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Abstract

We present Coordinated Proximal Policy Optimization (CoPPO), an algorithm that
extends the original Proximal Policy Optimization (PPO) to the multi-agent setting.
The key idea lies in the coordinated adaptation of step size during the policy update
process among multiple agents. We prove the monotonicity of policy improvement
when optimizing a theoretically-grounded joint objective, and derive a simplified
optimization objective based on a set of approximations. We then interpret that
such an objective in CoPPO can achieve dynamic credit assignment among agents,
thereby alleviating the high variance issue during the concurrent update of agent
policies. Finally, we demonstrate that CoPPO outperforms several strong baselines
and is competitive with the latest multi-agent PPO method (i.e. MAPPO) under
typical multi-agent settings, including cooperative matrix games and the StarCraft
II micromanagement tasks.

1 Introduction

Cooperative Multi-Agent Reinforcement Learning (CoMARL) shows great promise for solving
various real-world tasks, such as traffic light control (Wu et al., 2020), sensor network manage-
ment (Sharma and Chauhan, 2020) and autonomous vehicle coordination (Yu et al., 2019). In such
applications, a team of agents aim to maximize a joint expected utility through a single global
reward. Since multiple agents coexist in a common environment and learn and adapt their be-
haviour concurrently, the arising non-stationary issue makes it difficult to design an efficient learning
method (Hernandez-Leal et al., 2017; Papoudakis et al., 2019). Recently, a number of CoMARL
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methods based on Centralized Training Decentralized Execution (CTDE) (Foerster et al., 2016) have
been proposed, including policy-based (Lowe et al., 2017; Foerster et al., 2018; Wang et al., 2020;
Yu et al., 2021) and value-based methods (Sunehag et al., 2018; Rashid et al., 2018; Son et al., 2019;
Mahajan et al., 2019). While generally having more stable convergence properties (Gupta et al.,
2017; Song et al., 2019; Wang et al., 2020) and being naturally suitable for problems with stochastic
policies (Deisenroth et al., 2013; Su et al., 2021), policy-based methods still receive less attention
from the community and generally possess inferior performance against value-based methods, as
evidenced in the StarCraft II benchmark (Samvelyan et al., 2019).

The performance discrepancy between policy-based and value-based methods can be largely attributed
to the inadequate utilization of the centralized training procedure in the CTDE paradigm. Unlike
value-based methods that directly optimize the policy via centralized training of value functions
using extra global information, policy-based methods only utilize centralized value functions for
state/action evaluation such that the policy can be updated to increase the likelihood of generating
higher values (Sutton et al., 2000). In other words, there is an update lag between intermediate value
functions and the final policy in policy-based methods, and merely coordinating over value functions
is insufficient to guarantee satisfactory performance (Grondman et al., 2012; Fujimoto et al., 2018).

To this end, we propose the Coordinated Proximal Policy Optimization (CoPPO) algorithm, a multi-
agent extension of PPO (Schulman et al., 2017), to directly coordinate over the agents’ policies by
dynamically adapting the step sizes during the agents’ policy update processes. We first prove a
relationship between a lower bound of joint policy performance and the update of policies. Based on
this relationship, a monotonic joint policy improvement can be achieved through optimizing an ideal
objective. To improve scalability and credit assignment, and to cope with the potential high variance
due to non-stationarity, a series of transformations and approximations are then conducted to derive
an implementable optimization objective in the final CoPPO algorithm. While originally aiming
at monotonic joint policy improvement, CoPPO ultimately realizes a direct coordination over the
policies at the level of each agent’s policy update step size. Concretely, by taking other agents’ policy
update into consideration, CoPPO is able to achieve dynamic credit assignment that helps to indicate
a proper update step size to each agent during the optimization procedure. In the empirical study, an
extremely hard version of the penalty game (Claus and Boutilier, 1998) is used to verify the efficacy
and interpretability of CoPPO. In addition, the evaluation on the StarCraft II micromanagement
benchmark further demonstrates the superior performance of CoPPO against several strong baselines.

The paper is organized as follows: Section 2 provides a background introduction. Section 3 introduces
the derivation process of CoPPO. Section 4 presents the experimental studies, and Section 5 reviews
some related works. Finally, Section 6 concludes the paper.

2 Background

We model the fully cooperative MARL problem as a Dec-POMDP (Oliehoek and Amato, 2016)
which is defined by a tuple G = 〈N,S,Ω, O,A,R, P, γ〉. N is the number of agents and S is the
set of true states of the environment. Agent i ∈ {1, . . . , N} obtains its partial observation oi ∈ Ω
according to the observation function O(s, i), where s ∈ S. Each agent has an action-observation
history τ i ∈ T ≡ (Ω × A)∗. At each timestep, agent i chooses an action ai ∈ A according to
its policy π(ai|τ i), and we use a to denote the joint action {a1, . . . , aN}. The environment then
returns the reward signal R(s,a) that is shared by all agents, and shifts to the next state according
to the transition function P (s′|s,a). The joint action-value function induced by a joint policy π is
defined as: Qπ(st,at) = Est+1:∞,at+1:∞ [

∑∞
t′=0 γ

t′Rt+t′ |st,at], where γ ∈ [0, 1) is the discounted
factor. We denote the joint action of agents other than agent i as a−i, and π−i, τ−i follow a similar
convention. Joint policy π can be parameterized by θ = {θ1, . . . , θN}, where θi is the parameter
set of agent i’s policy. Our problem setting follows the CTDE paradigm (Foerster et al., 2016), in
which each agent executes its policy conditioned only on the partially observable information, but the
policies can be trained centrally by using extra global information.

Value-based MARL In CTDE value-based methods such as (Sunehag et al., 2018; Rashid et al.,
2018; Son et al., 2019; Mahajan et al., 2019), an agent selects its action by performing an arg max
operation over the local action-value function, i.e. πi(τ i) = arg maxai Q

i(τ i, ai). Without loss in
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generality, the update rule for value-based methods can be formulated as follows:

∆θi ∝ Eπ
[(
R(s,a) + max

a′
Qtot(s,a′)−Qtot(s,a)

) ∂Qtot
∂Qi

∇θiQi(τ i, ai)
]
, (1)

where θi represents the parameter of Qi, and Qtot is the global action-value function. The centralized
training procedure enables value-based methods to factorize Qtot into some local action-values.
Eq. (1) is essentially Q-learning if rewriting ∂Qtot

∂Qi ∇θiQi(τ i, ai) as∇θiQtot. The partial derivative is
actually a credit assignment term that projects the step size of Qtot to that of Qi (Wang et al., 2020).

Policy-based MARL In CTDE policy-based methods such as (Foerster et al., 2018; Lowe et al.,
2017; Wang et al., 2020; Yu et al., 2021), an agent selects its action from an explicit policy πi(ai|τ i).
The vanilla multi-agent policy gradient algorithm updates the policy using the following formula:

∆θi ∝ Eπ
[
Qtotπ (s,a)∇θiπi(ai|τ i)

]
. (2)

In order to reduce the variance and address the credit assignment issue, COMA (Foerster
et al., 2018) replace Qtot with the counterfactual advantage: Aπ(s,a) = Qπ(s, (ai,a−i)) −
Eâi∼πi [Qπ(s, (âi,a−i))]. This implies that fixing the actions of other agents (i.e. a−i), an agent
will evaluate the action it has actually taken (i.e. ai) by comparing with the average effect of other
actions it may have taken.

3 Coordinated Proximal Policy Optimization

In policy-based methods, properly limiting the policy update step size is proven to be effective in
single-agent settings (Schulman et al., 2015a, 2017). In cases when there are multiple policies, it is
also crucial for each agent to take other agents’ update into account when adjusting its own step size.
Driven by this insight, we propose the CoPPO algorithm to adaptively adjust the step sizes during the
update of the policies of multiple agents.

3.1 Monotonic Joint Policy Improvement

The performance of joint policy π is defined as: J(π)
.
= Ea∼π,s∼ρπ [

∑∞
t=0 γ

tRt+1(s,a)] , where
ρπ is the unnormalized discounted visitation frequencies when the joint actions are chosen from π.
Then the difference between the performance of two joint policies, say π and π̃, can be expressed as
the accumulation of the global advantage over timesteps (see Appendix A.1 for proof):

J(π̃)− J(π) = Ea∼π̃,s∼ρπ̃ [Aπ(s,a)] , (3)

where Aπ(s,a) = Qπ(s,a)− V π(s) is the joint advantage function. This equation indicates that if
the joint policy π is updated to π̃, then the performance will improve when the update increases the
probability of taking "good" joint actions so that

∑
a π̃(a|s)Aπ(s,a) > 0 for every s. Modeling

the dependency of ρπ̃ on π̃ involves the complex dynamics of the environment, so we extend the
approach proposed in (Kakade and Langford, 2002) to derive an approximation of J(π̃), denoted as
J̃π(π̃):

J̃π(π̃)
.
= J(π) + Ea∼π̃,s∼ρπ [Aπ(s,a)] . (4)

Note that if the policy is differentiable, then J̃π(π̃) matches J(π̃) to first order (see Appendix A.2
for proof). Quantitatively, we measure the difference between two joint policies using the max-
imum total variation divergence (Schulman et al., 2015a), which is defined by: Dmax

TV [π‖π̃]
.
=

maxsDTV [π(·|s)‖π̃(·|s)], where DTV [π(·|s)‖π̃(·|s)] = 1
2

∫
A |π(a|s) − π̃(a|s)|da (the definition

for the discrete case is simply replacing the integral with a summation, and our results remain valid
in such case). Using the above notations, we can derive the following theorem:

Theorem 1. Let ε = maxs,a |Aπ(s,a)| , αi =
√

1
2D

max
TV [πi||π̃i], 1 ≤ i ≤ N , and N be the total

number of agents, then the error of the approximation in Eq. (4) can be explicitly bounded as follows:

∣∣∣J(π̃)− J̃π(π̃)
∣∣∣ ≤ 4ε

[
1− γ

∏N
i=1(1− αi)

1− γ
− 1

]
. (5)
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Proof. See Appendix A.3.

As shown above, the upper bound is influenced by αi, N and ε. By definition, we have αi ≤ 1 and
ε ≥ 0, thus the upper bound will increase when αi increases for any i, implying that it becomes
harder to make precise approximation when any individual of the agents dramatically updates their
policies. Also, the growth in the number of agents can raise the difficulty for approximation. As for ε,
from Eq. (5) we can roughly conclude that a larger advantage value can cause higher approximation
error, and this is reasonable because J̃π(π̃) approximates J(π̃) by approximating the expectation

over Aπ . Transforming the inequality in Eq. (5) leads to J(π̃) ≥ J̃π(π̃)−4ε
(

1−γ
∏N

i=1(1−αi)

1−γ − 1
)

.
Thus the joint policy can be iteratively updated by:

πnew = arg max
π̃

[
J̃πold

(π̃)− 4ε

(
1− γ

∏N
i=1(1− αi)

1− γ
− 1

)]
. (6)

Eq. (6) involves a complete search in the joint observation space and action space for computing
ε and αi, making it difficult to be applied to large-scale settings. In the next subsection, several
transformations and approximations are employed to this objective to achieve better scalability.

3.2 The Final Algorithm

Notice that the complexity of optimizing the objective in Eq. (6) mainly lies in the second term,
i.e. 4ε

(
1−γ

∏N
i=1(1−αi)

1−γ − 1
)

. While ε has nothing to do with π̃, it suffices to control this second
term only by limiting the variation divergence of agents’ policies (i.e. αi), because it increases
monotonically as αi increases. Then the objective is transformed into J̃πold

(π̃) that can be optimized
subject to a trust region constraint: αi ≤ δ, i = 1, . . . , N . For higher scalability, αi can be
replaced by the mean Kullback-Leibler Divergence between agent i’s two consecutive policies, i.e.
Es∼ρπ

[
DKL[πi(·|τ i)||π̃i(·|τ i)]

]
.

As proposed in (Schulman et al., 2015a), solving the above trust region optimization problem requires
repeated computation of Fisher-vector products for each update, which is computationally expensive
in large-scale problems, especially when there are multiple constraints. In order to reduce the
computational complexity and simplify the implementation, importance sampling can be used to
incorporate the trust region constraints into the objective of J̃πold

(π̃), resulting in the maximization of
Ea∼πold

[min (rAπold , clip (rAπold , 1− ε, 1 + ε))] w.r.t π, where r = π(a|s)
πold(a|s) , and Aπold(s,a)

is denoted as Aπold for brevity. The clip function prevents the joint probability ratio from going
beyond [1− ε, 1 + ε], thus approximately limiting the variation divergence of the joint policy. Since
the policies are independent during the fully decentralized execution, it is reasonable to assume that
π(a|τ ) =

∏N
i=1 π

i(ai|τ i). Based on this factorization, the following objective can be derived:

maximize
θ1,...,θN

Ea∼πold

min

 N∏
j=1

rj

Aπ, clip

 N∏
j=1

rj

 , 1− ε, 1 + ε

Aπ

 , (7)

where θj is the parameter of agent j’s policy, and rj =
πj(aj |τj ;θj)

πj
old(aj |τj ;θjold)

. While Aπ is defined as

Qπ(s,a)− V π(s), the respective contribution of each individual agent cannot be well distinguished.
To enable credit assignment, the joint advantage function is decomposed to some local ones of the
agents as: Aπ(s,a) =

∑N
i=1 c

i · Ai(s, (ai,a−i)), where Ai(s, (ai,a−i)) = Qπ(s, (ai,a−i)) −
Eâi [Qπ(s, (âi,a−i))] is the counterfactual advantage and ci is a non-negative weight.

During each update, multiple epochs of optimization are performed on this joint objective to improve
sample efficiency. Due to the non-negative decomposition of Aπ , there is a monotonic relationship
between the global optimum and the local optima, suggesting a transformation from the joint
objective to local objectives (see Appendix A.4 for the proof). The optimization of Eq. (7) then can
be transformed to maximizing each agent’s own objective:

Li(θ) = Ea∼πold

min

∏
j 6=i

rj

 riAi, clip

∏
j 6=i

rj

 ri, 1− ε, 1 + ε

Ai

 . (8)
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However, the ratio product in Eq. (8) raises a potential risk of high variance due to Proposition 1:

Proposition 1. Assuming that the agents are fully independent during execution, then the following
inequality holds:

Vara−i∼π−i
old

∏
j 6=i

rj

 ≥∏
j 6=i

Varaj∼πj
old

[
rj
]
. (9)

Proof. See Appendix A.5.

According to the inequality above, the variance of the product grows at least exponentially with the
number of agents. Intuitively, the existence of other agents’ policies introduces instability in the
estimate of each agent’s policy gradient. This may further cause suboptimatlity in individual policies
due to the centralized-decentralized mismatch issue mentioned in (Wang et al., 2020). To be concrete,
when Ai > 0, the external min operation in Eq. (8) can prevent the gradient of Li(θ) from exploding
when

∏
j 6=i r

j is large, thus limiting the variance raised from other agents; but when Ai < 0, the

gradient can grow rapidly in the negative direction, because Li(θ) = E
[(∏

j 6=i r
j
)
riAi

]
when(∏

j 6=i r
j
)
ri ≥ 1 + ε. Moreover, the learning procedure in Eq. (8) can cause a potential exploration

issue, that is, different agents might be granted unequal opportunities to update their policies. Consider
a scenario when the policies of some agents except agent i are updated rapidly, and thus the product
of these agents’ ratios might already be close to the clipping threshold, then a small optimization step
of agent i will cause

∏N
j=1 r

j to reach the threshold and thus being clipped. In this case, agent i has
no chance to update its policy, while other agents have updated their policies significantly, leading to
unbalanced exploration among the agents. To address the above issues, we propose a double clipping
trick to modify Eq. (8) as follows:

Li(θ) = Ea∼πold

{
min

[
g(r−i)riAi, clip

(
g(r−i)ri, 1− ε1, 1 + ε1

)
Ai
]}
, (10)

where g(r−i) = clip
(∏

j 6=i r
j , 1 − ε2, 1 + ε2

)
, ε2 < ε1. In Eq. (8), the existence of

∏
j 6=i r

j

imposes an influence on the objective of agent i through a weight of
∏
j 6=i r

j . Therefore, the
clipping on

∏
j 6=i r

j ensures that the influence from the update of other agents on agent i is limited to
[1− ε2, 1 + ε2], thus controlling the variance caused by other agents. Note that from the theoretical
perspective, clipping separately on each individual probability ratio (i.e.

∏N
j=1 clip(rj , ·, ·)) can

also reduce the variance. Nevertheless, the empirical results show that clipping separately performs
worse than clipping jointly. The detailed results and analysis for this comparison are presented in
Appendix D.2.1. In addition, this trick also prevents the update step of each agent from being too
small, because ri in Eq. (10) can at least increase to 1+ε1

1+ε2
ri or decrease to 1−ε1

1−ε2 r
i before being

clipped in each update.

In the next subsection, we will show that the presence of other agents’ probability ratio also enables a
dynamic credit assignment among the agents in order to promote coordination, and thus the inner
clipping threshold (i.e. ε2) can actually function as a balance factor to trade off between facilitating
coordination and reducing variance, which will be studied empirically in Section 4. A similar trick
was proposed in (Ye et al., 2020a,b) to handle the variance induced by distributed training in the
single-agent setting. Nonetheless, since multiple policies are updated in different directions in MARL,
the inner clipping here is carried out on the ratio product of other agents instead of the entire ratio
product, in order to distinguish the update of different agents. The overall CoPPO algorithm with the
double clipping trick is shown in Appendix B.

3.3 Interpretation: Dynamic Credit Assignment

The COMA (Foerster et al., 2018) algorithm tries to address the credit assignment issue in CoMARL
using the counterfactual advantage. Nevertheless, miscoordination and suboptimatlity can still arise
since the credit assignment in COMA is conditioned on the fixed actions of other agents, but these
actions are continuously changing and thus cannot precisely represent the actual policies. While
CoPPO also makes use of the counterfactual advantage, the overall update of other agents is taken
into account dynamically during the multiple epochs in each update. This process can adjust the
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advantage value in a coordinated manner and alleviate the miscoordination issue caused by the
fixation of other agents’ joint action. Note that the theoretical reasoning for CoPPO in Section 3.1
and 3.2 originally aims at monotonic joint policy improvement, yet the resulted objective ultimately
realizes coordination among agents through a dynamic credit assignment among the agents in terms
of coordinating over the step sizes of the agents’ policies.

To illustrate the efficacy of this dynamic credit assignment, we make an analysis on the
difference between CoPPO and MAPPO (Yu et al., 2021) which generalizes PPO to multi-
agent settings simply by centralizing the value functions with an optimization objective of
Eπold

[
min

[
rikA

i, clip
(
rik, 1− ε, 1 + ε

)]]
, which is a lower bound of Eπold

[
rikA

i
]

where rik rep-
resents the probability ratio of agent i at the kth optimization epoch during each update. De-
noting

(∏
j 6=i r

j
k

)
Ai as Ãik, the CoPPO objective then becomes approximately a lower bound

of Eπold

[
rikÃ

i
k

]
. The discussion then can be simplified to analyzing the two lower bounds (see

Appendix A.6 for the details of this simplification).

Depending on whether Ai > 0 and whether
∏
j 6=i r

j
k > 1, four different cases can be classified. For

brevity, only two of them are discussed below while the rest are similar. The initial parameters of the
two methods are assumed to be the same.

Case (1): Ai > 0,
∏
j 6=i r

j
k > 1. In this case

∣∣Ãik∣∣ > ∣∣Ai∣∣, thus
∥∥Ãik∇rik∥∥ > ∥∥Ai∇rik∥∥, indicating

that CoPPO takes a larger update step towards increasing πi(ai|τ i) than MAPPO does. Concretely,
Ai > 0 means that ai is considered (by agent i) positive for the whole team when fixing a−i and
under similar observations. Meanwhile,

∏
j 6=i r

j
k > 1 implies that after this update epoch, a−i are

overall more likely to be performed by the other agents when encountering similar observations (see
Appendix A.7 for the details). This makes fixing a−i more reasonable when estimating the advantage
of ai, thus explaining CoPPO’s confidence to take a larger update step.

Case (2): Ai < 0,
∏
j 6=i r

j
k < 1. Similarly, in this case

∣∣Ãik∣∣ < ∣∣Ai∣∣ and hence
∥∥Ãik∇rik∥∥ <∥∥Ai∇rik∥∥, indicating that CoPPO takes a smaller update step to decrease πi(ai|τ i) than MAPPO

does. To be specific, ai is considered (by agent i) to have a negative effect on the whole team since
Ai < 0, and

∏
j 6=i r

j
k < 1 suggests that after this optimization epoch, other agents are overall less

likely to perform a−i given similar observations. While the evaluation of ai is conditioned on a−i,
it is reasonable for agent i to rethink the effect of ai and slow down the update of decreasing the
probability of taking ai, thus giving more chance for this action to be evaluated.

It is worth noting that Ãik continues changing throughout the K epochs of update and yields dynamic
adjustments in the step size, while Ai will remain the same during each update. Therefore, Ãik can be
interpreted as a dynamic modification of Ai by taking other agents’ update into consideration.

4 Experiments

In this section, we evaluate CoPPO on a modified matrix penalty game and the StarCraft Multi-
Agent Challenge (SMAC) (Samvelyan et al., 2019). The matrix game results enable interpretative
observations, while the evaluations on SMAC verify the efficacy of CoPPO in more complex domains.

4.1 Cooperative Matrix Penalty Game

The penalty game is a representative of problems with miscoordination penalties and multiple
equilibria selection among optimal joint actions. It has been used as a challenging test bed for
evaluating CoMARL algorithms (Claus and Boutilier, 1998; Spiros and Daniel, 2002). To further
increase the difficulty of achieving coordination, we modify the two-player penalty game to four
agents with nine actions for each agent. The agents will receive a team reward of 50 when they have
played the same action, but be punished by -50 if any three agents have acted the same while the
other does not. In all other cases, the reward is -40 for all the agents. The penalty game provides a
verifying metaphor to show the importance of adaptive adjustment in the agent policies in order to
achieve efficient coordinated behaviors. Thinking of the case when the agents have almost reached
one of the optimal joint actions, yet at the current step they have received a miscoordination penalty
due to the exploration of an arbitrary agent. Then smaller update steps for the three matching agents
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would benefit the coordinated learning process of the whole group, since agreement on this optimal
joint action would be much easier to be reached than any other optimal joint actions. Therefore,
adaptively coordinating over the agent policies and properly assigning credits among the agents are
crucial for the agents to achieve efficient coordination in this kind of game.
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Figure 1: Upper left: average rewards; Upper right: average advantages after a penalty; Lower left: the variation
of the average advantages within K (here K = 8) optimization epochs every time after a penalty; Lower right:
running policy gradient variance.

We train CoPPO, COMA (Foerster et al., 2018), MAPPO (Yu et al., 2021) and DOP (Wang et al.,
2020) for 10,000 timesteps, and the final results are averaged over 100 runs. The hyperparameters
and other implementation details are described in Appendix C.1. From Fig. 1-upper left, we can
see that CoPPO significantly outperforms other methods in terms of average rewards. Fig. 1-upper
right presents an explanation of the result by showing the local advantages averaged among the
three matching agents every time after receiving a miscoordination penalty. Each point on the
horizontal axis represents a time step after a miscoordination penalty. While the times of penalties
in a single run vary for different algorithms, we take the minimum times of 70 over all runs. The
vertical axis represents 1

3

∑
j 6=iA

j for COMA, MAPPO and DOP, and represents the mean of K

epochs during one update, i.e., 1
3

∑
j 6=i

1
K

∑K
k=1 Ã

j
k, for CoPPO (i indicates the unmatching agent).

Note that CoPPO can obtain the smallest local advantages that are close to 0 compared to other
methods, indicating the smallest step sizes for the three agents in the direction of changing the current
action. Fig. 1-lower left shows the overall variation of the average advantages within K optimization
epochs after receiving a miscoordination penalty. We can see that as the number of epochs increases,
the absolute value of the average advantage of the three matching agents gradually decreases by
considering the update of other agents. Since the absolute value actually determines the step size of
update, a smaller value indicates a small adaptation in their current actions. This is consistent with
what we have discussed in Section 3.3. Fig. 1-lower right further implies that through this dynamic
process, the agents succeed in learning to coordinate their update steps carefully, yielding the smallest
gradient variance among the four methods.

Ablation study 1 Fig. 2 provides an ablation study of the double clipping trick. We can see that
a proper intermediate inner clipping threshold improves the global performance, and the double
clipping trick indeed reduces the variance of the policy gradient. In contrast to DOP, which achieves
low gradient variance at the expense of lack of direct coordination over the policies, CoPPO can strike
a nice balance between reducing variance and achieving coordination, by taking other agents’ policy
update into consideration. To make our results more convincing, experiments on more cooperative
matrix games with different varieties are also conducted in Appendix D.1.
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Figure 2: Ablation study of the double clipping trick. The numbers 0.05, 0.10, 0.15 represent the inner clipping
threshold, and "without DC" represents the case when the trick is not used. Left: average rewards; Right: running
policy gradient variance.

4.2 StarCraft II

We evaluate CoPPO in SMAC against various state-of-the-art methods, including policy-based meth-
ods (COMA (Foerster et al., 2018), MAPPO (Yu et al., 2021) and DOP (Wang et al., 2020)) and
value-based methods (QMIX (Rashid et al., 2018) and QTRAN (Son et al., 2019)). The implemen-
tation of these baselines follows the original versions. The win rates are tested over 32 evaluation
episodes after each training iteration. The hyperparameter settings and other implementation details
are presented in Appendix C.2. The results are averaged over 6 different random seeds for easy maps
(the upper row in Fig. 3), and 8 different random seeds for harder maps (the lower row in Fig. 3). Note
that CoPPO outperforms several strong baselines including the latest multi-agent PPO (i.e., MAPPO)
method in SMAC across various types and difficulties, especially in Hard (3s5z, 10m_vs_11m)
and Super Hard (MMM2) maps. Moreover, as an on-policy method, CoPPO shows better stability
across different runs, which is indicated by a narrower confidence interval around the learning curves.

0 0.5 1.0 1.5 2
T(Mil)

0

25

50

75

100

Te
st

 W
in

 %

3s_vs_3z

0 0.5 1.0 1.5 2
T(Mil)

0

25

50

75

100

Te
st

 W
in

 %

2s3z

CoPPO(ours) COMA MAPPO DOP QMIX QTRAN

0 0.5 1.0 1.5 2
T(Mil)

0

25

50

75

100

Te
st

 W
in

 %

1c3s5z

0 1 2 3 4
T(Mil)

0

25

50

75

100

Te
st

 W
in

 %

3s5z

0 1 2 3 4
T(Mil)

0

25

50

75

100

Te
st

 W
in

 %

10m_vs_11m

0 2 4 6 8
T(Mil)

0

25

50

75

100

Te
st

 W
in

 %

MMM2

Figure 3: Comparisons against baselines on SMAC.

Ablation study 2 The first row in Fig. 4 shows the ablation study of double clipping in SMAC, and
we can see that the results share the same pattern as in Section 4.1.

Ablation study 3 In Section 3.2, the global advantage is decomposed into a weighted sum of local
advantages. We also compare it to a mixing network with non-negative weights and the results are
shown in Fig. 4. Similar to QMIX (Rashid et al., 2018), the effectiveness of the mixing network may
largely owe to the improvement in the representational ability for the global advantage function.
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Figure 4: Ablation studies on the double clipping (the upper row) and the way of advantage decomposition (the
lower row), evaluated on two maps respectively. In the upper row, the numbers "0.05, 0.10, 0.15" represent the
values of the inner clipping threshold, and "without DC" represents the case where the double clipping trick is
not utilized. In the lower row, "Amix" refers to a non-negative-weighted neural network, and "Asum" refers to
an arithmetic summation.

5 Related Work

In recent years, there has been significant progress in CoMARL. Fully centralized methods suffer
from scalability issues due to the exponential growth of joint action space, and applying DQN to
each agent independently while treating the other agents as part of environment (Tampuu et al., 2017)
suffers from the non-stationary issue (Hernandez-Leal et al., 2017; Papoudakis et al., 2019). The
CTDE paradigm (Foerster et al., 2016) reaches a compromise between centralized and decentralized
approaches, assuming a laboratory setting where each agent’s policy can be trained using extra global
information while maintaining scalable decentralized execution.

A series of work have been developed in the CTDE setting, including both value-based and policy-
based methods. Most of the value-based MARL methods estimate joint action-value function by
mixing local value functions. VDN (Sunehag et al., 2018) first introduces value decomposition
to make the advantage of centralized training and mixes the local value functions via arithmetic
summation. To improve the representational ability of the joint action-value function, QMIX (Rashid
et al., 2018) proposes to mix the local action-value functions via a non-negative-weighted neural
network. QTRAN (Son et al., 2019) studies the decentralization & suboptimatlity trade-off and
introduces a corresponding penalty term in the objective to handle it, which further enlarges the
class of representable value functions. As for the policy-based methods, COMA (Foerster et al.,
2018) presents the counterfactual advantage to address the credit assignment issue. MADDPG (Lowe
et al., 2017) extends DDPG (Lillicrap et al., 2015) by learning centralized value functions which are
conditioned on additional global information, such as other agents’ actions. DOP (Wang et al., 2020)
introduces value decomposition into the multi-agent actor-critic framework, which enables off-policy
critic learning and addresses the centralized-decentralized mismatch issue. MAPPO (Yu et al., 2021)
generalizes PPO (Schulman et al., 2017) to multi-agent settings using a global value function.

The most relevant works are MAPPO (Yu et al., 2021), MATRPO (Li and He, 2020) and MATRL
(Wen et al., 2020). MAPPO extends PPO to multi-agent settings simply by centralizing the critics.
With additional techniques such as Value Normalization, MAPPO achieves promising performance
compared to several strong baselines. Note that our implementation is built on the one of MAPPO
(please refer to Appendix C.2 for more details).

As for MATRPO and MATRL, they both try to extend TRPO (Schulman et al., 2015a) to multi-agent
settings. MATRPO focuses on fully decentralized training, which is realized through splitting the
joint TRPO objective into N independent parts for each agent and transforming it into a consensus
optimization problem; while MATRL computes independent trust regions for each agent assuming
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that other agents’ policies are fixed, and then solves a meta-game in order to find the best response
to the predicted joint policy of other agents derived by independent trust region optimization. Dif-
ferent from our work, they adopt the settings where agents have separate local reward signals. By
comparison, CoPPO does not directly optimize the constrained objective derived in Section 3.1, but
instead incorporates the trust region constraint into the optimization objective, in order to reduce the
computational complexity and simplify the implementation. CoPPO can sufficiently take advantage
of the centralized training and enable a coordinated adaptation of step size among agents during the
policy update process.

6 Conclusion

In this paper, we extend the PPO algorithm to the multi-agent setting and propose an algorithm named
CoPPO through a theoretically-grounded derivation that ensures approximately monotonic policy
improvement. CoPPO can properly address the issues of scalability and credit assignment, which is
interpreted both theoretically and empirically. We also introduce a double clipping trick to strike the
balance between reducing variance and achieving coordination by considering other agents’ update.
Experiments on specially designed cooperative matrix games and the SMAC benchmark verify that
CoPPO outperforms several strong baselines and is competitive with the latest multi-agent methods.
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