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ABSTRACT

Dataset distillation offers a potential means to enhance data efficiency in deep
learning. Recent studies have shown its ability to counteract backdoor risks
present in original training samples. In this study, we delve into the theoretical
aspects of backdoor attacks and dataset distillation based on kernel methods. We
introduce two new theory-driven trigger pattern generation methods specialized
for dataset distillation. Following a comprehensive set of analyses and experi-
ments, we show that our optimization-based trigger design framework informs
effective backdoor attacks on dataset distillation. Notably, datasets poisoned by
our designed trigger prove resilient against conventional backdoor attack detection
and mitigation methods. Our empirical results validate that the triggers developed
using our approaches are proficient at executing resilient backdoor attacks. 1

1 INTRODUCTION

In recent years, deep neural networks have achieved significant success in many fields, such as
natural language modeling, computer vision, medical diagnosis, etc. These successes are usually
built on large-scale datasets consisting of millions or even billions of samples. Under this scale of
datasets, training a model becomes troublesome because of the need for sufficiently large memory
to store the datasets or the need for special infrastructure to train a model. To deal with this problem,
dataset distillation (Wang et al., 2018) or dataset condensation (Zhao et al., 2021) is designed to
compress the information of large datasets into a small synthetic dataset. These small datasets
generated by dataset distillation, called distilled datasets, still retain a certain degree of utility. Under
the same model (neural network) structure, the performance of the model trained on the distilled
dataset is only slightly lower than that of the model trained on the original large-scale dataset.

However, with the development of dataset distillation techniques, the related security and privacy
issues started to emerge (Liu et al., 2023a;c; Dong et al., 2022). In this paper, we focus on backdoor
attacks on dataset distillation. In particular, as each distilled sample does not have a clear connection
to the original samples, a straightforward stealthy backdoor attack is to poison a benign dataset first
and then derive the corresponding distilled poisoned dataset. One can expect that the triggers can
hardly be detected visually in the distilled poisoned dataset. However, these triggers, if not designed
properly, can be diluted during dataset distillation, making backdoor attacks ineffective.

Liu et al. (2023c) empirically demonstrate the feasibility of generating a poisoned dataset surviving
dataset distillation. In particular, Liu et al. (2023c) propose DOORPING as a distillation-resilient
backdoor. However, DOORPING suffers from two major weaknesses. First, the resiliency and opti-
mality of a backdoor against dataset distillation remain unclear, mainly due to the lack of a theoret-

1Code is available at https://github.com/Mick048/KIP-based-backdoor-attack.git.
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ical foundation for the distillation resiliency. Second, DOORPING relies on a bi-level optimization
and, as a consequence, consumes a significant amount of time to generate backdoor triggers.

To bridge this gap, this paper makes a step toward dataset distillation-resilient backdoors with a
theoretical foundation. Our contributions can be summarized as follows:

• To the best of our knowledge, we establish the first theoretical framework to characterize backdoor
effects on dataset distillation, which explains why certain backdoors survive dataset distillation.

• We propose two theory-induced backdoors, simple-trigger and relax-trigger. In particular, relax-
trigger and DOORPING share the same clean test accuracy (CTA) and attack success rate (ASR).
However, relax-trigger relies only on ordinary (single-level) optimization procedures and can be
computationally efficient.

• We experimentally show both simple-trigger and relax-trigger signify the advanced threat vector
to either completely break or weaken eight existing defenses. In particular, relax-trigger can
evade all eight existing backdoor detection and cleansing methods considered in this paper.

2 BACKGROUND AND RELATED WORKS

Dataset Distillation. Dataset distillation is a technique for compressing the information of a target
dataset into a small synthetic dataset. The explicit definition can be described as follows. Consider
the input space X ⊂ Rd, the label space Y ⊂ RC , and the distribution (x, y) ∼ D, where x ∈ X
and y ∈ Y . Suppose we are given a dataset denoted by T = {(xt, yt)}Nt=1 ∼ DN where xt ∈ X ,
yt ∈ Y , and N is the number of samples, and a synthetic dataset denoted as S = {(xs, ys)}NS

s=1
where xs ∈ X , ys ∈ Y , NS is the number of samples in S, and NS ≪ N . The synthetic dataset S∗
generated by a dataset distillation method can be formulated as

S∗ = argmin
S

L(S, T ), (1)

where L is some function to measure the information loss between S and T . There are several types
of L. One of the most straightforward ways to define L is to measure the model’s performance. In
this sense, the dataset distillation can be reformulated as

S∗ = argmin
S

1

N
ℓ(fS , T ) subject to fS = argmin

f∈H

1

NS
ℓ(f,S) + λ∥f∥2H (2)

where the model (a classifier) is denoted as f : X → Y ,H is some collection of models (hypothesis
class), ℓ is the loss function measuring the loss of model evaluated on the dataset, λ ≥ 0 is the
weight for the regularization term, and ∥∥H is some norm defined onH. Eq. (2) forms a bi-level op-
timization problem. This type of dataset distillation is categorized as performance-matching dataset
distillation in (Yu et al., 2023). For example, all of the methods from (Wang et al., 2018; Nguyen
et al., 2021; Loo et al., 2022; Zhou et al., 2022; Loo et al., 2023) are performance-matching dataset
distillation, while the methods from (Zhao & Bilen, 2023; Lee et al., 2022a; Wang et al., 2022; Zhao
et al., 2021; Lee et al., 2022b; Liu et al., 2022; 2023b; Wang et al., 2023) belong to either parameter-
preserving or distribution-preserving. In this paper, we focus only on performance-matching dataset
distillation, with a particular example on kernel inducing points (KIP) from Nguyen et al. (2021).

Reproducing Kernel Hilbert Space and KIP. In general, the inner optimization problem in
Eq. (2) does not have a closed-form solution, which not only increases the computational cost,
but also increases the difficulty of analyzing this problem. To alleviate this problem, we assume our
model lies in the reproducing kernel Hilbert space (RKHS) (Aronszajn, 1950; Berlinet & Thomas-
Agnan, 2011; Ghojogh et al., 2021).
Definition 1 (Kernel). k : X × X → R is a kerenl if the following two points hold. (a) ∀x, x′ ∈ X ,
the kernel k is symmetric; i.e., k(x, x′) = k(x′, x). (b) ∀n ∈ N, ∀{x1, x2, . . . , xn} where each xi

are sampled from X , the kernel matrix K defined as Kij := k(xi, xj) is postive semi-definite.

Definition 2 (Reproducing Kernel Hilbert Space). Given an kernel k : X × X → R, the collection
of real-valued model Hk = {f : X → R} is a reproducing kernel Hilbert space corresponding to
the kernel k, if (a) Hk is a Hilbert space corresponding to the inner product ⟨·, ·⟩Hk

, (b) ∀x ∈ X ,
k(·, x) ∈ Hk, (c) ∀x ∈ X and f ∈ Hk, f(x) = ⟨f, k(·, x)⟩Hk

(Reproducing property).
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There are several advantages to considering RKHS for solving optimization problems. One of the
most beneficial properties is that there is Representer Theorem (Kimeldorf & Wahba, 1971; Ghojogh
et al., 2021) induced by the reproducing property. In particular, consider the optimization problem:

f∗ = argmin
f∈Hk

1

N

N∑
i=1

ℓ(f(xi), yi) + λ∥f∥2Hk
, (3)

where f : X → R, yi ∈ R, λ ≥ 0 is the weight for the regularization term. The solution of the
optimization problem f∗ can be expressed as the linear combination of {k(·, xi)}Ni . Furthermore,
if we set ℓ(f, (x, y)) = ∥f(x)− y∥22, there is a closed-form expression for f∗:

f∗(x) = k(x,X)[k(X,X) +NλI]−1Y , (4)

where k(x,X) = [k(x, x1), k(x, x2), . . . , k(x, xN )], k(X,X) is an N × N matrix with
[k(X,X)]ij = k(xi, xj), and Y = [y1, y2, . . . , yN ]T . Now, we return to Eq. (2). By rewriting
the model f : X → Y ⊂ Rc as [f1, f2, · · · , f c]T , where each f i : X → R is a real-valued function
and f i is bounded in the RKHSHk, the inner optimization problem for fS in Eq. (2) can be consid-
ered as c independent optimization problems and each problem has a closed-form solution as shown
in Eq. (4). Thus, the solution of the inner optimization problem can be expressed as

fS(x)
T = k(x,XS)[k(XS ,XS) +NSλI]

−1YS , (5)

where k(x,XS) = [k(x, xs1), k(x, xs2), . . . , k(x, xsNS
)], k(XS ,XS) is a NS × NS matrix with

[k(XS ,XS)]ij = k(xsi , xsj ), and YS is a NS × c matrix with YS = [ys1 , ys2 , . . . , ysNS
]T .

Then, the dataset distillation problem can be expressed as

S∗ = argmin
S

1

N

N∑
t=1

∥fS(xt)− yt∥22, (6)

where fS(x)T = k(x,XS)[k(XS ,XS) +NSλI]
−1YS as shown in Eq. (5). We reduce a two-level

optimization problem to a one-level optimization problem using RKHS. Essentially, KIP (Nguyen
et al., 2021) can be formulated as Eq. (6).

An important problem for Eq. (6) is how to construct or select a kernel k(·, ·). Nevertheless, we do
not discuss this problem in this paper. We directly consider the neural tangent kernel (NTK) (Jacot
et al., 2018; He et al., 2020; Lee et al., 2019) induced by a three-layer neural network as the kernel
k(·, ·) to do the experiment in Section 4.

Backdoor Attack. Backdoor attack introduces some malicious behavior into the model without
degrading the model’s performance on the original task by poisoning the dataset (Gu et al., 2019;
Chen et al., 2017; Liu et al., 2018b; Turner et al., 2019; Nguyen & Tran, 2020; Barni et al., 2019;
Li et al., 2021c; Nguyen & Tran, 2021; Liu et al., 2020; Tang et al., 2021; Qi et al., 2022; Souri
et al., 2022). To be more specific, consider the following scenario. Suppose there are two types of
distributions, (xa, ya) ∼ DA and (xb, yb) ∼ DB . DA corresponds to the original normal behavior,
while DB corresponds to the malicious behavior. The goal of the backdoor attack is to construct a
poisoned dataset such that the model trained on it learns well for both the original normal distribution
DA and the malicious distribution DB . In other words, an attacker wants to construct a dataset D̃
such that the model trained on D̃, denoted fD̃, has sufficiently low risk E(xa,ya)∼DA

ℓ(fD̃, (xa, ya))
and E(xb,yb)∼DB

ℓ(fD̃, (xb, yb)) at the same time.

One approach to constructing such a dataset D̃ is to directly mix the benign dataset DA ∼ DNA

A

and the trigger dataset DB ∼ DNB

B . An attacker usually wants to make the attack stealthy, and so it
sets NB ≪ NA. We define DB according to the original normal behavior DA, the trigger T ∈ Rd,
and the trigger label yT ∈ Y:

(xb, yb) := ((1−m)⊙ xa +m⊙ T, yT ), (7)

where xa ∼ DA, m ∈ Rd is the real-valued mask, and ⊙ is the Hadamard product.
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3 PROPOSED METHODS AND THEORETICAL ANALYSIS

In this paper, we aim to use dataset distillation (KIP as a representative) to perform the backdoor at-
tack. In the simplest form of KIP-based backdoor attacks (as shown in Algorithm 1 of the Appendix),
we first construct the poisoned dataset D̃ = DA ∪DB from DNA

A and DNB

B . Then, we perform KIP
on D̃ and compress the information in D̃ into the distilled poisoned dataset S∗ = {(xs, ys)}NS

s=1,
where NS ≪ NA +NB . Namely, we solve the following optimization problem

S∗ = argmin
S

1

NA +NB

∑
(x,y)∈D̃

∥fS(x)− y∥22, (8)

where fS(x)T = k(x,XS)[k(XS ,XS)+NSλI]
−1YS . Essentially, the above KIP-based backdoor

attack is the same as Naive attack in (Liu et al., 2023c) except that the other distillation, instead of
KIP, is used in Naive attack. The experimental results in (Liu et al., 2023c) show that ASR grows
but CTA drops significantly when the trigger size increases. Liu et al. (2023c) claims a trade-off
between CTA and the trigger size. Nonetheless, we find that our KIP-based backdoor attack does
not have such a trade-off. This motivates us to develop a theoretical framework for backdoor attacks
on dataset distillation.

Below, we introduce the theoretical framework in Section 3.1, followed by two theory-induced back-
door attacks, simple-trigger and relax-trigger in Section 3.2 and Section 3.3, respectively.

3.1 THEORETICAL FRAMEWORK

We first introduce the structure of our analysis, which divides the risk of KIP-based backdoor attacks
into three parts: projection loss, conflict loss, and generalization gap. Then, we provide an upper
bound for each part of the risk.

Structure of Analysis. Recall that the goal of a KIP-based backdoor attack is to construct the
synthetic dataset S∗ such that the risk E(x,y)∼Dℓ(fS∗ , (x, y)) is sufficiently low, where D is the
normal distribution DA or the malicious distribution DB . The classical framework for analyzing
this problem is to divide the risk into two parts, the empirical risk and generalization gap. Namely,

E(x,y)∼D ℓ(fS∗ , (x, y)) = E(x,y)∼D ℓ(fS∗ , (x, y))︸ ︷︷ ︸
Empirical risk

+ [E(x,y)∼D ℓ(fS∗ , (x, y))− E(x,y)∼D ℓ(fS∗ , (x, y))]︸ ︷︷ ︸
Generalization gap

(9)

where D = {(xi, yi)}Ni=1 is the dataset sampled from the distribution DN and N is the number of
samples of D. Here, we consider that D is DA ∼ DNA or DB ∼ DNB . In our framework, we
continue to divide the empirical risk into two parts as

E(x,y)∼D ℓ(fS∗ , (x, y)) ≤ NA +NB

N
[min

S
E(x,y)∼D̃ℓ(fS , (x, fD̃(x)))︸ ︷︷ ︸

Projection Loss

+E(x,y)∼D̃ℓ(fD̃, (x, y))︸ ︷︷ ︸
Conflict Loss

]

(10)

where D̃ = DA∪DB , fD̃ is the model trained on D̃ with the weight of the regularization term λ ≥ 0
and fS is the model trained on S with the weight of the regularization term λS ≥ 0. Intuitively,
given a dataset D̃ constructed fromDNA

A andDNB

B , fD̃ is regarded as the best model derived from the
information of D̃. The conflict loss reflects the internal information conflict between the information
about DA in D̃ and the information about DB in D̃. For example, we consider a dog/cat picture
classification problem. In the dataset DA, we label the dog pictures with 0 and label the cat pictures
with 1. However, in the dataset DB , we label the dog pictures with 1 and label the cat pictures with
0. It is clear that the model trained on D̃ must perform terribly on the dataset either DA or DB . In
this case, the information between DA and DB have strong conflict and the conflict loss would be
large. On the other hand, projection loss reflects the loss of information caused by projecting fD̃
into {fS |S = {(xi, yi) ∈ X × Y}NS

i=1}. We can also consider the projection loss as the increase in
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information induced by compressing the information of D̃ into the synthetic dataset S. Take writing
an abstract for example. If we want to write a 100 words abstract to describe a 10000 words article,
the abstract may suffer some lack of semantics to some degree. Such a phenomena also happens for
dataset distillation. When the information of a large dataset is complex enough, the information loss
for dataset distillation will be significant; When the information of a large dataset is very simple, it
is possible that there is only very limited information loss. We introduce the projection loss defined
above to measure this phenomenon. More details can be found below.

Conflict Loss. In a KIP-based backdoor attack, the dataset D̃ is defined as D̃ = DA ∪DB , where
DA ∼ DNA

A and DB ∼ DNB

B . By Eq. (5) we know that the model trained on D̃ with the weight of
the regularization term λ ≥ 0 has a closed-form solution if we constrain the model in the RKHSHc

k
and suppose that ℓ(f, (x, y)) := ∥f(x)− y∥22:

fD̃(x)T = k(x,XAB)[k(XAB ,XAB) + (NA +NB)λI]
−1YAB , (11)

where (NA+NB)×d matrix XAB is the matrix corresponding to the features of D̃, (NA+NB)×c

matrix YAB is the matrix corresponding to the labels of D̃, k(x,XAB) is a 1× (NA +NB) matrix,
k(XAB ,XAB) is a (NA + NB) × (NA + NB) matrix with [k(XAB ,XAB)]ij = k(xi, xj), and
YAB is a (NA +NB)× c matrix with YAB = [y1, y2, . . . , y(NA+NB)]

T . Hence, we can express the
conflict loss Lconflict as

Lconflict =
1

NA +NB
∥YAB − k(XAB ,XAB)[k(XAB ,XAB) + (NA +NB)λI]

−1YAB∥22. (12)

We can obtain the upper bound of Lconflict as Theorem 1.
Theorem 1 (Upper bound of conflict loss). The conflict loss Lconflict can be bounded as

Lconflict ≤
1

NA +NB
Tr(I − k(XAB ,XAB)[k(XAB ,XAB) + (NA +NB)λI]

−1)2∥YAB∥22 (13)

where Tr is the trace operator, k(XAB ,XAB) is a (NA +NB)× (NA +NB) matrix, and YAB is
a (NA +NB)× c matrix.

The proof of Theorem 1 can be found in Appendix A.3. From Theorem 1, we know that the conflict
loss can be characterized by Tr(I−k(XAB ,XAB)[k(XAB ,XAB)+(NA+NB)λI]

−1). However,
in the latter sections, we do not utilize Tr(I−k(XAB ,XAB)[k(XAB ,XAB)+(NA+NB)λI]

−1)
to construct trigger pattern generalization algorithm; instead, we use Eq. (12) directly. It is because
Eq. (12) can be computed more precisely although Tr(I−k(XAB ,XAB)[k(XAB ,XAB)+(NA+
NB)λI]

−1) and Eq. (12) have similar computational cost.

Projection Loss. To derive the upper bound of the projection loss, we first derive Lemma 1.

Lemma 1 (Projection lemma). Given a synthetic dataset S = {(xs, ys)}NS
s=1, and a dataset D̃ =

{(xi, yi)}NA+NB
i=1 where (NA +NB) is the number of the samples of D̃. Suppose the kernel matrix

k(XS ,XS) is invertible, then we have

k(·, xi) = k(·,XS)k(XS ,XS)
−1

k(XS , xi)︸ ︷︷ ︸
∈HS

+ [k(·, xi) − k(·,XS)k(XS ,XS)
−1

k(XS , xi)]︸ ︷︷ ︸
∈H⊥

S

, ∀(xi, yi) ∈ D̃ (14)

whereHS := span({k(·, xs) ∈ Hk|(xs, ys) ∈ S}) andH⊥
S is the collection of functions orthogonal

to HS corresponding to the inner product ⟨·, ·⟩Hk
. Thus, k(·,XS)k(XS ,XS)

−1k(XS , xi) is the
solution of the optimization problem:

argmin
f∈HS

∑
(xs,ys)∈S

∥f(xs)− k(xs, xi)∥22. (15)

The proof of Lemma 1 can be found in Appendix A.2. Now, we turn to the scenario of the KIP-based
backdoor attack. Given a mixed dataset D̃ = DA ∪DB where DA ∼ DNA

A and DB ∼ DNB

B . We
also constrained models in the RKHS Hc

k and suppose ℓ(f, (x, y)) := ∥f(x) − y∥22. With the help
of Lemma 1, we can obtain the following theorem:
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Theorem 2 (Upper bound of projection loss). Suppose the kernel matrix of the synthetic dataset
k(XS ,XS) is invertible, fS is the model trained on the synthetic dataset S with the regularization
term λS , where the projection loss Lproject = minS E(x,y)∼D̃ℓ(fS , (x, fD̃(x))) can be bounded as

Lproject ≤
∑

(xi,yi)∈D̃

min
XS

c∑
j=1

|αi,j |2

NA +NB
∥k(XAB , xi)− k(XAB ,XS)k(XS ,XS)

−1k(XS , xi)∥22. (16)

where αi,j := [[k(XAB ,XAB) + (NA +NB)λI]
−1YAB ]i,j , which is the weight of k(·, xi) corre-

sponding to f j

D̃
, XAB is the (NA +NB)× d matrix corresponding to the features of D̃, XS is the

NS ×d matrix corresponding to the features of S, YAB is the (NA+NB)× c matrix corresponding
to the labels of D̃, YS is the NS × c matrix corresponding to the labels of S.

The proof of Theorem 2 can be found in Appendix A.4. In Theorem 2, we first characterize the
natural information loss when compressing the information of D̃ into an arbitrary dataset S , and then
bound the information loss for the synthetic dataset S∗ generated by dataset compression by taking
the minimum. This formulation gives some insight into the construction of our trigger generation
algorithm, which is discussed in the later section.

Generalization Gap. Finally, for the generalization gap, we follow the existing theoretical results
(Theorem 3.3 in (Mohri et al., 2012)), but modify them a bit. Let G = {g : (x, y) 7→ ∥f(x) −
y∥22|f ∈ Hc

k}. Assume that the distribution D is distributed in a bounded region, and that G ⊂
C1 and the norm of the gradient of g ∈ G have a common non-trivial upper bound. Namely,
∥(x, y)− (x′, y′)∥2 ≤ ΓD for any sample which is picked from D and ∥∇g∥2 ≤ LD. Then we can
obtain Theorem 3.
Theorem 3 (Upper bound of generalization gap). Given a N -sample dataset D, sampled from the
distribution D, the following generalization gap holds for all g ∈ G with probability at least 1− δ:

E(x,y)∼D[g((x, y))]−
∑

(xi,yi)∈D

g((xi, yi))

N
≤ 2R̂D(G) + 3LDΓD

√
log 2

δ

2N
, (17)

where X is the matrix of the features of D and R̂D(G) is the empirical Rademacher’s complexity.

The proof of Theorem 3 can be found in Appendix A.5. We know from Theorem 3 that the upper
bound of the generalization gap is characterized by two factors, R̂D(G) and ΓD. The lower R̂D(G)
and ΓD imply the lower generalization gap. We usually assume k(x, x) ≤ r2 and

√
⟨f, f⟩Hk

≤ Λ

(as in Theorem 6.12 of (Mohri et al., 2012)). Under this setting, we can ignore R̂D(G) for the upper
bound of the generalization gap and only focus on ΓD. ASR relates to the risk for DB and hence
corresponds to the generalization gap evaluated on DB . This theoretical consequence can be used
to explain the phenomenon that ASR of the backdoor attack increases as we enlarge the trigger size.

3.2 THEORY-INDUCED BACKDOOR: SIMPLE-TRIGGER

Consider D in Theorem 3 as DB and the corresponding dataset D as DB . Conventionally, a cell of
the mask m in Eq. (7) is 1 it corresponds to a trigger, and is 0 otherwise. Recall that the definition
of DB in Eq. (7), it is clear that the ΓDB

will monotonely decrease from ΓDA
to 0 as we enlarge the

trigger size. If we enlarge the trigger size, the ΓDB
drops to zero, which implies that the correspond-

ing generalization gap will be considerably small. Thus, the success of the large trigger pattern can
be attributed to its relatively small generalization gap.

So, given an image of size m × n (m ≤ n), simple-trigger generates a trigger of size m × n.
The default pattern for the trigger generated by simple-trigger is whole-white. In fact, since the
generalization gap is irrelevant to the trigger pattern, we do not impost any pattern restrictions.

3.3 THEORY-INDUCED BACKDOOR: RELAX-TRIGGER

In simple-trigger, we optimize the trigger through only the generalization gap. However, we know
that ASR can be determined by conflict loss, projection loss, and generalization gap because of
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Theorems 1∼3 (i.e., all are related to DB). On the other hand, CTA is related to conflict loss and
projection loss, because the generalization gap is irrelevant to CTA. That is, Eq. (17) evaluated on
DA is a constant as we modify the trigger. As a result, the lower conflict loss, projection loss, and
generalization gap imply a backdoor attack with greater ASR and CTA. Therefore, relax-trigger
aims to construct a trigger whose corresponding DB make Eq. (12), Eq. (16), and ΓDB

sufficiently
low. The computation procedures of relax-trigger can be found in Algorithm 2 of Appendix A.7.

Suppose DA, NA and NB are fixed. To reduce the bound in Eq. (12), one considers DB as a function
depending on the trigger T and then uses the optimizer to find the optimal trigger T ∗. In this sense,
we solve the following optimization problem

argmin
T

∥YAB − k(XAB ,XAB)[k(XAB ,XAB) + (NA +NB)λI]
−1YAB∥22. (18)

On the other hand, a low ΓDB
can be realized by enlarging the trigger as mentioned in Section 3.2.

Finally, to make Eq. (16) sufficiently low, we consider DB as a function of the trigger T , and then
directly optimize

argmin
T

 ∑
(xi,yi)∈D̃

min
XS

c∑
j=1

|αi,j |2∥k(XAB , xi)− k(XAB ,XS)k(XS ,XS)
−1k(XS , xi)∥22

 . (19)

However, Eq. (19) is a bi-level optimization problem that is difficult to solve. Instead, we set the
synthetic dataset S in Eq. (19) to SA, which is the distilled dataset from DA. Then, the two-level
optimization problem can be converted into a one-level optimization problem below.

argmin
T

 ∑
(xi,yi)∈D̃

c∑
j=1

|αi,j |2∥k(XAB , xi)− k(XAB ,XSA
)k(XSA

,XSA
)−1k(XSA

, xi)∥22

 .

(20)
Eq. (20) can be easily solved by directly applying optimizers like Adam (P. Kingma & Ba, 2015).
Eq. (20) aims to find a trigger T such that D̃ generated from DA and DB will be compressed into
the neighborhood of SA ⊂ (X × Y)NS , which guarantees that CTA of the model trained on the
distilled D̃ is similar to CTA of the model trained on the distilled DA. Overall, relax-trigger solves
the following optimization,

argmin
T
{

∑
(xi,yi)∈D̃

c∑
j=1

|αi,j |2∥k(XAB , xi)− k(XAB ,XSA
)k(XSA

,XSA
)−1k(XSA

, xi)∥22

+ ρ∥YAB − k(XAB ,XAB)[k(XAB ,XAB) + (NA +NB)λI]
−1YAB∥22}, (21)

where ρ > 0 is the penalty parameter, m is the previously chosen mask, the malicious dataset is
defined as DB = {(xb, yb) = ((1−m)⊙ xa +m⊙ T, yT )|(xa, ya) ∈ DA}. We particularly note
that Eq. (19) is converted into Eq. (20) because we use SA to replace the minimization over S.

relax-trigger is different from DOORPING in (Liu et al., 2023c). DOORPING generates the trigger
during the process of sample compression. In other words, DOORPING is induced by solving a bi-
level optimization problem. However, relax-trigger is induced by a one-level optimization problem
(Eq. (21)). The design rationale of relax-trigger is different from DOORPING. DOORPING aims
to find the globally best trigger but consumes a significant amount of computation time. On the
other hand, through our theoretical framework, relax-trigger aims to find the trigger that reliably
compresses the corresponding D̃ into the neighborhood of our SA with the benefit of time efficiency.

4 EVALUATION

4.1 EXPERIMENTAL SETTING

Dataset. Two datasets are chosen for measuring the backdoor performance.

• CIFAR-10 is a 10-class dataset with 6000 32× 32 color images per class. CIFAR-10 is split into
50000 training images and 10000 testing images.

• GTSRB contains 43 classes of traffic signs with 39270 images, which are split into 26640 training
images and 12630 testing images. We resize all images to 32× 32 color images.
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Dataset Distillation and Backdoor Attack. We use KIP (Nguyen et al., 2021) to implement
backdoor attacks with the neural tangent kernel (NTK) induced by a 3-layer neural network, which
has the same structure in the Colab notebook of (Nguyen et al., 2021). We also set the optimizer to
Adam (P. Kingma & Ba, 2015), the learning rate to 0.01, and the batch size to 10× number of class
for each dataset. We run KIP with 1000 training steps to generate a distilled dataset. We perform 3
independent runs for each KIP-based backdoor attack to examine the performance.

Evaluation Metrics. We consider two metrics, clean test accuracy (CTA) and attack success rate
(ASR). Consider S as a distilled dataset from the KIP-based backdoor attack. CTA is defined as the
test accuracy of the model trained on S and evaluated on the normal (clean) test dataset, while ASR
is defined as the test accuracy of the model trained on S and evaluated on the trigger test dataset.

Defense for Backdoor Attack. In this paper we consider eight existing defenses, SCAn (Tang
et al., 2021), AC (Chen et al., 2018), SS (Tran et al., 2018), Strip (modified as a poison cleaner)
(Gao et al., 2019), ABL (Li et al., 2021a), NAD (Li et al., 2021b), STRIP (backdoor input filter)
(Gao et al., 2019), FP (Liu et al., 2018a), to investigate the ability to defend against KIP-based
backdoor attack. The implementation of the above defenses is from the backdoor-toolbox2.

4.2 EXPERIMENTAL RESULTS

Performance of simple-trigger. We performed a series of experiments to demonstrate the ef-
fectiveness of simple-trigger. In our setting, NS is set to 10 × number of classes and 50 ×
number of classes for each dataset. We also configurated the trigger as 2× 2, 4× 4, 8× 8, 16× 16,
32 × 32 white square patterns. The corresponding results are shown in Table 1. The experiment
results suggest that CTA and ASR of simple-trigger increase as we enlarge the trigger size, which
is consistent with our theoretical analysis (Theorem 3). One can see that for the 32×32 white square
trigger, ASR can achieve 100% without sacrificing CTA.

Data. (Size)\Trig. None 2× 2 4× 4 8× 8 16× 16 32× 32
CTA (%) CTA (%) ASR (%) CTA (%) ASR (%) CTA (%) ASR (%) CTA (%) ASR (%) CTA (%) ASR (%)

CIFAR-10 (100) 42.55 (0.13) 41.78 (0.22) 65.73 (0.80) 41.53 (0.31) 90.59 (0.22) 41.46 (0.32) 98.29 (0.18) 41.55 (0.43) 99.94 (0.05) 41.70 (0.25) 100.00 (0.00)
CIFAR-10 (500) 44.52 (0.23) 43.89 (0.13) 82.36 (0.39) 43.85 (0.23) 92.89 (0.16) 43.60 (0.23) 98.19 (0.16) 43.70 (0.40) 99.88 (0.07) 43.66 (0.40) 100.00 (0.00)
GTSRB (430) 69.27 (0.19) 67.06 (0.74) 74.14 (0.50) 67.01 (0.69) 81.46 (0.37) 66.98 (0.64) 89.63 (0.58) 67.10 (0.63) 98.43 (0.13) 67.56 (0.60) 100.00 (0.00)

GTSRB (2150) 72.07 (0.20) 70.87 (0.27) 76.79 (1.08) 70.90 (0.25) 81.93 (0.62) 70.92 (0.31) 90.48 (0.74) 70.98 (0.22) 98.89 (0.17) 71.27 (0.24) 100.00 (0.00)

Table 1: Performance of simple-trigger on CIFAR-10 and GTSRB (mean and standard deviation).

Performance of relax-trigger. Here, we relax the setting of the mask m; i.e., each component of
m is defined to be 0.3, instead of 1. This can be regarded as an increase in the trigger’s transparency
(the level of invisibility) for mixing an image and the trigger. Recall the definition of DB in (Eq. 7).
From theory point of view, under such a mask m, ΓDB

will drop to 0.3 ∗ ΓDA
> 0, as we enlarge

the trigger. Hence, we cannot reduce the generalization gap considerably as in the experiments of
simple-trigger. It turns out that to derive better CTA and ASR, we resort to consider relax-trigger.

The result is presented in Table 2. We compare the performance (CTA and ASR) between simple-
trigger (32 × 32 white square), DOORPING and relax-trigger. For CIFAR-10, relax-trigger in-
creases the ASR about 24% from simple-trigger without losing CTA. For GTSRB, relax-trigger
not only increases the ASR about 30%, but also slightly increases the CTA. On the other hand,
relax-trigger possesses higher CTA and ASR compared to DOORPING. These results confirm the
effectiveness of relax-trigger. The trigger patterns of relax-trigger are visualized in Figure 1.

Dataset Size\Trig. simple-trigger (baseline) relax-trigger DOORPING
CTA (%) ASR (%) CTA (%) ASR (%) CTA (%) ASR (%)

CIFAR-10 100 41.40 (0.06) 75.92 (1.19) 41.66 (0.74) 100.00 (0.00) 36.35 (0.42) 80.00 (40.00)
CIFAR-10 500 42.98 (0.13) 75.79 (0.58) 43.64 (0.40) 100.00 (0.00)
GTSRB 430 67.02 (0.07) 62.74 (0.23) 68.73 (0.67) 95.26 (0.54) 68.03 (0.92) 90.00 (30.00)
GTSRB 2150 70.28 (0.07) 62.65 (1.12) 71.54 (0.33) 95.08 (0.33)

Table 2: Performance of relax-trigger on CIFAR-10 and GTSRB (mean and standard deviation).

Off-the-shelf Backdoor Defenses. We examine whether simple-trigger and relax-trigger can
survive backdoor detection and cleansing. Here, we utilize backdoor-toolbox and retrain the dis-
tilled dataset on ResNet (default setting in backdoor-toolbox) to compute CTA and ASR. In our
experimental results, the term “None” denotes no defense.

2Available at https://github.com/vtu81/backdoor-toolbox.
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(a) CIFAR10 (size 100) (b) CIFAR10 (size 500) (c) GTSRB (size 430) (d) GTSRB (size 2150)

Figure 1: Triggers generated by relax-trigger for GTSRB and CIFAR.
Trig.\Def. None SCAn AC SS Strip

CTA (%) ASR (%) CTA (%) ASR (%) CTA (%) ASR (%) CTA (%) ASR (%) CTA (%) ASR (%)
2× 2 23.18 (1.24) 13.98 (8.36) 24.39 (2.23) 18.17 (2.74) 23.84 (1.12) 10.57 (3.52) 22.60 (1.62) 11.64 (1.42) 25.08 (0.48) 12.79 (5.25)
4× 4 23.18 (1.40) 25.26 (9.67) 24.67 (0.97) 15.73 (3.69) % 24.37 (1.29) 14.00 (5.84) 21.98 (3.30) 10.81 (2.44) 24.28 (0.39) 17.68 (5.47)
8× 8 25.69 (1.06) 13.35 (5.38) 26.40 (0.11) 14.08 (3.72) 23.24 (1.96) 9.19 (5.53) 21.49 (1.77) 7.10 (4.61) 25.13 (0.74) 12.09 (5.52)
16× 16 25.90 (5.76) 81.29 (2.96) 26.39 (2.96) 49.66 (9.66) 25.85 (1.57) 55.26 (10.94) 24.03 (1.66) 40.03 (27.29) 26.22 (0.75) 41.36 (40.18)
32× 32 28.95 (1.56) 100.00 (0.00) 28.28 (1.45) 66.67 (47.14) 25.35 (2.05) 66.67 (47.14) 22.21 (1.02) 66.67 (47.14) 25.68 (2.04) 0.00 (0.00)

Trig.\Def. ABL NAD STRIP FP
CTA (%) ASR (%) CTA (%) ASR (%) CTA (%) ASR (%) CTA (%) ASR (%)

2× 2 13.31 (2.43) 1.38 (1.14) 31.74 (1.90) 5.45 (0.78) 20.91 (1.07) 12.63 (7.61) 13.05 (1.33) 21.85 (30.90)
4× 4 13.12 (2.04) 13.46 (13.00) 30.87 (3.23) 7.86 (4.36) 20.95 (1.15) 19.08 (4.01) 13.11 (1.43) 73.25 (12.25)
8× 8 14.10 (0.47) 24.92 (34.63) 33.05 (1.04) 10.82 (5.21) 23.07 (1.01) 11.84 (4.84) 15.27 (1.77) 2.81 (0.66)
16× 16 14.56 (2.67) 35.47 (36.63) 32.77 (1.66) 22.25 (4.21) 23.35 (0.30) 66.53 (10.35) 15.54 (0.21) 22.94 (32.37)
32× 32 16.25 (4.23) 33.33 (47.14) 33.22 (3.78) 100.00 (0.00) 26.03 (1.33) 0.00 (0.00) 18.15 (1.38) 0.00 (0.00)

Table 3: Defenses for simple-trigger on CIFAR-10 with distilled dataset size = 100.

For simple-trigger, we find that both CTA and ASR of None increase as we enlarge the trigger size.
Moreover, both CTA and ASR of None increase as we enlarge the size of the distilled dataset. The
above implies that simple-trigger is more suitable for large-size distilled datasets. Since the CTA
and ASR increase as we enlarge the trigger, we focus on 32 × 32 trigger images in the following
discussion. In the case of CIFAR-10, for size 100 (see Table 3), we can find that ASR of NAD
is still 1. That is, NAD fails to remove the backdoor. For the other defenses, the CTA drops over
7%, though they can reduce the ASR. Hence, we conclude that these defenses are not effective. For
size 500 (see Table 5 in Appendix A.8), the ASR of SCAn is still 1, implying that SCAn fails to
remove the backdoor. The other defenses, SS, Strip, ABL, STRIP, and FP considerably compromise
the CTA. Overall, the above results also suggest that the defenses may be more successful when we
increase the size of the distilled dataset. On the other hand, for GTSRB (see Tabel 6 and Table 7 in
Appendix A.8), we also reach a similar conclusion.

For relax-trigger (see Table 8 in Appendix A.8), all defenses considered in this paper cannot effec-
tively remove the backdoor. In particular, in the case of CIFAR-10, for size 100, SCAn, AC, Strip,
and ABL do not reduce the ASR. They even increase ASR to some degree. On the other hand, SS,
STRIP, and FP also compromise the CTA too much. Lastly, though NAD reaches a better defense
result; however, the corresponding ASR still remains about 50% of None’s ASR. Essentially, this
suggests that NAD cannot completely defend against relax-trigger. For the other defenses, the ASR
still remains over 30% of None’s ASR. These defenses are ineffective against relax-trigger.

In the case of GTSRB, for size 430, we can also find that SCAn, NAD, and STRIP cannot success-
fully remove the backdoor. The ASR still remains over 70% of None’s ASR. Besides, we can find
that AC, SS, Stip, ABL, and FP still compromise the CTA too much. Finally, for size 2150, AC,
Strip, NAD, and STRIP still remain ASR over 50% of None’s ASR. Furthermore, SCAn, ABL, and
FP even increase the ASR. In addition, SS decreases the CTA by about 45% of None’s CTA. To sum
up, relax-trigger shows strong backdoor resiliency against all the tested defenses.

5 CONCLUSION

In this paper, we present a novel theoretical framework based on the kernel inducing points (KIP)
method to study the interplay between backdoor attacks and dataset distillation. The backdoor ef-
fect is characterized by three key components: conflict loss, projection loss, and generalization
gap, along with two theory-induced attacks, simple-trigger and relax-trigger. Our simple-trigger
proves that enlarged trigger size leads to improved ASR without sacrificing CTA. Our relax-trigger
presents a new and resilient backdoor attack scheme that either completely breaks or significantly
weakens eight existing backdoor defense methods. Our study provides novel theoretical insights,
unveils new risks of dataset distillation-based backdoor attacks, and calls for better defenses.
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