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Robots that are capable of interacting with others—humans
and robots alike—have the potential to revolutionize many
aspects of our daily lives through applications such as au-
tonomous driving, collaborative assembly, or autonomous con-
struction. Recent research has made great advances in the
single-agent domain, enabling impressive results for complex
tasks such as manipulation of diverse objects [1–4] and mobile
robotics [5–7]. Despite this remarkable progress, for multi-
agent interactions—in which a robot must interact with other,
potentially uncontrolled or even untrusted agents—similar re-
sults remain out of reach. A key challenge in solving complex
multi-agent tasks is the scarcity of data in these settings, which
can be attributed to two main issues: (i) the product space
of states and actions grows exponentially with the number
of players and (ii) the cost of acquiring data for multi-agent
systems is inevitably higher than for single-agent systems.
Therefore, rather than hoping that we can collect enough
data to cover the entire space of multi-agent interactions, I
am interested in exploiting the game-theoretic structure of
multi-agent interaction to enable learning from limited data.
This demands new algorithms that encode game-theoretic
priors for multi-agent interaction in a formulation compatible
with online and offline learning from diverse data sources—
including single- and multi-agent experience—and techniques
for dealing with the remaining uncertainty.

I. PAST RESEARCH

Throughout my PhD, I have focused on three key areas to
build towards my vision of efficient algorithms for multi-agent
interaction: (i) a learning-based solver for certainty-equivalent
games, (ii) algorithms for learning game-theoretic models from
online and offline data, and (iii) techniques for planning under
uncertainty in multi-agent interaction.

Solving games efficiently. Even when a game-theoretic
model is known without uncertainty, solving such problems
poses a computational challenge [8]. Prior works seek to
solve games numerically through methods such as iterated
best response [9, 10], iterative linear-quadratic games [11, 12],
sequential quadratic programming [13], or augmented La-
grangian methods [14]. When the strategy space becomes
high-dimensional—e.g., due to the number of agents or the
need to model probabilistic (mixed) strategies—numerical
online methods become impractical. To address this, my paper
published at RSS [15] proposes a game solver that trains
neural network policies by decomposing the mixed-strategy
multi-agent problem into parallelizable pure-strategy single-
agent optimization problems whose solutions are combined

Fig. 1: Research overview. My research explores efficient
algorithms for multi-agent interaction. I ground my work in
applications such as head-to-head drone-racing (left), interac-
tion with humans (center), and autonomous driving (right).

via a discrete game solver to approximate the original game
solution. By recovering the gradients of the discrete game
solver and the single-agent optimization problems via implicit
differentiation, our method can train the neural network policy
end-to-end. In summary, my work contributed a fast and
flexible, learning-enabled game solver that has since been used
in various applications, including collision avoidance with up
to 10 players [16], and head-to-head drone racing [17].

Learning game-theoretic models: online and offline. In
real-world deployment, robots cannot assume access to a com-
plete model of the world a priori. Instead, it is more practical
to pre-train on offline data and refine the interaction model
based on online observations. To address this issue, several
works explored solving the inverse game problem; i.e. the
problem of inferring unknown game parameters from observed
interactions [18–21]. However, traditionally, these methods
relied on the strong assumption that the robot can observe
others’ actions directly. In my experiments, I observed that this
assumption impedes accurate intent inference in settings where
robots have only partial and potentially noisy observations of
the world. In my RSS paper [22], I therefore proposed a new
formulation of inverse games as a bi-level problem: maximum-
likelihood estimation with equilibrium constraints. By casting
intent inference and state estimation in this framework, our
method reliably recovers more accurate estimates of states and
intents than prior approaches. In a follow-up IJRR work [23],
I extended this approach to the online setting, allowing robots
to adapt their beliefs about others’ intents as they interact.
Beyond the intent estimate, this approach also computes the
corresponding best response strategy for the robot as the
solution of a single optimization problem. Finally, to reduce
the computational cost of solving these challenging bi-level
programs online, we proposed a new technique that leverages
implicit differentiation of the inner equilibrium problem to



compute gradients of the observation likelihood. This implicit
differentiation technique allows the use of game solvers,
including those discussed above, as implicit neural network
layers, enabling robots to learn a neural network policy that
directly predicts the inverse game solution without online
optimization [24, 25] (Figure 1, center). In summary, my
work contributed versatile tools to infer the intents of other
agents from short interaction histories which other community
members have extended to tackle various applications, includ-
ing reasoning about occluded pedestrians in traffic [26] and
adaptive autonomous head-to-head racing [27].

Planning with uncertainty in multi-agent interaction. Even
with a good base model identified from offline data, the
information available online may not suffice to estimate an
unambiguous interaction model. For example, in autonomous
driving, a short interaction history may be insufficient to
determine a unique goal position of a pedestrian. Two distinct
approaches to deal with this issue dominate prior work: (i) se-
lecting the most likely intent and optimizing under a certainty-
equivalent model [24, 28, 29], or (ii) generating an ego-plan
that minimizes expected cost under the distribution of other
agents’ intents [30–32]. However, the former approach leads to
overly optimistic—or even unsafe—behavior, while the latter
approach can be overly conservative since it ignores the fact
that more information will be available as the interaction
unfolds. In my paper published at RA-L [33], I formalized
a middle-ground between these two extremes by casting
multi-agent interaction under uncertainty as game-theoretic
contingency planning. By solving the resulting contingency
game, a robot jointly recovers a multi-hypothesis prediction
of others and a corresponding conditional plan for itself,
anticipating future information gains while accounting for the
interdependence of actions between agents (Figure 1, right).
Our results demonstrate that this approach matches the more
conservative approaches in terms of safety while outperform-
ing them in terms of interaction efficiency. To scale this
paradigm to settings with a large number of hypotheses, I have
closely collaborated with international partners to develop a
specialized ADMM solver that parallelizes computation across
hypotheses [34]. Finally, to further facilitate this research
direction, I also guided a junior PhD student in developing a
learning-based variational inference approach [35] that lever-
ages our differentiable game solver [24] to efficiently estimate
distributional beliefs of game-theoretic models and plans with
the resulting uncertainty using the contingency games frame-
work. In summary, my work contributed a tractable method
for planning under uncertainty in multi-agent interaction,
demonstrated to integrate well with learning-based inference
techniques. It attracted the interest of the autonomous delivery
company Nuro, leading to an invited talk at their research
seminar [36].

II. RESEARCH VISION

I envision robots interacting with humans and other robots
in diverse scenarios beyond autonomous driving, including
collaborative assembly, construction, and household tasks.

Toward this goal, I am excited about developing interaction
algorithms that can handle high-dimensional observations,
incomplete information, and complex dynamics while training
on both single-agent and multi-agent data efficiently.

Leveraging single-agent data for multi-agent interaction.
My previous works have largely focused on multi-agent in-
teraction scenarios in which a compact state representation
is available, and where coordination challenges primarily lie
in avoiding collisions with other agents. Many tasks faced
by general-purpose robots—e.g., preparing a complex dish in
a shared kitchen—require a richer state representation and a
more nuanced understanding of interaction that goes beyond
collision avoidance. In the single-agent domain, generative
models for imitation learning have shown promise for complex
manipulation tasks [1–5]. However, multi-agent instantiations
of this idea remain challenging since covering the product
space of possible interactions between multiple agents with
expert demonstrations is impractical. Therefore, we need to re-
think how to learn complex multi-agent tasks in a data-efficient
manner. To this end, I aim to develop algorithms that leverage
single-agent expert demonstrations to aid learning of multi-
agent policies—an idea closely related to multi-agent transfer
learning (MATL) [37]. In contrast to prior work on MATL,
which focuses on transfer between similar multi-agent tasks, I
seek to use single-agent source tasks to tap into the wealth of
single-agent data. Future work includes investigating how to
efficiently combine single-agent pre-training, game-theoretic
online reasoning, and limited multi-agent data to bridge the
gap between single-agent behavior and tightly coupled multi-
agent interaction.

Game-theoretic planning with multi-agent world models.
Foundation models pre-trained on internet-scale data have
shown great success in natural language processing [38–40]
and beyond [41–46]. My research visit at CMU exposed me
to one of these tools, DINO-WM [43], and the performance
that we obtained for a complex real-world single-agent ma-
nipulation task [47] convinced me that learned world models
are a key ingredient also for multi-agent interactions. However,
when other agents act in the same environment, existing world
models treat other agents implicitly as part of the environment
dynamics, effectively relying on an implicit theory of mind that
must be learned from data. Instead, I am interested in building
world models that explicitly distinguish between environment
state dynamics and each agents’ belief and decisions. This
game-theoretic structure serves as an inductive bias that makes
agents’ theory of mind explicit, reducing data requirements
while enabling (i) strategic reasoning about interactions and
(ii) more data-efficient training through the imposed structure.
Future research should explore model structures and training
objectives that are informed by game-theoretic insights, e.g. to
capture the incomplete and time-varying nature of information
available to each player. Based on such models, I aim to
explore how to plan in the latent space of these multi-agent
world models and exploit synergies between offline training
and online reasoning.
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