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Abstract

Non-autoregressive (NAR) generative models are
valuable because they can handle diverse con-
ditional generation tasks in a more principled
way than their autoregressive (AR) counterparts,
which are constrained by sequential dependency
requirements. Recent advancements in NAR mod-
els, such as diffusion language models, have
demonstrated superior performance in uncondi-
tional generation compared to AR models (e.g.,
GPTs) of similar sizes. However, such improve-
ments do not always lead to improved conditional
generation performance. We show that a key rea-
son for this gap is the difficulty in generalizing
to conditional probability queries (i.e., the set
of unknown variables) unseen during training.
As a result, strong unconditional generation per-
formance does not guarantee high-quality condi-
tional generation. This paper proposes Tractable
Transformers (Tracformer), a Transformer-based
generative model that is more robust to differ-
ent conditional generation tasks. Unlike exist-
ing models that rely solely on global contextual
features derived from full inputs, Tracformers in-
corporate a sparse Transformer encoder to cap-
ture both local and global contextual informa-
tion. This information is routed through a de-
coder for conditional generation. Empirical re-
sults demonstrate that Tracformers achieve state-
of-the-art conditional generation performance on
text modeling compared to recent diffusion and
AR model baselines. Code is available at https:
//github.com/liuanji/Tracformer.
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Figure 1: Zero-shot conditional perplexity (↓) of AR (GPT-2 (Rad-
ford et al., 2019)) and NAR models (SEDD (Lou et al., 2023),
MDLM (Sahoo et al., 2024)) models conditioned on different pro-
portions of prefix given sequences of length 128. Existing NAR
models perform worse than GPT-2 despite having comparable
unconditional perplexity on sequences of length 1024. Their per-
formance gets worse when provided with more context.

1. Introduction
Generative AI has emerged as a transformative paradigm for
solving machine learning tasks. Its core strength lies in the
ability of modern deep generative models to learn complex
and high-dimensional data distributions. Autoregressive
(AR) models such as GPTs (Brown et al., 2020) are among
the most well-developed generative models, demonstrating
exceptional performance in modeling discrete data such
as language (Dubey et al., 2024; Reid et al., 2024) and
protein sequences (Shin et al., 2021; Trinquier et al., 2021).
However, despite their expressiveness and scalability, AR
models are not best suited for many conditional generation
tasks such as DNA imputation and protein sequence infilling
(Tanaka et al., 2022; Hawkins-Hooker et al., 2023; Alamdari
et al., 2023) due to their inherent (autoregressive) sequential
dependencies (Kaddour et al., 2023).

In contrast, non-autoregressive (NAR) generative models
are inherently more flexible, as they can condition on ar-
bitrary contexts. This flexibility makes them particularly
well-suited for conditional generation tasks, such as code
editing (Liu et al., 2024) and DNA imputation (Stark et al.,
2024; Li et al., 2024; DaSilva et al., 2024). Recent advances
in discrete diffusion (Lou et al., 2023; Shi et al., 2024) and
semi-autoregressive models (Chen et al., 2024) have further
improved the performance of NAR models across various
domains. Notably, SoTA diffusion language models outper-
form GPT-2 in terms of unconditional perplexity on several
benchmarks (Sahoo et al., 2024).

1

https://github.com/liuanji/Tracformer
https://github.com/liuanji/Tracformer


Tractable Transformers

However, we observe a significant performance drop when
using SoTA diffusion language models for conditional gen-
eration tasks. As shown in Figure 1, we evaluate the condi-
tional perplexity (i.e., the perplexity of the corresponding
conditional likelihood) of two SoTA diffusion language
models, SEDD (Lou et al., 2023) and MDLM (Sahoo et al.,
2024) by providing different fractions of the prefix of length-
128 sequences from WikiText103 (Merity et al., 2022) and
1BW (Chelba et al., 2013). Despite both models having
comparable or better unconditional perplexity than GPT-2
on length-1024 sequences, their conditional perplexity is
significantly worse. Moreover, their performance degrades
further as the length of the provided prefix context increases.

We attribute this performance discrepancy to the inability of
existing NAR models to generalize effectively to conditional
queries unseen during training. To address this issue, we
propose Tractable Transformers (Tracformers), an NAR
generation model designed to handle diverse conditional
generation tasks more robustly. A key insight is to learn
local features that enhance generalization across different
queries. Specifically, unlike existing models that rely solely
on global features from all input tokens, Tracformers use a
novel sparse encoder to learn features at multiple context
levels, which are then processed by a decoder for conditional
generation. As shown in Figure 1, Tracformer achieves
better conditional perplexity than other NAR models.

Empirical results on text generation show that Tracformer
achieves consistently better conditional generation perfor-
mance compared to existing architectures such as BERT
(Devlin et al., 2018) and BART (Lewis et al., 2020). Further,
Tracformer beats state-of-the-art (SoTA) diffusion language
models on zero-shot conditional generation tasks, which are
conditional variants of the zero-shot perplexity tasks used
to evaluate GPT-2 (Radford et al., 2019). In addition to
proposing an NAR model architecture, we emphasize the
importance of directly evaluating the conditional generation
performance of NAR models.

In summary, the contributions of this paper are two-fold: (i)
We identified the problem that existing NAR models suffer
from severe performance degradation in conditional gener-
ation, despite having strong unconditional generation per-
formance; (ii) We propose Tracformer, a novel Transformer-
based architecture specially designed to improve conditional
generation and generalize to conditional queries unseen dur-
ing training.

2. Background
In this section, we first introduce key concepts of sequence
modeling and the distinctions between autoregressive and
non-autoregressive approaches (Sec. 2.1). We then describe
the Transformer architecture, which serves as the backbone

of many modern sequence modeling frameworks, highlight-
ing its key components and their roles in both AR and NAR
paradigms (Sec. 2.2). We use uppercase letters (e.g., Xt) to
represent random variables and lowercase letters (e.g., xt)
for their assignments.

2.1. Sequence Modeling

Given a sequence of T categorical variables X := {Xt}Tt=1,
sequence modeling aims to capture their joint distribution.
Autoregressive modeling achieves this by factorizing the
joint probability of x using the chain rule of probability:

Pr(x)=Pr(x1) · Pr(x2|x1) · · ·Pr(xT |x1, . . . , xT−1). (1)

By learning each of the T conditional distributions with a
neural network, AR models such as GPT (Radford et al.,
2019; Brown et al., 2020; OpenAI, 2023) and State Space
Models (Gu & Dao, 2023; Fu et al., 2022) achieved state-
of-the-art performance in modeling high-dimensional se-
quences like text and protein (Nguyen et al., 2024).

However, AR modeling requires the context to be provided
contiguously at the beginning, limiting its applicability for
tasks that demand more flexible context handling, such as
DNA imputation and protein sequence infilling.

In contrast, non-autoregressive (NAR) modeling seeks to
learn conditional distributions given arbitrary contexts. For-
mally, for a subset of context variables XC with C ⊂ [T ],
NAR models aim to encode the conditional distribution
Pr(XR|xC) of the remaining variables XR, where R :=
[T ]\C. Here [T ] denotes the set of positive integers up to
T . Compared to AR models, the flexibility of NAR models
makes them adaptable to a broader range of conditional
generation tasks (Li et al., 2022; Han et al., 2023).

2.2. Transformer Models

The Transformer (Vaswani et al., 2017) architecture is com-
monly used to implement generative models for both AR
and NAR generation. Given a sequence of tokens {xt}Tt=1,
the model initially maps each token xt into a continuous
embedding h0

t ∈ Rd, where d denotes the dimensionality of
the embedding space. The embeddings are then iteratively
transformed through a stack of L Transformer blocks:

∀l ∈ {1, . . . , L}, hl
1:T = Blockl(hl−1

1:T ),

where hl
t represents the embedding at position t in layer l

and hl
1:T := {hl

t}Tt=1 denotes all embeddings in the layer.

Omitting design details such as the use of layer normal-
ization and residual connections, each Transformer block
consists of two modules: a feed-forward neural network
(FFN) and an attention module (Attn), which can be ex-
pressed as hl

1:T = FFNl
(
Attnl(hl−1

1:T )
)
.
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Figure 2: Different conditional queries do not respect the same joint distribution in NAR models. (a) The log-likelihoods (LLs) of
the sequence “The cat is cute” differ depending on whether SEDD is queried in the forward order or the reverse order. (b) Histogram of
the difference between the highest and the lowest LLs of 2,000 length-5 sequences from WikiText103 when queried in all possible orders.

While the FFN is applied independently to embeddings
at each position t, the attention module captures depen-
dencies between different token variables. Specifically,
a learnable function scorel first computes a score value
slt,t′ :=scorel(hl−1

t ,hl−1
t′ ) for each pair of token positions

(t, t′) using their respective embeddings. The scores are
then normalized with the softmax function:

∀t, t′ ∈ {1, . . . , T}, ŝlt,t′ =
ml

t,t′ · exp(slt,t′)∑
t′′ m

l
t,t′′ · exp(slt,t′′)

,

where ml := {ml
t,t′}t,t′ ∈ {0, 1}T×T is a mask that speci-

fies the allowed dependencies between token positions.

The normalized scores {ŝlt,t′}t,t′ are then used to weigh the
embeddings, with the weighted sum of these embeddings
forming the final output of the attention module. Specifi-
cally, the output at position t is computed as:

Attnl(hl−1
1:T )t =

∑
t′

ŝlt,t′ · gl(hl−1
t′ ),

where gl :Rd →Rd is a learnable mapping. When imple-
menting AR models with Transformers, causal attention
masks are used to ensure each token only receives context
from previous tokens:

∀l ∈ {1, . . . , L}, ml
t,t′ =

{
1 if t′ ≤ t,

0 otherwise.
(2)

The output hL
t of the final layer at position t is transformed

to predict the conditional distribution Pr(Xt|x1:t−1) (cf.
Eq. (1)) through a learnable mapping.

In contrast, NAR modeling is commonly achieved by set-
ting unobserved input tokens to a special placeholder token
<MASK>, while configuring the attention mask to allow full
visibility of all inputs (Devlin et al., 2018; Lou et al., 2023;
Sahoo et al., 2024). Specifically, given contexts xC , all
tokens in XR with R := [T ]\C are assigned the <MASK>
token, and the final hidden embedding hL

t is used to capture
Pr(Xt|xC) for every t ∈ R.

3. Query Generalization in NAR Models
As shown in Figure 1, the strong unconditional genera-
tion performance of SoTA NAR models does not ensure
high-quality conditional generation, as different conditional
queries from the same model do not align with a consis-
tent joint distribution. For example, for any text distri-
bution, the log-likelihood (LL) of the sequence x1:4 :=
“The cat is cute” should remain the same regardless of how
we break down the joint probability into conditional prob-
abilities following the chain rule. However, as shown in
Figure 2(a), the LLs computed with SEDD (Lou et al., 2023)
in the forward and the reverse order are different, which in-
dicates that the model does not follow the same underlying
joint distribution when prompted with different conditional
queries. Figure 2(b) further illustrates the prevalence of such
inconsistency by measuring the gap between the highest and
lowest LLs of 2,000 length-5 sequences from WikiText103
(Merity et al., 2022), evaluated across all possible orders.

As discussed in Section 2.2, tokens not given as evidence
to NAR models are often represented by a special <MASK>
token. In such cases, generalization to new queries means
generalizing to inputs with different <MASK> distribution.

Existing models use different mask strategies during train-
ing, which means they are trained to predict certain types
of conditional queries, i.e., Pr(·|xC) for specific subsets
C ⊂ [T ]. For instance, discrete diffusion models (Austin
et al., 2021) and BERT (Devlin et al., 2018) sample C uni-
formly at random while T5 (Raffel et al., 2020) sample
random spans of variables. However, since it is infeasible
to cover all conditional queries during training, NAR mod-
els have to achieve robust query generalization to excel at
conditional generation.

4. Tractable Transformers
The standard Transformer architecture introduced in Sec-
tion 2.2 is highly expressive and scalable thanks to its
attention modules that enable information transformation
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Figure 3: Tractable Transformers (Tracformers) use an encoder to learn feature embeddings (i.e., henc,l
t ) with context (denoted as

scope on the left) sizes ranging from 1 to 2L, where L is the number of layers. The encoder features are then fed to a decoder for
conditional generation. Each decoder layer contains a feed-forward neural network and a cross-attention layer to collect information from
corresponsing encoder features. Attention layers in both the encoder and the decoder have special sparse patterns (see Secs. 4.1 and 4.2).

between arbitrary pairs of tokens. However, this global
attention mechanism can hinder generalization to unseen
conditional queries due to its sensitivity to changes in the
distribution of the <MASK> token. In contrast, restricting the
context of features hl

t to local neighborhoods (i.e., makes
hl
t only depends on a small subset of variables) improves

robustness across different conditional queries since local
features are invariant to changes of mask tokens outside their
respective context windows. However, using local features
significantly restricts the model’s expressiveness.

We propose an encoder-decoder architecture that effectively
leverages both local and global features to achieve robust-
ness against query changes while preserving the expressive-
ness of global context modeling. As shown in Figure 3,
the encoder learns feature embeddings with exponentially
increasing context lengths in different layers by a sparse
attention mechanism. The encoder embeddings are then
fed to a cross-attention-only decoder Transformer, which
independently predicts the conditional probability of each
token. In the following, we introduce the backbone structure
of the encoder (Sec. 4.1) and the decoder (Sec. 4.2).

4.1. Multi-Scope Encoder

Following Section 2.2, we define henc,l
t as the feature embed-

dings at position t of the l-th encoder layer (Fig. 3). Define
the variable scope (or scope) ϕl

t ⊆ [T ] of henc,l
t as the set

of variables that contribute to the computation of henc,l
t .

For example, with full attention, the scope of every embed-
ding spans the entire input sequence: ∀t and l, ϕl

t = [T ];
when using causal attention masks in Equation (2), we have
ϕl
t = [t] for every l and every t.

The encoder layers implement a Multi-Scope Self-Attention
(MSSA) mechanism such that the size of the variable scopes
(i.e., |ϕl

t|) grows exponentially with the layer index l. This
enables earlier layers to capture fine-grained local semantics,

while later layers encode broader contextual information and
more abstract representations. Figure 3 provides an example
multi-scope encoder with base 2. Specifically, the scope of
each embedding henc,l

t is the set of variables whose distance
from the left of Xt is smaller than 2l:

ϕl
t = {t′ : t′ ≥ 1, 0 ≤ t− t′ < 2l}. (3)

MSSAs can be implemented by applying sparse attention
masks to a standard attention module as introduced in Sec-
tion 2.2. Specifically, the base-2 scope pattern in Figure 3
can be achieved using the following attention masks for
each l ∈ [L], and t, t′ ∈ [T ]:

menc,l
t,t′ =

{
1 if t− 2l−1 ≤ t′ ≤ t,

0 otherwise.
(4)

Moreover, we note that only O(T ) 1s in every attention
mask menc

l ∈{0, 1}T×T are needed to get the desired expo-
nentially increasing scope pattern. For example, when the
base is 2, instead of attending to every token in the range
t−2l−1 ≤ t′ ≤ t (Eq. (4)), we only need to attend to the
two tokens at the boundary, i.e., menc,l

t,t′ =1 when t′ = t or
t′ = t− 2l−1, to obtain the desired variable scope in Equa-
tion (3).1 This enables linear time (w.r.t. sequence length)
implementations of the encoder, effectively avoiding the
quadratic computation overhead of standard Transformers.

To control this computational complexity, we define a hy-
perparameter Nmax (Nmax ≥ 2) that specifies the maxi-
mum number of embeddings a given token can attend to
using the attention mask menc

l . Specifically, if the range
t−2l−1≤ t′≤ t in Equation (4) contains no more than Nmax
embeddings, all embeddings in the range are attended to

1According to the definition in Equation (3), we have that
ϕl−1

t−2l−1 = {t′ : t′ ≥ 1, 0 ≤ t− 2l−1 − t′ < 2l−1} and ϕl−1
t =

{t′ : t′ ≥ 1, 0 ≤ t− t′ < 2l−1}. Taking the union of the two sets
leads to ϕl

t := ϕl−1

t−2l−1 ∪ ϕl−1
t = {t′ : t′ ≥ 1, 0 ≤ t− t′ < 2l}.

4
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(i.e., the corresponding mask values are 1). Otherwise, the
attention mask selects exactly Nmax embeddings from this
range by sample linearly and round to the nearest integer.

To ensure the existence of encoder embeddings with full
context (i.e., its variable scope is [T ]), we choose the number
of layers L to be greater than or equal to log2 T .

4.2. Decoder

Recall from the beginning of Section 4 that the decoder
combines local and global features computed in the encoder
to predict distributions. As illustrated in Figure 3, the de-
coder consists of L Transformer blocks, each containing a
feed-forward neural network (FFN) and a cross-attention
layer. Formally, given inputs hdec,l−1

1:T to the l-th decoder
block, the outputs hdec,l

1:T are computed as

hdec,l
1:T = FFNl

(
CrossAttnl(h

dec,l−1
1:T ,henc,L−l+1

1:T )
)
,

where in the cross-attention operation, each decoder embed-
ding hdec,l−1

t (∀t ∈ [T ]) attends to the outputs henc,L−l+1
1:T

of the (L−l+1)-th encoder layer. Intuitively, the decoder
first cross-attend to encoder embeddings that encode global
information (i.e., those with large scope sizes) before focus-
ing on embeddings encoding local information (i.e., those
with small scope sizes). This progressive refinement mir-
rors human language generation, where high-level intent is
first structured before being articulated into detailed expres-
sions.2

Attention masks are used in cross-attention layers to ensure
each decoder embedding only depends on desired input vari-
ables. For example, when given the context xC , since the
t-th decoder embedding hdec,l

t is used to predict Pr(Xt|xC),
hdec,l
t should not attend to encoder embeddings whose vari-

able scope contain variables not in XC .

Formally, define mdec,l
t,t′ as the mask deciding whether the

t-th embedding of the input to the l-th decoder block (i.e.,
hdec,l−1
t ) can attend to the t′-th embedding in the corre-

sponding encoder layer (i.e., henc,L−l+1
t′ ).

Different generation paradigms can be achieved using spe-
cific decoder masks ml

dec := {mdec,l
t,t′ }t,t′ For example, to

achieve AR modeling with Tracformers, we set mdec,l
t,t′ =1 if

t′<t and zero out all remaining mask entries. Additionally,
we observe that attending to fewer encoder tokens in the
initial decoder layers has little impact on the performance.
Therefore, to improve computational efficiency, we scale
the sparsity of the cross-attention in proportion to the scope
length of the corresponding encoder layer. Formally, the

2For example, Wan et al. (2025) highlights the effectiveness of
a top-down hierarchical scheme in long text generation.

decoder attention mask is defined as:

mdec,l
t,t′ =

{
1 if t′ < t and t′ ≡ t−1 (mod 2L−l+1),

0 otherwise.
(5)

4.3. Tractable Transformers for NAR Generation

In this section, we demonstrate how to apply Tracformers
to two common NAR generation paradigms—contextual
autoregressive generation and arbitrary-context generation.

Contextual AR Generation. Contextual AR (CAR) gen-
eration refers to a scenario in which, when predicting a
variable Xt, the model has access to all preceding tokens
x1:t−1 and a subset of future tokens. This paradigm is used
when an arbitrary context xC is provided, and the model is
tasked with autoregressively sampling all remaining tokens.

To implement Tracformer for CAR generation, we use two
encoders, a prefix encoder and a suffix encoder, which cap-
ture information from preceding and succeeding tokens,
respectively. As shown in Figure 4(a), the prefix encoder
processes the original sequence during training since pre-
ceding tokens are always available in CAR generation. In
contrast, the suffix encoder observes only the tokens in a
chosen context set xC , while the remaining tokens are rep-
resented by the <MASK> token.

The prefix encoder uses the sparse attention mask described
in Section 4.1 (i.e., the sparse version of Eq. (4)), where
the scope of each feature henc,l

t includes the 2l preceding
variables, including Xt. We use similar attention masks in
the suffix encoder such that the scope of each feature henc,l

t

covers the 2l succeeding variables starting from Xt. See Ap-
pendix A for a formal description. We use the masks defined
in Equation (5) for cross-attention between the decoder and
the prefix encoder, as the attended features contain only pre-
fix token information. Analogously, the suffix encoder uses
the following cross-attention masks to ensure the decoder
receives only suffix information from it:

mdec,l
t,t′ =

{
1 if t′ > t and t′ ≡ t+1 (mod 2L−l+1),

0 otherwise.
(6)

As illustrated in Figure 4(a), given context xC , the t-th
output feature embedding of the decoder is used to predict
the distribution Pr(Xt|xCt), where Ct :=C∪ [t−1]. The
overall training loss for the CAR generation model is

L(θ)=−Ex∼D,C∼PC

∑
t̸∈C

log Prθ(xt|xCt)

, (7)

where θ is the set of learnable parameters, D is a dataset,
and PC is a mask strategy used to sample the context set C.

Arbitrary-Context Generation. In arbitrary-context (AC)
generation, the model is tasked to predict the distribution

5



Tractable Transformers
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Decoder

Prefix encoder

Suffix encoder

DecoderShared weights Shared weights

(a) Tracformer for contextual AR (CAR) generation. (b) Tracformer for arbitrary-context (AC) generation.

Given context: Given context: 

Figure 4: Tracformers for contextual AR (CAR) and arbitrary-context (AC) generation. In both cases, we use a prefix encoder and a
suffix encoder to capture prefix and suffix information for every token, respectively. Model parameters of the two encoders are shared.
The decoder receives information from features generated by both encoders. Specifically, the decoder attention masks ensure the decoder
only acquires information of preceding (resp. succeeding) variables from the prefix (resp. suffix) encoder. During training, <MASK> tokens
are given to both encoders if the model is trained for AC generation. When training Tracformer for CAR generation, the prefix encoder
always receives all inputs as preceding tokens x1:t−1 are assumed to be given when sampling xt.

of Xt given arbitrary context, which can be used to gen-
erate missing tokens in an arbitrary order. Analogous to
Equation (7), the objective of AC generation task is

L(θ)=−Ex∼D,C∼PC

∑
t̸∈C

log Prθ(xt|xC)

, (8)

As shown in Figure 4(b), AC generation paradigm can be
implemented by the same model described for CAR genera-
tion, with the only difference that inputs to both the prefix
encoder and the suffix encoder use the mask token if a token
does not exist in the context. Correspondingly, the t-th out-
put feature embedding predicts the distribution Pr(Xt|xc).

Training and Inference Efficiency. Thanks to its sparse
attention modules in both the encoder and the decoder, Trac-
formers enjoy efficient training and inference. In particular,
KV-caching (Pope et al., 2023) can be used to amortize
inference cost. See Appendix E for a detailed discussion.

5. Related Work
NAR Modeling Techniques. BERT (Devlin et al., 2018;
Warner et al., 2024) is one of the first Transformer models
designed for NAR generation. It proposes to use a special
mask token to indicate unknown tokens and task the model
to predict them given the observed tokens. Built on top of
this mask prediction principle, discrete diffusion models
(Austin et al., 2021) improve NAR generation performance
by designing better learning objectives (Campbell et al.,
2022; Lou et al., 2023; Sahoo et al., 2024) and mask strate-
gies (Shi et al., 2024). Instead of recovering sequences
from mask tokens, some discrete diffusion models learn
to recover from uniformly sampled sequences (Lou et al.,
2023). Another thread of work incorporates autoregressive
or semi-autoregressive biases to the denoising process of
diffusion models, intending to combine the expressiveness
of autoregressive modeling and the ability to perform NAR
generation (Chen et al., 2024; Han et al., 2023).

Architectures for NAR Modeling. Decoder-only trans-
formers with full attention are the most widely adopted
architecture for NAR modeling. Many SoTA discrete diffu-
sion models use these models. Additionally, bidirectional
autoregressive modeling, exemplified by models like BART
(Lewis et al., 2020) and MASS (Song et al., 2019), rep-
resents an intermediate approach that incorporates bidi-
rectional context while preserving the left-to-right autore-
gressive generation process. Sun et al. (2023) developed
a Transformer-based architecture for a subclass of discrete
diffusion models. Liu et al. (2025) and Xu et al. (2025) com-
bine diffusion models with other deep generative models,
such as AR models and energy-based models.

6. Experiment
In this section, we aim to empirically evaluate Tracformer’s
effectiveness in both conditional and unconditional genera-
tion. Specifically, our experiments are designed to answer
two key questions: (i) How does Tracformer compare to
other NAR architectures in terms of conditional generation
performance? (ii) Can Tracformer scale effectively and
outperform existing SoTA generative models in both condi-
tional and unconditional tasks? To this end, we conduct two
sets of experiments: In Section 6.1, we compare Tracformer
with a range of NAR architectures on WikiText (Merity et al.,
2022), LAMBADA (Paperno et al., 2016), and One Billion
Words (1BW) (Chelba et al., 2013) datasets to evaluate its
performance across diverse conditional queries. In Sec-
tion 6.2, we scale Tracformer to OpenWebText (Gokaslan
& Cohen, 2019) and benchmark it against SoTA discrete
diffusion models, focusing on zero-shot conditional and
unconditional performance. These experiments comprehen-
sively evaluate Tracformer’s advantages and its potential
to serve as a more effective backbone for NAR generation.
Note that the perplexity numbers of diffusion model base-
lines are computed using the corresponding ELBO since the
exact log-likelihood is intractable to compute.
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Figure 5: Validation conditional perplexity (↓) of CAR/AC generation tasks with varying masking strategies, evaluated on the WikiText103
validation set with a sequence length of 1024. (a) and (b) show CAR generation with span lengths sampled from Geometric(µ = 50) and
Geometric(µ = 10), respectively. (c) and (d) correspond to AC generation with the same span length distributions as in CAR. Across all
mask ratios and span lengths, Tracformer consistently outperforms all baselines, demonstrating strong generalization capabilities.

Table 1: Evaluation of CAR text infilling performance using the
MAUVE and BERT Score with different mask ranges. Higher
scores indicate better performance. Tracformer consistently out-
performs BART under all conditions.

Mask ranges
MAUVE (↑) BERT Score (↑)

Tracformer BART Tracformer BART

[0.25,0.75] 0.960 0.951 0.464 0.414
[0.5,1.0] 0.114 0.016 0.488 0.386

[0.1,0.4] & [0.6,0.9] 0.931 0.889 0.370 0.306
[0,0.4] & [0.5,0.8] 0.946 0.940 0.274 0.216

[0,0.25] & [0.75,1.0] 0.177 0.063 0.457 0.401
[0,0.1] & [0.2,0.5] & [0.7,1.0] 0.107 0.023 0.286 0.208

6.1. Comparison of Architectures for NAR Modeling

Recall from Section 4 that we propose Tracformer’s encoder-
decoder architecture as an effective approach to leveraging
both local and global features, enabling robust performance
across varying queries. To empirically validate this, we com-
pare Tracformer with baseline models employing different
transformer architectures on identical NAR modeling tasks,
focusing on their conditional generalization capabilities.

Baselines. As discussed in Section 4.3, Tracformer sup-
ports two distinct NAR generation modes: contextual AR
(CAR) generation and arbitrary-context (AC) generation,
each requiring different baseline comparisons. For CAR
generation, we use BART (Lewis et al., 2020) as a baseline,
as it represents a widely adopted encoder-decoder architec-
ture for CAR tasks. BART’s encoder captures bidirectional
global context, while its autoregressive decoder generates
outputs sequentially via cross-attention. This fundamen-
tal design principle is shared by many CAR models, such
as MASS (Song et al., 2019) and PALM (Bi et al., 2020),
making BART a strong representative baseline.

For AC generation, we compare Tracformer against two
baselines: (i) BERT (Devlin et al., 2018), which is the pre-
dominantly used backbone for modern diffusion models,
and (ii) BERT-bidir, a variant of BERT that incorporates
both forward and reverse AR encoders using dense self-
attention. These baselines provide a contrast between stan-
dard bidirectional encoding and autoregressive modeling in

AC generation tasks (see Appx. B.2 for details).

Training Setup. For the CAR task, Tracformer and BART
are both trained using the CAR objective defined in Equa-
tion (7). During training, we set the mask strategy (i.e.,
PC) to sample spans whose lengths follow a geometric dis-
tribution with mean µ = 50 and apply a total mask ratio
of 50% (see Appx. B.1). All models are trained on the
WikiText103, LAMBADA, and 1BW. We present the results
of WikiText103 in the paper and defer other results to Ap-
pendix B.3. The experiment setup for the AC generation
task follows the CAR task, where the training objective is
defined in Equation (8). See Appendix B.2 for more details.

Empirical Insights from the CAR Generation Results.
We evaluate both models’ generalization capabilities on
CAR tasks through two specific tests: ratio generalization
and span generalization. For ratio generalization evalua-
tion, the span masking strategy remains consistent with
the training setup, where the span length is sampled from
Geometric(µ = 50), but the total mask ratio is varied be-
tween 0.1 and 0.9. Figure 5(a) shows the conditional per-
plexity (PPL) for both models on the WikiText103 valida-
tion set. The results exhibit a U-shape, where performance
improves as the mask ratio approaches the training mask
ratio. Tracformer consistently outperforms BART across
all mask ratios. The performance gap between the two
models is small near the training mask ratio, but BART’s
PPL increases as the mask ratio deviates further, whereas
Tracformer maintains robust generalization performance.

To evaluate span generalization performance, we alter the
mean span lengths of the adopted span masking strategy
during inference, resulting in a mismatch PC between train-
ing and evaluation. Figure 5(b) illustrates the conditional
PPL when the mean span length is reduced to 10. As ex-
pected, shorter span lengths reduce the overall task dif-
ficulty, resulting in lower PPL for all models. However,
Tracformer demonstrates significantly better performance
improvements compared to BART, highlighting its ability to
generalize effectively to unseen masking patterns. We also
include Geometric(µ = 3) span mask results in Figure 7(a)
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Table 2: Zero-shot conditional perplexity on WikiText103 and
1BW using six fixed prompts. Tracformer operates in the CAR
generation mode, while the conditional PPLs of SEDD and MDLM
are computed following the derivation in Appendix G. Tracformer
consistently outperforms state-of-the-art discrete diffusion models
SEDD and MDLM across various masking ranges.

Mask ranges
WikiText103 1BW

Tracformer SEDD MDLM Tracformer SEDD MDLM

[0.25,0.75] 29.38 37.83 30.36 41.98 53.72 55.19
[0.1,0.4] & [0.6,0.9] 29.67 37.17 30.55 38.52 49.38 49.48
[0,0.4] & [0.5,0.8] 34.73 43.86 35.84 45.56 58.22 58.41
[0,0.25] & [0.75,1] 37.73 46.65 40.11 49.14 66.96 66.16

[0.2,0.3] & [0.4,0.6] 24.31 28.31 22.97 31.76 38.76 38.97
[0.1,0.9] 33.88 44.92 36.69 43.98 57.96 59.14

of Appendix B.3, where a similar trend is observed.

Beyond perplexity, we assess the quality of generated text in
CAR tasks using six fixed mask ranges (i.e., text infilling).
Metrics such as MAUVE (Pillutla et al., 2021) and BERT
Score (Zhang et al., 2020) are used to quantify the similarity
between the generated and original text. See Appendix B.3
for further evaluation details. Table 1 presents the results,
where Tracformer consistently achieves higher scores than
all baselines, demonstrating Tracformer’s ability to produce
high-quality text under diverse conditions.

Empirical Insights from the AC Generation Results.
As shown in Figure 5(c) and (d), Tracformer achieves sig-
nificantly lower conditional perplexity than both baselines
across all mask ratios and span lengths, demonstrating supe-
rior generalization performance consistently. Additionally,
we conduct an ablation study on Tracformer’s multi-scope
attention, with a detailed analysis provided in Appendix D.

6.2. Benchmarking Against SoTA NAR Models

In this section, we test the scalability of Tracformer by
training it on the OpenWebText (Gokaslan & Cohen, 2019)
dataset and comparing its performance against various SoTA
generative models of similar scale, including GPT-2 (Rad-
ford et al., 2019) and SoTA discrete diffusion models (Lou
et al., 2023; Sahoo et al., 2024; Austin et al., 2021; Gul-
rajani & Hashimoto, 2024). Tracformer is trained using
the CAR generation objective defined in Equation (7), with
similar masking strategies PC to Section 6.1 (see Appx. C).
For evaluation, we benchmark zero-shot conditional and
unconditional performance on multiple datasets.

For conditional generation, we compare Tracformer with
SoTA discrete diffusion models, SEDD and MDLM. Table 2
presents the zero-shot conditional PPL results using fixed
masking strategies, where Tracformer consistently outper-
forms both baselines across all mask ranges. To further
assess generalization, we evaluate varied masking strategies,
with Figure 6 reporting results from ratio-generalization
and span-generalization tests. Specifically, we consider

Table 3: Model size, number of non-embedding parameters, and
number of trained tokens for the models evaluated in this paper.
Tracformer has a smaller full model size and fewer non-embedding
parameters compared to SEDD and MDLM.

Model Full Model Size #Non-Embed Params #Trained Tokens

GPT2 124M 85M -
SEDD 169M 90M 210B
MDLM 169M 90M 524B
Tracformer 109M 79M 295B

Table 4: Zero-shot unconditional perplexity across various datasets.
Tracformer, despite its smaller size, achieves competitive or supe-
rior performance compared to larger models.

Model WikiText103 WikiText2 Lambada PTB 1BW

GPT-2 (124M) 41.60 42.32 45.04 138.43 75.20
D3PM (169M) 75.16 77.28 93.47 200.82 138.92
PLAID (169M) 50.86 51.80 57.28 142.60 91.12
SEDD (169M) 40.62 41.84 50.92 114.24 79.29

MDLM (169M) 37.01 36.75 48.46 96.40 67.94
Tracformer (109M) 43.27 43.82 58.10 166.10 51.34

two span length distributions: Geometric(µ = 10) and
DLogistic(µ = 15, σ = 3). On 1BW, Tracformer consis-
tently outperforms both SEDD and MDLM across all mask
ratios. On WikiText103, MDLM shows a slight advan-
tage at low mask ratios, but as the masking ratio increases,
Tracformer achieves the best performance, demonstrating
stronger generalization under more challenging conditions.

Notably, despite its smaller model size (Tab. 3), Tracformer
not only excels in fixed-mask conditional PPL (Tab. 2) but
also adapts better to diverse masking distributions.

For unconditional generation, Table 4 reports the zero-shot
unconditional PPL across various datasets. Tracformer re-
mains highly competitive, achieving results comparable to
or better than larger models. We additionally include text
samples generated by Tracformer in Appendix F for both
conditional and unconditional generation. These findings
further reinforce our earlier conclusion: while SoTA NAR
diffusion models exhibit strong unconditional PPL, their in-
ability to generalize effectively to conditional queries unseen
during training limits their broader applications. Tracformer,
with its robust performance in both conditional and uncon-
ditional tasks, demonstrates its potential as a scalable and
versatile generative model.

7. Conclusion and Limitations
We propose Tracformer, a Transformer-based architec-
ture for flexible and generalizable conditional generation.
Through extensive experiments, we demonstrate that Trac-
former’s multi-scope attention mechanism and specialized
encoder-decoder design enable robust conditional genera-
tion performance. However, due to resource limitations,
we only train Tracformer at the GPT-2 (base) scale. While
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Figure 6: Conditional perplexity under varied masking strategies, evaluating ratio-generalization and span-generalization. We evaluate two
different span length distributions: Geometric(µ = 10) and DLogistic(µ = 15, σ = 3). Tracformer demonstrates superior conditional
generalization capabilities compared to SEDD and MDLM across different masking strategies.

our current results already establish Tracformer as a highly
promising NAR architecture, future work will focus on scal-
ing the model further to fully explore its potential. Moreover,
given that AC generation closely aligns with one-step diffu-
sion training, Tracformer could serve as a strong backbone
for modern diffusion models. Future research will investi-
gate this direction, leveraging Tracformer’s capabilities to
enhance diffusion-based generative frameworks.
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A. Additional Details of Tracformers
This section introduces the design details of Tracformers.

Sparse Attention Masks of the Encoder. As described in Section 4.3, a prefix encoder and a suffix encoder are used for
both CAR and AC generation. Specifically, the attention mask for each layer is the sparsified version of Equation (4) such
that each token attends to at most Nmax tokens. Formally, the attention map ml

enc of layer l ∈ [L] in the prefix encoder is
given by (denote a = t− 2l−1, d =

⌊
2l−1

Nmax−1

⌋
, b = t):

menc,l
t,t′ =

{
1 if t′ ∈ Sl

t,

0 otherwise,
where Sl

t =

{
{t′ ∈ Z | t− 2l−1 ≤ t′ ≤ t, t′ ≥ 1}, if 2l−1 ≤ Nmax,

{a, a+ d, a+ 2d, . . . , b} ∩ [T ], if 2l−1 > Nmax.

As shown in Section 4.3, each feature henc,l
t in the suffix encoder covers the 2l succeeding variables starting from Xt:

ϕl
t = {t′ : t′ ≤ T, 0 ≤ t′ − t < 2l},

which is analogous to Equation (3). Similar to the prefix encoder, we use the following sparse attention mask to implement
the suffix encoder (denote a = t, d =

⌊
2l−1

Nmax−1

⌋
, b = t+ 2l−1):

menc,l
t,t′ =

{
1 if t′ ∈ Sl

t,

0 otherwise,
where Sl

t =

{
{t′ ∈ Z | t ≤ t′ ≤ t+ 2l−1, t′ ≤ T}, if 2l−1 ≤ Nmax,

{a, a+ d, a+ 2d, . . . , b} ∩ [T ], if 2l−1 > Nmax.

Sparse Attention Masks of the Decoder. As discussed in Section 4.3, the decoder cross-attends to features in both the
prefix encoder and the suffix encoder, using the mask in Equations (5) and (6), respectively.

Encoder Blocks. Each encoder block contains an attention layer and an FFN following the standard design. Skip
connections and layer normalization layers are used.

ĥenc,l
1:T = henc,l−1

1:T + Attnl(LayerNorml,1(h
enc,l−1
1:T )),

henc,l
1:T = ĥenc,l

1:T + FFNl(LayerNorml,2(ĥ
enc,l
1:T )).

In the attention layers, we adopt the Rotary positional encoding (Su et al., 2024) to encode information about relative
positions between feature embeddings. This is widely adopted in NAR models such as discrete diffusion models (Lou et al.,
2023; Sahoo et al., 2024).

For the FFN, we follow the design of GPT-2 and use a two-layer fully connected neural network with GeLU (Hendrycks &
Gimpel, 2016) activation. The input and output dimensions are both the embedding dimension d and the latent dimension
size is 4× d.

Decoder Blocks. Each decoder block consists of a cross-attention layer and an FFN:

ĥdec,l
1:T = hdec,l−1

1:T + CrossAttnl(LayerNorml,1(h
dec,l−1
1:T ), LayerNorml,2(h

enc,L−l+1
1:T )),

hdec,l
1:T = ĥdec,l

1:T + FFNl(LayerNorml,3(ĥ
dec,l
1:T )).

Similar to the encoder, we also adopt the Rotary positional encoding in cross-attention layers. We set the input features to
the decoder to zero (i.e., hdec,0

1:T = 0). The FFNs are the same as in the encoder blocks.

B. Comparison of NAR Architectures in Small-Scale Experiments
B.1. Training Mask Strategy

The span masking strategy PC used in our experiments is implemented using the following algorithm:
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Algorithm 1 Span Masking Strategy

1: Input: Sequence length L, mask probability p, mean span length m, distribution type (Geometric or DLogistic), σ
2: Initialize num_to_mask = max(1, round(p · L)), num_masked = 0, blank_ids = [], spans = []
3: while num_masked < num_to_mask do
4: Sample a random start index in [0, L)
5: if start overlaps with an existing span in spans then
6: continue
7: end if
8: if distribution == Geometric then
9: Sample span_length ∼ Geometric(µ = m) ▷ Geometric distribution with mean µ

10: else if distribution == DLogistic then
11: Sample span_length ∼ DLogistic(µ = m,σ = σ) ▷ Dlogistic distribution with mean µ and std σ
12: end if
13: end = min(start+ span_length, L)
14: if Overlap with existing spans detected then
15: continue
16: end if
17: Append (start, end) to spans, update blank_ids and num_masked
18: end while
19: if num_masked > num_to_mask then
20: Trim the last span to ensure exact masking ratio
21: end if
22: Return: spans, blank_ids

Following Equation (7), the CAR training process involves applying the span masking strategy to corrupt input sequences
and training the model to predict the original tokens based on the provided context. Specifically, at each training iteration,
the generate_span_mask function is used to create masked spans within the input sequence. The masking process ensures
that 50% of the tokens (based on a mask probability of 0.5) are selected in spans, where the span length is sampled from
either a Geometric or DLogistic distribution. For training in Section 6.1, we use the Geometric distribution with a mean
span length of µ = 50. The corrupted input sequence, along with a mask indicating the positions of the masked tokens, is
then passed to the model. The model is trained to minimize the negative log-likelihood of the original tokens at the masked
positions, conditioning on the unmasked tokens as context.

B.2. Model and Training Configurations

Training Hyperparameters. For both CAR and AC training tasks, the sequence length is set to 1024 tokens, with a batch
size of 256. The models are optimized using AdamW with β1 = 0.9, β2 = 0.95, and a weight decay of 0.1. The initial
learning rate is set to 6× 10−4 and follows a cosine decay schedule, with 1,000 warmup steps to stabilize the early training
phase. The final learning rate is 6× 10−5. Training is conducted for 30,000 steps.

Hyperparameters of Tracformer. As listed in Table 6, for both CAR and AC training tasks, Tracformer is implemented
with a 10-layer encoder-decoder architecture, maintaining a block size (i.e., maximum sequence length) of 1024 tokens.
It utilizes sparse multi-scope attention with a constraint of 16 attended tokens per step, allowing for efficient context
aggregation while keeping computational cost manageable. The decoder operates with a maximum stride of 1024 tokens,
ensuring global context encoding. The model is configured with 9 attention heads and an embedding dimension of 576. A
dropout rate of 0.1 is applied to mitigate overfitting during training.

Hyperparameters of the Baseline Models. As the CAR baseline, BART adopts an 8-layer encoder-decoder architecture
with 9 attention heads and an embedding dimension of 576. This leads to a total of 138M parameters.

For the AC generation experiments, we use BERT as the encoder-only baseline with full attention, employing 10 layers, 12
attention heads, and an embedding dimension of 768. This configuration ensures a fair comparison by maintaining a similar
model size to Tracformer. Additionally, we include BERT-bidir, which encodes bidirectional context using two separate
encoders: a classical forward AR encoder with causal attention and a reverse AR encoder. While structurally similar to
Tracformer’s prefix and suffix encoders, BERT-bidder relies on dense causal attention and lacks the sparse multi-scope self-
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Table 5: Training hyperparameters for CAR and AC tasks.

Parameter Value

Training Setup
Sequence length 1024 tokens
Batch size 256
Training steps 30,000

Optimizer
Optimizer AdamW
β1 0.9
β2 0.95
Weight decay 0.1

Learning Rate Schedule
Initial learning rate 6× 10−4

Final learning rate 6× 10−5

Learning rate decay Cosine schedule
Warmup steps 1,000

Table 6: Hyperparameters of Tracformer for the Small-scale Ex-
periments.

Parameter Value

Structure Parameters
Block size 1024
Number of encoder layers 10
Number of decoder layers 10
Max attended tokens (Nmax) 16

Attention Parameters
Number of attention heads 9
Embedding dimension (d) 576

Other Parameters
Dropout rate 0.1

Table 7: Comparison of the model size for small-scale experiments.

Model Full Model Size

Tracformer 109M
BART 138M
BERT 149M
BERT-bidir 170M

attention mechanism that enhances Tracformer’s efficiency in handling conditional generation. BERT-bidder is configured
with 12 layers, 12 attention heads, an embedding dimension of 768, and a dropout rate of 0.1. After encoding, the final-layer
features from both encoders are concatenated and passed through a two-layer MLP to produce the final representation,
allowing the model to integrate information from both directions before prediction. The MLP consists of two fully connected
layers (config.n_embd is the embedding size of the model):

mlp = nn.ModuleList([nn.Linear(config.n_embd × 2, config.n_embd × 4),

GELU(),
nn.Linear(config.n_embd × 4, config.n_embd),
GELU()])

Table 7 shows the parameter count of the adopted baseline models.

B.3. Additional Evaluation Details and Results

Conditional PPL under Short Span Masking. Figure 7 contains complementary results of Figure 5.

Metrics for CAR Text Infilling. For the CAR text infilling task, a sequence length of 128 is used. To compute MAUVE
and BERT scores, we evaluate 1,000 text sequences from the WikiText-103 validation set across all methods. Each prompt
generates five samples, resulting in 5,000 generated sequences.

CAR Text Infilling Results on Other Datasets. Text-infilling performance on the 1BW and LAMBADA datasets are
given in Table 8.
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AC ( ) CAR ( )

Figure 7: Conditional perplexity (PPL) evaluated on the WikiText-103 validation set. The span length follows a Geometric(µ = 3)
distribution, while the mask ratio varies between 0.1 and 0.9. The sequence length is set to 1024, which aligns with the training setup. (a)
Results for the CAR task. (b) Results for the AC task. Tracformer consistently outperforms all baselines.

Table 8: CAR Text infilling performance evaluated on 1BW and Lambada Datasets.

Mask ranges
MAUVE (↑) BERT Score (↑)

Tracformer BART Tracformer BART

1BW Dataset

[0.25,0.75] 0.974 0.975 0.471 0.446
[0.50,1.00] 0.421 0.384 0.478 0.476

[0.10,0.40] & [0.60,0.90] 0.992 0.979 0.377 0.334
[0.00,0.40] & [0.50,0.80] 0.987 0.977 0.272 0.230
[0.00,0.25] & [0.75,1.00] 0.379 0.375 0.450 0.425

[0.00,0.10] & [0.20,0.50] & [0.70,1.00] 0.346 0.364 0.270 0.231

Lambada Dataset

[0.25,0.75] 0.897 0.913 0.301 0.289
[0.50,1.00] 0.024 0.016 0.344 0.320

[0.10,0.40] & [0.60,0.90] 0.714 0.693 0.178 0.153
[0.00,0.40] & [0.50,0.80] 0.804 0.839 0.077 0.056
[0.00,0.25] & [0.75,1.00] 0.037 0.024 0.322 0.309

[0.00,0.10] & [0.20,0.50] & [0.70,1.00] 0.023 0.014 0.068 0.041

C. Details of Large-Scale Experiments on WebText/OpenWebText
C.1. Training Mask Strategy

To scale Tracformer to OpenWebText while balancing both conditional and unconditional generation performance, we adopt
a mixed masking strategy. This approach integrates contextual autoregressive (CAR) training with an autoregressive (AR)
objective by varying the masking strategy probabilistically during training.

At each training iteration, we select from the following masking strategies:

• Unconditional training (30%): No context is provided, and the model learns in a fully autoregressive (AR) manner,
simulating traditional language modeling.

• High-span masking (20%): A high masking probability (85%) is applied, forcing the model to rely on limited
observed tokens to reconstruct missing content.

• Moderate-span masking (50%): A standard masking probability (50%) is used, following the CAR objective.

The generate_span_mask function, as defined in Algorithm 1, is used when applying high- and moderate-span masking
strategies to ensure structured token corruption. However, in unconditional training, no span masking is applied, effectively
reducing the task to standard autoregressive modeling. This hybrid approach allows Tracformer to retain strong unconditional
generation capabilities while improving its ability to generalize to arbitrary conditional queries.
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Table 9: CAR Text infilling performance (BLEU-4) evaluated on WikiText103.

Mask ranges
BLEU-4 (↑)

Tracformer BART

[0.25,0.75] 0.524 0.513
[0.50,1.00] 0.540 0.519

[0.10,0.40] & [0.60,0.90] 0.419 0.405
[0.00,0.40] & [0.50,0.80] 0.339 0.325
[0.00,0.25] & [0.75,1.00] 0.536 0.523

[0.00,0.10] & [0.20,0.50] & [0.70,1.00] 0.337 0.322

The formalized procedure for the mixed masking strategy is presented in Algorithm 2.

Algorithm 2 Mixed Masking Strategy for OpenWebText Training

1: Input: Input sequence x of length L = 1024, mask token ID mid

2: Sample r ∼ Uniform(0, 1)
3: if r < 0.3 then ▷ Unconditional training (AR)
4: xcorrupt = mid (fully masked)
5: else if r < 0.5 then ▷ High-span masking (CAR)
6: spans, blank_ids = generate_span_mask(L = 1024, p = 0.85,m = 50, distribution type = Geometric)
7: else ▷ Moderate-span masking (CAR)
8: spans, blank_ids = generate_span_mask(L = 1024, p = 0.5,m = 50, distribution type = Geometric)
9: end if

10: xcorrupt = x.clone()
11: xcorrupt[blank_ids] = mid

12: Return: xcorrupt

C.2. Model and Training Configuration

Tracformer. Details of the architecture and optimization procedure for Tracformer are detailed in Table 10.

SEDD. We use the SEDD-small model with 169M parameters (including 90M non-embedding parameters) trained
on OpenWebText. The model is accessed through HuggingFace: https://huggingface.co/louaaron/sedd-small.
Following the original paper (Lou et al., 2023), we adopt the log-linear noise schedule and the absorbing mask forward
noising process.

MDLM. We use the MDLM model with 169M parameters (including 90M non-embedding parameters) trained on
OpenWebText. The model is accessed through HuggingFace: https://huggingface.co/kuleshov-group/mdlm-owt.
Following the original paper (Sahoo et al., 2024), we adopt the log-linear noise schedule.

GPT. We use the GPT-2 small model with 124M parameters (including 85M non-embedding parameters). The model is
obtained from HuggingFace: https://huggingface.co/openai-community/gpt2.

C.3. Evaluation Metrics

For all conditional generation experiments in Section 6.2, we use sequences of length 128 following prior work (Lou et al.,
2023; Han et al., 2023; Gu et al., 2022). Additionally, we exclude EOS tokens when evaluating conditional perplexity since
the focus of these tasks is the ability of different models to generate coherent text given prompt texts.

D. Additional Ablation Studies
To further evaluate the impact of Tracformer’s multi-scope attention, we conduct an ablation study by replacing it with full
causal attention. In this modified architecture, the prefix encoder employs classical dense causal self-attention, while the
suffix encoder uses reverse causal attention, where each token attends to all subsequent tokens within the layer. Apart from
this modification, the encoder-decoder structure remains unchanged, ensuring a fair comparison.
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Table 10: Hyperparameters of Tracformer for the large-scale (OpenWebText) Experiments

Parameter Value

Structure Parameters
Block size 1024
Number of encoder layers 10
Number of decoder layers 10
Max attended tokens (Nmax) 32

Attention Parameters
Number of attention heads 9
Embedding dimension (d) 576

Other Parameters
Dropout rate 0.0

Optimization Parameters
Initial learning rate 6e-4
Terminal learning rate 6e-5
Learning rate schedule cosine
# warmup steps 2,000
# training steps 600,000
Batch size 480
Weight decay 1e-1
Adam betas (0.9, 0.95)
Gradient clipping maximum norm 1.0

Tables 11 present the AC generation performance under two different masking strategies: Geometric(50) with a mean span
length of 50, aligned with the training mask length, and Geometric(10) with a mean span length of 10, which deviates from
the training distribution. The results show that at low mask ratios (i.e., when more context is available), both models achieve
comparable performance, with the ablation model exhibiting a slight advantage. However, as the mask ratio increases and
the task becomes more challenging, Tracformer with multi-scope attention significantly outperforms the ablation model,
demonstrating superior generalization under high-uncertainty conditions.

Another key observation is that replacing multi-scope attention with full attention introduces a notable efficiency drop. The
ablation model incurs higher computational costs due to the dense attention mechanism, making it less scalable compared
to Tracformer. This highlights the practical advantage of Tracformer’s sparse multi-scope self-attention, which achieves a
favorable balance between performance and efficiency.

Finally, it is worth noting that despite replacing multi-scope attention with full attention, the ablation model still significantly
outperforms the previous baseline, BERT-bidir, which has a similar number of parameters. This underscores the
importance of Tracformer’s specialized encoder-decoder design, beyond just its attention mechanism. The architectural
improvements introduced in Tracformer contribute substantially to its ability to handle AC generation tasks, making it a
more effective approach compared to conventional NAR models.

E. Training and Inference Efficiency of Tracformers
Training Efficiency. As shown in Section 4.1 and Appendix A, given a Tracformer with L layers, input length T , and Nmax,
the computation cost of the encoder is O(L ·T ·Nmax), which is linear w.r.t. T . We note that a custom kernel implementation
is needed to fully take advantage of this sparse attention and leave it to future work.

According to the decoder attention mask (Eqs. (5) and (6)), the number of tokens required to attend to is exponentially
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Table 11: Ablation results for the CAR generation task. Tracformer w/ full encoder is an ablation model where the multi-scope encoder in
the original Tracformer is replaced with dense self-attention while maintaining the encoder-decoder structure. The table presents results
for two span length distributions: Geometric(µ = 50) and Geometric(µ = 10), evaluated under different mask ratios.

Mask Ratio

Model 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Geometric(µ = 50)

Tracformer 445.46 467.03 478.13 475.65 459.17 460.53 447.84 449.77 564.32
Tracformer w/ full encoder 443.65 462.90 475.25 473.85 458.77 462.30 452.11 455.23 574.73

Geometric(µ = 10)

Tracformer 165.07 178.77 181.89 178.79 185.38 193.40 219.13 288.91 509.35
Tracformer w/ full encoder 160.39 174.64 177.88 176.36 183.01 191.53 217.69 288.45 519.73

smaller for initial decoder layers. Suppose L = O(log T ), then the total computation cost for the decoder is

L∑
l=1

O(T · 2l)︸ ︷︷ ︸
Cross attention layers

+O(T · L)︸ ︷︷ ︸
FFNs

= O(T 2 + T · L).

This improves upon the cost O(T 2 · L) in classic decoder-only Transformers.

Inference Efficiency. We give an example of using KV-caching techniques in Tracformers designed for CAR generation
(i.e., Fig. 4(a)). Given context xC , we first run the suffix encoder for all tokens by feeding the <MASK> token to every token
t ̸∈ C. We then autoregressively decode the remaining tokens following the order x1,x2, . . . ,xT . When decoding xt, we
first compute the (t−1)-th feature in each layer of the prefix encoder (i.e., {henc,l

t−1 }Ll=0). In the attention layers, we use KV
caches for preceding tokens to avoid re-computing their features. Then, we compute the t-th feature in each layer of the
decoder (i.e., {hdec,l

t }Ll=0) to decode xt. This is possible because we have already computed features {henc,l
1:t−1}Ll=0 in the

prefix encoder and all features in the suffix encoder. Since there is no self-attention layer in the decoder, KV caching is not
needed.

F. Text Samples from Tracformer
F.1. Unconditional Generation

The following are randomly selected unconditional text samples generated by a Transformer model with a sequence length
of 128:

in the fishing hole outburst at or before the time that the whale had successfully spawned. Indeed, a relatively
close encounter may have emboldened the whale to pull the mylar through the sand and shelled it, as she was able
to in this example. Interestingly, the flattening events which resulted in the. Whale cutluring was caused by the
thermal spark that resulted from the spin and instability of the high (or low) pressure, thus inducing the ripening
state. The more the thermal increase of the high (or low) temperature was offset from the opposite direction along
seismic quadrants. Interestingly, the evaporation rates at the ...

the Antiquarian League of Massachusetts (ASML) works with the Massachusetts League of New Hampshire Bar
Associations to enforce the law through nicety and compromise. Unlike the League of Massachusetts Missouri,
and its members are independent, their committees are almost entirely autonomous, with sole jurisdiction solely
on the matters of labor rights for inmates. They keep offsite their legal animosity to the state, only restricting their
manifestations to marking weeks in advance.And, in an unusual turn, they hold committees to run stretchin, direct
sensitivity exercises of a ceremonies-like kind. These bundles of letters in the verse, in order to mark the time
during which a batch ...
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The 90-day player initiative on June 2 also launched across all seven parks and recreational areas in the National
Park system in Central Sierras. There, children along with the government hamstrung the operation, an action
hoped to be a long-term solution to the larger problem of ecological loss along the Central Sierras. The USDA
estimated that 20 275-acre sites on the Hudson River basin are almost colliding, forming a “very difficult interplay
of life and conflict.” They include the East Bay Schuylkill River (230 versus the 81-acre Wyoming Standard
Ditch), the ...

was directed against the convict institution. Augustine said the parish sincerely believed the practice was against
the 100 U.S. Statute. In fact if that is the practice, we would not call it a crime that was committed in Phillippines
– we were talking about out of state institutions. And we don’t do that. So if the confession was confessionally
formed it is in the whole, full church confessional as we described it.”\n\nAgain, the most surprising day of the
probation hearing was the fact the single author testified the confession was genuine.\n\nThe principal tried to
inscribe the patriarch, ...

I still see themes that clouds up uncertainty about the work of first Y.\n\nInterestingly, note how Elsa feels an
inability to see how far to go on her journey in those citymarish dark castles. Darkness isn’t the right word for
her solution to the riddle – the life of an urban teen slowly dissolving behind the clouds, every shadow suddenly
overwhelmed or broken, only to be replaced by a more believable and understandable life. The crowding of
darkness adds to the disorder. Of course she doesn’t expect Snow to go though, and Elsa will have to find her own
answers as to how far ...

TalkTalk Studios production. “We’re stellar!”!\n\nAt the time of the movie’s release, there were quite a few
references to a 5.0 rating and 60% top ballerinas, plus amusing examples of mixed reviews and negative news
coverage. “We really appealed to the social media revolution because I think that’s really got to get people excited
and care about their content: whether they like it or not,” producer Jill Mullin has explained.\n\nA downhill slope
has been one of the biggest tickets for Sony’s likes-on-rumours

F.2. Conditional Generation

The following are randomly selected conditional text samples generated by a Transformer model with a sequence length of
128. The prompt texts are bolded and in blue:

track-two diplomacy between U.S. and Soviet officials and nuclear scientists, which helped lead to the Compre-
hensive Test Ban Treaty. MacArthur grantees also helped develop real alternatives to the IAEA, such as providing
uranium to New Zealand. The centerpiece was the launch of a satellite called WUSA.\n\nFinances of the IAEA
declined. The international community supports the cessation of proliferation, nuclear nonproliferation, and
proliferation reduction, and it has improved the coordination of security policy on issues like nonproliferation and
arms control.But more recently, they have borne the brunt of its economic decline, enduring lower wages

and to ascertain its peaceful means of production.Mugabe has ruled Zimbabwe since independence from
Britain in 1980 but faced an unprecedented challenge in Saturday’s elections because of the unrest across
his country.\n\nFrom newly jailed opposition leader Eldion Oliverine for the Republic of Zimbabwe to the
conservative populist Robert Vibert for the ruling party, the verdict could mark a “new beginning” for Zimbabwe,
which had once been its own country.\n\nThe verdict applies to brain cancer, O. Wayne Corley, senior shareholder
in the McNair Law Firm, announced.Another question that seems never to have been raised is that

Powerton Historic District. Nearly 1 million square feet may be taken care of by the Virginia Historical Com-
mission, say officials, but the built-design preferred by the Lee administration would have led to up to six
months.Thousands of jobs are threatened, and towns will lose part of their economic base.OK, so today is time for
some Aliens Interviews: Episode 5 – Gruff Ed Beeton interview.\n\nAs you might expect but a few comments
are here:\n\nTerm Ear Ham Mick Deputy Assistant to the President, Mr. Ballentine was Special Assistant to the
President for Legislative Affairs, where he focused on energy
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full-time practice for the Dynamo with one of their available options to make his debut from the bench is looking
likely to be the more familiar striker. The way players are used to it is not the "main factor," Roden said.If
there are rights, it is too little.He had been in San Antonio since the winter of 2010 as a civil servant with a
pension to return to Brazil.\n\n"Brazil is the kind of economy that opened up variations in economic conditions
and strengthened the key refinery centers," said Jim Rouiller, meteorologist with private weather forecaster
Planalytics.Headquartered in Basking

at a wavelength of 13 cm show no evidence for water ice (Fig. 16(j)). The middle crust of the pixel is depressurised
by around 0.3 Å before a crystalline bath and column. The software eliminates any liquid after residual ice, down
to the image resolution of 10 m per pixel.\n On November 15, 2008, a 34-kg, 5.2-pound airborne "mysterious
satellite" appears on high resolution radar screen at altimeter branches at the Pangaea solar array observatory on
Oak Flat, California, with a radar altimeter, video imaging system, and a mass spect

ramuros, were destroyed but after the war, reconstruction took place.\n In 1948, President Elpidio Quiroga set in
motion a program that could reshape Philippine history. The concept was called “The Bilateral Relations with
Manila, created in 1938 by former President Manuel L. Quezon, which was named after him. The move ended
any implementation first created by then-President Marcos.\n\nIn 1945, the Bilateral Relations obscure evolved
into inter-provincial relations. Manila and Bilateral Relations were also linked to the Bilateral Relations.\n\nThe
Bilateral relations were based on strategic, tactical

is difficult to make sense of. Most researchers think that terrestrial vertebrae are made of tendon, but there are
several proposed hypotheses.1 Two proposed vertebrae, which sometimes don’t such as Sclerothorax and Eryops
that may have been at least partly terrestrial also have long neural spines on top of their vertebrae that would have
stabilized the spine and required reattachment to form a non-spine rest part.3 Another speculation involving the
placement of vertebrae in a notch below the flexic muscles on the back of the spine would seem a more plausible
explanation.3 Another proposed vertebrae

G. Proof of Conditional NELBO for MDLM
In this section, we generalize the unconditional negative evidence lower-bound (NELBO) derivation in Sahoo et al. (2024) to
the conditional case. The resultant formula is then used to compute the conditional perplexity of baseline discrete diffusion
models in various settings. First, we derive the expression for conditional NELBO. We then examine and simplify the
various terms within the conditional NELBO. Finally, we present the final expression for the conditional NELBO.

This proof builds upon and extends the results presented in Sahoo et al. (2024). Equations from the original paper are
frequently referenced, and readers are encouraged to refer to the original paper for a deeper understanding of the foundational
concepts and equations discussed.

G.1. Derivation of the Conditional NELBO Expression

For a sequence of L tokens, let F = {1, 2, . . . , L} denote the set of all indices in the sequence. Let S ⊂ F be the set
containing all and only the indices of the given tokens. In this proof, we denote the entire sequence as xF (equivalent to
x1:L in Sahoo et al. (2024)), the given tokens as xS , and the unknown tokens as xF−S . Following the definitions in Sahoo
et al. (2024), we define s(i) = (i− 1)/T and t(i) = i/T , and omit the i from t(i) and s(i).

Using the aforementioned notations, we can express the conditional negative log-likelihood as − log pθ(x
F−S |xS). Now,

we step into the details of deriving the conditional NELBO:

− log pθ(x
F−S |xS),

= − log

∫
pθ(x

F−S , zF
t(0), . . . ,z

F
t(T )|x

S)dzF
t(0) . . . dz
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pθ(x

F−S , zF
t(0), . . . ,z

F
t(T )|x

S)

q(zF
t(0), . . . ,z

F
t(T )|xF )

dzF
t(0) . . . dz

F
t(T ),
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= −EzF∼q(·|xF )

[
log

pθ(x
F−S , zF

t(0), . . . ,z
F
t(T )|x

S)

q(zF
t(0), . . . ,z

F
t(T )|xF )

]
, (9)

= −EzF

[
log

pθ(x
F−S |zF

t(0),x
S)pθ(z

F
t(T )|x

S)
∏T

i=1 pθ(z
F
s |zF

t ,x
S)

q(zF
t(0)|xF )

∏T
i=1 q(z

F
t |zF

s )

]
(note that s (resp. t) denotes s(i) (resp. t(i))),

= EzF

[
− log pθ(z

F
t(T )|x

S) +

T∑
i=1

log
q(zF

t |zF
s )

pθ(zF
s |zF

t ,x
S)

+ log
q(zF

t(0)|x
F )

pθ(xF−S |zF
t(0),x

S)

]
,

= EzF

[
− log pθ(z

F
t(T )|x

S) +

T∑
i=1

log
q(zF

s |zF
t ,x

F )

pθ(zF
s |zF

t ,x
S)

+

T∑
i=1

log
q(zF

t |xF )

q(zF
s |xF )

+ log
q(zF

t(0)|x
F )

pθ(xF−S |zF
t(0),x

S)

]
, (10)

= EzF

[
− log pθ(z

F
t(T )|x

S) +

T∑
i=1

log
q(zF

s |zF
t ,x

F )

pθ(zF
s |zF

t ,x
S)

+ log
q(zF

t(T )|x
F )

q(zF
t(0)|xF )

+ log
q(zF

t(0)|x
F )

pθ(xF−S |zF
t(0),x

S)

]
,

= EzF

[
log

q(zF
t(T )|x

F )

pθ(zF
t(T )|xS)

+

T∑
i=1

log
q(zF

s |zF
t ,x

F )

pθ(zF
s |zF

t ,x
S)

− log pθ(x
F−S |zF

t(0),x
S)

]
,

= EzF

[
− log pθ(x

F−S |zF
t(0),x

S)︸ ︷︷ ︸
Lrecons

+

T∑
i=1

DKL[q(z
F
s |zF

t ,x
F )∥pθ(zF

s |zF
t ,x

S)]︸ ︷︷ ︸
Ldiffusion

]

+DKL[q(z
F
t(T )|x

F )∥pθ(zF
t(T )|x

S)]︸ ︷︷ ︸
Lprior

. (11)

In Equation (9), zF is used to denote [zF
t(0), . . . ,z

F
t(T )] for simplicity. When deriving Equation (10) from its previous step,

we make use of the following factorization:

q(zF
t |zF

s ) = q(zF
t |zF

s ,x
F ) =

q(zF
s |zF

t ,x
F )q(zF

t |xF )

q(zF
s |xF )

.

G.2. Simplification of Conditional NELBO Terms

As assumed in Section 3.5 of Sahoo et al. (2024), the forward noising process is applied independently across a sequence,
and the denoising process factorizes independently across tokens. These two assumptions can be translated to the following
equations:

q(zF
t |zF

s ,x
F ) =

L∏
ℓ=1

q(zℓ
t |zℓ

s,x
ℓ) (12)

pθ(z
F
s |zF

t ) =

L∏
ℓ=1

pθ(z
ℓ
s|zF

t ) (13)

As defined in Equation (7) of Sahoo et al. (2024), for ∀ℓ ∈ F ,

pθ(z
ℓ
s|zF

t ) = q(zℓ
s|zℓ

t ,x
ℓ = xℓ

θ(z
F
t , t)) (14)

Note that the original definition was for the specific case where only a single token is noised and denoised. However, since
we are addressing the noising and denoising of entire token sequences, we extend the definition to accommodate sequences
of tokens.
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Additionally, we define:

pθ(z
ℓ
s|zF

t ,x
S) = q(zℓ

s|zℓ
t ,x

ℓ = xℓ
θ([z

F−S
t ,xS ], t)) (15)

where [zF−S
t ,xS ] is a shorthand for zF

t with zℓ
t replaced by xℓ, for ∀ℓ ∈ S. In practice, this is easily done by replacing the

tokens with indices in S with the corresponding given tokens, while leaving the remaining tokens unchanged before feeding
the sequence into the model xθ.

According to “Carry Over Masking” in the original paper, the model xθ has the property that xℓ
θ(z

F
t , t) = zℓ

t if zℓ
t is not

masked. Therefore, for ∀ℓ ∈ S,

pθ(z
ℓ
s|zF

t ,x
S) = q(zℓ

s|zℓ
t ,x

ℓ = xℓ
θ([z

F−S
t ,xS ], t))

= q(zℓ
s|zℓ

t ,x
ℓ) (16)

Note that the symbol the xℓ is reused: the xℓ in the first line represents a random variable, while the xℓ in the second line is
the ℓ-th token of the ground truth sequence, which is a given one-hot vector.

As an extension to (13), we further assume that:

pθ(z
F
s |zF

t ,x
S) =

L∏
ℓ=1

pθ(z
ℓ
s|zF

t ,x
S) (17)

Using these equations and the continuation of timesteps (i.e. T → ∞), we can further simplify the terms in (11).

G.2.1. DIFFUSION LOSS

Following Section A.2.3 of the original paper, let LT = Et∈{ 1
T , 2

T ,...,1}Eq(zF
t |xF )TDKL[q(z

F
s |zF

t ,x
F )∥pθ(zF

s |zF
t ,x

S)]
denote the diffusion loss. We can simplify it with the following steps:

LT = Et∈{ 1
T , 2

T ,...,1}Eq(zF
t |xF )T

L∑
ℓ=1

DKL[q(z
ℓ
s|zℓ

t ,x
ℓ)∥pθ(zℓ

s|zF
t ,x

S)], Using (12) and (17)

= Et∈{ 1
T , 2

T ,...,1}Eq(zF
t |xF )T

∑
ℓ∈F−S

DKL[q(z
ℓ
s|zℓ

t ,x
ℓ)∥pθ(zℓ

s|zF
t ,x

S)], Using (16)

=
∑

ℓ∈F−S

Et∈{ 1
T , 2

T ,...,1}Eq(zF
t |xF )

[
T ·DKL[q(z

ℓ
s|zℓ

t ,x
ℓ)∥pθ(zℓ

s|zF
t ,x

S)]
]
,

which is essentially the sum of the losses for each unknown token.

In the appendix of Sahoo et al. (2024), the derivation is focused on the case where only a single token is involved. But since
we decomposed the diffusion loss of the sequence into the sum of single-token losses, now we are able to use the results
from the original paper, as long as we can address the difference between pθ(z

ℓ
s|zF

t ,x
S) in this derivation and pθ(zs|zt) in

the original paper.

According to Equation (15) from the original paper, we can derive from Equation (15) that:

pθ(z
ℓ
s|zF

t ,x
S) = q(zℓ

s|zℓ
t ,x

ℓ = xℓ
θ([z

F−S
t ,xS ], t)) = Cat

(
zℓ
s;
Qt|sz

ℓ
t ⊙Q⊤

s x
ℓ
θ([z

F−S
t ,xS ], t))

zℓ
t
⊤
Q⊤

t x
ℓ
θ([z

F−S
t ,xS ], t))

)
.

Thus, the KL divergence term in the diffusion loss can be expressed as:

DKL[q(z
ℓ
s|zℓ

t ,x
ℓ)∥pθ(zℓ

s|zF
t ,x

S)] = DKL

[
q(zℓ

s|zℓ
t ,x

ℓ)||Cat

(
zℓ
s;
Qt|sz

ℓ
t ⊙Q⊤

s x
ℓ
θ([z

F−S
t ,xS ], t))

zℓ
t
⊤
Q⊤

t x
ℓ
θ([z

F−S
t ,xS ], t))

)]
, (18)

while for the single-token case as in the original paper, the KL divergence term DKL[q(z
ℓ
s|zℓ

t ,x
ℓ)||pθ(zℓ

s|zℓ
t )] is:

DKL[q(z
ℓ
s|zℓ

t ,x
ℓ)||pθ(zℓ

s|zℓ
t )] = DKL

[
q(zℓ

s|zℓ
t ,x

ℓ)||Cat

(
zs;

Qt|sz
ℓ
t ⊙Q⊤

s x
ℓ
θ(z

ℓ
t , t))

zℓ
t
⊤
Q⊤

t x
ℓ
θ(z

ℓ
t , t))

)]
. (19)
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In Equation (19), the index ℓ ∈ F − S is added for notational consistency between Equation (18) and Equation (19). As we
can see, the sole difference is that in Equation (19), xℓ

θ([z
F−S
t ,xS ], t) is substituted with xℓ

θ(z
ℓ
t , t). Consequently, as long

as the former shares the same properties as the latter, the results derived for the single-token case still applies.

When simplifying the diffusion loss, only 3 properties are required of xℓ
θ(z

ℓ
t , t) in the original paper:

1. The output of xℓ
θ(z

ℓ
t , t) is a probability distribution over all categories, i.e. ⟨1,xℓ

θ(z
ℓ
t , t)⟩ = 1.

2. “Zero Masking Probabilities” i.e. ⟨xℓ
θ(z

ℓ
t , t),m⟩ = 0.

3. “Carry Over Unmasking” i.e. xℓ
θ(z

ℓ
t , t) = xℓ when zℓ

t = xℓ.

which all happens to be properties that MDLM models share, and therefore also holds for xℓ
θ([z

F−S
t ,xS ], t). Thus, by

substituting xθ(zt, t) with xℓ
θ([z

F−S
t ,xS ], t), we can apply the results from the single-token case and derive the following

equation from Eqn. 42 of the original paper:

LT =
∑

ℓ∈F−S

Et∈{ 1
T , 2

T ,...,1}Eq(zF
t |xF )T

[
αt − αs

1− αt
log⟨xℓ

θ([z
F−S
t ,xS ], t),xℓ⟩

]
. (20)

G.2.2. PRIOR LOSS

According to Equations (37) and (38) in the original paper, we can easily derive that:

q(zF
t(T ) = M|xF ) = 1,

pθ(z
F
t(T ) = M|xS) = 1,

where M = [m,m, . . . ,m] ∈ RK×L, and K is the number of categories.

Thus, q(zF
t(T )|x

F ) and pθ(z
F
t(T )|x

S) are identical distributions where zF
t(T ) has a probability of 1 of being an entire sequence

of masked tokens, resulting in a prior loss of 0:

Lprior = DKL[q(z
F
t(T )|x

F )∥pθ(zF
t(T )|x

S)] = 0. (21)

G.2.3. CONTINUOUS TIME

For the continuous-time case, similar to Equation (44) from the original paper, we can derive:

L∞
diffusion = lim

T→∞
LT =

∑
ℓ∈F−S

Et∼U [0,1],q(zF
t |xℓ)

[
α′
t

1− αt
log⟨xℓ

θ([z
F−S
t ,xS ], t),xℓ⟩

]
. (22)

According to Equation (45) from the original paper, under continuous time, we also have zℓ
t(0) = xℓ. Thus we have the

following:

Lrecons = Eq(zF
t(0)

|xF )[− log pθ(x
F−S |zF

t(0),x
S)],

= Eq(zF
t(0)

|xF )[− log pθ(x
F−S |zF

t(0) = xF ,xS)], Using zℓ
t(0) = xℓ

= Eq(zF
t(0)

|xF )[− log
∏

ℓ∈F−S

⟨xℓ
θ([z

F−S
t(0) = xF−S ,xS ], t(0)),xℓ⟩],

= Eq(zF
t(0)

|xF )[− log
∏

ℓ∈F−S

⟨xℓ,xℓ⟩], (23)

= Eq(zF
t(0)

|xF )[− log
∏

ℓ∈F−S

1],

= 0, (24)

where deriving Equation (23) from its previous step makes use of the “Carry Over Masking” property, i.e., xℓ
θ([z

F−S
t =

xF−S ,xS ], t) = xℓ.
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G.2.4. CONDITIONAL NELBO

Finally, using Equations (21), (22) and (24), we arrive at the final expression for conditional NELBO:

LNELBO = Lrecons + L∞
diffusion + Lprior,

=
∑

ℓ∈F−S

Eq,t

[
α′
t

1− αt
log⟨xℓ

θ([z
F−S
t ,xS ], t),xℓ⟩

]
.
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