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Abstract

Domain adaptation has the potential to overcome the expensive or even infeasible la-
beling of target data by transferring knowledge from a labeled source domain. In this
work, we address domain adaptation in the context of point cloud-based 3D human pose
estimation, whose clinical applicability is severely limited by a lack of labeled training
data. Unlike the mainstream approach of domain-invariant feature learning, we propose
to guide the learning process in the target domain through weak supervision, based on
prior knowledge about human anatomy. We embed this prior knowledge into a novel loss
function that encourages network predictions to match the statistics of an anatomically
plausible skeleton. Specifically, we formulate three loss functions that penalize asymmet-
ric limb lengths, implausible joint angles, and implausible bone lengths. We evaluate
the method on a public lying pose dataset (SLP), adapting from uncovered patients in
the source to covered patients in the target domain. Our method outperforms diverse
state-of-the-art domain adaptation techniques and improves the baseline model by 26%
while reducing the gap to a fully supervised model by 54%. Source code is available at
https://github.com/multimodallearning/da-3dhpe-anatomy.
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1. Introduction

3D human pose estimation has diverse clinical applications, such as patient monitoring
(Chen et al., 2018) or context-aware assistance systems in the operating room (Hansen
et al., 2019). As for most other vision tasks, deep learning-based methods have substan-
tially advanced the state of the art for human pose estimation (Chen et al., 2020). Strong
performance, however, is closely tied to the availability of large-scale annotated datasets
(Ionescu et al., 2013). While the annotation of 3D poses is generally laborious, it is even
more problematic in a clinical setting. In the context of patient monitoring, for instance, not
only is the privacy of patients to be respected, but occlusions of the patients by a blanket
make accurate annotations nearly impossible. We address the first of the two issues by using
point cloud data, which is not only anonymity-preserving (Silas et al., 2015) but also consti-
tutes a natural modality for 3D pose estimation as it inherently preserves the 3D structure
of the scene. Regarding the second issue, the focus of this work, domain adaptation (Wang
and Deng, 2018) has the potential to overcome the lack of labeled target data by adapting
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a model from a source domain where rich annotations are available. Altogether, efficient
domain adaptation for point cloud-based 3D human pose estimation is thus an important
task to advance clinical monitoring systems.

A popular approach for domain adaptation couples supervised task learning in the source
domain with the learning of domain-invariant source and target features, realized by dis-
crepancy minimization (Tzeng et al., 2014), adversarial learning (Ganin and Lempitsky,
2015; Tzeng et al., 2017), or reconstruction (Bousmalis et al., 2016; Ghifary et al., 2016).
This procedure, however, has the weakness that target features are not optimized for the
actual task, and domain invariance does not necessarily induce task relevance (Saito et al.,
2018). Further, such approaches usually align global feature vectors, which can be insuffi-
cient if solving the task requires the detection of patterns at multiple scales, as is the case
for semantic segmentation or 3D pose estimation (Tsai et al., 2018).

Therefore, in the spirit of output space adaptation (Tsai et al., 2018), we aim to supervise
the learning process directly in the output space of the target domain. While previous work
accomplished this by adversarial learning (Yang et al., 2018), we draw inspiration from
recent work on unsupervised pose estimation that embeds prior anatomical knowledge into
a deformable shape template (Schmidtke et al., 2021). We also leverage such general domain-
independent prior knowledge about human anatomy, but our key idea is to use it as a source
of weak supervision in the absence of labels. Specifically, we propose to guide the learning
process in the target domain by imposing explicit anatomical constraints on the output space
such that network predictions represent anatomically plausible skeletons (Fig. 1). To this
end, we formulate three loss terms that penalize asymmetric limb lengths, implausible bone
lengths, and implausible joint angles. These losses are jointly minimized with the supervised
task loss in the source domain to ensure that predictions are both anatomically plausible
and consistent with the observed input. Thus, our method is compatible with arbitrary
model architectures and keeps the adaptation procedure simple. It can be optimized by a
single forward-backward pass and does not involve adversarial optimization (Yang et al.,
2018), multi-step optimization (Saito et al., 2018), or additional network modules (Tzeng
et al., 2017; Bousmalis et al., 2016). In summary, the main contributions of this work are:

• We address domain adaptation in the context of 3D human pose estimation by im-
posing anatomical constraints on the output space of the target domain.

• We formulate three loss functions that penalize asymmetric limb lengths, implausible
bone lengths, and implausible joint angles.

• We evaluate the method on the SLP dataset (Liu et al., 2020), adapting from uncov-
ered patients in the source to covered patients in the target domain, and demonstrate
that our method is superior to a comprehensive set of state-of-the-art domain adap-
tation methods, which we adapted to the given problem.

2. Related work

Our method is conceptually related to the alignment of output distributions. Tsai et al.
(2018) proposed this technique for semantic segmentation, where the distributions of pre-
dicted source and target segmentation masks are aligned by training the segmentation
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network in an adversarial manner against a discriminator. Yang et al. (2018) and Zhang
et al. (2020) introduced a similar idea for 3D human pose estimation and trained a dis-
criminator to differentiate between predicted and ground truth skeletons. In a different
approach, applied to keypoint estimation of 3D objects, Zhou et al. (2018) regularize pre-
dictions in the target domain by minimizing the Chamfer distance to ground truth labels
from the source domain. Unlike these approaches, we implement output space adaptation
by embedding explicit anatomical constraints in the loss function. Technically, this is re-
lated to the concept of constrained loss functions for medical image segmentation, which
was introduced by Kervadec et al. (2019) in the context of weakly supervised learning and
transferred to domain adaptation by Bateson et al. (2019). The employed size losses, how-
ever, are not applicable to the pose estimation problem, which requires its own constraints
and a specifically tailored loss function. Further adaptation techniques that apply supervi-
sion in the output space of the target domain include self-ensembling (French et al., 2017)
and self-training with pseudo labels (Zou et al., 2018), which were applied to 2D clinician
pose estimation (Srivastav et al., 2021) and 2D animal pose estimation (Mu et al., 2020;
Li and Lee, 2021), respectively. None of these works incorporate explicit prior knowledge
about human anatomy. Explicit anatomical loss functions were used by Sun et al. (2017)
and Cao and Zhao (2020) who propose a bone loss and a symmetry loss, respectively.
However, they consider a supervised setting, where accurate labels alongside precise bone
lengths are known. This differs from the unsupervised setting in our work, which requires
the formulation of weaker constraints and a different optimization procedure.

Although not our primary methodological focus, we briefly discuss deep learning on
irregular 3D point clouds. The seminal PointNet (Qi et al., 2017a) extracts point-wise
spatial embeddings and aggregates them by max-pooling. Various follow-up works proposed
hierarchical grouping (Qi et al., 2017b) and generic convolutions (Li et al., 2018; Liu et al.,
2019; Wang et al., 2019; Wu et al., 2019; Xu et al., 2021) to incorporate local geometric
structure. Among these works, we adapt DGCNN (Wang et al., 2019), based on dynamic
graph convolutions, as our point cloud-based pose estimator.

3. Methods

We address unsupervised domain adaptation in the context of point cloud-based 3D human
pose estimation. Following the classical setting, training data comprises a labeled source
dataset S and an unlabeled target dataset T . The source dataset S consists of pairs
(Xs,Y s) of 3D point clouds Xs ∈ RN×3 and corresponding labels Y s ∈ RK×3, which
represent the 3D ground truth coordinates of K joints of interest. The target dataset T
contains 3D point clouds Xt without any labels. Given the training data, the goal is to
learn a function f with parameters θf that estimates 3D joints as Ŷ = f(X;θf ) and that
achieves the optimal performance on the target domain at test time.

An overview of our proposed method to solve the problem is shown in Fig. 1. We learn
the function f by minimizing the joint loss function

L(θf ;S, T ) = Ltask(θf ;S) + λLanat(θf ; T ) (1)

which is composed of a task loss Ltask and an anatomical loss Lanat, weighted by the
factor λ. The task loss Ltask =

∑
k ∥ŷk − yk∥1/K is implemented as a standard L1-
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Editors: Under Review for MIDL 2022

Abstract

This is a great paper and it has a concise abstract.

Keywords: Domain adaptation, 3D pose estimation, anatomical constraint, prior knowl-
edge, point clouds.

1. Introduction

Lsym + Lbone + Langle (1)

2. Introduction

Lanat (2)

© 2022 A. Bigalke & M.P. Heinrich.

Proceedings of Machine Learning Research – Under Review:1–1, 2022 Full Paper – MIDL 2022 submission

Domain adaptive 3d patient monitoring through anatomical
constraints

Alexander Bigalke alexander.bigalke@uni-luebeck.de

Mattias P. Heinrich mattias.heinrich@uni-luebeck.de

Institute of Medical Informatics, University of Lübeck
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Figure 1: Overview of our method. While minimizing a supervised task loss on source data,
we jointly constrain target predictions to match prior knowledge about human
anatomy. This is implemented by an anatomical loss that penalizes asymmetric
limb lengths, implausible bone lengths and implausible joint angles. Color images
are not used in our framework and are only shown for better visualization.

loss and supervises the learning process in the labeled source domain. The anatomical
loss is computed on target data and penalizes implausible predictions that violate certain
anatomical constraints, provided in the form of prior knowledge about human anatomy.
That way, the anatomical loss guides the learning process in the target domain by weak
supervision in the output space and encourages the learning of meaningful task-relevant
features in this domain. Thus, the anatomical loss is the crucial domain-adaptive component
of our method and its careful design is critical.

3.1. Weak supervision through anatomical constraints

The anatomical loss is supposed to penalize implausible predictions. The essential question
is how to measure anatomical plausibility or—in other words—what form of prior anatomical
knowledge to embed in the loss function. Considering human joints as the nodes of the
human skeleton graph, we identify three measurable properties of the skeleton that can be
associated with anatomical plausibility and readily be embedded in a loss function.

1. Human limbs usually have symmetric lengths. Therefore, we penalize predictions with

asymmetric limb lengths by a symmetry loss Lsym. Let B = {bi}Nβ

i=1 denote the set
of all bone vectors bi ∈ R3 that connect two joints in a predicted skeleton graph Ŷ .
Let further Bλ ⊂ B denote the subset of Nλ bones bλi of the left body side that have a
counterpart bρi ∈ Bρ on the right body side. In practice, that includes arms and legs.
The symmetry loss is then defined as

Lsym =
1

Nλ

Nλ∑
i=1

∣∣∣∥bλi ∥2 − ∥bρi ∥2
∣∣∣ (2)
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2. Bones bi of the human body have typical lengths, which can be constrained by bone-
specific upper and lower bounds uβ

i and lβi . Predictions with bone lengths outside this
range are penalized by the bone loss

Lbone =
1

Nβ

Nβ∑
i=1

ℓ(∥bi∥2; lβi , u
β
i ) with ℓ(x; l, u) =


|x− l| x < l

|x− u| x > u

0 l < x < u

(3)

Here, uβ

i and lβi can be inferred from the training set or an anatomical textbook.

3. Human joints cannot freely rotate by 360 degrees but have a joint-specific limited
range of angles that can be taken. In other words, the scalar product between two
(normalized) bone vectors bi, bj that are connected by a joint is constrained by upper
and lower bounds uα

ij and lαij . We impose this constraint by minimizing an angle loss
Langle. Let Bζ = {(bi, bj)} be the set of all Nζ pairs of bone vectors that are connected
by a joint. We then define the angle loss as

Langle =
1

Nζ

∑
(bi,bj)∈Bζ

ℓ

(
bi

∥bi∥2
· bj
∥bj∥2

; lαij , u
α
ij

)
(4)

with ℓ(x; l, u) as in (3). Again, upper and lower bounds uαij and lαij can be inferred
from the training set or an anatomical textbook.

Altogether, we define the anatomical loss function as

Lanat = Lsym + Lbone + Langle (5)

3.2. Optimization

When minimizing the overall loss (1) over all model parameters jointly, we observed that
the model tends to learn two distinct functions that separately minimize the loss functions
of the two domains. This lead to a mode collapse in the target domain, where the model
predicted an anatomically plausible but input-independent fixed pose. To prevent this, we
reduce the effective model capacity during optimization in the target domain and focus on
learning the feature extractor. We split the function f in a feature extractor g and network
heads h (both shared among domains), i.e. f(X;θf ) = h(g(X;θg);θh), and minimize the
anatomical loss on the target domain only with respect to θg while keeping θh fixed:

θ∗
g = min

θg

Ltask + λLanat, θ∗
h = min

θh

Ltask (6)

3.3. Point cloud-based 3D pose estimation

While our formulation is agnostic to the specific implementation of the function f , we realize
point cloud-based 3D pose estimation as follows. Given an input point cloud X ∈ RN×3,
we estimate the associated 3D pose Ŷ ∈ RK×3 as a weighted sum over the N input points
xi ∈ R3. For this purpose, we design f to output a stack of K softmax-normalized weight
maps W = f(X;θf ) ∈ RN×K over the input points. The k-th predicted joint is then given

by ŷk =
∑N

i=1 xi · wik. In our work, we implement f as the segmentation architecture of
DGCNN (Wang et al., 2019) with 40 neighbors in the knn-graph. We split the network into
g and h after the last encoding layer (conv6).

5



Bigalke Hansen Diesel Heinrich

4. Experimental setup

Dataset. We evaluate our method on the SLP dataset (Liu and Ostadabbas, 2019; Liu
et al., 2020), which shows human subjects lying in bed, simulating the use case of patient
monitoring. The dataset comprises single-view depth frames of 109 subjects. Each subject
takes 45 poses in supine and lateral (left, right) positions. For each pose, the subjects do
not move until three frames with varying cover conditions (no cover, thin cover ∼1mm,
thick cover ∼3mm) are taken. That way, ground truth poses annotated on frames without
a cover are also valid for frames with cover. While the original dataset includes 2D joints,
Clever et al. (2021) provided the 24 joints of the SMPL model (Loper et al., 2015) as 3D
ground truth for the first 102 subjects. We restrict our experiments to these subjects. The
first 70 subjects are used for training, subjects 71-80 for validation, and subjects 81-102
for testing. As a pre-processing step, we transform depth frames to point clouds. To this
end, we first use depth thresholding to detect the pixels belonging to patient and bed and
subsequently lift these pixels to 3D space using the internal camera parameters.

Adaptation scenario. We consider uncovered subjects as the labeled source domain and
covered subjects as the unlabeled target domain. Thus, the domain shift consists in the
occlusion of the subject by a cover. The scenario is relevant in practical applications because
the annotation of uncovered subjects is viable while it is infeasible for covered patients in
practice. For our experiments, we randomly divide the training data by subject into three
splits with 30, 20, and 20 subjects. For each split, we use only one cover condition—uncover,
thin cover, and thick cover, respectively—while the remaining data is discarded. This yields
30 subjects as the source domain and 40 subjects as the target domain. For validation and
test set, we use both the thin and the thick cover for all frames of all subjects. Final results
are reported on the test set in form of the mean per joint position error (MPJPE).

Implementation details. We implement our framework in PyTorch and optimize model
parameters with the Adam optimizer. To prevent noisy gradients from Lanat at early epochs,
we pretrain our model on source data for 15 epochs with a learning rate of 0.001. Next, using
mixed batches of half source and half target data, we optimize for the joint loss function
(1) with λ = 0.1 for 100 epochs with an initial learning rate of 0.001, which is divided by 10
at epochs 60 and 90. For regularization, we use a weight decay of 1e-5 and augment input
point clouds by random translation, rotation and subsampling to 2048 points. Upper/lower
bounds uα

ij , u
β

i / lαij , l
β

i are set to the max/min values from the training set.

Baselines. As lower and upper bound, we train our model on labeled source data and
labeled target data, respectively, without any adaptation techniques. Moreover, we adapt
diverse state-of-the-art domain adaptation techniques. 1) From the area of domain-invariant
feature learning, we select MMD (Tzeng et al., 2014) and DANN (Ganin and Lempitsky,
2015) and apply them to the global feature vector after conv6 in the DGCNN. 2) Domain
adaptation through self-supervision: a) We adapt deformation-reconstruction (DefRec) by
Achituve et al. (2021). b) We predict the displacement vector between two sampled patches
of the input cloud, which is similar to the auxiliary task proposed by Doersch et al. (2015).
3) From the field of self-training with noisy pseudo labels, we apply consistency-constrained
semi-supervised learning by Mu et al. (2020). 4) As for self-ensembling, we adapt the
teacher-student approach by French et al. (2017). 5) We adapt the optimization strategy of
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maximum classifier discrepancy (MCD) by Saito et al. (2018). Since step B of their method
lead to divergence in our case, we discarded this step. 6) We realize adversarial output space
adaptation (Yang et al., 2018) by training a discriminator to distinguish predicted skeletons
in the target domain from ground truth skeletons in the source domain. Technically, this
baseline is closest to our method, and the discriminator could—in theory—learn to penalize
implausible predictions in a similar way as our anatomical loss. For all baseline models and
our method, hyper-parameters are optimized on the validation set of the target domain.

5. Results

Quantitative results of our experiments are shown in Tab. 1, and qualitative results are
presented in App. A.1. First, we note that the source-only baseline1 performs clearly worse
than the target-only model, increasing the MPJPE by 93%. This underlines the severity of
the domain gap and confirms the need for effective adaptation techniques to close the gap.

Second, the results show that our method successfully addresses the problem. Each
of the loss functions Lsym, Langle and Lbone alone already reduces the mean error from
130.4mm to 105.9mm, 106.7mm and 102.9mm, respectively. Aggregating them in the
joint loss Lanat further reduces the error to 96.6mm. Overall, this corresponds to a relative
improvement of 26% while the gap between source-only and target-only model is reduced by
54%. Regarding specific joints, the improvement by our method is particularly notable for
foot, knee, elbow, and hand joints, amounting to 32.6, 45.9, 55.7, and 84.8mm, respectively.

Third, we compare our method to state-of-the-art domain adaptation techniques. Our
method outperforms all competing methods and achieves the lowest average error. The
improvement over all competitors is statistically significant (p < 0.01) as confirmed by a
Wilcoxon signed-rank test. Notably, our method surpasses adversarial output adaptation,
highlighting the efficacy of explicit constraints as opposed to adversarial optimization.

In an additional experiment, we combine our method with the best competing ap-
proaches, namely MCD, self-ensembling, DANN, and self-training—see App. A.2, Tab. 2
for detailed results. These combinations achieve an MPJPE of 95.7mm, 92.3mm, 95.1mm,
and 94.5mm, respectively, and thus consistently surpass the performance of the individual
methods. This demonstrates the versatility of our approach. Finally, we provide an ablation
study on the choice of loss functions (2), (3), and (4) in App. A.3.

6. Conclusion

We tackled domain adaptation for 3D human pose estimation by imposing anatomical
constraints on target predictions. Our experiments showed that our anatomical loss function
effectively guides the learning process in the target domain and constitutes a powerful form
of weak supervision in the absence of labels. For patient monitoring on the SLP dataset, our
method surpassed diverse competing methods while favoring anatomically plausible pose
estimates. Quantitatively, our work improved the mean error of pose estimates by 26% from
13 cm to less than 10 cm, which can advance the reliability of clinical monitoring systems.

While these are promising results, they apply to healthy subjects fulfilling our anatom-
ical constraints. By contrast, patients in the clinic may violate the constraints due to

1. The source-only model is already far better than using a mean pose as an estimate (MPJPE=185.8mm).
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Table 1: Results for uncover→cover adaptation on the SLP dataset. We compare the
MPJPE [mm] of our method to the baselines. Results are averaged over thin
and thick cover as the scores are almost identical.

Method Feet Knees Hips Core Head Shoul Elb Hands Mean

source-only 174.1 148.1 74.5 56.5 34.8 65.7 168.2 273.2 130.4
target-only 86.4 64.8 36.7 31.6 29.4 42.3 80.6 140.0 67.7

MMD 164.6 124.6 68.5 56.9 35.3 62.8 177.1 243.0 121.7
DANN 168.8 114.5 60.9 50.3 33.3 55.0 144.8 218.8 111.6
DefRec 161.0 130.6 68.1 51.4 34.5 63.6 175.3 255.0 122.6
displacement 168.4 122.7 65.7 51.0 33.9 59.9 165.1 258.4 121.9
output adapt. 181.4 128.6 62.9 47.1 35.5 59.3 136.8 207.9 112.9
self-training 144.9 134.1 71.7 54.9 33.6 59.7 145.4 222.3 112.4
MCD 151.8 116.8 63.7 52.6 33.6 53.1 120.4 171.4 99.4
self-ensembling 155.9 109.8 73.6 57.4 35.0 56.1 118.6 175.9 102.3

ours, Lsym only 148.6 116.1 66.2 53.1 33.4 53.6 140.7 201.7 105.9
ours, Langle only 155.9 118.2 64.3 52.2 34.5 58.5 134.3 198.1 106.7
ours, Lbone only 144.3 107.9 60.5 51.0 32.4 52.2 128.9 205.0 102.9
ours 141.5 102.2 56.0 47.2 33.3 50.4 112.5 188.4 96.6

pathological abnormalities (asymmetric/deformed limbs) or extreme body dimensions. The
used symmetry and bone losses could severely impair pose estimates of such patients. How-
ever, our method offers sufficient flexibility to prevent such problems by carefully adapting
the constraints. The hard symmetry constraint can be relaxed to a soft inequality con-
straint (|∥bλi ∥2 − ∥bρi ∥2| < δ), and the bounds of the bone loss can be set according to the
expected target population. Another open clinical problem is the detection of missing limbs,
which could either be approached in an uncertainty-driven manner or by formulating pose
estimation as an object detection problem (McNally et al., 2021). Finally, clinical settings
include domain shifts beyond the treated occlusion problem (e.g. a different bed or a varying
camera perspective). While the formulation of our method is agnostic to the specific shift,
its effectiveness under such settings needs to be verified in future experiments.

As a methodical outlook, we believe that the potential of anatomical priors is not fully
exploited yet. First, our formulation of the angle loss still permits implausible poses be-
cause 1) joints are considered in isolation, 2) the scalar product cannot uniquely represent
the space of 3D rotations. The incorporation of a kinematic model could overcome these
shortcomings. Second, instead of providing prior anatomical knowledge in form of a loss,
the underlying constraints could be embedded into the network architecture, preventing
implausible predictions by design. This could improve model robustness and domain gen-
eralization. Third, in practice, the approximate bone lengths of a subject might be a priori
known at test time (e.g. from a previous highly confident estimate). While this should
simplify the pose estimation, it is an open question of how to exploit this knowledge in
an uncertainty-aware manner. In summary, our work thus demonstrates the merit of effi-
ciently applied anatomical prior knowledge and opens promising directions for future work.
Finally, beyond human pose estimation, our method could be adapted to general anatomical
landmark detection, which is of interest for medical imaging.
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Appendix A. Experimental results

A.1. Qualitative results

Qualitative results of our main experiment are shown in Fig. 2. Predictions by our model are
visually more accurate and appear anatomically more plausible. Specifically, our anatomical
constraints prevent implausible bone lengths of lower and upper arm (all rows) and lower
and upper leg (first and third row) as well as implausible angles in shoulder, elbow, and
wrist joints (first, second, and fourth row). A failure case is shown in the last row, where
the prediction appears anatomically plausible but is inconsistent with the actual pose.

A.2. Combination of our method with the state of the art

In this experiment, we combine our method with the best competing approaches from
Tab. 1, namely MCD, self-ensembling, DANN, and self-training. Detailed results of this
experiment are presented in Tab. 2. For each of the four methods, the combination with
our method surpasses the performance of the method itself as well as the performance of
our method.

Table 2: Performance comparison for the combination of our method with the best compet-
ing approaches. Results are reported in terms of MPJPE [mm] for uncover→cover
adaptation on the SLP dataset.

Method Feet Knees Hips Core Head Shoul Elb Hands Mean

source-only 174.1 148.1 74.5 56.5 34.8 65.7 168.2 273.2 130.4
target-only 86.4 64.8 36.7 31.6 29.4 42.3 80.6 140.0 67.7
ours 141.5 102.2 56.0 47.2 33.3 50.4 112.5 188.4 96.6

DANN 168.8 114.5 60.9 50.3 33.3 55.0 144.8 218.8 111.6
DANN+ours 136.5 98.1 57.8 48.8 33.5 50.0 113.1 183.9 95.1

self-training 144.9 134.1 71.7 54.9 33.6 59.7 145.4 222.3 112.4
self-train.+ours 137.0 101.1 55.6 48.2 33.1 50.2 110.3 181.7 94.5

MCD 151.8 116.8 63.7 52.6 33.6 53.1 120.4 171.4 99.4
MCD+ours 139.3 104.8 59.5 50.0 33.1 52.1 110.1 179.1 95.7

self-ensembling 155.9 109.8 73.6 57.4 35.0 56.1 118.6 175.9 102.3
self-ensemb.+ours 135.6 104.1 57.5 47.1 34.3 52.1 110.4 165.7 92.3

A.3. Ablation study: loss functions

In this ablation experiment, we examine the optimal choice of loss functions for the sym-
metry constraint (2), the bone length constraint (3), and the angle constraint (4). To this
end, we train our method with each of the three constraints separately and compare the
effect of a linear L1 penalty (as used by our method) and a quadratic L2 penalty. Training
and test setup is identical to our main experiment. Results are presented in Tab. 3 and
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input source-only ours reference

Figure 2: Qualitative results on five samples from the SLP dataset. We show predictions by
the source-only model (red) and by our model (green) together with the ground
truth (black). Input point clouds are shown together with the associated RGB
images for better visualization. The corresponding RGB image without a cover
is given for reference.
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Table 3: Results of the ablation experiment on different loss functions. For each of the
three anatomical constraints, we compare a linear L1 loss against a quadratic L2
loss. Evaluation was performed under the uncover→cover adaptation scenario on
the SLP dataset.

Method L1 L2 MPJPE [mm]

Lsym only ✓ 105.9
Lsym only ✓ 108.6

Langle only ✓ 106.7
Langle only ✓ 119.3

Lbone only ✓ 102.9
Lbone only ✓ 104.1

show that an L1 loss yields a better performance for all three constraints, whereby the gap
is particularly remarkable for the angle loss.
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