
+E[¥(Or, wi—r,0;—7) — U(Op, wi—r,0;_)]
+E[¥(Or, wi—r, ;)]
<G[0 — 07| + Coflw — wi—||
+ UL, LG7(T + 1)a + 2UFL,Cp™ 1,
where Cy = 2U3 L (1+ [log, C~'] + ﬁ) +2UsLyL, +2UsL, L, and Cy = 2Us(U,H, + L? +
U,H, + Ly). O

Proof of Lemma [E4]

Proof. We will divide the proof of this lemma into four steps.

Step 1: show that for any O, w, 61, 85, we have

I2(0,w,01) — E(O,w, 0s)|| < (3UsLy, + 2UsBL.)||0; — 02| (49)
Since Z(0,w,0) = (w — w*, (Vw}) " (Eo/[R(O,0)] — h(O,))), we define Eg[h(O’, 0)] :=
Eo/[h(0’, 8)], where Eg is the shorthand of Eo/(,g,xe,7). In the following, we will show that
each term in =(O, w, 0) is Lipschitz with respect to 6.

Term w is not related to 0, term w* := w™* () is L,-Lipschitz, and term Vw} is Ls-Lipschitz.

For term h(O,), denote 5(0, 0) := r(s,a) — J(8) + V(w*(0); s') — V(w*(6); s), we have
[~(O,0:1) — h(O,0:)]|
= ||6(0, 61)V log e, (a|s) — §(O, 02)V log 7, (als)||
< 1|6(0, 01)V log 7, (als) — 6(0, 01)V log me, (als)|
+116(0, 601)V log 7, (a]s) — 6(0, 02)V log mg, (als)||
< UsL;||61 — 62| + B|6(0,61) — 6(0, 65)|
< UsLi||01 — 02| + B(|J(01) — J(82)] + ||V (w™(61);8) — V(w* (82); 8')]|
+[[V(w*(01);5) — V(w*(62); 5)||
(Ung + ZBLJ)Héh — 02” + QBLUHUJ*(Hl) — w*(OQ)H

<
< Lp 61 — 6.

38

Under review as a conference paper at ICLR 2025

Hence we have h(O, 0) is Lj-Lipschitz, where L;, = UsL; + 2BL, L. + 4BU;sL .
For term Eg[h(O’, 0)], we have
[Eq, [2(O",01)] — Eq,[1(O, 82)]]|

< [[Ee, [R(O",01)] — Eo, [M(O", 82)]|| + [|Eo, [A(O", 82)] — Eo, [n(O, 82)]]|

< Eq,[[[1(0",61) — h(O', 05)[]] + || Eo, [R(O', 82)] — Eq, [h(O', 65)]|

< Lp||61 — 62| + [[Eg, [n(O', 82)] — Eg,[h(O', 85)]]]

< Ly||01 — 02| + 2BUsdrv (116, @ To,, ft6, @ To,)

1

< (L + 2BU; L (1 + [log, C~'] + T)61~ 6]

< (Lp +2BUsLy;)||61 — 62|
< 2L,)101 — 02|

Then we have w — wy is Us-bounded and L.-Lipschitz; Vwy is L,-bounded and L-Lipschitz;
Eg[h(O’,0)] — h(O, 0) is 2Us B-bounded and 3Lj,-Lipschitz. By the triangle inequality, we have

IZ(0,w,61) = Z(0,w, 0)|| < (2Us BL? + 2U§ BLs + 3Us L. Ly,) |01 — 02| < C3]|61 — 6],
where C3 := 3Us L. (UsL; + 4BUsL; + 2BL,L,) 4+ 2Us BL? + 2UZBLj.
Step 2: show that
I2(0,w1,80) — E(O,ws,0)|| < 2UsBL.||jwi — wa||. (50)
Actually, we have

HE(vah 0) - E(O,wg, B)H = H<w1 — Wy, (Vw;)TEO’ [h(0/7 0)] - h(07 0)>H
S 2U5BL*||(.&J1 —LUQ”

Step 3: show that for tuples O; = (s¢, at, s¢+1) and O, = (8¢, at, Spr1). Conditioning on s;_ 41
and 0,_ ., we have

t
E[E(Or,wi—r,60;—r) — Z(Op,wi—r,01;)] <2UFBL, > El6p —6,_|. (51
k=t—T1

By definition of (0, w, 8), we have
IE[E(Or, wt—r,0;—r) — E(Op, wi—r, 87)]|
= |B[{wi—r — i, (Vi) " (h(O, 0, 7) = h(Oy, 0;))]|
< AU BLydry (P(O € “[$t—r41, 017), P(Or € “[$1—741,0;—1)), (52)

where the inequality comes from the definition of total variation distance. The total variation norm
between O; and O, has been computed in Eq. @3)). Plugging Eq. (43) into Eq. (52)), we get

t
IE[E(O¢, wi—r, Or—7) — E(@,wt_f, 0, .)|| <2UZBL.L, Z E||6r — 0:—.|
k=t—7
< 2UZBL,L,.G7(T + 1)a.
Step 4: Show that conditioning on s;_, 1 and 8;_, we have
IE[E(Oy, wi—r, 00—,)| < AUZBCp™ 1. (53)
It can be shown that
IEE(Or w17, 01))ll 2 [EIE(Or,we-r, 61-r) = (O}, 11,000)|

(2) ~
< AU§BL.drv(P(Oy € *|$t—r41,0¢—1), o, . @ T, . @ P),

39

Under review as a conference paper at ICLR 2025

where (1) is due to the fact that O; is from the stationary distribution which satisfies

E[Z(0;_,,wt—r,0:—7)|0:—r,5t—74+1] = 0 and (2) follows from the definition of total variation

distance. From Assumption [4.6] we know that
dry (P(3: € -), o,) < Cp™ 1.
Therefore, we have
|E[Z(Ot, wi—r,0;—r)|| < AUEBL.dry (P(Or = -|$¢—r41,04—7). pto,_, @ To,_. @P)
= AUZBL.drv(P((5;,a:) € |8t—r11,0:_1), o, . @ To,_.)
=AU BL.dyv (P(5; = |8t—7+1,60—+), o,)
<A4UZBL.Cp™ 1.
Combining Eq. (#9)-Eq. (53), we can decompose the Markovian bias as
E[Z(Oy, wy, 0;)] = E[Z(Oy, wy, 0;) — Z(Oy, wy, ;)]
+ E[Z(O,wt, 0r—r) — E(Of, wi—r, 01—)]
+E[E(O4, wi—r,0i—r) — E(Oy, wi—r, 0;,_,)]
+E[E(Or, wi—r, 0;_1)]
<0310 — 0, || + 2Us BL. || wi — wi—||
+2UfBL.L.G7(T + 1)+ 4U$ BL,.Cp™ .

Thus we conclude our proof. O
Proof of Lemma

Proof. We will divide the proof of this lemma into three steps.
Step 1: show that

10(0,6,) — 6(0,65)| < (2UsBLys + 3L;L1)||61 — 05, (54)
where Ly, = UsL; + 2BL, L, + 4BU;L ; is defined in the proof of Lemma

Since ©(0, 8) = (VJ(0),Eo, [h(Of,0)] — h(O,0)), we will show that each term in ©(0O, 0) is
Lipschitz.

For the term V.J (@), we know it’s L y-bounded and L j:-Lipschitz. For term Eg[h(O’, 8)]—h(O, 6),
we have shown in the proof of Lemma [F4] that it’s 2U; B-bounded and 3Lj-Lipschitz. By the
triangle inequality, we have

1©(0,61) — ©(0,02)| < (2Us BLy + 3L, Ly)||01 — 62|
Step 2: show that conditioning on s;_,1 and 6;_,, we have

t
[E[O(Oy,6;) — O(0y,6,-)]| < 2UsBL;Lr Y |0k — 6| (55)

k=t—T1
By definition of ©(0, 8), we have
[E[O(Oy,6;—-) — O(0y, 6,)]
= |E[(VJ(0:+), (01, 0:—7) — h(Or,0;)]
< AUsBLydry (P(Oy € |$1—r41,041—7), P(Oy € “|54—rs1,0i—1)), (56)

where the inequality comes from the definition of total variation distance. The total variation dis-
tance between O, and O, has been computed in Eq. (@3). Plugging Eq. (3) into Eq. (56), we get

t
[E[O(O,0;—7) — O(O4,0,—,)]| < 2UsBLyLr Y [0k — 01—].

k=t—71

40

Under review as a conference paper at ICLR 2025

Step 3: show that conditioning on s;_, 1 and 6;_ ., we have
|E[©(Oy, 0;_,) — O(0,_.,0,_,)]| <AUsBL;Cp™". (57)
From the definition of ©(0,), we have

E[O(Or, 0:—r) — O(0;_,, 0,)| = [E[(VJ(0:—-), h(0}, 0:_r)) — (VJ(B:—r), h(Or, 0.))]]
< AUsBL ydrv (P(Oy € “|St—r41,0i—+), o, ® To,_, ®P)
=A4UsBL jdry (P((St,a) € “|St—r41,0t—1), flo,_. @ To,_.)
=4UsBL ydrv (P(5; = -[St—r41,01—7), lie,_,)
<A4U;BL;Cp™ 1,

where the last inequality follows from Assumption.6] Therefore, we have

[E[O(O¢, 6:—7) — ©(0;_,60,,)]| <4UsBL,Cp" "

Combining Eq. (34), Eq. (33), and Eq. (57), we can decompose the Markovian bias as

E[O(O¢,6:)] = E[O(O¢,0;) — ©(0r, 0;—7)]
+E[O(0y,0;_,) — (04, 0,_,)]
+E[O(0y,60;—-) — O(0;_,,0;_)]
+E[O0(0;,,0: 7)),

where O, is from the auxiliary Markovian chain defined in Eq. (8) and O;_ . is from the stationary

distribution which satisfies E[@(O;_., 0:—,)|0:—,] = 0.

Then we have

]E[@(Ot, Ot)] S (2U§BLJ/ + 3LJLh)EHOt - gt—TH

t
+2UsBLyLx Y ||k — 0 || +4UsBL,Cp™
k=t—T1
t
< (2UsBLy +3LsLy) Y E[6k — 6k
k=t—7+1
t k
+2UsBLyLx > > E|6; —0;_1|| +4UsBL,Cp"
k=t—741 j=t—7+1
t
< (UsBLy +3LsLy) Y, E[6x —6i]
k=t—7+1
t
+ 2UsBL LT Z E||6; — 6, 1| +4UsBL;Cp™*
j=t—7+1
t
<SCi(r+1) Y E|0r — 0]l + C5Cp7 !
k=t—7+1

< Cy(t+1)*Ga+ C5sCp™ ™t

where Cy = max{2UsBLj +3L;Ly,2Us BL;L,} and Cs = 4Us BL ;. Substituting Ly, into Cy,
we conclude the proof. O

41

	Introduction
	Main Contributions

	Preliminaries
	The Single-Timescale Neural Actor-Critic Algorithm
	Parameterization of the Value function and Policy
	Algorithm Design

	Analysis of Single-Timescale Neural Actor-Critic
	Assumptions
	Finite-Time Analysis

	Experiments
	Conclusion and Discussion
	
	Related Work
	Additional Notations
	Preliminary Lemmas
	Proof of Propositions
	Proof Sketch
	Proof of Main Theorem
	Step 1: Reward estimation error analysis
	Step 2: Critic error analysis
	Step 3: Policy gradient norm analysis
	Step 4: Interconnected iteration system analysis

	Proof of Preliminary Lemmas
	Proof of Supporting Lemmas

