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Abstract
Supervised contrastive representation learning has
been shown to be effective in various transfer
learning scenarios. However, while asymmetric
non-contrastive learning (ANCL) often outper-
forms its contrastive learning counterpart in self-
supervised representation learning, the extension
of ANCL to supervised scenarios is less explored.
To bridge the gap, we study ANCL for supervised
representation learning, coined SUPSIAM and
SUPBYOL, leveraging labels in ANCL to achieve
better representations. The proposed supervised
ANCL framework improves representation learn-
ing while avoiding collapse. Our analysis reveals
that providing supervision to ANCL reduces intra-
class variance, and the contribution of supervi-
sion should be adjusted to achieve the best per-
formance. Experiments demonstrate the superior-
ity of supervised ANCL across various datasets
and tasks. The code is available at: https:
//github.com/JH-Oh-23/Sup-ANCL.

1. Introduction
Self-supervised learning has recently been proven to be an
effective paradigm for representation learning (Chen et al.,
2020a; Chen & He, 2021; He et al., 2022). Among various
pretext tasks for self-supervised learning, contrastive learn-
ing (CL) (van den Oord et al., 2018; Chen et al., 2020a; He
et al., 2020) first promised outstanding performance, sur-
passing the transfer learning performance of supervised pre-
training (Razavian et al., 2014), which learns representations
by attracting positive pairs while repelling negative pairs.
However, CL requires negative samples to ensure good
performance, which might not be possible under limited
batch sizes. On the other hand, asymmetric non-contrastive
learning (ANCL) (Grill et al., 2020; Chen & He, 2021)
has emerged as a promising alternative to CL, which maxi-
mizes the similarity between positive pairs without relying
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on negative samples. To prevent learned representations
from collapsing, ANCL employs an asymmetric structure
by placing a predictor after one side of the projector.

A key component in both CL and ANCL is acquisition
of positive pairs, which is typically achieved through data
augmentation. Given that datasets for pretraining often in-
clude labels, Khosla et al. (2020) proposed to incorporate
supervision into CL by treating samples with the same class
label as positive pairs as well. Supervised CL has demon-
strated superior performance across diverse tasks, such as
few-shot learning (Majumder et al., 2021), long-tail recog-
nition (Kang et al., 2021), continual learning (Cha et al.,
2021), and natural language processing (Gunel et al., 2021).

While supervision helps to discover more positive samples,
it does not directly help to identify effective negative sam-
ples. Consequently, ANCL has a better potential to benefit
from supervision, as it focuses on positive pairs only. How-
ever, in contrast to CL, there are a limited number of studies
on leveraging supervision to improve ANCL, despite its
strong performance in self-supervised learning. To bridge
this gap, we study the effect of supervision in ANCL by
introducing the supervised ANCL framework and investigat-
ing its behavior through theoretical and empirical analysis.

To the best of our knowledge, our work is the first to con-
duct a theoretical analysis of the behavior of representations
learned through supervised ANCL. Our experiments con-
firm the effectiveness of supervision observed through our
theoretical analysis, as well as the superiority of representa-
tions learned via supervised ANCL across various datasets
and tasks. Specifically, as illustrated in Figure 1, we con-
sider SUPSIAM and SUPBYOL, which are supervised adap-
tations of the two popular ANCL methods, SIMSIAM (Chen
& He, 2021) and BYOL (Grill et al., 2020), respectively.
Our contributions are summarized as follows:

• We propose a supervised ANCL framework for represen-
tation learning while avoiding collapse, which surpasses
the performance of its self-supervised counterpart when
supervision is available.

• Our analysis demonstrates that incorporating supervi-
sion into ANCL reduces the intra-class variance of latent
features, and that learning to capture both intra- and inter-
class variance is crucial for representation learning.
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Figure 1. Our proposed supervised ANCL framework. The components we added to the standard ANCL are highlighted with a red box.
We manage a target pool to ensure the existence of positive samples sharing the same class label in the form of zsup

2 . Stop-gradient (sg)
applied to z2 and zsup

2 ensures that the gradients propagate through the online branch with the predictor only. The target branch without
the predictor either shares parameters with the online branch (SUPSIAM), or exhibits a momentum network (SUPBYOL).

• Our experiments validate our analysis and demonstrate
the superiority of representations learned via supervised
ANCL across various datasets and tasks.

2. Related Works
Supervised CL. Although SUPCON (Khosla et al., 2020)
demonstrated remarkable linear probing performance on pre-
trained datasets, its efficacy on other downstream datasets
is comparable or inferior to that of self-supervised methods.
In response, subsequent works have been underway to bet-
ter utilize supervision to enhance representation learning.
Wei et al. (2021) proposed to improve CL by taking top-K
positive neighbors into account and assigning soft labels
to positive samples based on similarity, such that it better
reflects task-specific semantic features and task-agnostic
appearance features. Wang et al. (2023) argued that naively
incorporating supervised signals might conflict with the
self-supervised signals. To address this issue, Wang et al.
(2023) proposed to impose hierarchical supervisions with
an additional projector. Graf et al. (2021) provided both
theoretical and empirical evidence demonstrating that the
SUPCON loss is minimized when each class collapses to
a single point, resulting in poor generalization of learned
representations. Chen et al. (2022) found that the SUPCON
loss is invariant to class-fixing permutations, indicating that
the loss remains unchanged when data points within the
same class are arbitrarily permuted in representation space,
which also leads to poor generalization of learned representa-
tions. Chen et al. (2022) proposed incorporating a weighted
class-conditional InfoNCE loss to avoid class collapse, and
constraining the encoder, adding a class-conditional autoen-
coder, and using data augmentation to break permutation
invariance. Xue et al. (2023) argued that features learned

through supervised CL are prone to class collapse, whereas
those learned through self-supervised CL suffer from feature
suppression, i.e., easy and class-irrelevant features suppress
to learn harder and class-relevant features. They claimed
that balancing the losses of supervised and self-supervised
CL is crucial for improving the quality of learned repre-
sentations. Notably, these efforts have concentrated on CL,
motivating us to investigate the effect of supervision in
ANCL. Although several studies on supervised ANCL exist,
such as Asadi et al. (2022) and Maser et al. (2023), their
contributions lack a theoretical understanding of the effect
of supervision and/or are limited to specific domains.

Theoretical Analysis on ANCL. While the initial ANCL
works (Grill et al., 2020; Chen & He, 2021) have demon-
strated impressive performance, the learning dynamics that
enable effective representation learning without negative
pairs while avoiding collapse to trivial solutions remain un-
clear. Tian et al. (2021) elucidated the dynamics of ANCL
through the spectral decomposition of the correlation ma-
trix. Specifically, assuming the predictor is linear, they
proved that the eigenspace of the learned predictor aligns
with the eigenspace of the correlation matrix of the latent
features. Liu et al. (2022) empirically observed that, as
learning progresses, both the linear predictor and the corre-
lation matrix of latent features converge to a (scaled) identity
matrix in ANCL. Based on this observation, they argued
that the asymmetric architecture in ANCL implicitly en-
courages feature decorrelation, achieving a similar effect
to symmetric non-CL methods that explicitly decorrelate
features such as Barlow Twins (Zbontar et al., 2021) and
VICReg (Bardes et al., 2022). Zhuo et al. (2023) suggested
that the predictor in ANCL operates as a low-pass filter,
thereby decreasing the rank of the predictor outputs. They
argued that the rank difference between the correlation ma-
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trix of the projector outputs and that of the predictor outputs
mitigates dimensional collapse by gradually increasing the
effective rank of them as training progresses. Inspired by
the prior works on self-supervised ANCL, we analyze su-
pervised ANCL under a similar framework with additional
assumptions. On the other hand, Halvagal et al. (2023)
found that prior works overlook the L2 normalization of
projector/predictor outputs, which is a common practice in
ANCL, before computing the loss. They investigated the
learning dynamics by incorporating the L2 normalization
and compared it with the case without the L2 normalization.
Our work also considers the L2 normalization; however,
instead of normalizing the features directly, we consider it
as a constraint and employ a Lagrangian formulation.

3. Method
In this section, we first review the problem setting of self-
supervised ANCL. Then, we introduce supervised ANCL.
The overall framework is illustrated in Figure 1.

3.1. Preliminary: Self-Supervised ANCL

Let f , g, and h be the encoder, projector, and predictor of
the online branch, respectively, and f̃ and g̃ be the encoder
and projector of the target branch, respectively. For a data
point x, let z = (g ◦ f)(x) and p = (h ◦ g ◦ f)(x) be
the output of the projector and predictor, respectively. In
self-supervised ANCL, two views x1 and x2 are generated
from the data x through augmentation, and the model learns
to minimize the distance between these views encoded at
different levels: it compares the prediction of the first view
p1 = (h ◦ g ◦ f)(x1) with the projection of the second view
z2 = (g̃ ◦ f̃)(x2). It has been observed that the asymmetric
architecture introduced by the predictor h helps prevent
representation collapse by predicting the latent feature of
the second view z2 from that of the first view z1, i.e., z2 ≃
p1 = h(z1) (Chen & He, 2021). The self-supervised ANCL
loss ℓssl is expressed as:

ℓssl(p1, z2) = ∥p1 − sg (z2)∥22 , (1)

where sg is the stop-gradient operation and p1 and z2 are L2-
normalized. The inclusion of stop-gradient is also crucial
for preventing collapsing, making it an essential component
of the loss formulation (Chen & He, 2021).

The target branch can either share parameters with the on-
line branch (Chen & He, 2021), or exhibit a momentum
network (Grill et al., 2020). When a momentum network is
employed, its parameters follow the exponential moving av-
erage (EMA) update rule: θg̃◦f̃ ← m ·θg̃◦f̃ +(1−m) ·θg◦f ,
where m is the momentum, θg◦f is the set of learnable pa-
rameters in f and g. The parameters of the target model
θg̃◦f̃ are initialized to those of the online model θg◦f .

3.2. Supervised ANCL

We propose to enhance supervised ANCL by integrating su-
pervision through an additional loss function: for an anchor
x1 and its supervised target xsup

2 sharing the same label y,
the loss minimizes the distance between p1 = (h◦g◦f)(x1)
and zsup

2 = (g̃ ◦ f̃)(xsup
2 ). However, the additional loss may

not always be effective, because the current batch might not
contain any samples sharing the same label as the anchor,
particularly when the batch size is small.

To address this issue, we introduce a target pool to ensure
the presence of targets sharing the same label as each an-
chor in the batch, regardless of batch size. Similar to the
memory bank utilized in prior works (Wu et al., 2018), the
target pool Q is a queue storing targets z2 along with their
corresponding labels. The target pool offers another advan-
tage that positive samples from the target pool help mitigate
collapse because they are updated more slowly than those
sampled from the batch, as empirically observed in Table 8.
The proposed target pool is flexible in its design, such that
it can be a vanilla queue, a collection of per-class queues
ensuring the presence of targets from all labels even when
the queue size is small, or a set of learnable class prototypes;
the impact of these design choices is investigated in Table 7.

Now, we sample the supervised target zsup
2 sharing the same

class as the anchor x from the target pool Q. Specifically,
we sample M targets and average them to formulate the
supervised ANCL loss ℓsup:

ℓsup(p1,z
sup
2 ) =

∥∥p1−sg
(
zsup
2

)∥∥2
2
, zsup

2 =
1

M

∑
z′
2∈Qy

z′2, (2)

where p1 and z′2 are L2-normalized and Qy ⊆ Q is the set
of M targets sampled from Q sharing the same label y as x.
We sample all positives in Q in experiments, and the effect
of M is discussed in Appendix F.2. Finally, the total loss is
defined by the convex combination of ℓssl and ℓsup:

ℓ(p1, z2, z
sup
2 ) = α·ℓssl(p1, z2)+(1−α)·ℓsup(p1, z

sup
2 ), (3)

where α ∈ [0, 1] adjusts the contribution of ℓssl and ℓsup,
and we symmetrize the loss in experiments following the
convention. We argue that the introduction of ℓsup reduces
intra-class variance and α adjusts the amount of reduction,
where details can be found in Section 4.3.

Note that our strategy for incorporating supervision into the
loss differs from that of SUPCON (Khosla et al., 2020). We
first average the supervised loss before combining it with
the self-supervised loss, whereas SUPCON weights all per-
sample losses equally, regardless of whether they are self-
supervised or supervised. Since our focus is on analyzing
the overall effects of self-supervised and supervised losses
rather than per-sample losses, our strategy aligns with the
analysis presented in the following section.
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4. Analysis of the Effect of Supervision
In this section, we analyze the effect of supervision in
ANCL. We argue that incorporating supervision into ANCL
reduces intra-class variance, and that its contribution should
be adjusted to achieve better representations. Detailed math-
ematical proofs are provided in Appendix A.

4.1. Problem Setup

For simplicity in our analysis, we adopt several assumptions
from Tian et al. (2021); Zhuo et al. (2023):

Assumption 4.1. The encoder followed by the projector
g ◦ f and the predictor h are linear: z = (g ◦ f)(x) = Wx
and p = h(z) = Wpz, where Wp is a symmetric matrix.

Assumption 4.2. The distribution of the data augmentation
P (X̃|X) has a mean X and a covariance matrix σ2

eI .

While previous studies on self-supervised ANCL assume
that the distribution of the input data has a zero mean and a
scaled identity covariance matrix, class-conditional distribu-
tions should be considered when incorporating supervision.
Specifically, we assume the class-conditional and class-prior
distributions over C classes as follows:

Assumption 4.3. The class-prior distribution follows the
uniform distribution: P (Y = y) = 1/C.

Assumption 4.4. For an input data X and its class Y , the
conditional distribution P (X|Y ) is characterized by a mean
µy and a covariance matrix Σy , where the total mean and to-
tal covariance matrix are zero and the identity matrix, respec-
tively:

∑
y µy = 0 and ST = 1

C

∑
y

(
µyµ

⊤
y +Σy

)
= I .

Assumption 4.3 is made for simplicity of analysis; our anal-
ysis holds without this assumption, albeit the derivation
becomes more complex. Assumption 4.4 can be naturally
satisfied through data whitening.

4.2. Supervision Reduces Intra-Class Variance

For simplicity, assume we sample one target from the pool,
i.e., M = 1. We first express the loss in Eq. (3) with
constraints to ensure the L2 normalization of features:

ℓ = α ∥Wpz1 − z2∥22 + (1− α)
∥∥Wpz1 − zsup

2

∥∥2
2

=
∥∥Wpz1 −

(
α · z2 + (1− α) · zsup

2

)∥∥2
2
+ const

s.t. ∥z2∥22 =
∥∥zsup

2

∥∥2
2
= ∥Wpz1∥22 = 1, (4)

where we omit stop-gradient applied to z2 and zsup
2 for

brevity, and the equality in the second line holds due to
the linearity of the L2 loss between L2-normalized fea-
tures with respect to the target (Lee et al., 2021b). Hence,
this optimization can be interpreted as mapping one view
z1 to an interpolated target between another view z2 and
the supervised target zsup

2 . Intuitively, when α = 1, the

model cannot determine the exact augmentation applied to
x2 by observing x1, such that it predicts z2 from z1 through
low-rank approximation via principal component analysis
(PCA) (Richemond et al., 2023). Similarly, when α = 0,
the model cannot infer the exact supervised target zsup

2 by
observing z1; instead, it predicts zsup

2 by mapping z1 to the
class centroid. Here, it has been known that least squares
with targets independent of each other (ignoring center-
ing, if applied) is equivalent to linear discriminant analysis
(LDA) (Lee & Kim, 2015), where LDA simultaneously max-
imizes between-class scatter and minimizes within-class
scatter. Hence, we can hypothesize that incorporating su-
pervision into ANCL reduces intra-class variance, and the
degree of reduction is controlled by α.

To prove that incorporating supervision into ANCL reduces
intra-class variance, we establish the following: 1) the opti-
mal predictor W ∗

p generates features of data with reduced
intra-class variance by a factor of α, and 2) the optimal
Wp and W share the same eigenspace, thereby W learns to
reduce intra-class variance of features.

First, we formulate the Lagrangian function of Eq. (4) and
take the expectation over x1, x2, and xsup

2 :

L=2−2α·tr
(
W⊤

p E
[
z2z

⊤
1

])
−2(1−α)·tr

(
W⊤

p E
[
zsup
2 z⊤1

])
+λ1

(
tr
(
E
[
z2z

⊤
2

])
−1
)
+λ2

(
tr
(
E
[
zsup
2 zsup⊤

2

])
−1
)

+λ3

(
tr
(
W⊤

p WpE
[
z1z

⊤
1

])
−1
)
, (5)

where λ1, λ2, and λ3 are the Lagrange multipliers. Note that
x and xsup are independently sampled from the conditional
distribution P (X|Y = y), x1 and x2 are independently
sampled from P (X̃|X = x), and xsup

2 is sampled from
P (X̃|X = xsup).

Proposition 4.5. The covariance matrices of features
E
[
z1z

⊤
1

]
, E

[
z2z

⊤
1

]
, and E

[
zsup
2 z⊤1

]
share the same

eigenspace in the data space.

Proof. From Assumptions 4.1 to 4.4,

E
[
z1z

⊤
1

]
= W (SB + SW + Se)W

⊤,

E
[
z2z

⊤
1

]
= W (SB + SW )W⊤ = WW⊤,

E
[
zsup
2 z⊤1

]
= WSBW

⊤, (6)

where SB = 1
C

∑
y µyµ

⊤
y is the inter-class covariance,

SW = 1
C

∑
y Σy is the intra-class covariance, and Se =

σ2
eI is the variance of the augmentation noise. Let SB =

V ΛBV
⊤ be the eigendecomposition, where V is an orthog-

onal matrix and ΛB is a diagonal matrix of the eigenvalues.
Then, ST = SB + SW and Se share the same eigenspace
with SB , as they are (scaled) identity matrices.
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E
[
z1z

⊤
1

]
= WV

(
ΛB + ΛW + σ2

eI
)
V ⊤W⊤,

E
[
z2z

⊤
1

]
= WV (ΛB + ΛW )V ⊤W⊤,

E
[
zsup
2 z⊤1

]
= WV ΛBV

⊤W⊤, (7)

where ΛW = I−ΛB is the eigenvalue matrix of SW . It can
be seen that the covariance matrices of features in Eq. (7)
share the same eigenspace in the data space.

Then, we apply the expressions in Proposition 4.5 to the
optimal predictor W ∗

p obtained from Eq. (5):
Theorem 4.6. For an arbitrary W , the optimal predictor
W ∗

p that minimizes the loss in Eq. (5) is given by

W ∗
p =

1

λ3
WV (ΛB+αΛW )

(
ΛB+ΛW +σ2

eI
)−1

V ⊤W+,

where W+ is the Moore-Penrose inverse (Penrose, 1955).

From Theorem 4.6, the optimal predictor W ∗
p can be inter-

preted through a sequence of hypothetical transformations:
1) mapping features to the data space, 2) eliminating the
augmentation noise and reducing the intra-class variance by
a factor of α, and 3) mapping back to the feature space.

Next, we show that W ∗
p and W ∗ share the same eigenspace.

Theorem 4.7. The optimal predictor W ∗
p and the optimal

model W ∗ that minimizes the loss in Eq. (5) satisfy

W ∗⊤
p W ∗

p ≈W ∗W ∗⊤.

Note that Theorem 4.7 holds in self-supervised ANCL as
shown in Tian et al. (2021); Liu et al. (2022), and it remains
valid when supervision is incorporated.

Finally, we conclude that W ∗ learns to reduce intra-class
variance, as W ∗

p generates features of data with reduced
intra-class variance by a factor of α from Theorem 4.6, and
W ∗ imitates this behavior according to Theorem 4.7.

4.3. Effect of Reducing Intra-Class Variance

In the proposed supervised ANCL loss in Eq. (3), the coeffi-
cient α adjusts the contribution of supervision: decreasing
α results in increasing this contribution, thereby reducing
intra-class variance, as proved in Section 4.2. Ideally, when
intra-class variance is too small, all data within each class
converge to a single point, leading to class collapse: data
within each class become indistinguishable (Papyan et al.,
2020). Thus, we argue that balancing the contributions of
supervision and self-supervision is crucial to achieve seman-
tically aligned yet well-distributed representations in super-
vised ANCL, leading to the generalization of learned repre-
sentations; intuitively, the ideal semantic latent space should
retain intra-class variance to distinguish data instances.

Table 1. SUPSIAM results with different α on the toy dataset
and ImageNet-100 in several metrics: the self-supervised loss
in Eq. (1), the supervised loss in Eq. (2), the intra-class variance,
the relative intra-class variance (%), and the accuracy of k-NN
and linear probing (%). For the accuracies, the best results are
highlighted in bold and the second-best results are underlined.

α (ℓssl, ℓsup) S̃W S̃W /S̃T k-NN Linear

Toy dataset

0.0 (-0.7115, -0.4212) 0.338 33.94 60.51 60.78
0.2 (-0.7423, -0.4140) 0.363 36.36 61.35 61.58
0.5 (-0.8116, -0.1654) 0.799 79.97 61.18 61.89
0.8 (-0.8473, -0.0231) 0.971 97.14 55.93 61.18
1.0 (-0.8519, -0.0024) 0.997 99.70 38.02 45.91

ImageNet-100

0.0 (-0.9048, -0.8932) 0.070 7.01 80.79 85.92
0.2 (-0.9231, -0.9096) 0.057 5.72 82.72 86.85
0.5 (-0.9321, -0.8823) 0.108 10.79 82.89 87.31
0.8 (-0.9349, -0.5118) 0.515 51.58 80.19 86.65
1.0 (-0.9290, -0.2341) 0.743 74.53 75.23 82.15

To verify our claim, we conduct an experiment on a synthetic
toy dataset with three classes, each following a Gaussian
distribution by training SUPSIAM models with varying α.
The details of the toy dataset and SUPSIAM models are de-
scribed in Appendix B. After training, we compare the self-
supervised and supervised training losses (ℓssl and ℓsup), the
absolute and relative intra-class variance of latent features
(S̃W and S̃W /S̃T ), and the accuracy of k-nearest neighbors
(k-NN) and linear probing (Linear) in Table 1. Here, S̃W

and S̃T represent the empirical intra-class variance and the
total variance, respectively:

S̃W = Ey,z

[
∥z − µ̃y∥22

]
, S̃T = Ez

[
∥z − µ̃∥22

]
, (8)

where µ̃y is the y-th class mean and µ̃ is the total mean of
features, and the expectation is taken over training dataset.

In Table 1, ℓssl decreases while ℓsup increases as α increases,
which confirms that the contribution of each loss is adjusted
as expected. Additionally, the intra-class variance is propor-
tional to α, as proved in Section 4.2. However, the accuracy
of k-NN and linear probing exhibits different trends, with
the best accuracy achieved when α is between 0 and 1. This
supports our claim that while incorporating supervision into
ANCL aids in learning semantically aligned representations,
excessively reducing intra-class variance may hinder the
generalization of learned representations, resulting in dimin-
ishing performance on unseen test data.

Figure 2 visualizes the feature space via t-SNE (Maaten &
Hinton, 2008). When α = 0.5, the class distributions are
well-separated while retaining intra-class variance. Decreas-
ing α results in more densely clustered results by skewing
the feature space, which might be detrimental to generaliza-
tion; e.g., the model is overconfident in its predictions for
downstream classification tasks. Conversely, increasing α
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(a) α = 0.0 (b) α = 0.2 (c) α = 0.5 (d) α = 0.8 (e) α = 1.0

Figure 2. t-SNE visualization of SUPSIAM features with different α on the toy dataset.

Table 2. Transfer learning results on toy downstream datasets with
different means and varying scale of covariance σ, with SUPSIAM-
pretraining on the toy dataset. For each scenario, the best results
are in bold and the second-best results are underlined.

α
Interpolation Extrapolation

σ = 0.2 σ = 0.5 σ = 0.8 σ = 0.2 σ = 0.5 σ = 0.8

0.0 43.60 37.44 35.40 96.67 83.76 74.42
0.2 44.02 37.24 35.31 97.13 84.71 75.09
0.5 44.25 37.96 35.69 97.60 85.87 76.00
0.8 44.24 37.65 35.98 97.07 83.69 73.73
1.0 40.40 36.60 35.67 75.84 59.67 53.00

leads to mixed class distributions, impairing classification.

To assess the transferability of learned representations, we
conduct transfer learning scenarios in Table 2. Specifically,
we consider three downstream classes, where their means
are either interpolated or extrapolated from the pretraining
classes, and the scale of the covariance matrix of down-
stream classes is adjusted by σ to control the difficulty of
downstream tasks. As shown in Table 2, supervised ANCL
consistently outperforms self-supervised ANCL (α = 1)
across all scenarios, highlighting the effectiveness of incor-
porating supervision into ANCL. Moreover, the best perfor-
mance is achieved when 0 < α < 1, suggesting that bal-
ancing the contributions of supervision and self-supervision
is crucial, i.e., excessively reducing intra-class variance is
detrimental to representation learning.

Next, to confirm the scalability of our observations to
real-world scenarios, we conduct a similar experiment on
ImageNet-100 (Deng et al., 2009; Tian et al., 2020) by re-
placing the encoder with ResNet-50 (He et al., 2016) and the
projector and predictor with MLPs, respectively. As shown
in the bottom of Table 1, the observations remain mostly
consistent; although both supervised loss and intra-class
variance slightly decrease when α increases from 0.0 to 0.2,
we conjecture that this is due to the non-linearity of the op-
timization. These results further support our claim that bal-
ancing the contributions of supervision and self-supervision

Table 3. Transfer learning results on fine-grained classification
datasets, where the model is SUPSIAM-pretrained with different α
on ImageNet-100. For each dataset, the best results are in bold
and the second-best results are underlined.

α CUB200 Dogs Pets

0.0 41.46 61.51 80.09
0.2 42.07 64.28 82.27
0.5 43.48 64.65 82.38
0.8 42.16 62.94 81.76
1.0 36.10 54.57 75.13

is crucial for the generalization of representations learned
via supervised ANCL.

Similar to the toy experiments, we evaluate the transfer-
ability of learned representations in real-world scenarios by
conducting transfer learning experiments. Specifically, we
apply linear probing to the SUPSIAM-pretrained models on
downstream datasets for fine-grained classification tasks,
including CUB-200-2011 (Welinder et al., 2010), Stanford
Dogs (Khosla et al., 2011), and Oxford-IIIT Pets (Parkhi
et al., 2012). As shown in Table 3, the transfer learning
performance exhibits trends similar to those in Table 1:
incorporating supervision into ANCL is beneficial, and bal-
ancing the contributions of supervision and self-supervision
improves the generalization of representations.

To further elucidate the effect of α in real-world scenarios,
we present t-SNE visualizations of latent features from 20
classes, consisting of 15 dogs and 5 birds, subsampled from
ImageNet-100. As shown in Figure 3, classes overlap when
no supervision is provided, i.e., when α = 1, and the latent
features form more compact clusters as α decreases. No-
tably, some dog classes (e.g., “Doberman” and “Rottweiler”)
overlap when α is small, around 0.0 and 0.2, while they are
well-separated when α = 0.5. This implies that excessively
reducing intra-class variance with small α might result in
collapsing fine-grained classes, which could be detrimental
to downstream tasks.
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(a) α = 0.0 (b) α = 0.2 (c) α = 0.5 (d) α = 0.8 (e) α = 1.0

Figure 3. t-SNE visualization of SUPSIAM features with different α on 15 dog and 5 bird classes from ImageNet-100.

5. Experiment
In this section, we provide experimental results across vari-
ous datasets and tasks to demonstrate the effectiveness of
supervision in ANCL. We also compare CL methods to con-
firm that ANCL performance is competitive to CL. Detailed
experimental settings are provided in Appendix C.

5.1. Pretraining

We consider two ANCL methods, SIMSIAM (Chen & He,
2021) and BYOL (Grill et al., 2020), as our baselines, along
with their supervised variations, SUPSIAM and SUPBYOL,
as our proposed methods. Additionally, we compare two
CL methods, SIMCLR (Chen et al., 2020a) and MOCO-
V2 (Chen et al., 2020b), and their supervised variations,
SUPCON (Khosla et al., 2020) and SUPMOCO (Majumder
et al., 2021). Each model consists of a ResNet-50 encoder
(He et al., 2016) followed by a 2-layer MLP projector and
predictor, except for SIMSIAM and SUPSIAM, which utilize
a 3-layer MLP projector following the original configuration
by Chen & He (2021). We pretrain models on ImageNet-
100 (Deng et al., 2009; Tian et al., 2020) for 200 epochs
with a batch size of 128. For data augmentation, we apply
random crop, random horizontal flip, color jitter, random
grayscale, and Gaussian blur, following Chen et al. (2020a).
For methods utilizing the target pool, we set the size of
the target pool |Q| to 8192 and obtain the supervised target
zsup
2 by sampling and averaging all positives in the target

pool1 unless otherwise stated. The coefficient α adjusting
the contribution of the self-supervised and supervised loss
is 0.5, unless otherwise stated. We repeat all experiments
with three pretrained models with different random seeds
and report the average performance.

5.2. Linear Evaluation

We evaluate the quality of representations on the pretrained
distribution through a comparison of linear probing per-

1Our proposed methods are robust to the number of positives
from the target pool, as shown in Table F.2.

Table 4. Top-1 linear probing accuracy on ImageNet-100 and trans-
fer learning performance on VOC object detection. The best re-
sults are in bold and the second-best results are underlined. Our
proposed methods are marked with †.

Dataset ImageNet-100 VOC

Method Top-1 AP AP50

SIMCLR 77.35 52.06 ± 0.31 78.70 ± 0.16

SUPCON 87.40 52.53 ± 0.47 79.44 ± 0.21

MOCO-V2 78.37 52.68 ± 0.04 79.08 ± 0.24

SUPMOCO 86.33 52.67 ± 0.04 79.52 ± 0.15

SIMSIAM 82.15 53.56 ± 0.10 79.82 ± 0.10

SUPSIAM† 87.31 53.89 ± 0.26 80.28 ± 0.06

BYOL 84.93 53.54 ± 0.04 79.57 ± 0.01

SUPBYOL† 87.43 53.69 ± 0.24 80.26 ± 0.17

formance on ImageNet-100. Specifically, we take the pre-
trained and frozen backbone, and train a linear classifier
on top of it, following the common protocol in prior works
(Chen et al., 2020a;b; Grill et al., 2020; Chen & He, 2021).

As shown in Table 4, incorporating supervision into ANCL
enhances linear probing performance on the pretraining
dataset. This suggests that representations learned with su-
pervision more effectively encode the semantic information
of the pretrained data distribution.

5.3. Object Detection

To assess the generalizability beyond classification tasks,
we evaluate pretraining methods on an object detection task.
Following He et al. (2020), we initialize Faster R-CNN (Ren
et al., 2015) with each pretrained model and fine-tune it on
the VOC07+12 training dataset (Everingham et al., 2010).
We measure performance using the COCO evaluation met-
rics (Lin et al., 2014) on the VOC07 test dataset.

As shown on the right side of Table 4, incorporating super-
vision into ANCL improves object detection performance,
resulting in the best overall performance. In contrast, the
performance gain from supervision in CL is marginal or

7
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Table 5. Transfer learning via linear evaluation results on various downstream datasets, where models are pretrained on ImageNet-100.
CL, Sup., EMA stand for the cases when negative samples are considered, labels are used for pretraining, and the momentum network is
adopted, respectively. Avg. Rank represents the average performance ranking across all datasets. For each dataset, the best results are in
bold and the second-best results are underlined. Our proposed methods are marked with †.

Method CL Sup EMA Avg.Rank CIFAR10 CIFAR100 DTD Food MIT67 SUN397 Caltech CUB200 Dogs Flowers Pets

SIMCLR ✓ 7.00 84.69 62.86 64.18 60.91 61.81 47.10 77.89 28.76 44.33 84.30 65.10
SUPCON ✓ ✓ 4.73 88.82 68.89 65.18 59.34 63.76 50.09 87.30 35.84 61.68 89.05 80.12

MOCO-V2 ✓ ✓ 7.82 83.43 61.54 61.81 57.36 59.55 45.07 77.26 27.79 46.67 82.35 68.52
SUPMOCO ✓ ✓ ✓ 4.09 89.05 69.29 65.44 59.04 63.46 50.05 87.54 37.75 62.80 89.69 80.81

SIMSIAM 4.91 87.28 66.41 66.06 63.44 64.68 50.69 85.00 36.10 54.57 88.38 75.13
SUPSIAM† ✓ 2.27 89.95 70.88 66.51 61.46 64.45 51.50 88.86 43.48 64.65 90.27 82.38

BYOL ✓ 3.82 88.26 68.08 67.52 64.63 65.70 51.21 85.85 37.10 57.80 88.14 78.78
SUPBYOL† ✓ ✓ 1.36 90.85 72.04 67.38 64.58 66.64 52.95 88.79 43.24 65.02 91.09 82.68

often detrimental, which aligns with the findings from prior
works (Khosla et al., 2020). This suggests that supervised
ANCL yields more generalizable representations, with the
potential to achieve superior performance across various
downstream tasks.

5.4. Transfer Learning via Linear Evaluation

For transfer learning, we evaluate the top-1 accuracy across
11 downstream datasets: CIFAR10/CIFAR100 (Krizhevsky
& Hinton, 2009), DTD (Cimpoi et al., 2014), Food (Bossard
et al., 2014), MIT67 (Quattoni & Torralba, 2009), SUN397
(Xiao et al., 2010), Caltech101 (Fei-Fei et al., 2004),
CUB200 (Welinder et al., 2010), Dogs (Khosla et al., 2011;
Deng et al., 2009), Flowers (Nilsback & Zisserman, 2008),
and Pets (Parkhi et al., 2012), where detailed information
is described in Appendix D. For evaluation, we follow the
linear probing protocol for transfer learning in prior works
(Kornblith et al., 2019; Lee et al., 2021a).

As shown in Table 5, incorporating supervision improves
performance across all pretraining methods. Among them,
supervised ANCL methods achieve the best performance:
SUPBYOL and SUPSIAM outperform others on 9 out of 11
datasets, demonstrating the superiority of supervised ANCL.
Between supervised ANCL methods, SUPBYOL exhibits
better performance than SUPSIAM in terms of the average
rank, which might be due to the effect of momentum net-
work. Notably, while the performance gain from incorporat-
ing supervision into ANCL is relatively small compared to
CL because the self-supervised versions of ANCL already
exhibit strong performance, we observe a significant im-
provement on fine-grained datasets, such as CUB200, Dogs,
and Pets. This suggests that learning semantically aligned
representations while retaining intra-class variance in ANCL
is crucial for recognizing fine-grained information.

5.5. Few-Shot Classification

To assess the generalizability of learned representations un-
der limited conditions, we conduct transfer learning experi-

ments on few-shot classification tasks following the linear
probing protocol for few-shot learning in Lee et al. (2021a).
We evaluate the accuracy of 5-way 1-shot and 5-way 5-shot
scenarios over 2000 episodes across 8 downstream datasets:
Aircraft (Maji et al., 2013), CUB200 (Welinder et al., 2010),
FC100 (Oreshkin et al., 2018), Flowers (Nilsback & Zis-
serman, 2008), Fungi (Schroeder & Cui, 2018), Omniglot
(Lake et al., 2015), DTD (Cimpoi et al., 2014), and Traffic
Signs (Houben et al., 2013). Table 6 shows a similar trend to
other experiments that incorporating supervision improves
both CL and ANCL, while supervised ANCL achieves the
best performance in most cases.

5.6. Ablation Study on Target Pool Design

In this section, we investigate the design choices for the
target pool. In our experiments, the pretraining dataset
ImageNet-100 consists of 100 classes, such that the prob-
ability of missing any class in the target pool is negligible
with a target pool size of 8192. However, with a larger num-
ber of classes, some classes might not exist in the target pool
if it is updated in a class-agnostic manner. To address this
concern, we consider two alternative target pool designs:
1) managing class-wise queues as the target pool, and 2)
maintaining learnable class prototypes using the EMA up-
date rule. Additionally, we adjust the size of the class-wise
queues to determine the optimal number of latent features
required to ensure good performance.

As shown in Table 7, performance remains consistent re-
gardless of the target pool design. For the class-wise queues,
increasing the number of features stored per class slightly
enhances performance, with the best performance observed
at 20 features per class, though the gain is overall marginal.
In all designs, the size of the target pool grows proportion-
ally to the number of classes and/or the feature dimension,
which is equivalent to a linear classifier, such that its mem-
ory consumption is negligible; e.g., the linear classifier takes
only 2% of the parameters in ResNet-50. Nonetheless, a
more sophisticated design of the target pool might be effec-
tive, which we leave for future works.
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Table 6. Few-shot classification accuracy averaged over 2000 episodes on various datasets, where models are pretrained on ImageNet-100.
CL, Sup, EMA stand for the cases when negative samples are considered, labels are used for pretraining, and the momentum network is
adopted, respectively. Avg.Rank represents the average performance ranking across all datasets. For each dataset, the best results are in
bold and the second-best results are underlined. Our proposed methods are marked with †.

Method CL Sup EMA Avg.Rank Aircraft CUB200 FC100 Flowers Fungi Omniglot DTD Traffic Signs

5-way 1-shot

SIMCLR ✓ 7.25 29.22 ± 0.34 40.61 ± 0.43 35.53 ± 0.37 68.26 ± 0.50 42.44 ± 0.44 70.46 ± 0.54 55.43 ± 0.45 48.33 ± 0.43

SUPCON ✓ ✓ 3.63 31.44 ± 0.35 48.75 ± 0.49 45.32 ± 0.41 77.99 ± 0.44 47.42 ± 0.45 80.66 ± 0.45 57.57 ± 0.47 68.66 ± 0.47

MOCO-V2 ✓ ✓ 7.38 25.54 ± 0.28 41.24 ± 0.46 36.73 ± 0.36 66.48 ± 0.50 41.84 ± 0.44 71.12 ± 0.51 54.75 ± 0.46 51.05 ± 0.43

SUPMOCO ✓ ✓ ✓ 3.25 31.12 ± 0.35 49.04 ± 0.49 44.13 ± 0.41 78.90 ± 0.43 47.12 ± 0.45 83.43 ± 0.42 56.62 ± 0.46 71.17 ± 0.47

SIMSIAM 5.00 30.67 ± 0.35 45.06 ± 0.47 41.51 ± 0.40 75.68 ± 0.47 45.22 ± 0.46 74.64 ± 0.50 58.28 ± 0.47 60.03 ± 0.45

SUPSIAM† ✓ 1.88 33.12 ± 0.37 49.58 ± 0.49 45.56 ± 0.41 78.12 ± 0.44 47.74± 0.46 84.02 ± 0.41 58.06 ± 0.48 71.00 ± 0.48

BYOL ✓ 5.63 26.38 ± 0.30 46.45 ± 0.49 40.92 ± 0.40 74.27 ± 0.47 45.96 ± 0.46 68.13 ± 0.52 59.75 ± 0.48 57.44 ± 0.46

SUPBYOL† ✓ ✓ 2.00 32.66 ± 0.37 49.26 ± 0.48 45.28 ± 0.41 78.94 ± 0.43 47.81 ± 0.46 82.62 ± 0.44 59.98 ± 0.48 70.34 ± 0.48

5-way 5-shot

SIMCLR ✓ 7.13 39.21 ± 0.44 54.33 ± 0.45 50.96 ± 0.37 86.98 ± 0.30 59.40 ± 0.47 86.72 ± 0.35 73.95 ± 0.36 69.27 ± 0.40

SUPCON ✓ ✓ 3.38 44.63 ± 0.44 64.99 ± 0.46 64.04 ± 0.39 92.80 ± 0.23 66.75 ± 0.47 93.36 ± 0.25 75.60 ± 0.36 85.93 ± 0.36

MOCO-V2 ✓ ✓ 7.50 32.84 ± 0.35 53.42 ± 0.47 52.70 ± 0.36 84.72 ± 0.32 57.54 ± 0.48 87.74 ± 0.34 72.66 ± 0.37 71.93 ± 0.39

SUPMOCO ✓ ✓ ✓ 2.63 44.43 ± 0.44 65.63 ± 0.46 64.30 ± 0.39 93.35 ± 0.21 66.64 ± 0.47 94.77 ± 0.22 74.73 ± 0.36 87.64 ± 0.34

SIMSIAM 5.25 40.34 ± 0.44 60.66 ± 0.48 58.68 ± 0.38 91.04 ± 0.26 62.19 ± 0.49 88.92 ± 0.32 76.22 ± 0.36 79.50 ± 0.39

SUPSIAM† ✓ 2.38 45.98 ± 0.47 66.70 ± 0.45 64.54 ± 0.39 92.42 ± 0.23 66.61 ± 0.48 94.38 ± 0.23 76.43 ± 0.36 86.88 ± 0.36

BYOL ✓ 5.38 35.30 ± 0.40 60.96 ± 0.49 59.33 ± 0.38 90.38 ± 0.26 63.12 ± 0.49 85.68 ± 0.35 77.60 ± 0.36 77.07 ± 0.40

SUPBYOL† ✓ ✓ 2.38 45.81 ± 0.48 66.72 ± 0.46 65.72 ± 0.38 92.78 ± 0.22 66.47 ± 0.48 94.06 ± 0.24 77.57 ± 0.36 86.21 ± 0.37

Table 7. Transfer learning via linear evaluation results on various downstream datasets, where the model is SUPSIAM-pretrained with
different target pool design on ImageNet-100. Avg represents the average performance across each dataset. For each dataset, the best
results are in bold and the second-best results are underlined.

Target Pool Size Avg CIFAR10 CIFAR100 DTD Food MIT67 SUN397 Caltech CUB200 Dogs Flowers Pets

Class-agnostic 8192 70.40 89.95 70.88 66.51 61.46 64.45 51.50 88.86 43.48 64.65 90.27 82.38
Class-wise 80 × 100 70.21 89.78 70.58 66.49 61.54 64.85 51.22 88.64 42.68 65.03 89.86 81.61
Class-wise 20 × 100 70.44 90.02 71.07 66.92 61.49 65.11 51.15 88.67 43.19 65.16 89.27 82.39
Class-wise 5 × 100 70.27 89.67 70.88 66.17 61.32 64.30 51.49 88.96 42.80 64.82 89.86 82.75
Class-wise 1 × 100 70.23 89.70 70.73 66.06 61.45 64.82 51.02 88.97 43.42 64.26 89.71 82.37
Learnable 100 70.37 89.91 70.41 67.00 61.36 65.15 51.58 88.81 42.97 65.08 89.57 82.28

Table 8. Ablation study on the target pool (Pool) and the momen-
tum network (EMA) for avoiding collapse while improving repre-
sentations learned via supervised ANCL on CIFAR100.

Pool EMA Collapse k-NN

✗ ✗ ✓ 1.00
✓ ✗ ✗ 73.92
✗ ✓ ✗ 73.32
✓ ✓ ✗ 74.55

5.7. Ablation Study on Representation Collapse

In this section, we investigate when collapse occurs in super-
vised ANCL. Specifically, we investigate the effect of the
target pool and the momentum network, where the method
only with the target pool is essentially SUPSIAM, and the
one with both components corresponds to SUPBYOL. We
pretrain ResNet-18 followed by a 2-layer MLP projector
and predictor on CIFAR100.

As observed in Table 8, employing either the target pool
or the momentum network effectively prevents collapse.
We hypothesize that updating the target differently from
the anchor helps to prevent collapse, which is the common
behavior of both strategies.

6. Conclusion
In this paper, we study supervised asymmetric non-
contrastive learning (ANCL) for representation learning.
We demonstrate that introducing supervision to ANCL re-
duces intra-class variance, and that balancing the contribu-
tions of the supervised and self-supervised losses is crucial
to learn good representations. We experiment the proposed
supervised ANCL methods with baselines across various
datasets and tasks, demonstrating the effectiveness of super-
vised ANCL. We believe our work motivates future research
to integrate supervised ANCL into their applications.
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A. Detailed Proofs for Section 4
A.1. Derivation of Eq. (5)
To derive this, recall the supervised ANCL loss with constraints in Eq. (4):

ℓ = α ∥Wpz1 − z2∥22 + (1− α)
∥∥Wpz1 − zsup

2

∥∥2
2

s.t. ∥z2∥22 =
∥∥zsup

2

∥∥2
2
= ∥Wpz1∥22 = 1. (4)

We first expand the loss in Eq. (4) and apply constraints to simplify the expression:

ℓ = α
(
∥Wpz1∥22 + ∥z2∥

2
2 − 2z⊤1 W⊤

p z2

)
+ (1− α)

(
∥Wpz1∥22 +

∥∥zsup
2

∥∥2
2
− 2z⊤1 W⊤

p zsup
2

)
= α

(
2− 2z⊤1 W⊤

p z2
)
+ (1− α)

(
2− 2z⊤1 W⊤

p zsup
2

)
= 2− 2α · z⊤1 W⊤

p z2 + 2(1− α) · z⊤1 W⊤
p zsup

2 . (A.1)

Then, the Lagrangian function is formulated as follows:

L = 2− 2α · z⊤1 W⊤
p z2 − 2(1− α) · z⊤1 W⊤

p zsup
2 + λ1

(
z⊤2 z2 − 1

)
+ λ2

(
zsup⊤
2 zsup

2 − 1
)
+ λ3

(
z⊤1 W⊤

p Wpz1 − 1
)

= 2− 2α · tr
(
W⊤

p z2z
⊤
1

)
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(
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(
tr
(
z2z

⊤
2

)
− 1
)
+ λ2

(
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(
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2 zsup⊤

2

)
− 1
)
+ λ3

(
tr
(
W⊤

p Wpz1z
⊤
1

)
− 1
)
, (A.2)

where λ1, λ2 and λ3 are the Lagrange multipliers. Finally, taking the expectation over x1, x2, and xsup
2 yields Eq. (5):

L = 2− 2α · tr
(
W⊤

p E
[
z2z

⊤
1

])
− 2(1− α) · tr

(
W⊤

p E
[
zsup
2 z⊤1

])
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(
tr
(
E
[
z2z
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2

])
− 1
)
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(
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(
E
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2 zsup⊤

2
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− 1
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(
tr
(
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p WpE
[
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⊤
1

])
− 1
)
. (5)

A.2. Proof of Proposition 4.5
Proposition 4.5. The covariance matrices of features E

[
z1z

⊤
1

]
, E
[
z2z

⊤
1

]
, and E

[
zsup
2 z⊤1

]
share the same eigenspace in

the data space.

Proof. Let SB = 1
C

∑
y µyµ

⊤
y be the inter-class covariance, SW = 1
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∑
y Σy be the intra-class covariance, and Se = σ2
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be the variance of the augmentation noise.
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Let SB = V ΛBV
⊤ be the eigendecomposition, where V is an orthogonal matrix and ΛB is a diagonal matrix of the

eigenvalues. Then, ST = SB + SW and Se share the same eigenspace with SB , as they are (scaled) identity matrices.

E
[
z1z

⊤
1

]
= W (SB + SW + Se)W

⊤ = WV
(
ΛB + ΛW + σ2

eI
)
V ⊤W⊤,

E
[
z2z

⊤
1

]
= W (SB + SW )W⊤ = WV (ΛB + ΛW )V ⊤W⊤,

E
[
zsup
2 z⊤1

]
= WSBW

⊤ = WV ΛBV
⊤W⊤, (7)

where ΛW = I −ΛB is the eigenvalue matrix of SW . It can be seen that the covariance matrices of features in Eq. (7) share
the same eigenspace in the data space.

A.3. Proof of Theorem 4.6

Theorem 4.6. For an arbitrary W , the optimal predictor W ∗
p that minimizes the loss in Eq. (5) is given by

W ∗
p =

1

λ3
WV (ΛB+αΛW )

(
ΛB+ΛW +σ2

eI
)−1

V ⊤W+,

where W+ is the Moore-Penrose inverse (Penrose, 1955).

Proof. Recall Eq. (5):
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⊤
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− 1
)
. (5)

To derive the optimal W ∗
p , we take the partial derivative ∂L

∂Wp
and replace the expression of covariance matrices with Eq. (6):

∂L
∂Wp

= −2α · E
[
z2z

⊤
1

]
− 2(1− α) · E

[
zsup
2 z⊤1

]
+ 2λ3WpE
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⊤
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= −2α ·WW⊤ − 2(1− α) ·WSBW

⊤ + 2λ3
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e
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·WpWW⊤. (A.3)

By setting ∂L
∂Wp

= 0, we obtain the optimal predictor W ∗
p :

λ3

(
1 + σ2

e

)
·W ∗

pWW⊤ = W (αI + (1− α)SB)W
⊤

= W (SB + αSW )W⊤.

∴ W ∗
p =

1

λ3 (1 + σ2
eI)

W (SB + αSW )W+. (A.4)

Finally, by substituting the covariance matrices with the eigendecomposition as in Eq. (6), we obtain the following expression:

W ∗
p =

1

λ3
WV (ΛB + αΛW )

(
ΛB + ΛW + σ2

eI
)−1

V ⊤W+. (A.5)

From this expression, the optimal predictor W ∗
p can be interpreted through a sequence of hypothetical transformations:

1) mapping features to the data space, 2) eliminating the augmentation noise and reducing the intra-class variance by a factor
of α, and 3) mapping back to the feature space.

It is noteworthy that Zhuo et al. (2023) derived an optimal predictor similar to Theorem 4.6. However, their focus was on
the elimination of augmentation noise in the feature space in the context of self-supervised learning.
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A.4. Proof of Theorem 4.7

Theorem 4.7. The optimal predictor W ∗
p and the optimal model W ∗ that minimizes the loss in Eq. (5) satisfy

W ∗⊤
p W ∗

p ≈W ∗W ∗⊤.

Proof. Recall Eq. (5):
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)
, (5)

where stop-gradient is applied to z2 and zsup
2 . Recall the partial derivative ∂L

∂Wp
is derived in Eq. (A.3):

∂L
∂Wp

= −2α · E
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1
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⊤ + 2λ3

(
1 + σ2

e

)
·WpWW⊤. (A.3)

To derive the partial derivative ∂L
∂W , we express Eq. (5) in terms of W ’s and x’s:
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where W ’s with stop-gradient are emphasized by Ŵ = sg(W ), which are regarded as constants when taking the derivative.
Then, the partial derivative ∂L

∂W is derived as follows:

∂L
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= −2α ·W⊤
p WE

[
x2x

⊤
1

]
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p WE
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1
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p W − 2(1− α) ·W⊤
p WSB + 2λ3

(
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e

)
·W⊤

p WpW. (A.7)

Left-multiplying Eq. (A.3) by W⊤
p and right-multiplying Eq. (A.7) by W⊤ establishes the equality of them:

W⊤
p

∂L
∂Wp

= −2α ·W⊤
p WW⊤ − 2(1− α) ·W⊤

p WSBW
⊤ + 2λ3

(
1 + σ2

e

)
·W⊤

p WpWW⊤

=
∂L
∂W

W⊤. (A.8)

Now, we consider the update rule with the current iteration number t, the learning rate β, and the weight decay η:

dWp

dt
= −β ∂L

∂Wp
− ηWp,

dW

dt
= −β ∂L

∂W
− ηW. (A.9)

Substituting this expression into Eq. (A.8) results in the following equality:

W⊤
p

dWp

dt
+ ηW⊤

p Wp = −βW⊤
p

∂L
∂Wp

= −β ∂L
∂W

W⊤ =
dW

dt
W⊤ + ηWW⊤. (A.10)

Note that this is a differential equation, where it can be solved by multiplying both side by e2ηt:

d

dt

(
e2ηtW⊤

p Wp

)
=

d

dt

(
e2ηtWW⊤) , (A.11)

then, integrating with respect to t and multiplying by e−2ηt yields the solution:

W⊤
p Wp = WW⊤ + e−2ηtc, (A.12)
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where c is a constant with respect to t. Finally, the constant becomes negligible as t→∞, i.e., at the optimal state, such that
we obtain the following expression:

W ∗⊤
p W ∗

p ≈W ∗W ∗⊤. (A.13)

The equality implies that they share the eigenspace.

Note that Theorem 4.7 holds in self-supervised ANCL as shown in Tian et al. (2021); Liu et al. (2022), and it remains valid
when supervision is incorporated.

B. Toy Experiment Setup
We provide a detailed description of toy experiments in Section 4.3. We generate a synthetic toy dataset to verify that
balancing the contributions of supervision and self-supervision is crucial for the generalization of learned representations.
The dataset consists of three classes, each following a Gaussian distribution with orthogonal mean vectors and a shared
isotropic covariance matrix with a scale of 0.35. The mean vectors are obtained by taking the left singular vectors of a random
matrix sampled from a standard Gaussian distribution. The synthetic data has 2048 dimensions, and data augmentation is
performed by replacing 60% of the dimensions with the corresponding dimensions of the overall data mean vector. The
training dataset consists of 3000 samples, with 1000 samples per class, and similarly, the test dataset consists of 1500
samples, with 500 samples per class.

For the supervised ANCL approach, SUPSIAM is utilized with varying α, where the encoder, projector, and predictor each
consist of a linear layer without batch normalization (Ioffe & Szegedy, 2015). The output dimension of the projector/predictor
is set to 128. The model is trained for 200 epochs using the SGD optimizer, with a batch size of 256, learning rate of 0.05,
momentum of 0.9, and weight decay of 5e-4. A cosine learning rate schedule (Loshchilov & Hutter, 2017) is applied except
for the predictor, following the prior work (Chen & He, 2021).

C. Pretraining Setup
We provide a detailed description of the pretraining setup. Each model consists of a ResNet-50 encoder (He et al., 2016)
followed by a 2-layer MLP projector and predictor, except for SIMSIAM and SUPSIAM, which utilize a 3-layer MLP
projector following the original configuration by Chen & He (2021). We pretrain models on ImageNet-100 (Deng et al.,
2009; Tian et al., 2020) for 200 epochs with a batch size of 128. We utilize the SGD optimizer with a momentum of 0.9, and
a weight decay of 1e-4. A cosine learning rate schedule (Loshchilov & Hutter, 2017) is applied to the encoder and projector.
We maintain a constant learning rate without decay for the predictor, following the prior work (Chen & He, 2021). Other
method-specific details are provided below:

• SIMCLR (Chen et al., 2020a). The learning rate is set to 0.1 and the temperature parameter for contrastive loss is 0.1.
The projector consists of 2 MLP layers with an output dimension of 128.

ℓSimCLR = −log
exp(z1 · z2/τ)∑

za∈z2∪Zn
exp(z1 · za/τ)

, (C.1)

where z2 and za are L2-normalized and Zn is the set of negative pairs of z1 obtained from the same batch.

• SUPCON (Khosla et al., 2020). The learning rate is set to 0.15 and the temperature parameter for contrastive loss is 0.1.
The projector consists of 2 MLP layers with an output dimension of 128.

ℓSupCon = − 1

M + 1
log

exp(z1 · z2/τ)∑
za∈B′∪Zn

exp(z1 · za/τ)
− 1

M + 1

∑
zj∈B′\z2

log
exp(z1 · zj/τ)∑

za∈B′∪Zn
exp(z1 · za/τ)

, (C.2)

where z2 and za are L2-normalized, B′ is the set of positive pairs of z1 obtained from the same batch, with a cardinality
of M + 1 and Zn is the set of negative pairs of z1 obatined from the same batch.

• MOCO-V2 (Chen et al., 2020b). The learning rate is set to 0.03 and the temperature parameter for contrastive loss
is 0.2. The size of memory bank (target pool) |Q| is 8192, and the exponential moving average (EMA) parameter is
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0.999. The projector consists of 2 MLP layers with an output dimension of 128.

ℓMoCo = −log
exp(z1 · z2/τ)∑

za∈z2∪Zn
exp(z1 · za/τ)

, (C.3)

where z2 and za are L2-normalized and Zn is the set of negative pairs of z1 obtained from the queue.

• SUPMOCO (Majumder et al., 2021). The learning rate is set to 0.1 and temperature parameter is 0.07. The size of
memory bank (target pool) |Q| is 8192 and the EMA parameter is 0.999. The projector consists of 2 MLP layers with
an output dimension of 128.

ℓSupMoCo = − 1

M + 1
log

exp(z1 · z2/τ)∑
za∈Q′∪Zn

exp(z1 · za/τ)
− 1

M + 1

∑
zj∈Q′\z2

log
exp(z1 · zj/τ)∑

za∈Q′∪Zn
exp(z1 · za/τ)

, (C.4)

where z2, za and zj are L2-normalized, Q′ is the set of positive pairs of z1 obtained from the same batch and the queue,
with a cardinality of M + 1 and Zn is the set of negative pairs of z1 obtained from the same batch and the queue.

• BYOL (Grill et al., 2020). The learning rate is set to 0.2. The EMA parameter starts from 0.996 and is increased to
one during training. The projector consists of 2 MLP layers with an output dimension of 256. The predictor has 2 MLP
layers with a hidden dimension of 4096.

ℓBYOL = ∥p1 − sg(z2)∥22 , (C.5)

where p1 and z2 are L2-normalized and sg denotes the stop-gradient.

• SUPBYOL. The learning rate is set to 0.2. The size of target pool |Q| is 8192 and the supervised target zsup
2 is obtained

by sampling and averaging all positives in the target pool. The EMA parameter starts from 0.996 and is increased to
one during training. The projector consists of 2 MLP layers with an output dimension of 256, and the predictor has 2
MLP layers with a hidden dimension of 4096.

ℓSupBYOL = α · ∥p1 − sg(z2)∥22 + (1− α) ·
∥∥p1 − sg

(
zsup
2

)∥∥2
2
, zsup

2 =
1

M

∑
z′
2∈Qy

z′2, (C.6)

where p1, z2 and z′2 are L2-normalized, sg denotes the stop-gradient, and Qy ⊆ Q is the set of targets of p1 sampled
from the target pool sharing the sample label with p1, with a cardinality of M .

• SIMSIAM (Chen et al., 2020a). The learning rate is set to 0.2 with a linear learning rate warm-up for the first 40 epochs.
The projector consists of 3 MLP layers with an output dimension of 2048. The predictor has 2 MLP layers with a
hidden dimension of 512.

ℓSimSiam = ∥p1 − sg(z2)∥22 , (C.7)

where p1 and z2 are L2-normalized and sg denotes the stop-gradient.

• SUPSIAM. The learning rate is set to 0.2 with a linear learning rate warm-up for the first 40 epochs. The size of target
pool |Q| is 8192 and the supervised target zsup

2 is obtained by sampling and averaging all positives in the target pool.
The projector consists of 3 MLP layers with an output dimension of 2048, and the predictor has 2 MLP layers with a
hidden dimension of 512.

ℓSupSiam = α · ∥p1 − sg(z2)∥22 + (1− α) ·
∥∥p1 − sg(zsup

2 )
∥∥2
2
, zsup

2 =
1

M

∑
z′
2∈Qy

z′2, (C.8)

where p1, z2 and z′2 are L2-normalized, sg denotes the stop-gradient, and Qy ⊆ Q is the set of targets of p1 sampled
from the target pool sharing the sample label with p1, with a cardinality of M .

D. Datasets
Table D.1 provides a comprehensive overview of datasets, including evaluation metrics for both (a) transfer learning via
linear evaluation and (b) few-shot classification. For datasets without an official validation set, a random split is performed
using the entire training set. For the few-shot task, the complete dataset is utilized for all datasets except FC100 (Oreshkin
et al., 2018). In the case of FC100 (Oreshkin et al., 2018), a meta-test split is used. Detailed evaluation protocols are outlined
in Appendix E.
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Table D.1. Detailed summary of datasets.

Category Dataset # of classes Train set Valid set Test set Metric

(a) Transfer learning via
linear evaluation

CIFAR10 (Krizhevsky & Hinton, 2009) 10 45000 5000 10000 Top-1 accuracy
CIFAR100 (Krizhevsky & Hinton, 2009) 100 45000 5000 10000 Top-1 accuracy
DTD (split 1) (Cimpoi et al., 2014) 47 1880 1880 1880 Top-1 accuracy
Food (Bossard et al., 2014) 101 68175 7575 25250 Top-1 accuracy
MIT67 (Quattoni & Torralba, 2009) 67 4690 670 1340 Top-1 accuracy
SUN397 (split 1) (Xiao et al., 2010) 397 15880 3970 19850 Top-1 accuracy
Caltech101 (Fei-Fei et al., 2004) 101 2525 505 5647 Mean per-class accuracy
CUB200 (Welinder et al., 2010) 200 4990 1000 5794 Mean per-class accuracy
Dogs (Khosla et al., 2011; Deng et al., 2009) 120 10800 1200 8580 Mean per-class accuracy
Flowers (Nilsback & Zisserman, 2008) 102 1020 1020 6149 Mean per-class accuracy

(b) Few-shot classification

Aircraft (Maji et al., 2013) 100 10000 Average accuracy
CUB200 (Welinder et al., 2010) 200 11745 Average accuracy
FC100 (Oreshkin et al., 2018) 20 12000 Average accuracy
Flowers (Nilsback & Zisserman, 2008) 102 8189 Average accuracy
Fungi (Schroeder & Cui, 2018) 1394 89760 Average accuracy
Omniglot (Lake et al., 2015) 1623 32460 Average accuracy
DTD (Cimpoi et al., 2014) 47 5640 Average accuracy
Traffic Signs (Houben et al., 2013) 43 12630 Average accuracy

E. Evaluation Protocol
E.1. Transfer Learning via Linear Evaluation

The linear evaluation protocol for transfer learning follows from Kornblith et al. (2019) and Lee et al. (2021a). Specifically,
we divide the entire training dataset into a train set and a validation set to tune the regularization parameter by minimizing
the L2-regularized cross-entropy loss using L-BFGS (Liu & Nocedal, 1989). Train and validation set splits are shown in
Table D.1. With the best parameter, we extract the frozen representations of 224 × 224 center-cropped images without data
augmentation and train the linear classifier with the entire training dataset, including the validation set.

E.2. Few-Shot Classfication

We adhere to the few-shot classification evaluation protocol outlined by Lee et al. (2021a). Specifically, we conduct logistic
regression using the frozen representations extracted from 224 × 224 images without data augmentation in an N -way
K-shot episode. It’s important to note that as the encoder remains frozen, this protocol does not involve a fine-tuning
approach.

F. Additional Experiments
We conduct additional experiments with SUPSIAM, varying the loss parameter α, the number of positives, denoted as M and
the batch size. During the experiments on batch size, we also incorporate contrastive learning, specifically SUPCON. Given
that the performance recorded in the Table 5 might be suboptimal due to pretraining with a batch size of 128, which could be
too small, we re-pretrain SUPCON using an increased batch size. Unless specified otherwise, the remaining settings follow
the setup outlined in Appendix C. We apply the evaluation methodology outlined in Appendix E to the dataset introduced in
Appendix D.

F.1. Transfer Learning with Different α

We conduct experiments with various α values to explore the relationship between intra-class variance reduction and
representation quality. Table F.1 presents the linear evaluation performances for different α values. The model performs
best in most cases when α is set to 0.5. Interestingly, the optimal α appears to vary depending on the downstream dataset.
Nevertheless, it is crucial to note that α should always fall within the range (0, 1) to effectively capture within-class diversity,
thereby proving beneficial for downstream tasks.
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Table F.1. Transfer learning via linear evaluation results on various downstream datasets, where the model is SUPSIAM pretrained with
different α on ImageNet-100. Avg represents the average performance across each dataset. For each dataset, the best results are in bold
and the second-best results are underlined.

α Avg CIFAR10 CIFAR100 DTD Food MIT67 SUN397 Caltech CUB200 Dogs Flowers Pets

0.0 69.33 89.18 69.41 65.53 60.72 65.05 50.81 88.83 41.46 61.51 90.04 80.09
0.2 70.14 89.89 70.56 65.89 61.03 65.25 51.34 88.85 42.07 64.28 90.12 82.27
0.5 70.40 89.95 70.88 66.51 61.46 64.45 51.50 88.86 43.48 64.65 90.27 82.38
0.8 70.28 89.39 70.04 67.08 64.06 66.00 51.98 87.45 42.16 62.94 90.26 81.76
1.0 67.07 87.28 66.41 66.06 63.44 64.68 50.69 85.00 36.10 54.57 88.38 75.13

F.2. Ablation Study: Number of Positives from Target Pool

We conduct a study on M , which represents the number of positive samples from the target pool. As shown in Table F.2, the
model demonstrates robustness to the number of positives. Even when sampling only one positive from the target pool, the
performance is similar to sampling many positives.

Table F.2. Transfer learning via linear evaluation results on various downstream datasets, where the model is SUPSIAM-pretrained with
different M on ImageNet-100. all stands for sampling all positives in the target pool. Avg represents the average performance across each
dataset. For each dataset, the best results are in bold and the second-best results are underlined.

M Avg CIFAR10 CIFAR100 DTD Food MIT67 SUN397 Caltech CUB200 Dogs Flowers Pets

1 70.13 89.58 70.59 65.75 61.39 64.85 51.41 88.57 42.80 64.52 89.92 82.07
4 70.40 89.94 70.63 66.59 61.66 65.07 51.32 88.82 42.88 64.78 89.85 82.88

16 70.31 89.94 70.86 65.64 61.40 64.95 51.54 88.65 43.17 65.13 89.66 82.42
all 70.40 89.95 70.88 66.51 61.46 64.45 51.50 88.86 43.48 64.65 90.27 82.38

F.3. Transfer Learning with Different Batch Size

We pretrain SUPSIAM using an increased batch size 256. Additionally, we pretrain SUPCON with a batch size of 256, as the
performance in Table 5 pre-trained with a batch size of 128 might be suboptimal. Moreover, to enhance the diversity of
positive and negative samples, we also pretrain SUPCON with an additional memory bank (target pool) of size 8192, as
described in Khosla et al. (2020). The learning rate scaled linearly (Goyal et al., 2017) with the batch size, i.e., for a batch
size of 256, the learning rates are set to 0.3 for SUPCON and 0.4 for SUPSIAM, respectively.

Table F.3. Transfer learning via linear evaluation results on various downstream datasets, where the model is pretrained with different
batch size on ImageNet-100. Bsz refers to the batch size during pretraining. Avg represents the average performance across each dataset.
The model marked with ∗ indicates the inclusion of a memory bank.

Bsz Model Avg CIFAR10 CIFAR100 DTD Food MIT67 SUN397 Caltech CUB200 Dogs Flowers Pets

128
SUPCON 68.19 88.82 68.89 65.18 59.34 63.76 50.09 87.30 35.84 61.68 89.05 80.12
SUPCON∗ 68.97 89.70 70.48 65.65 59.06 63.43 49.86 87.97 38.76 63.74 89.22 80.83
SUPSIAM 70.40 89.95 70.88 66.51 61.46 64.45 51.50 88.86 43.48 64.65 90.27 82.38

256
SUPCON 68.42 89.10 69.40 65.32 59.21 63.25 50.63 88.22 36.05 62.60 89.10 79.80
SUPCON∗ 68.86 89.46 70.06 65.88 58.73 63.92 50.04 87.84 38.28 63.02 89.06 81.22
SUPSIAM 70.44 90.07 70.77 66.28 61.89 65.18 51.77 88.83 43.09 64.90 89.99 82.11

As shown in Table F.3, supervised ANCL shows a slight improvement in performance when the batch size is increased
to 256, though the gain is overall marginal, and it is not heavily influenced by batch size, similar to its self-supervised
counterpart (Chen & He, 2021). In the case of SUPCON, performance improves as the batch size increases, and memory
bank provides performance gain, although this gain seems to be slightly reduced as the batch size increases. However, it still
shows lower performance compared to supervised ANCL, which performs well even with a smaller batch size.
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G. ViT Backbone
To verify the independence of our proposed method from the encoder backbone, we conduct experiments using the ViT
backbone (Dosovitskiy et al., 2021). In contrastive learning, MOCO-V3 (Chen et al., 2021) utilizes ViT as its backbone,
and we benchmark this for implementing models such as SUPMOCO, BYOL, and SUPBYOL. In MOCO-V3, unlike the
previous MOCO-V2 (Chen et al., 2020b), the queue is removed and a predictor is added, resembling ANCL (Grill et al.,
2020; Chen & He, 2021). For SUPMOCO with the ViT backbone, we also incorporate the predictor but retain a queue to
ensure the existence of features sharing the same label with a size of 8192. Similarly, SUPBYOL employs a target pool with
a size of 8192.

We pretrain ViT-Small on ImageNet-100 (Deng et al., 2009; Tian et al., 2020) for 200 epochs with a batch size of 256.
Common parameter settings include using the AdamW optimizer (Loshchilov & Hutter, 2019) with a linear learning rate
warm-up for the first 40 epochs, a momentum of 0.9, and a weight decay of 0.1. A cosine learning rate schedule (Loshchilov
& Hutter, 2017) is applied to the encoder and projector. We maintain a constant learning rate without decay for BYOL and
SUPBYOL following the prior work (Chen & He, 2021), while we apply a cosine learning rate schedule to the predictor of
MOCO-V3 and SUPMOCO.

• MOCO-V3 (Chen et al., 2021). We follow the original parameter settings, where the learning rate is set to 1.5e-4 and
the temperature parameter for contrastive loss is 0.2. The exponential moving average (EMA) parameter starts from
0.99 and is increased to one during training. The projector consists of 3 MLP layers with an output dimension of 256
and a hidden dimension of 4096. The predictor has 2 MLP layers with a hidden dimension of 4096.

• SUPMOCO (Majumder et al., 2021). The learning rate is set to 1.5e-3 and the temperature parameter for contrastive
loss is 0.2. The EMA parameter starts from 0.99 and is increased to one during training. The projector consists of 3
MLP layers with an output dimension of 256 and a hidden dimension of 4096. The predictor has 2 MLP layers with a
hidden dimension of 4096.

• BYOL (Grill et al., 2020). The learning rate is set to 1.5e-3 and the EMA parameter starts from 0.996 and is increased
to one during training. The projector consists of 2 MLP layers with an output dimension of 256 and a hidden dimension
of 4096. The predictor has 2 MLP layers with a hidden dimension of 4096.

• SUPBYOL. The learning rate is set to 1.5e-3 and the EMA parameter starts from 0.996 and is increased to one during
training. The loss parameter α is set to 0.5 and all supervised target is obtained by sampling and averaging all positives
in the target pool. The projector consists of 2 MLP layers with an output dimension of 256 and a hidden dimension of
4096. The predictor has 2 MLP layers with a hidden dimension of 4096.

Table G.1. Transfer learning via linear evaluation results on various downstream datasets, where the models trained with the ViT-Small
backbone on ImageNet-100. CL, Sup, EMA stand for the cases when negative samples are considered, labels are used for pretraining,
and the momentum network is adopted, respectively. Avg.Rank represents the average performance ranking across all datasets. For each
dataset, the best results are in bold and the second-best results are underlined. Our proposed methods are marked with †.

Method CL Sup EMA Avg.Rank CIFAR10 CIFAR100 DTD Food MIT67 SUN397 Caltech CUB200 Dogs Flowers Pets

MOCO-V3 ✓ ✓ 4.00 84.79 64.66 60.27 59.52 56.34 45.17 75.08 37.10 44.71 85.98 64.87
SUPMOCO ✓ ✓ ✓ 2.18 89.68 71.07 60.90 59.84 59.18 47.45 83.13 47.69 57.83 89.35 77.94
BYOL ✓ 2.36 87.61 66.48 65.48 63.36 59.48 48.41 80.69 41.13 53.49 88.32 75.12
SUPBYOL† ✓ ✓ 1.45 90.29 71.05 62.87 61.61 60.07 48.36 84.37 47.24 62.03 90.31 81.70

We observe a slightly lower performance in Table G.1 compared to Table 5, where results are presented using ResNet-50 (He
et al., 2016) as the backbone. This discrepancy is likely due to pretraining with ImageNet-100. ViT typically requires more
data for effective learning compared to ResNet, and the number of data samples in ImageNet-100 may be slightly insufficient.
Nevertheless, supervision in the ANCL framework with the ViT backbone proves effective in enhancing performance.
Notably, when compared to supervised contrastive learning, proposed method exhibits slightly better performance across all
datasets except one. This underscores the effectiveness of the supervised ANCL approach, which is applicable to the ViT
backbone and remains independent of the underlying architecture.
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H. Pretraining on CIFAR
We conduct additional experiments on the CIFAR (Krizhevsky & Hinton, 2009) dataset, where the image size was reduced
to 32×32. The encoder employes a CIFAR variant of ResNet-18 (He et al., 2016) and is trained for a total of 1000 epochs
with a batch size of 256. For the ANCL approach, specifically SIMSIAM and SUPSIAM, we utilize a 2-layer MLP projector,
and Gaussian blurring is excluded from the augmentation. For contrastive learning, we select SIMCLR (Chen et al., 2020a)
and its supervised version SUPCON (Khosla et al., 2020). For ANCL, SIMSIAM (Chen & He, 2021) and BYOL (Grill
et al., 2020) and their supervised counterparts SUPSIAM and SUPBYOL are chosen as models. Learning rates are tuned
individually for each model: SIMCLR (0.7), SUPCON (0.6), BYOL (0.6), SUPBYOL (0.5), SIMSIAM (0.7), and SUPSIAM
(0.7). For supervised ANCL, the target pool size is reduced to 4096, and the loss parameter α is set to 0.5 for SUPSIAM and
0.8 for SUPBYOL.

Table H.1. Comparision of CL and ANCL with their self-supervised / supervised versions with ResNet-18 on CIFAR10 and 100. We run
all experiments for 1000 epochs. If the pretext and downstream datasets are aligned, the supervised version shows improved performance.
In contrast, when there is a mismatch, performance gains are observed only in the ANCL scenario.

Pretext Downstream SIMCLR SUPCON SIMSIAM SUPSIAM BYOL SUPBYOL

CIFAR10 CIFAR10 89.58 95.15 93.36 94.73 91.56 94.88
CIFAR100 56.36 53.82 60.51 61.76 50.20 55.47

CIFAR100 CIFAR10 80.36 79.99 78.81 85.19 78.35 80.09
CIFAR100 64.77 74.03 70.63 75.05 65.42 74.36

The results in Table H.1 indicate that when the pretext and downstream datasets are the same, the introduction of supervision
leads to an increase in linear accuracy. Conversely, in cases where they differ, contrastive learning shows a decline or slight
increase in performance. Asymmetric non-contrastive learning, on the other hand, benefits from labels, resulting in increased
accuracy and showcasing the best performance. Thus, our proposed supervised ANCL proves to be an effective method for
obtaining high-quality representations across various datasets.
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