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Abstract
While Large Language Models (LLMs) have ex-
hibited remarkable emergent capabilities through
extensive pre-training, they still face critical limi-
tations in generalizing to specialized domains and
handling diverse linguistic variations, known as
distribution shifts. In this paper, we propose a
Test-Time Learning (TTL) paradigm for LLMs,
namely TLM, which dynamically adapts LLMs
to target domains using only unlabeled test data
during testing. Specifically, we first provide em-
pirical evidence and theoretical insights to reveal
that more accurate predictions from LLMs can be
achieved by minimizing the input perplexity of the
unlabeled test data. Based on this insight, we for-
mulate the Test-Time Learning process of LLMs
as input perplexity minimization, enabling self-
supervised enhancement of LLM performance.
Furthermore, we observe that high-perplexity
samples tend to be more informative for model
optimization. Accordingly, we introduce a Sam-
ple Efficient Learning Strategy that actively se-
lects and emphasizes these high-perplexity sam-
ples for test-time updates. Lastly, to mitigate
catastrophic forgetting and ensure adaptation sta-
bility, we adopt Low-Rank Adaptation (LoRA)
instead of full-parameter optimization, which al-
lows lightweight model updates while preserving
more original knowledge from the model. We
introduce the AdaptEval benchmark for TTL and
demonstrate through experiments that TLM im-
proves performance by at least 20% compared to
original LLMs on domain knowledge adaptation.
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1. Introduction
Large Language Models (LLMs) such as GPT-4 (Achiam
et al., 2023) and LLaMA (Dubey et al., 2024) have signif-
icantly advanced the field of natural language processing
(NLP), demonstrating exceptional capabilities in both un-
derstanding and generating human-like text (Wang et al.,
2025a). Such success is achieved through extensive pre-
training on massive corpora, enabling them to learn rich lan-
guage representations that facilitate superior performance
in various NLP tasks (Hu et al., 2025a; Zhong et al., 2024).

Despite their impressive capabilities, LLMs face significant
challenges when deployed in real-world environments with
dynamic and diverse data distributions. These challenges
stem from the inherent sensitivity of deep learning models,
including LLMs, to distribution shifts between training and
test data, often leading to substantial performance degrada-
tion (Akyürek et al., 2024). These distributional shifts mani-
fest in two main ways: 1) Domain-Specific Terminology:
Encountering rare or specialized terms and structures in
fields such as medicine or agriculture may limit the model’s
performance (Gu et al., 2021). 2) Linguistic Diversity
Variations: Variations in user intent and linguistic diversity,
including dialects and slang, lead to distributional discrep-
ancies that negatively affect the model’s comprehension and
response generation (Bella et al., 2024).

Recently, several attempts have been proposed to improve
the performance of models in dynamic and diverse real-
world environments. Most existing methods can be broadly
categorized into four types, as shown in Table 1. Fine-
tuning (Hu et al., 2022; Thirunavukarasu et al., 2023) adapts
pre-trained models to specific tasks by updating their pa-
rameters with labeled data, but it is constrained by the need
for extensive labeled datasets, limiting its practicality in
dynamic environments. Retrieval-Augmented Generation
(RAG) (Fan et al., 2024) improves performance without
requiring labeled data updates by leveraging external knowl-
edge retrieved during inference, but its success depends
heavily on the quality of the retrieved information. Test-
Time Adaptation (TTA) (Wang et al., 2021; Niu et al., 2022a;
Chen et al., 2024b) adjusts model parameters during infer-
ence using only unlabeled test data, allowing the model to
adapt to distribution shifts in real-time. However, most TTA
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Table 1. Characteristics of problem settings for adapting trained models to potentially shifted test domains.

Setting Knowledge Source Data Target Data Training Loss Testing Loss Learning Type

Fine-tuning % % xt, yt L(xt, yt) – Supervised
Retrieval-Augmented Generation (Fan et al., 2024) ! % xt – – –
Test-Time Adaptation (Wang et al., 2021) % % xt % L(xt) Unsupervised
Test-Time Training (Hardt & Sun, 2024) ! xs, ys xt % L(xt;xs, ys) –

Test-Time Learning (Ours) % % xt % L(xt) Self-supervised

methods rely on entropy minimization as the optimization
objective, which overlooks the autoregressive dependencies
within LLMs, limiting its effectiveness in improving perfor-
mance on dynamic tasks (see Figure 1a). Test-Time Training
(TTT) (Hardt & Sun, 2024; Hübotter et al., 2024) retrieves
data relevant to the input from the training set or knowledge
base during inference to fine-tune the model, improving its
performance in dynamic scenarios. However, these methods
assume that the model’s training data or knowledge data is
accessible, which is often not the case in practice, and they
also incur additional retrieval overhead.

Although recent methods address distributional shifts in test
data, they still face the following limitations: 1) Difficulty
in acquiring labeled data: High-quality labeled data for
SFT of LLMs, especially for domain-specific tasks, is time-
consuming, and becomes more difficult in online model up-
dates. 2) Neglecting autoregressive dependencies: Many
existing methods, such as TTA, overlook the autoregressive
nature of LLMs, leading to potential harm when using en-
tropy minimization for parameter updates. 3) High training
overhead and catastrophic forgetting: Many methods re-
quire substantial computational resources to update model
parameters and may suffer from catastrophic forgetting.

To address these limitations, we propose a Test-Time
Learning (TTL) method for Large Language Models,
namely TLM, which dynamically adapts LLMs using only
unlabeled test data. Specifically, we provide empirical evi-
dence and theoretical insights to reveal that more accurate
autoregressive predictions from LLMs can be achieved by
minimizing the input perplexity of the unlabeled test data
(see Observation 1). Based on this insight, we formulate
the TTL process of LLMs as input perplexity minimization,
enabling self-supervised enhancement of LLM performance.
Furthermore, we observe that high-perplexity test samples
contribute more significantly to model updates compared to
low-perplexity samples (see Observation 2). Building on
this observation, we propose a Sample Efficient Learning
Strategy that employs a perplexity-based weighting scheme
to actively select and emphasize high-perplexity test samples
for backpropagation, thereby facilitating efficient parameter
updates during Test-Time Learning. Moreover, we observe
that during the Test-Time Learning, Low-Rank Adaptation

(LoRA) (Hu et al., 2022) is more effective at mitigating
catastrophic forgetting compared to full parameter updates
(see Observation 3). Based on this, we utilize LoRA for
TTL parameter updates, enabling lightweight training and
effectively mitigating catastrophic forgetting, in contrast to
updating the full parameters of LLMs. Lastly, we construct
a comprehensive benchmark named AdaptEval for TTL.

We summarize our main contributions as follows:

• Empirical Insights on Input Perplexity Minimiza-
tion: We empirically demonstrate that output perplex-
ity can be reduced by minimizing input perplexity.
Based on this insight, we adopt input perplexity mini-
mization as the optimization objective, enabling LLMs
to adapt effectively to target domains during test time.

• Sample Efficient Learning Strategy with High-
Perplexity Focus: We propose a Sample Efficient
Learning Strategy using a perplexity-based weighting
scheme to select high-perplexity test samples for up-
date, ensuring efficient utilization of computational re-
sources. Moreover, we use LoRA to enable lightweight
training and mitigate catastrophic forgetting.

• Benchmark and Experimental Validation of Test-
Time Learning: We establish the AdaptEval bench-
mark for TTL and demonstrate through experiments
that our TLM improves performance by at least 20%
over original LLMs on domain knowledge adaptation.

2. Related Work
The adaptability of deep learning models to dynamic and di-
verse real-world environments has emerged as a prominent
focus in recent research. Various methods have been pro-
posed to enhance model performance under distributional
shifts, as summarized in Table 1.

Fine-Tuning adapts pre-trained models to specific tasks
or domains by updating their parameters, such as LoRA,
with labeled data (Hu et al., 2022; Thirunavukarasu et al.,
2023; Chen et al., 2024c; Wang et al., 2025b). This ap-
proach allows models to specialize in domain-specific tasks
by leveraging transfer learning to refine their capabilities.
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However, it is often constrained by the need for extensive
labeled datasets and high computational costs, which limit
its practicality in dynamic environments where data distri-
butions are continuously evolving. In contrast, our work
aims to dynamically update the model at test-time using
unlabeled input data, eliminating the need for extensive
labeled datasets and addressing the challenges posed by
evolving data distributions.

Retrieval-Augmented Generation (RAG) incorporates ex-
ternal knowledge by retrieving relevant information from a
knowledge base during inference (Jiang et al., 2024; Qian
et al., 2024; Asai et al., 2024). This allows the model to gen-
erate more accurate and contextually grounded responses
without requiring parameter updates. Qian et al. (2024) pro-
pose MemoRAG, a retrieval-augmented generation frame-
work enhanced by long-term memory for improved task
performance. RAG is effective for tasks requiring up-to-
date or domain knowledge but relies heavily on the quality
of retrieved information and incurs additional computational
latency, limiting its suitability for time-sensitive tasks.

Test-Time Adaptation (TTA) dynamically updates model
parameters during inference by utilizing unlabeled test data
(Wang et al., 2021; Niu et al., 2022a; 2023; Chen et al.,
2024b;a; Liang et al., 2024; Yi et al., 2024). This approach
enables real-time adaptation to distributional shifts, making
it suitable for scenarios where labeled data is unavailable
or the test data distribution deviates significantly from the
training distribution. Wang et al. (2021) propose the test
entropy minimization method, which improves model con-
fidence by minimizing prediction entropy through online
updates of normalization statistics and affine transforma-
tions. Most TTA methods rely on entropy minimization,
but this approach is not well-suited for the dynamic updates
required by LLMs, as shown in Figure 1a. To address this
issue, we propose minimizing the perplexity of test samples
as the optimization objective, which effectively enhances
the performance of LLMs in dynamic environments.

Test-Time Training (TTT) retrieves relevant data from
the training set or a knowledge base during inference and
uses it to fine-tune the models (Niu et al., 2022b; Hardt &
Sun, 2024; Hübotter et al., 2024). This allows the model to
leverage adjacent data to better adapt to current test inputs,
improving its performance in dynamic scenarios. Hardt &
Sun (2024) propose a test-time training approach for LLMs
by fine-tuning the model on retrieved nearest neighbors from
a large-scale text embedding index. Hübotter et al. (2024)
propose SIFT, a data selection algorithm that optimizes
information gain to outperform Nearest Neighbor retrieval
for test-time fine-tuning with low computational overhead.
However, TTT assumes that the model’s training data or
knowledge base is accessible during deployment, and the
retrieval process introduces computational overhead, which

is often impractical. Unlike TTT, our focus is on TTL,
which dynamically updates LLMs during test time using
only unlabeled test data.

3. Problem Formulation
Without loss of generality, let P (x) denote the distribution
of the training data {xi}Ni=1, where xi ∼ P (x). The fΘ◦(x)
represent a general Large Language Model (LLM) that has
been supervised fine-tuned (SFT) on labeled training data
{(xi, yi)}Ni=1, with parameters Θ◦. During training, the
model fΘ◦(x) is optimized to generate coherent and contex-
tually appropriate sequences by predicting the next token
in an autoregressive manner, effectively fitting the training
data and generalizing to test data from the same distribution
x ∼ P (x). However, in real-world deployments, the distri-
bution of test data may differ significantly from the training
distribution due to various factors, leading to a phenomenon
known as distribution shift. For general LLMs (e.g., LLaMA
and Qwen), two primary types of out-of-distribution (OOD)
scenarios can occur during inference: 1) Vertical Domain
Shift: This occurs when test data contains domain-specific
terminology, such as in medical, legal, or technical fields,
which the model was not explicitly trained on, impairing its
performance. 2) Distributional Shift in Non-Specific Do-
mains: Even without a specific vertical domain, factors like
user intent variations and linguistic diversity (e.g., dialects,
slang) can shift test data distribution from training data, af-
fecting model understanding and response generation. In
these cases, the generative performance of the model fΘ◦(x)
may deteriorate significantly because the model has not been
explicitly trained to handle such distribution shifts, resulting
in less coherent or contextually appropriate text generation
on OOD test samples x ∼ Q(x), where Q(x) ̸= P (x).

Test-Time Learning (TTL) seeks to improve the perfor-
mance of LLMs in the target domain by adjusting the model
using only test data. Specifically, given a set of OOD test
samples {xj}Mj=1, where xj ∼ Q(x), the goal of TTL is to
optimize the model parameters Θ to improve the quality and
coherence of generated text for these test samples. Formally,
TTL can be framed as the following optimization problem,
where the objective is to minimize an unsupervised criterion
defined over the test data:

min
Θ

L(x; Θ), x ∼ Q(x), (1)

where Θ ⊆ Θ represents the subset of model parameters to
be updated during the TTL. The TTL objective L(·) can take
various forms, such as minimizing the perplexity. The key
challenge of TTL is to design efficient adaptation strategies
that can utilize unlabeled test data to improve performance
on OOD samples while maintaining training efficiency and
effectively mitigating catastrophic forgetting.
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(c) Effect of different test samples in test-
time perplexity minimization.

Figure 1. Summary of our exploration and observations: (a) demonstrates that perplexity minimization improves the performance of
LLMs, while entropy minimization (Wang et al., 2021) may harm their performance; (b) reveals that the trend of LLM’s perplexity to the
input P(x) and perplexity to the output P(y|x) is the same (results are normalized), i.e., we can min

Θ
P(y|x; Θ) by min

Θ
P(x; Θ); and (c)

emphasizes that training on high-perplexity samples makes more contribution than low-perplexity ones.

4. Test-Time Learning for LLMs
In this paper, we propose a Test-Time Learning (TTL)
method for Large Language Models (LLMs) called TLM,
which dynamically adapts LLMs using only unlabeled test
data. The pipeline of TLM is shown in Algorithm 1, our pro-
posed TLM is composed of three key components. 1) Input
Perplexity Minimization Objective: Inspired by the strong
correlation between input perplexity and output perplexity,
we adopt input perplexity minimization as the optimization
objective. This enables LLMs to better fit the target data
distribution during test time, as detailed in Sec. 4.1. 2)
Sample-Efficient Learning Strategy: Not all test samples
equally impact model updates. Employing a perplexity-
based weighting scheme, the model actively selects and
emphasizes high-perplexity test samples for backpropaga-
tion, thereby enabling efficient parameter updates during
Test-Time Learning (c.f. Sec. 4.2). 3) Lightweight Parame-
ter Updates via LoRA: To mitigate catastrophic forgetting
and reduce computational costs, we integrate LoRA into
TTL. By updating only a small subset of model parameters,
LoRA enables lightweight training and effectively mitigates
catastrophic forgetting, making our proposed method suit-
able for real-world deployment (c.f. Sec. 4.3).

4.1. Perplexity Minimization for Test-Time Learning

Perplexity (Bengio et al., 2000) is a widely used measure
in language modeling that quantifies how well a model
predicts a sequence of tokens (Devlin et al., 2019; Brown
et al., 2020). Given a sequence of tokens {x1, x2, ..., xT },
the perplexity P is defined as the exponentiation of the
average negative log-likelihood of the predicted tokens:

P({x1, x2, ..., xT }) = e(−
1
T

∑T
t=1 log p(xt|x1:t−1;Θ)), (2)

where log p(xt|x1:t−1; Θ) is the conditional probability of
predicting token ti given the previous tokens, parameter-

Algorithm 1 The pipeline of proposed TLM.

Input: Test samples DTest = {xj}Mj=1, the trained LLM
fΘ(·), LoRA ∆Θ with trainable parameters B and A,
batch size B.

1: Initialize LoRA parameters ∆Θ.
2: Add LoRA parameters to trained LLM Θ̃ = Θ +∆Θ.
3: for a batch X = {xb}Bb=1 in DTest do
4: Calculate predictions ỹ for all x ∈ X via fΘ(·).
5: Calculate sample selection score S(x) via Eqn. (6).
6: Update LLM (Θ̃) with Eqn.(5).
7: end for

Output: The final LLM (Θ̃).

ized by Θ. A lower perplexity indicates that the model’s
predictions are more confident and closely align with the
true distribution of the data, which implies better model
fitting (Jumelet & Zuidema, 2023). Therefore, for a given
question-answer pair {x, y}, minimizing the perplexity of
the model’s response y can enhance the model’s ability to
fit the target data distribution, leading to improved perfor-
mance on out-of-distribution (OOD) data. Specifically, by
minimizing the perplexity P(y|x; Θ) of the answer y given
the input x, which can be formulated as:

min
Θ

P(y|x; Θ) = min
Θ

e(−
1
T

∑T
t=1 log p(yt|x,y1:t−1;Θ)). (3)

This minimization process improves the model’s perfor-
mance in the target data distribution. However, during the
testing phase, we can only access the user’s input x and not
the ground truth output y. To address this limitation, we
hypothesize that minimizing the perplexity of the input x,
denoted as min

Θ
P(x; Θ), may reduce the perplexity of the

model’s response y. The mathematical justification for this
transformation is based on the assumption that the model
parameters Θ influence both P(y|x; Θ) and P(x; Θ) in a
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related manner, which can be described as follows:

Assumption 1 (Autoregressive Property): The LLM gen-
erates each token yt based on the input x and previously
generated tokens y1:t−1: P(yt|x, y1:t−1; Θ). The standard
next-token prediction objective makes model predictions
inherently conditional on previous context quality.

Assumption 2 (Shared Parameter Influence): LLM pa-
rameters Θ influence both the input perplexity P(x; Θ) and
the conditional output perplexity P(y|x; Θ). This assump-
tion is valid across various LLM architectures, such as
encoder-only and decoder-only models.

Reducing Output Perplexity through Input Perplexity
Minimization. Minimizing the perplexity to the input
P(x; Θ) is equivalent to maximizing the input generation
probability P (x; Θ). We employ a gradient-based theo-
retical analysis to formalize the intuition that question-
conditioned updates benefit answer predictions, based on
a key assumption. Let Θ′ = Θ− η∇Θ(− logP (x; Θ)) de-
note the updated parameters after a single TTL step. Using
a first-order Taylor expansion:

logPΘ′(y|x) ≈O(η2) + logPΘ(y|x) (4)

+ η [∇Θ logP (x; Θ)]
⊤ ∇Θ logPΘ(y|x)︸ ︷︷ ︸

Cross-gradient term

,

where y is the answer to the question x. Our core assumption
is that ⟨∇x,∇y⟩ = [∇Θ logP (x; θ)]

⊤ ∇Θ logPΘ(y|x) ≥
0 for question-answer pairs with strong semantic alignment.
Under this condition, the cross-gradient term becomes non-
negative, guaranteeing: logPΘ′(y|x) ≥ logPΘ(y|x) for
small η (We compute the gradient inner product using 400
batches (batch size = 50) of QA pairs from the Domain-
Bench on LLaMA3.1-8B. Results show 98.75% of batch-
samples satisfy the non-negativity condition, with average
⟨∇x,∇y⟩ = +5.60).

This form is consistent with the autoregressive property in
Assumption 1. Naturally, based on the Shared Parameter
Influence in Assumption 2, minimizing P(x; Θ) enhances
the model’s overall understanding and representation of
x. This improved representation facilitates more accurate
and confident next-token predictions, which is expected to
reduce P(y|x; Θ). To further investigate this, we conduct a
preliminary study, leading to the following observation:

Observation 1: Trend of LLM’s perplexity to the in-
put P(x; Θ) and perplexity to the output P(y|x; Θ) is
the same. In the context of LLMs, it is observed that
the perplexity associated with the input P(x; Θ) and the
perplexity of the output P(y|x; Θ) exhibit similar trends.
Specifically, we compute the trends of the perplexity of the
input P(x; Θ) and the perplexity of the output P(y|x; Θ)
on the four collected vertical domain datasets (see Supp. B)
using Llama3.1-8b-Instruct (Dubey et al., 2024) with vary-

Geography Agriculture Medicine Finance
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Origin LLM
Full-Param
LoRA

Figure 2. Comparison of prevent forgetting on DomainBench un-
der Llama3.1-8B-Instruct. This observation reveals that LoRA (Hu
et al., 2022) prevents catastrophic forgetting more effectively than
Full-Param updates across DomainBench (see Supp. B).

ing degrees of training (for ease of presentation, we show
the normalized results here). As shown in Figure 1b, the
relationship between input perplexity P(x; Θ) and output
perplexity P(y|x; Θ) demonstrates a strong positive corre-
lation across all four vertical domains. This indicates that
reducing output perplexity is possible by minimizing input
perplexity in LLMs.

4.2. Sample Efficient Learning Strategy

Minimizing input perplexity P(x; Θ) can enhance the per-
formance of LLMs on target distribution data, as shown in
Sec. 4.1. However, our intuition is that different test samples
may produce varying effects during Test-Time Learning. To
investigate this, we conduct a preliminary study, leading to
the following observation:

Observation 2: High-perplexity samples contribute more
to LLM updates than low-perplexity ones. We select dif-
ferent proportions of samples (the samples are pre-sorted
according to their perplexity values P(x; Θ)) for Test-Time
Learning, and the resulting model is evaluated on all test
samples. As shown in Figure 1c, we find that: 1) training
the test samples with high-perplexity makes more contri-
bution than low-perplexity ones, and 2) training on test
samples with very low-perplexity may hurt performance.
The possible reason is that low-perplexity samples are al-
ready well-modeled by the pre-trained LLMs, offering little
new information for further learning, which could lead to
overfitting or a lack of generalization. In contrast, high-
perplexity samples present more challenging data, driving
greater adaptation during Test-Time Learning.

Based on Observation 2, we propose a Sample Efficient
Learning Strategy to actively select samples for backprop-
agation, thereby enabling efficient Test-Time Learning.
Specifically, we design an active sample selection score
for each sample, denoted as S(x). The criterion is that a
sample should be informative for Test-Time Learning, pro-
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Table 2. Comparison of experimental results on the DomainBench and InstructionBench of the AdaptEval (see Supp. B). We mark the
better scores in bold for better visualization and easier interpretation.

Method DomainBench InstructionBench
Geography Agriculture Medicine Finance Alpaca-GPT4 Dolly InstructionWild

Llama3.2-3B-Instruct 0.2395 0.0850 0.1411 0.2229 0.3564 0.3378 0.2562
• Tent 0.1825 0.0150 0.1571 0.1093 0.0336 0.2105 0.0264
• EATA 0.0064 0.0227 0.0259 0.0149 0.1410 0.0090 0.0122
• COME 0.1000 0.1181 0.1542 0.1200 0.0437 0.2186 0.0697
• TLM (Ours) 0.2893 0.1687 0.2308 0.2953 0.3883 0.3470 0.2824

Llama3-8B-Instruct 0.2450 0.0834 0.1265 0.2329 0.3752 0.3671 0.2608
• Tent 0.0778 0.0067 0.0105 0.0372 0.2001 0.0036 0.0820
• EATA 0.2081 0.0017 0.0127 0.1257 0.1397 0.1725 0.1088
• COME 0.0048 0.0039 0.0301 0.0328 0.1424 0.0700 0.0240
• TLM (Ours) 0.3212 0.1319 0.2372 0.3242 0.4274 0.3785 0.2932

Llama2-13B-chat 0.2182 0.0840 0.1315 0.2382 0.3741 0.2892 0.2781
• Tent 0.0320 0.0196 0.1131 0.0049 0.0955 0.0076 0.1108
• EATA 0.2800 0.0771 0.1348 0.1155 0.0811 0.0513 0.1006
• COME 0.1981 0.0380 0.1239 0.0172 0.0806 0.0000 0.0189
• TLM (Ours) 0.2668 0.1013 0.2179 0.2760 0.3966 0.3007 0.2865

Qwen2.5-7B-Instruct 0.2649 0.0981 0.1313 0.2739 0.4439 0.3121 0.2866
• Tent 0.2362 0.1180 0.0524 0.1648 0.2132 0.1946 0.1710
• EATA 0.2109 0.1203 0.1334 0.2846 0.0000 0.2056 0.1710
• COME 0.2306 0.1180 0.0463 0.1780 0.3781 0.2182 0.1710
• TLM (Ours) 0.3081 0.1652 0.2394 0.3311 0.4608 0.3177 0.3482

viding enough information to drive the model’s learning
process, referred to as an informative sample. By setting
S(x) = 0 for uninformative samples, we can reduce un-
necessary backpropagation computations during Test-Time
Learning, thereby improving the overall efficiency. Relying
on the sample score S(x), we use perplexity loss for model
training. Then, the sample-efficient perplexity minimization
is to minimize the following objective:

min
Θ

S(x)P(x; Θ). (5)

To obtain the active sample selection score S(x), we pro-
pose a perplexity-based weighting scheme to accurately
identify reliable samples and emphasize their contribution
to Test-Time Learning. Formally, the active sample selec-
tion score S(x) can be calculated as follows:

S(x) = λ · e[logP(x;Θ)−logP0] · I{P(x;Θ)>P0}(x), (6)

where I{·}(·) is an indicator function, λ and P0 are a pre-
defined threshold. The above weighting function excludes
low-perplexity samples from Test-Time Learning and as-
signs higher weights to high-perplexity test samples, en-
abling them to contribute more significantly to model up-
dates. It is important to note that evaluating S(x) does not
involve any gradient backpropagation.

4.3. Modulating Parameters for Test-Time Learning

Observation3: Low-Rank Adaptation prevents catas-
trophic forgetting more effectively than Full-Param up-
dates during test-time learning. We conduct Test-Time

Learning on DomainBench (see Supp. B) using both Full-
Param and Low-Rank Adaptation (LoRA) (Hu et al., 2022)
updates, and evaluate the LLM’s performance on GSM8K
(Cobbe et al., 2021). From Figure 2, we observe that
LoRA, compared to Full-Param updates, better preserves
the model’s originally learned general knowledge, thereby
demonstrating a significant regularization effect. This is
likely due to LoRA’s ability to fine-tune only a small subset
of model parameters, which effectively reduces the risk of
overfitting and catastrophic forgetting.

Based on Observation 3, we adopt the LoRA for Test-Time
Learning, where the optimization objective is Eqn. 5 is
modified accordingly as follows:

min
Θ̃

S(x)P(x; Θ̃) = min
∆Θ

S(x)P(x; Θ +∆Θ), (7)

where ∆Θ = BA is zero at the beginning of training, with
A using random Gaussian initialization and B set to zero,
and we update only ∆Θ during the Test-Time Learning.

5. Experiments
5.1. Experimental Settings

Datasets. To evaluate the effectiveness of our TLM, we
construct a comprehensive benchmark named AdaptEval,
designed to cover diverse tasks and domains. AdaptEval
consists of three categories of datasets. 1) DomainBench
includes four vertical domain knowledge datasets: Geogra-
phy, Agriculture, Medicine, and Finance, and is designed to
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Table 3. Comparison experimental results on the ReasoningBench.

Method ReasoningBench
GSM8K MetaMath Logiqa

Llama3.2-3B-Instruct 0.7756 0.7976 0.4194
• Tent 0.7726 0.7412 0.4012
• EATA 0.0032 0.0310 0.0284
• COME 0.7710 0.7308 0.4196
• TLM (Ours) 0.9096 0.8818 0.4572

Llama3-8B-Instruct 0.7610 0.6912 0.4550
• Tent 0.7578 0.6550 0.4378
• EATA 0.0250 0.5454 0.2192
• COME 0.7479 0.6460 0.2180
• TLM (Ours) 0.8074 0.7006 0.4868

Llama2-13B-chat 0.3458 0.2498 0.3992
• Tent 0.2706 0.0040 0.2566
• EATA 0.3392 0.0572 0.2606
• COME 0.3272 0.2646 0.2462
• TLM (Ours) 0.3508 0.2576 0.4124

Qwen2.5-7B-Instruct 0.8378 0.7430 0.5952
• Tent 0.8455 0.7412 0.5934
• EATA 0.7098 0.0070 0.2172
• COME 0.8556 0.7559 0.5908
• TLM (Ours) 0.8424 0.7560 0.6046

evaluate the LLM adaptability to specialized fields. 2) In-
structionBench contains three general-purpose instruction-
following datasets: Alpaca-GPT4, Dolly, and Instruction-
Wild, and focuses on the LLM adaptability to instruction-
based tasks. 3) ReasoningBench comprises three reasoning
capability datasets: GSM8K, MetaMath, and Logiqa, and
aims to assess the LLM logical reasoning and problem-
solving abilities. These datasets collectively form a diverse
and challenging evaluation suite, designed to thoroughly
assess the effectiveness of TLM in adapting LLMs to tasks
requiring vertical knowledge, instruction-following capabil-
ities, and logical reasoning under distribution shifts. More
details can be found in Supp. B.

Metrics. We use Rouge-Lsum (R-Lsum) (Lin, 2004) as the
evaluation metric for DomainBench and InstructionBench,
while Exact Match (EM ) (Chang et al., 2024) is used for
ReasoningBench. More metrics can be found in Supp. C.1.

LLMs and Baseline. We use a diverse range of LLMs of
varying sizes and types, including Llama3.2-3B-Instruct,
Llama3-8B-Instruct (Dubey et al., 2024), Llama2-13B-Chat
(Touvron et al., 2023a), and Qwen2.5-7B-Instruct (Yang
et al., 2024). We evaluate our TLM against the baseline
methods, Tent (Wang et al., 2021), EATA (Niu et al., 2022a),
and COME (Zhang et al., 2025). They are state-of-the-art
TTA methods that update model parameters using unlabeled
data. We adapt Tent, EATA, and COME to the offline setting
for a fair comparison. The implementation details can be
found in the Supp. C.

Implementation Details. We use AdamW as the update

Table 4. Experimental results for the component of our proposed
method on the DomainBench of the AdaptEval. The SEL means
“Sample Efficient Learning Strategy” and the (·) indicates relative
improvement over the result in the previous column.

Version Llama3-8B Ours (w/o SEL) Ours

Geography 0.2450 0.3190(+30.2%) 0.3212(+0.7%)

Agriculture 0.0834 0.1255(+50.5%) 0.1319(+5.1%)

Medicine 0.1265 0.2326(+83.9%) 0.2372(+2.0%)

Finance 0.2329 0.3222(+38.3%) 0.3242(+0.6%)

#Backwards – 5000 4772(-4.6%)

rule, with a batch size of 1 and the learning rate of 5e−5/
5e−5/ 1e−6 for DomainBench/ InstructionBench/ Reason-
ingBench. The λ and P0 in Eqn. 6 are set to 0.10 and e3.
To improve the stability of outputs produced by LLMs, we
apply greedy decoding with a temperature of 0 across all
experiments. More details in Supp. C.2. The source code is
available at https://github.com/Fhujinwu/TLM

5.2. Comparison Experiments

We compare our proposed TLM, the original LLM, Tent,
EATA, and COME to demonstrate the superior performance
of our method. We conduct experiments on different types
of datasets, including DomainBench, InstructionBench, and
ReasoningBench, as summarized in Table 2 and 3. More
detailed results can be found in Supp. D.

Our proposed TLM is consistently better than the orig-
inal LLMs. From Table 2 and 3, our method consistently
outperforms the original LLMs across all types of datasets
and different LLM architectures. For instance, on the four
datasets of DomainBench, the proposed TLM achieves at
least a 20.00% improvement over the original LLMs. Specif-
ically, on the Geography dataset, our proposed TLM im-
proves performance by a relative 20.79% (0.2395 →
0.2893) compared to Llama3.2-3B-Instruct.

Superior performance on Domain Knowledge Adapta-
tion. To evaluate the effectiveness of our proposed TLM in
adapting to vertical domain knowledge, we conduct experi-
ments on DomainBench, which includes four datasets. From
Table 2, the results demonstrate that the proposed TLM out-
performs the original LLMs, Tent, and EATA, achieving
significant performance improvements. For example, in
test-time updating of model parameters on Qwen2.5-7B-
Instruct, the proposed method yields a relatively 37.32%
(0.1203 → 0.1652) improvement on the Agriculture dataset
compared to the EATA.

Superior performance on instruction-based task. As
shown in Table 2, our proposed TLM achieves substan-
tial improvements over the original LLMs and Tent across
all instruction-based datasets. For instance, on the Alpaca-
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Figure 3. Effects of different perplexity margins P0 in Eqn. 6.

GPT4 dataset, our proposed TLM improves the perfor-
mance of Llama3.2-8B-Instruct by 13.91% (0.3752 →
0.4274), showing a relative improvement of about 113.60%
(0.2001 → 0.4274) compared to Tent, demonstrating its
effective adaptation to general instruction-following tasks.

Superior performance on logical reasoning task. As
shown in Table 3, our proposed TLM significantly outper-
forms the original LLMs and Tent on all reasoning datasets
in ReasoningBench. For instance, on the GSM8K dataset,
our proposed TLM improves the performance of Llama3-
8B-Instruct by 6.10%, highlighting its ability to enhance
logical reasoning under complex arithmetic and problem-
solving tasks. These results confirm that our method not
only adapts effectively to distributional shifts but also en-
hances the reasoning capabilities of LLMs during test time.

5.3. Ablation Studies

Effectiveness of Input Perplexity Minimization. To eval-
uate the effectiveness of input perplexity minimization, we
conduct experiments comparing the performance of Llama3-
8B-Instruct and our method without the Sample Efficient
Learning Strategy (Ours w/o SEL). As shown in Table 4,
input perplexity minimization significantly improves the
performance of LLMs across all datasets compared to the
original Llama3-8B-Instruct, demonstrating that minimizing
input perplexity effectively enhances the LLM’s ability to
adapt to target domains. Specifically, by minimizing input
perplexity during Test-Time to update the LLM parameters,
we achieve a relative performance improvement of over 30%
compared to the original Llama3-8B-Instruct model. No-
tably, on the Medicine dataset, the improvement reaches
83.9%. The effectiveness of input perplexity minimization
P(x; Θ) lies in its ability to enhance the LLM’s understand-
ing and representation of the input, which helps improve the
model’s adaptation to the target domain data.

Effectiveness of Sample Efficient Learning Strategy in
Eqn. 5. The Sample Efficient Learning Strategy improves
the efficiency of TTL by actively selecting high-perplexity
samples that contribute more to the LLM’s adaptation. As

Table 5. Experimental results of our proposed method in the Online
setting. Geo., Agri., Med., and Fin. represent the Geography,
Agriculture, Medicine, and Finance, respectively. LLM refers to
Llama3-8B-Instruct. NF4 is 4-bit NormalFloat.

Method DomainBench #BackwardsGeo. Agri. Med. Fin.

LLM 0.2450 0.0834 0.1265 0.2329 –
Tent (Online) 0.0804 0.0112 0.0142 0.0489 5000
EATA (Online) 0.1008 0.0186 0.0202 0.0815 4943(-1.1%)

Ours (Online) 0.2787 0.1579 0.1340 0.2455 1514(-69.7%)

LLM (NF4) 0.2439 0.0859 0.1237 0.2325 –
Ours (NF4) 0.3069 0.1533 0.2306 0.3193 4783(-4.3%)

shown in Table 4, by prioritizing the most informative and
relevant test samples for backpropagation, this strategy not
only further enhances LLM performance but also reduces
unnecessary computational overhead. Specifically, using
the Sample Efficient Learning Strategy results in a relative
performance improvement of approximately 2.0% on the
target test data, while reducing the training data by about
5.0%. For instance, the relative performance improvement
on the Agriculture dataset is 5.1%.

Effects of the P0 in Eqn. 6. The threshold P0 in Eqn. 6
plays a crucial role in controlling the threshold for sample
selection during Test-Time Learning. To explore the optimal
threshold for P0, we conduct experiments with values of
P0 set to {e2, e3, e4, e5, e6}. As shown in Figure 3, when
P0 = e3, our method achieves the best performance on three
datasets, namely Geography, Medicine, and Finance, while
also showing near-optimal performance on the Agriculture
dataset. Therefore, we select P0 = e3 for all experiments.
When P0 is set too high or too low, it negatively affects
performance. Specifically, a value that is too high restricts
the number of high-perplexity samples selected, limiting
the model’s ability to adapt to new and complex data. On
the other hand, a value that is too low includes too many
low-perplexity samples, which do not contribute effectively
to adaptation and could lead to inefficiencies and overfitting.

5.4. More Discussions

Online Test-Time Experiments. To further assess the
performance of our TLM, we conduct experiments in the
online Test-Time Learning setting. The online setting is
similar to Test-Time Adaptation (Wang et al., 2021; Niu
et al., 2022a), where the model processes the input to gener-
ate an output while simultaneously updating its parameters.
Notably, the model parameters are updated only once ev-
ery 100 test samples. From Table 5, the proposed method
also achieves significant performance improvements over
Llama3-8B-Instruct across different domain datasets in the
online setting. Additionally, our proposed method reduces
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the number of backward by 69.7% (5000 → 1514) in the
online setting. This is because, as the LLM is updated, some
samples progressively become easier for the model, and are
thus excluded from TTL in Eqn. (6)

Experiments on Quantized LLM. To evaluate the perfor-
mance of our method on quantized LLMs, we conduct exper-
iments on a 4-bit quantized version of Llama3-8B-Instruct,
following the settings of QLoRA (Dettmers et al., 2024).
From Table 5, our method also demonstrates strong perfor-
mance on target domain datasets when applied to quantized
LLMs. Specifically, the proposed method improves at least
25.0% cover Llama3-8B-Instruct (NF4) on four datasets on
DomainBench, highlighting the broad applicability of our
TTL scheme.

6. Conclusion
In this paper, we propose a novel Test-Time Learning (TTL)
method for Large Language Models (LLMs), named TLM,
to address the challenges posed by dynamic and diverse
data distributions in real-world environments. By leverag-
ing only unlabeled test data, TLM efficiently adapts LLMs
and improves their robustness in target domains. Specifi-
cally, through observation and theoretical analysis, we argue
that reducing output perplexity can be achieved by minimiz-
ing the input perplexity of unlabeled test data. Based on this
insight, we adopt input perplexity minimization as the op-
timization objective for test-time LLM updates. Moreover,
we find that high-perplexity test samples play a more crucial
role in model updates than low-perplexity samples. This
insight motivates the development of our Sample Efficient
Learning Strategy, which actively selects and emphasizes
high-perplexity test samples for backpropagation, optimiz-
ing the learning process. Lastly, we reveal that Low-Rank
Adaptation is more effective than full parameter updates
in mitigating catastrophic forgetting, and we utilize it for
parameter updates during TTL, enabling lightweight model
adaptation while effectively preserving prior knowledge.

Acknowledgements
This work was partially supported by the Joint Funds of
the National Natural Science Foundation of China (Grant
No.U24A20327), Key-Area Research and Development Pro-
gram of Guangdong Province (2018B010107001), TCL
Science and Technology Innovation Fund, and the Young
Scholar Project of Pazhou Lab (No.PZL2021KF0021).

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none of which we feel must be

specifically highlighted here.

References
Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, I.,

Aleman, F. L., Almeida, D., Altenschmidt, J., Altman, S.,
Anadkat, S., et al. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774, 2023.
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B. Mt3: Meta test-time training for self-supervised test-
time adaption. In International Conference on Artificial
Intelligence and Statistics, pp. 3080–3090. PMLR, 2022.

Bella, G., Helm, P., Koch, G., and Giunchiglia, F. Tackling
language modelling bias in support of linguistic diversity.
In The 2024 ACM Conference on Fairness, Accountability,
and Transparency, pp. 562–572, 2024.

Bengio, Y., Ducharme, R., and Vincent, P. A neural proba-
bilistic language model. Advances in neural information
processing systems, 13, 2000.

Boudiaf, M., Mueller, R., Ben Ayed, I., and Bertinetto, L.
Parameter-free online test-time adaptation. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 8344–8353, 2022.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., et al. Language models are few-shot learners.
Advances in neural information processing systems, 33:
1877–1901, 2020.

Chang, Y., Wang, X., Wang, J., Wu, Y., Yang, L., Zhu, K.,
Chen, H., Yi, X., Wang, C., Wang, Y., et al. A survey on
evaluation of large language models. ACM Transactions
on Intelligent Systems and Technology, 15(3):1–45, 2024.

9



Test-Time Learning for Large Language Models

Chen, G., Niu, S., Chen, D., Zhang, S., Li, C., Li, Y., and
Tan, M. Cross-device collaborative test-time adaptation.
In The Thirty-eighth Annual Conference on Neural Infor-
mation Processing Systems, 2024a.

Chen, M., Tworek, J., Jun, H., Yuan, Q., Pinto, H. P. D. O.,
Kaplan, J., Edwards, H., Burda, Y., Joseph, N., Brockman,
G., et al. Evaluating large language models trained on
code. arXiv preprint arXiv:2107.03374, 2021.

Chen, Y., Niu, S., Wang, Y., Xu, S., Song, H., and Tan, M.
Towards robust and efficient cloud-edge elastic model
adaptation via selective entropy distillation. In The
Twelfth International Conference on Learning Represen-
tations, 2024b.

Chen, Y., Qian, S., Tang, H., Lai, X., Liu, Z., Han, S., and
Jia, J. Longlora: Efficient fine-tuning of long-context
large language models. In The Twelfth International
Conference on Learning Representations, 2024c.

Chowdhery, A., Narang, S., Devlin, J., Bosma, M., Mishra,
G., Roberts, A., Barham, P., Chung, H. W., Sutton, C.,
Gehrmann, S., et al. Palm: Scaling language modeling
with pathways. Journal of Machine Learning Research,
24(240):1–113, 2023.

Chung, H. W., Hou, L., Longpre, S., Zoph, B., Tay, Y., Fe-
dus, W., Li, Y., Wang, X., Dehghani, M., Brahma, S., et al.
Scaling instruction-finetuned language models. Journal
of Machine Learning Research, 25(70):1–53, 2024.

Cobbe, K., Kosaraju, V., Bavarian, M., Chen, M., Jun, H.,
Kaiser, L., Plappert, M., Tworek, J., Hilton, J., Nakano,
R., et al. Training verifiers to solve math word problems.
arXiv preprint arXiv:2110.14168, 2021.

Dettmers, T., Pagnoni, A., Holtzman, A., and Zettlemoyer, L.
Qlora: Efficient finetuning of quantized llms. Advances
in Neural Information Processing Systems, 36, 2024.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. Bert:
Pre-training of deep bidirectional transformers for lan-
guage understanding, 2019. URL https://arxiv.
org/abs/1810.04805.

Du, Z., Qian, Y., Liu, X., Ding, M., Qiu, J., Yang, Z.,
and Tang, J. GLM: General language model pretrain-
ing with autoregressive blank infilling. In Muresan,
S., Nakov, P., and Villavicencio, A. (eds.), Proceed-
ings of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pp. 320–335, Dublin, Ireland, May 2022. Association
for Computational Linguistics. doi: 10.18653/v1/2022.
acl-long.26. URL https://aclanthology.org/
2022.acl-long.26/.

Dubey, A., Jauhri, A., Pandey, A., Kadian, A., Al-Dahle,
A., Letman, A., Mathur, A., Schelten, A., Yang, A., Fan,
A., et al. The llama 3 herd of models. arXiv preprint
arXiv:2407.21783, 2024.

Fan, W., Ding, Y., Ning, L., Wang, S., Li, H., Yin, D.,
Chua, T.-S., and Li, Q. A survey on rag meeting llms:
Towards retrieval-augmented large language models. In
Proceedings of the 30th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, pp. 6491–6501,
2024.

Fleuret, F. et al. Test time adaptation through perturbation
robustness. In NeurIPS 2021 Workshop on Distribution
Shifts: Connecting Methods and Applications, 2021.

Gandelsman, Y., Sun, Y., Chen, X., and Efros, A. Test-time
training with masked autoencoders. Advances in Neural
Information Processing Systems, 35:29374–29385, 2022.

Gao, J., Zhang, J., Liu, X., Darrell, T., Shelhamer, E., and
Wang, D. Back to the source: Diffusion-driven adaptation
to test-time corruption. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pp. 11786–11796, 2023.

Gu, Y., Tinn, R., Cheng, H., Lucas, M., Usuyama, N., Liu,
X., Naumann, T., Gao, J., and Poon, H. Domain-specific
language model pretraining for biomedical natural lan-
guage processing. ACM Transactions on Computing for
Healthcare (HEALTH), 3(1):1–23, 2021.

Hardt, M. and Sun, Y. Test-time training on nearest neigh-
bors for large language models. In The Twelfth Interna-
tional Conference on Learning Representations, 2024.

He, P., Liu, X., Gao, J., and Chen, W. Deberta: Decoding-
enhanced bert with disentangled attention. In Interna-
tional Conference on Learning Representations, 2021.

Hong, J., Lyu, L., Zhou, J., and Spranger, M. Mecta:
Memory-economic continual test-time model adaptation.
In 2023 International Conference on Learning Represen-
tations, 2023.

Hu, E. J., Wallis, P., Allen-Zhu, Z., Li, Y., Wang, S., Wang,
L., Chen, W., et al. Lora: Low-rank adaptation of large
language models. In International Conference on Learn-
ing Representations, 2022.

Hu, J., Wang, Y., Zhang, S., Zhou, K., Chen, G., Hu, Y.,
Xiao, B., and Tan, M. Dynamic ensemble reasoning for
llm experts. Proceedings of the Thirty-Fourth Interna-
tional Joint Conference on Artificial Intelligence, 2025a.

Hu, J., Zhang, W., Wang, Y., Hu, Y., Xiao, B., Tan, M.,
and Du, Q. Dynamic compressing prompts for effi-
cient inference of large language models. arXiv preprint
arXiv:2504.11004, 2025b.

10

https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://aclanthology.org/2022.acl-long.26/
https://aclanthology.org/2022.acl-long.26/


Test-Time Learning for Large Language Models
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Supplementary Materials for
“Test-Time Learning for Large Language Models”

In the Supplementary, we provide descriptions of more related works, details, and experimental results of the proposed TLM.
We organize the supplementary into the following sections.

• In Section A, we provide descriptions of related works regarding Large Language Models, Retrieval-Augmented
Generation, and Test-Time Adaptation.

• In Section B, we present a more detailed version of our AdaptEval Benchmark.

• In Section C, we present a more detailed implementation of our experiments.

• In Section D, we report more results of our experiments.

• In Section E, we provide the discussion of TLM and future directions.

A. More Related Work
A.1. Large Language Models

The rapid progress in natural language processing (NLP) has been marked by the emergence of large language models
(LLMs), which have fundamentally transformed the landscape of artificial intelligence. These models, rooted in the
Transformer architecture (Vaswani et al., 2017), leverage extensive pre-training on massive text corpora to acqire remarkable
capabilities. They have shown impressive performance across a wide range of tasks (Wei et al., 2022a; Hu et al., 2025b),
such as high-quality question answering (Shao et al., 2023; Peng et al., 2023), coding (Chen et al., 2021), and intermediate
reasoning (Wei et al., 2022b). The unprecedented success of LLMs has spurred significant discussions regarding their
application for achieving artificial general intelligence (AGI) (Zhao et al., 2023). Based on their architectural design, existing
LLMs can be categorized into three major classes: encoder-only models, decoder-only models, and encoder-decoder models.

Encoder-only models. The encoder-only models primarily employ the Transformer encoder to encode input sequences
into rich contextual representations. They are particularly effective in natural language understanding (NLU) tasks, where
the focus lies in extracting semantic meaning from text. One notable example is BERT (Devlin et al., 2019), which uses
bidirectional encoding to capture context from both preceding and succeeding tokens. Pre-trained on extensive datasets
like BooksCorpus (Zhu et al., 2015) (800M words) and English Wikipedia (2,500M words), BERT set new benchmarks on
datasets such as GLUE and MultiNLI. Subsequent iterations, including RoBERTa (Liu, 2019) and DeBERTa (He et al.,
2021), introduced architectural refinements and improved pre-training strategies, further enhancing performance. Despite
their strengths in understanding tasks, encoder-only models are inherently unsuited for tasks that require sequence generation,
such as translation or text completion.

Decoder-only models. This kind of models, in contrast, rely solely on the Transformer decoder and are designed to generate
text in an auto-regressive manner, where each token is generated sequentially, conditioned on previously generated tokens.
Obviously These models excel in natural language generation (NLG) tasks, such as summarization, content creation and QA.
The Generative Pre-trained Transformer (GPT) series (Radford, 2018; Brown et al., 2020; Achiam et al., 2023) developed
by OpenAI examines this class, with GPT-3 being a landmark model that features 175 billion parameters. Trained on a
diverse corpus spanning Common Crawl (Raffel et al., 2020), WebText2, Books 1, Books 2, and Wikipedia datasets. GPT-3
has demonstrated extraordinary few-shot and zero-shot learning capabilities on many language tasks. In addition to GPT
series, many decoder-only models have been developed, such as OPT, LLaMA, Llama2, Llama3 from Meta (Zhang et al.,
2022b; Touvron et al., 2023a;b; Dubey et al., 2024), PaLM, PaLM2 from Google (Chowdhery et al., 2023; Anil et al.,
2023), BLOOM from BigScience (Le Scao et al., 2023), and Qwen series from Alibaba (Bai et al., 2023; Yang et al., 2024).
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However, decoder-only models, while excelling in generative tasks, often lack the nuanced comprehension abilities required
for deep understanding of long and complex input contexts.

Encoder-decoder models. Encoder-decoder models incorporate both the encoder and decoder components of the Trans-
former, combining the strengths of the two structures to handle tasks that require input understanding and sequence
generation. Prominent examples of encoder-decoder models include GLM from Tsinghua University (Du et al., 2022), T5,
FLAN-T5, and UL2 from Google (Raffel et al., 2020; Chung et al., 2024; Tay et al., 2023), as well as BART from Meta
(Lewis et al., 2020a). For instance, GLM adopts an autoregressive blank-infilling objective to effectively address three core
challenges in NLP: natural language understanding (NLU), unconditional text generation, and conditional generation. With
a maximum capacity of 130 billion parameters, it is pre-trained on datasets such as BookCorpus (Tay et al., 2023) and
Wikipedia. GLM surpasses BERT on the SuperGLUE benchmark by 4.6%-5.0% and demonstrates superior performance
compared to FLAN-T5 on both NLU and generation tasks using fewer parameters and training data.

A.2. Retrieval-Augmented Generation

As one of the most representative techniques in the field of generative AI, Retrieval-Augmented Generation (RAG) aims
to enhance the quality of the generated text content with retrieved information. It achieves this by integrating two critical
components: (i) a retrieval mechanism that accesses relevant documents or information from external knowledge sources,
and (ii) a generative module that synthesizes this information to produce coherent and contextually accurate text (Lewis
et al., 2020b). By combining these capabilities, RAG models are able to generate not only fluent and human-like text but
also outputs that are grounded in up-to-date and factual data, significantly enhancing their reliability and applicability in
real-world scenarios. We categorized existing RAG methods into the following two main classes according to whether
training is needed for further discussion: training-free approaches and training-based approaches.

Training-free RAG. Training-free RAG methods address the challenges of frequent fine-tuning and updating model
parameters, which require substantial computational resources and time (Lewis et al., 2020b). These approaches leverage
retrieved knowledge directly at inference time by incorporating the retrieved text into the prompt, eliminating the need
for additional training. As the performance of large language models (LLMs) is highly sensitive to input queries, many
training-free RAG methods refine prompts by integrating external knowledge (Jiang et al., 2023; Li et al., 2023; Kim et al.,
2023; Ram et al., 2023; Trivedi et al., 2023; Wang et al., 2023). For example, In-Context RALM (Ram et al., 2023) augments
the generation process by prepending retrieved documents to the original prompt without altering LLM parameters. IRCoT
(Trivedi et al., 2023) enhances reasoning by interleaving chain-of-thought (CoT) generation and retrieval, ensuring access
to more relevant information across iterative reasoning steps. SKR (Wang et al., 2023) enables flexible utilization of both
internal and external knowledge by guiding LLMs to decide whether a question can be answered based on internal knowledge
before invoking the retriever. Despite their efficiency, training-free RAG methods often face limitations in optimizing the
retriever and generator for specific downstream tasks, leading to suboptimal utilization of retrieved knowledge. To address
this, training-based RAG approaches fine-tune both components, enabling large language models to effectively adapt and
integrate external information.

Training-based RAG. This kind of methods aim to optimize both the retriever and generator to enhance their alignment
and effectiveness. One typical success is DPR (Karpukhin et al., 2020), which employs two independent BERT (Devlin
et al., 2019) encoders for queries and passages and trains them via contrastive learning. Ren et al. (2023) employs a
two-stage approach, starting with the pretrain S-BERT (Reimers & Gurevych, 2019) as a retrieval backbone, enhanced
by an adaptive hybrid strategy to effectively gather relevant demonstration. Next, a T5 model is used as the generator,
which is further fine-tuned to align with the target labels and inputs. In contrast, RA-DIT (Lin et al., 2024) first fine-tuning
LLMs to effectively use retrieved knowledge and then refining the retriever to align with the model’s requirements. To
address indiscriminate retrieval and the incorporation of irrelevant passages, Self-RAG (Asai et al., 2024) introduces special
tokens to dynamically assess the necessity of retrieval and control its behavior. More recently, MemoRAG (Qian et al.,
2024) incorporates a memory module that generates context-specific cues to link the knowledge base to precise information,
improving retrieval accuracy and response quality.

Despite their advantages, RAG models rely heavily on the quality and relevance of the retrieved knowledge, as inaccuracies
or irrelevant information can directly compromise the quality of the generated output. Furthermore, the dual-step process of
retrieval and generation for each query introduces significant computational overhead, posing challenges for real-time and
resource-constrained applications.
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Table 6. Components of AdaptEval.

Category Dataset Sources

DomainBench

Geosignal Geoscience knowledge base, etc.
Agriculture-QA Agriculture data
GenMedGPT-5k ChatGPT-generated data
Wealth-alpaca lora FiQA data, etc.

InstructionBench
Dolly-15k Databricks data
Alpaca gpt4 en GPT-4 instruction data
InstructionWild User instruction data

ReasoningBench
GSM8k OpenAI data
MetaMathQA Advanced math datasets
Logiqa Civil service logic tests

A.3. Test-Time Adaptation

Test-time adaptation (TTA) aims to improve a model’s performance on unseen test data, which may undergo distribution
shifts, by learning directly from the test data during the testing phase. Based on their reliance on backward propagation, we
categorize the related TTA works into the following two groups for discussion.

Backpropagation (BP)-Based TTA. A foundational approach in this category is Test-Time Training (TTT) proposed by
(Sun et al., 2020). TTT involves training a source model using both supervised and self-supervised objectives during the
training phase. At test time, the model is adapted using self-supervised objectives such as rotation prediction (Sun et al.,
2020), contrastive learning (Liu et al., 2021; Bartler et al., 2022), or reconstruction learning (Gandelsman et al., 2022).
To address scenarios where modifying the training process or accessing source data is not feasible, Fully TTA methods
directly update pre-trained models during testing. These methods rely on unsupervised learning objectives, with entropy
minimization (Wang et al., 2021; Niu et al., 2023) emerging as one of the most widely used techniques due to its simplicity
and effectiveness. Entropy minimization encourages the model to produce confident predictions by reducing uncertainty
in its output distribution. This approach effectively aligns predictions to a single class. Beyond entropy minimization,
other unsupervised objectives, such as prediction consistency maximization (Zhang et al., 2022a; Fleuret et al., 2021) and
feature distribution alignment (Mirza et al., 2023), have also been explored, enhancing the model’s ability to adapt to diverse
test-time scenarios.

To further enhance the efficiency of backpropagation-based TTA, recent research efforts have focused on tow primary aspects:
(1) Sample Efficiency: As not all test samples contribute equally to adaptation. Several recent works (Niu et al., 2022a;
2023; Shu et al., 2022; Lee et al., 2024) have introduced sample selection strategies to focus on reliable and non-redundant
samples, reducing the noise in the gradient and the number of samples for TTA, thereby enhancing adaptation performance
and efficiency. (2) Memory Efficiency: Addressing the memory-intensive nature of backpropagation, methods such as
EcoTTA (Song et al., 2023) optimize parameter-efficient components during adaptation, while MECTA (Hong et al., 2023)
reduces batch size to lower memory consumption. Additionally, MECTA introduces a domain-aware batch normalization
layer to stabilize model updates, even with smaller batch sizes. Similar to the sample efficiency methods, we propose a
Sample-Efficient Learning Strategy that uses a perplexity-based weighting scheme to prioritize high-perplexity test samples
for backpropagation, ensuring efficient utilization of computational resources.

Backpropagation-Free TTA. The development of BP-free TTA has seen significant progress, with early research focusing
primarily on the adjustment of batch normalization (BN) layer statistics using test data. These methods primarily involved
recalculating the mean and variance of BN layers based on testing data (Nado et al., 2020; Schneider et al., 2020). However,
such approaches were limited to adapting BN layers, restricting their applicability to architectures that heavily rely on
BN. To overcome these limitations, more generalized methodologies have been proposed to enhance the flexibility and
effectiveness of BP-free TTA. For instance, reconstruction-based approaches focusing on input-level adaptation leverage
advanced techniques like diffusion models to preprocess corrupted test images before prediction (Gao et al., 2023; Oh et al.,
2025). Additionally, output-level adaptation methods have been developed, such as T3A (Iwasawa & Matsuo, 2021), which
utilizes prototype-based classifier adjustment for adaptive predictions, and LAME (Boudiaf et al., 2022), which directly
corrects the predicted logits. The recent advanced FOA (Niu et al., 2024) adapts models to unseen test samples without
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Figure 4. Distributions of AdaptEval.

backpropagation by learning a prompt through a derivative-free covariance matrix adaptation strategy and adjusting model
activations to align with the source training domain. Looking forward, there is great potential to extend our method to the
realm of efficient BP-Free TTA, thereby further broadening the practical applicability of our approach in diverse real-world
scenarios.

B. AdaptEval Benchmark
To the best of our knowledge, no existing benchmark is specifically designed to evaluate the adaptability of Large Language
Models (LLMs) across diverse data distributions. Since the diversity of tasks and domains inherently captures variations
in data distributions, we address this gap by introducing a comprehensive benchmark, AdaptEval, which spans a wide
range of tasks and domains to thoroughly assess the effectiveness of our proposed TLM. AdaptEval is designed to capture
two primary types of out-of-distribution (OOD) scenarios at test time: vertical domain shift and distributional shift in
non-specific domains, as described in the previous section. To build a diverse and challenging evaluation framework, we
collect high-quality datasets from HuggingFace, ensuring coverage across various data distributions. Specifically, AdaptEval
consists of three categories of datasets: DomainBench, InstructionBench, and ReasoningBench. These categories are
tailored to evaluate LLMs’ adaptability to tasks requiring vertical knowledge, instruction-following capabilities, and logical
reasoning under distribution shifts. A summary of the datasets included in AdaptEval is presented in Table 6, with further
analysis provided below.

AdaptEval consists of the following three core categories, as shown in Figure 4.

• DomainBench. This category includes four vertical domain knowledge datasets: Geography, Agriculture, Medicine,
and Finance. It evaluates the adaptability of LLMs to specialized fields by assessing their ability to handle tasks requiring
domain-specific expertise, such as named entity recognition, judgment, and question answering. By incorporating
domain-specific terminology and real-world complexities that may challenge model performance, DomainBench
provides a rigorous evaluation of models’ proficiency in mastering and applying specialized knowledge.

• InstructionBench. This category comprises three general-purpose instruction-following datasets: Alpaca-GPT4, Dolly,
and InstructionWild. It evaluates the adaptability of LLms to instruction-based tasks by assessing their ability to
comprehend, interpret, and execute a diverse range of user instructions. The datasets cover various task types, such as
question answering, text classification, and summarization, while introducing variations in user intent, phrasing, and
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Figure 5. Distribution of Sequence Lengths for Samples in DomainBench.

linguistic styles, providing a thorough assessment of the model’s capacity to process and respond effectively to diverse
instructions in real-world scenarios.

• ReasoningBench. This category contains three reasoning-focused datasets: GSM8k, MetaMath, and Logiqa, designed
to evaluate the logical reasoning and math problem-solving abilities of LLMs. It evaluates the model’s ability to
handle intricate reasoning processes through diverse scenarios, including multi-step mathematical reasoning, complex
math problem solving, and logical reading comprehension. ReasoningBench evaluates tasks that require precise and
consistent reasoning, offering a thorough test of a model’s ability to tackle complex problems and produce logical,
accurate solutions.

B.1. DomainBench

DomainBench focuses on evaluating the model’s adaptability and performance in four vertical domains: Geography,
Agricultural, Medical, and Financial. To ensure the comprehensiveness and scientific rigor of the evaluation, DomainBench
integrates four meticulously selected datasets: GeoSignal, Agriculture-QA, GenMedGPT-5k, and Wealth-Alpaca Lora.
Each dataset is sourced from a broad range of specialized domains, enabling the measurement of large model performance
on complex domain-specific knowledge and task execution. The distribution of sequence lengths for the dataset samples and
an example table of dataset entries are provided in Figure 5 and Table 7.

Geography: The GeoSignal1 dataset is a knowledge-intensive instruction-tuning resource tailored for the Earth Sciences
domain, aiming to improve model performance in this field. It comprises approximately 39.7k samples, created through a
mix of human curation and semi-automatic methods. The dataset is designed to align with user intent, featuring two sections:
a general section for human instruction alignment and a professional section focused on Earth Sciences expertise. It includes
tasks such as Named Entity Recognition (NER), relation inference, fact verification, and question answering, enriched with
domain-specific terminology like “volcanic neck” and “geomagnetic elements”. Data sources span a multi-modal Earth
Sciences knowledge graph (GAKG), academic resources (DDE Scholar), and various databases and QA platforms. From
this dataset, we randomly select 5k samples to form the Geography dataset, which evaluates the model’s domain knowledge
and task performance in Geography.

Agriculture: The Agriculture-QA2 dataset focuses on agricultural QA, containing about 22.6k samples. It covers various
aspects of agricultural production, such as crop cultivation, livestock farming, soil management, and farming practices.
These QA tasks challenge the model’s ability to transfer knowledge and comprehend natural language, especially within the
highly specialized agricultural field. We randomly select 5k samples to create the Agriculture dataset, aiming to evaluate the
model’s performance in handling agricultural QA tasks.

1https://huggingface.co/datasets/daven3/geosignal
2https://huggingface.co/datasets/KisanVaani/agriculture-qa-english-only

18

https://huggingface.co/datasets/daven3/geosignal
https://huggingface.co/datasets/KisanVaani/agriculture-qa-english-only


Test-Time Learning for Large Language Models

Table 7. Examples of DomainBench data.

Geography
Input: I wonder about the fossil of the Odonata. Can you help?
Output: Certainly, the Odonata has a fossil of Odonata– Wolfe et al. 2016.

Agriculture
Input: Why do cassava propagated through stem cuttings mature faster compared to seed propagation?
Output: This is because the stem cuttings already have a head start in development and can quickly
establish roots and start growing.

Medicine
Instruction: If you are a doctor, please answer the medical questions based on the patient’s description.
Input: Doctor, I’m experiencing some strange symptoms. I’ve been acting hostile towards my family, and
I’m having problems with my movement. Also, I’ve noticed that I’ve been slurring my words lately.
Output: Based on what you’ve described, it sounds like you may be experiencing delirium, which is a
state of mental confusion that can cause changes in behavior, movement problems, and difficulty speaking
clearly. We’ll need to run some tests to determine the underlying cause, but it’s important that we act
quickly to manage your symptoms and prevent any complications.

Finance
Input: Assemble an outfit for a Halloween party.
Output: For a Halloween party, assemble an outfit that will make you stand out! Start with a base layer
of black trousers and a white t-shirt. Then pair it with an eye-catching statement piece, such as a bright
orange blazer. For shoes, choose something with a spooky vibe, like a pair of lace-up boots with gothic
buckles. Accessorize with a deep red scarf and a black fedora. Finish off the look with a classic cane and a
golden pocket watch.

Medicine: GenMedGPT-5k3 with a total of 5.45k samples is a medical dialogue dataset generated by ChatGPT, and is
designed to emulate real-life conversations between patients and doctors. It provides rich, scenario-specific content that
closely mirrors real medical scenarios. The dataset encompasses a wide range of medical queries from patients and responses
or diagnoses from doctors. We randomly select 5k samples to create the Medicine dataset, aiming to assess the model’s
performance in medical dialogue, particularly its adaptability to medical contexts and the quality of its responses.

Finance: The Wealth-Alpaca Lora4 dataset is focused on the financial domain, consisting of 44.3k samples. It integrates
general task data (Alpaca dataset), financial domain data (FiQA dataset), and custom task data generated using GPT-3.5.
This dataset is extensively used for sentiment analysis, opinion mining, and QA tasks in financial texts, covering a variety of
real-world applications in finance. We randomly select 5k samples to create the Finance dataset, designed to evaluate the
model’s specialized performance in financial QA tasks.

B.2. InstructionBench

InstructionBench aims to assess the adaptability and performance of models across a diverse range of general instruction
tasks, including, but not limited to, question answering (QA), text summarization, and classification. This benchmark
integrates three carefully curated high-quality datasets: Alpaca-GPT4, Dolly, and InstructionWild, encompassing a variety
of instruction tasks generated through both human and model-driven approaches. The evaluation is designed to be both
comprehensive and rigorous. The distribution of dataset samples and an example table of dataset entries are provided in
Figure 6 and Table 8.

Dolly: The Dolly-15k5 dataset, created by Databricks, consists of 15k high-quality, human-generated prompt-response
pairs. It is specifically designed for the instruction fine-tuning of large language models. Unlike datasets generated through
model outputs or copy-pasting, Dolly-15k maintains authenticity and high quality by relying solely on human input. The
dataset encompasses common instruction fine-tuning tasks, including QA, summarization, and classification. We follow the
official guide from Databricks6 and concatenate the sample fields into complete training samples. A subset of 5k samples is
randomly selected to evaluate model performance.

Alpaca-GPT4: The Alpaca-GPT47 dataset comprises 52k instruction-following samples generated using GPT-4. The

3https://huggingface.co/datasets/wangrongsheng/GenMedGPT-5k-en
4https://huggingface.co/datasets/gbharti/wealth-alpaca lora
5https://huggingface.co/datasets/databricks/databricks-dolly-15k
6https://github.com/databrickslabs/dolly/blob/master/training/consts.py
7https://huggingface.co/datasets/llamafactory/alpaca gpt4 en
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Figure 6. Distribution of Sequence Lengths for Samples in InstructionBench.
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Figure 7. Distribution of Sequence Lengths for Samples in ReasoningBench.

dataset is constructed by first manually creating a comprehensive set of instructions across a wide range of tasks, followed
by data generation and quality assurance using GPT-4. It includes diverse task types, such as various QA and summarization
tasks. From this dataset, we randomly select 5k samples to test the model’s generalization capabilities and performance on
instruction tasks.

InstructionWild: InstructionWild8 is a large dataset focused on real-world user instructions, consisting of over 50k high-
quality bilingual (Zh-En) instructions. The data is derived from real user-shared scenarios, offering diversity and broad
applicability. Its format aligns with that of the Alpaca dataset, enabling seamless integration and usage. The dataset covers
common instruction fine-tuning tasks such as QA and summarization. We randomly extract 5k samples to evaluate the
model’s ability to understand and execute instructions effectively.

B.3. ReasoningBench

ReasoningBench is designed to evaluate models’ logical reasoning and problem-solving abilities through tasks such as
mathematical problem solving, multi-step reasoning, and logical reading comprehension. This benchmark integrates
three high-quality reasoning datasets, GSM8K, MetaMath, and LogiQA, to comprehensively assess models’ reasoning
performance across diverse dimensions and task types. The distribution of dataset samples and an example table of dataset
entries are provided in Figure 7 and Table 9.

8https://huggingface.co/datasets/fuliucansheng/InstructionWild
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Table 8. Examples of InstructionBench data.

Dolly

Instruction: Below is an instruction that describes a task. Write a response that appropriately
completes the request.
Input: What athlete created the ’beast quake’ for the Seattle Seahawks?
Response:
Output: Marshan Lynch

Alpaca-GPT4
Input: Imagine you are talking to a child, explain the concept of DNA.
Output: Okay kiddo, so you know how we all have things that make us special and unique? Like how
you have your mom’s eyes and your dad’s hair? Well, that’s because of something called DNA. DNA
is like the directions or the recipe that our bodies follow to make us who we are. It decides things like
the color of our eyes, how tall we’ll grow, and even how our personality is.\n\n Just like you follow
instructions to build a Lego castle, the cells in our body follow the DNA’s instructions to make us who
we are. You might also hear DNA being called our ”genetic code,” because it’s kind of like the secret
language that our bodies use to build us.\n\n And the cool thing about DNA is that it’s passed down
from our parents. So, we get half of our DNA from our mom and half from our dad. That’s why we
can have traits from both of them. But even though we share DNA with our family, while there is
nobody else in the world with the exact same DNA as us. We are all unique and special in our own
way!\n\n Isn’t that cool? Do you have any more question about it?

InstructionWild
Input: Create a list of five unique travel destinations that are not popular tourist spots. Provide a brief
description for each destination, highlighting what sets it apart from other popular travel locations.
Output: Meghalaya, India: Located in the northeast part of India, Meghalaya is known for its
beautiful rivers, ancient caves, and rich cultural heritage. It\u2019s one of the least explored regions
of the country, making it an ideal destination for those looking for an escape from the crowds of
popular tourist spots.\n Atacama Desert, Chile: The driest desert in the world, the Atacama Desert
is an other-worldly landscape of stunning terrain and amazing geological formations. It\u2019s
home to some of the clearest skies on the planet and offers incredible stargazing opportunities.\n
Antarctica: For the adventurous traveler, Antarctica is a wild, unforgiving landscape like no other.
It\u2019s home to breathtaking glaciers, unspoiled coastlines, and an abundance of wildlife. With
few visitors, it\u2019s a paradise for those who want to explore the continent\u2019s remote
beauty.\n Georgia: Located between Europe and Asia, Georgia is a little-known country full of
culture, history, and stunning landscapes. From the city of Tbilisi to the mountains of Svaneti,
there are endless opportunities for exploration and discovery.\n Australian Outback: Few tourists
venture to the remote stretches of the Australian Outback, but it\u2019s well worth the effort. Here,
you\u2019ll find miles of unspoiled nature, rooted in Indigenous history and culture, and the chance
to experience a whole different side of the continent.

GSM8K: GSM8K9 is a high-quality dataset of linguistically diverse elementary school math word problems, constructed
by OpenAI. It contains a total of 8.5k samples. The dataset’s unique feature lies in its human-crafted problems, avoiding
templated language, and providing natural language solutions instead of purely mathematical expressions. This design
ensures a closer alignment with real-world problem-solving scenarios. The primary task type is multi-step mathematical
reasoning, which effectively diagnoses deficiencies in a model’s reasoning capabilities. Consistent with common pratice, we
apply a zero-shot chain-of-thought (CoT) prompt to each sample, guiding the model to think step by step. For evaluation,
we combine the training and test sets and randomly select 5k samples.

MetaMath: MetaMath10 is a large-scale dataset comprising approximately 395k samples, designed to enhance mathematical
reasoning through a question-guided approach. It diversifies mathematical problems by rephrasing and restructuring them
from multiple perspectives, offering a robust and challenging benchmark for evaluating mathematical reasoning abilities.
The dataset focuses on QA tasks and spans a broad spectrum of mathematical problem complexities. Similar to GSM8k, we
apply a zero-shot CoT prompt to each sample to guide the model in logical reasoning. For evaluation purposes, we randomly
select 5k samples from the training set.

9https://huggingface.co/datasets/openai/gsm8k
10https://huggingface.co/datasets/meta-math/MetaMathQA
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Table 9. Examples of ReasoningBench data.

GSM8K
Input: Below is an instruction that describes a task. Write a response that appropriately completes the
request.\n\n### Instruction:\nFive food companies sponsored a local food bank. Foster Farms donated
45 dressed chickens; American Summits donated twice the number of bottled water than the number of
dressed chicken donated by Foster Farms; Hormel donated three times the number of dressed chickens that
Foster Farms donated; Boudin Butchers donated one-third of the number of dressed chickens that Hormel
donated; Del Monte Foods donated 30 fewer bottles of water than American Summits. How many food
items did the companies donate in total? Response: Let’s think step by step.
Output: 375

MetaMath
Input: Below is an instruction that describes a task. Write a response that appropriately completes the

request. Instruction:\n What is the value of the ceiling function applied to
√

49
4 ? \n Response: Let’s think

step by step.
Output: -3

LogiQA
Input: Write a multi-choice question for the following article:\n Article: Researchers believe that if
mothers are exposed to more pesticides in the first few months of pregnancy, the babies born may be
less intelligent. They believe that the embryonic brain begins to develop shortly after pregnancy, so the
pre-pregnancy is the baby’s brain In the critical period of development, exposure to more pesticides may
change the environment around the developing embryo’s brain in pregnant women.\n Question: Which
of the following, if true, would best support a researcher’s point of view?\n Options: A. Many babies are
born early due to their mothers’ exposure to pesticides.\n B. Insecticides are a potential threat to people’s
health, and it can also cause many diseases such as Parkinson’s disease, cancer and mental illness.\n C.
Previous research has found that increased exposure to pesticides can cause thyroid problems in pregnant
women, and the thyroid status of pregnant women can affect the intellectual development of the fetus.\n
D. Researchers conducted a follow-up survey of 1,500 pregnant women and found that children born to
pregnant women who were more exposed to pesticides performed significantly worse in mathematics and
language.\n\n Answer:
Output: C

LogiQA: LogiQA11 is a high-quality, comprehensive dataset focused on logical reasoning, derived from logical reasoning
questions used in the Chinese National Civil Service Examination. It consists of 8k QA samples, covering a variety
of deductive reasoning tasks designed to test a model’s adaptability to logical reasoning and problem-solving. During
dataset construction, strict filtering was applied to exclude samples with inappropriate formats or those involving charts and
mathematical calculations, ensuring the dataset’s purity and quality. Following the official dataset guidelines12, we create
multiple-choice prompts and randomly select 5k samples for evaluation.

C. More Details for Experiment Settings
C.1. More Metrics

To provide a more comprehensive evaluation of the proposed method, we employ additional evaluation metrics, including
BERTScore (BS F1) (Zhang et al., 2019), BLEU (Papineni et al., 2002), Rouge-1 (R-1), Rouge-2 (R-2), and Rouge-L (R-L).
These metrics help assess various aspects of model performance, such as the quality of generated text, its similarity to
reference outputs, and the model’s ability to capture key information at different levels of granularity.

C.2. Implementation Details

The training and evaluation are conducted on the 80G memory-sized NVIDIA A800 GPUs with CUDA version 12.1.
Our method is implemented using the PyTorch framework with Pytorch, version 2.5.1. The training framework used is
LLaMA-Factory13. For the LoRA setup, we use random Gaussian initialization for matrix A and set matrix B to zero, with

11https://huggingface.co/datasets/lucasmccabe/logiqa
12https://github.com/csitfun/LogiQA2.0/blob/main/logiqa/multi-choice-prompt.py
13https://github.com/hiyouga/LLaMA-Factory

22

https://huggingface.co/datasets/lucasmccabe/logiqa
https://github.com/csitfun/LogiQA2.0/blob/main/logiqa/multi-choice-prompt.py
https://github.com/hiyouga/LLaMA-Factory


Test-Time Learning for Large Language Models

Table 10. Comparison of experimental results on the Geography dataset of DomainBench.

Method BERTScore ↑ BLEURT ↑ BLEU ↑ Rouge-1 ↑ Rouge-2 ↑ Rouge-L ↑

Llama3.2-3B-Instruct 0.6905 -0.6794 0.0638 0.2661 0.1020 0.1917
• Tent 0.6661 -1.1320 0.0444 0.2149 0.1149 0.1780
• EATA 0.5274 -1.4276 0.0032 0.0065 0.0007 0.0064
• TLM (Ours) 0.7160 -0.7278 0.0952 0.3203 0.1526 0.2534

Llama3-8B-Instruct 0.6953 -0.6161 0.0709 0.2711 0.1040 0.1977
• Tent 0.6007 -1.5575 0.0087 0.0932 0.0100 0.0756
• EATA 0.6751 -1.0290 0.0575 0.2432 0.1290 0.1949
• TLM (Ours) 0.7284 -0.5860 0.1064 0.3540 0.1650 0.2835

Llama2-13B-chat 0.6707 -0.7337 0.0495 0.2430 0.0975 0.1706
• Tent 0.4541 -1.2410 0.0011 0.0321 0.0000 0.0320
• EATA 0.6999 -0.7661 0.0703 0.3132 0.1441 0.2421
• TLM (Ours) 0.6902 -0.6738 0.0722 0.2996 0.1319 0.2225

Qwen2.5-7B-Instruct 0.7003 -0.5802 0.0823 0.2911 0.1125 0.2128
• Tent 0.6925 -0.9422 0.0810 0.2703 0.1293 0.2242
• EATA 0.6856 -0.9806 0.0723 0.2444 0.1182 0.2063
• TLM (Ours) 0.7214 -0.5093 0.1039 0.3412 0.1481 0.2632

a rank of r = 8. The LoRA is applied only to the Wq and Wv .

Tent (Wang et al., 2021) is a Test-Time Adaptation (TTA) method originally designed for image classification tasks, which
adapts a model’s parameters during inference based on the entropy of predictions. In the context of dynamic parameter
updates for Large Language Models (LLMs), we adapt the Tent method to work with LLMs by leveraging the prediction
entropy of the 80 tokens generated by the model. Specifically, we calculate the entropy of the model’s predictions for these
80 tokens during each test-time update and use this information to adjust the LLM’s parameters.

EATA (Niu et al., 2022a) is a state-of-the-art TTA method for image classification models, which adjusts model parameters
based on low-entropy samples during inference. In the context of dynamic parameter updates for LLMs, we adapt the EATA
method by leveraging the prediction entropy of 80 tokens generated by the model to select samples. Specifically, during
each test-time update, we compute the entropy of the model’s predictions for these 80 tokens and, following the setup of
EATA, adjust the parameters of the LLM (with the hyperparameter E0 of EATA set to 0.4). However, performing EATA
updates on Llama2-13B-chat may result in out-of-memory errors. To address this issue, we reduce the number of tokens
from 80 to 30 when applying EATA updates on Llama2-13B-chat.

Offline and Online Settings. In our experiments, we consider two distinct settings: Offline and Online. In the Offline
setting, all test data is processed at once, and the model’s parameters are updated using all available test samples before
any testing is performed. In the Online setting, test data sequentially, where the model is updated after each individual
test sample or batch. This setting better reflects real-world scenarios where data arrives in a continuous stream, requiring
real-time updates to the model.

D. More Results of Experiment
To comprehensively evaluate the effectiveness of the proposed TLM, we report additional evaluation metrics and results.
As shown in Table 10, the proposed method outperforms both the entropy-minimization-based method (Tent) and the
original LLMs on the Geography dataset. Specifically, the proposed method achieves a 4.76% improvement in BERTScore
compared to Llama3-8B-Instruct. As shown in Table 11, our proposed TLM outperforms Tent on the Agriculture dataset.
For instance, our proposed TLM achieves a 146.61% improvement in the BLEU metric compared to Qwen2.5-7B-Instruct.
From Table 12, the proposed method outperforms the original LLM on the Medicine dataset. Specifically, compared to
Llama3-8B-Instruct, the proposed method achieves a relative improvement of 7.05% in BERTScore. As shown in Table
13, our proposed TLM outperforms Tent on the Finance dataset. For instance, our proposed TLM achieves a relative
improvement 122.50% improvement in the BLEU metric compared to Llama3.2-3B-Instruct. From Table 14, the proposed
method outperforms the original LLM on the Alpaca-GPT4 dataset. Specifically, compared to Llama3-8B-Instruct, the
proposed method achieves a relative improvement of 4.30% in BERTScore. As shown in Table 15, the proposed method
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Table 11. Comparison of experimental results on the Agriculture dataset of DomainBench.

Method BERTScore ↑ BLEURT ↑ BLEU ↑ Rouge-1 ↑ Rouge-2 ↑ Rouge-L ↑

Llama3.2-3B-Instruct 0.6672 -0.7595 0.0104 0.0927 0.0316 0.0684
• Tent 0.6350 -0.9975 0.0015 0.0159 0.0034 0.0148
• EATA 0.6659 -0.8355 0.0022 0.0263 0.0046 0.0247
• TLM (Ours) 0.6787 -0.6668 0.0288 0.1935 0.0655 0.1518

Llama3-8B-Instruct 0.6666 -0.7288 0.0106 0.0903 0.0328 0.0665
• Tent 0.5746 -1.2577 0.0008 0.0075 0.0011 0.0066
• EATA 0.5870 -1.3074 0.0003 0.0019 0.0000 0.0016
• TLM (Ours) 0.6526 -0.6703 0.0189 0.1477 0.0496 0.1110

Llama2-13B-chat 0.6235 -0.6134 0.0116 0.0910 0.0319 0.0668
• Tent 0.5901 -0.9157 0.0015 0.0200 0.0019 0.0193
• EATA 0.6065 -0.6084 0.0101 0.0843 0.0257 0.0675
• TLM (Ours) 0.6354 -0.5929 0.0144 0.1108 0.0379 0.0826

Qwen2.5-7B-Instruct 0.6562 -0.7226 0.0118 0.1068 0.0377 0.0768
• Tent 0.6667 -1.1641 0.0118 0.1399 0.0346 0.1145
• EATA 0.6562 -1.1517 0.0113 0.1425 0.0357 0.1166
• TLM (Ours) 0.6755 -0.6219 0.0291 0.1841 0.0663 0.1394

outperforms both Tent and the original LLMs across all metrics on the Dolly dataset. Specifically, the proposed method
achieves a relative improvement of 1.11% in BERTScore compared to Llama3-8B-Instruct. As shown in Table 16, our
proposed TLM outperforms Tent on the InstructionWild dataset. For instance, our proposed TLM achieves a relative
improvement 50.15% improvement in the BLEU metric compared to Llama3.2-3B-Instruct.

E. Discussions and Future Works
To the best of our knowledge, addressing the challenges faced by LLMs in real-world deployments, such as distributional
shifts in test data, has not been thoroughly explored. In this work, we introduce the Test-Time Learning (TTL) task,
aiming to dynamically adapt LLMs using only unlabeled test data during testing. Additionally, we propose the AdaptEval
benchmark, designed to evaluate the effectiveness of TTL in enhancing model performance across a variety of domains.
Experimental results demonstrate that the proposed Test-Time Learning approach effectively improves LLM performance
on target domains. However, we believe there are several potential research directions worth exploring in the future:

Cross-Domain Continuous Adaptation: When deploying LLMs across multiple domains, it is essential to achieve
continuous adaptation without overfitting to a specific domain. This requires balancing the transfer of knowledge across
domains while mitigating catastrophic forgetting. Future work could explore methods for seamless domain adaptation that
improves model generalization across dynamic and diverse tasks.

Only Forward Passes: LLMs have large parameter sizes, and deployed models in practical settings may not support
backpropagation due to memory or computational limitations. This restricts the ability to perform Test-Time Learning during
inference, highlighting the need for more efficient methods that enable model adaptation without requiring backpropagation.

24



Test-Time Learning for Large Language Models

Table 12. Comparison of experimental results on the Medicine dataset of DomainBench.

Method BERTScore ↑ BLEURT ↑ BLEU ↑ Rouge-1 ↑ Rouge-2 ↑ Rouge-L ↑

Llama3.2-3B-Instruct 0.6677 -0.7668 0.0165 0.1588 0.0269 0.1037
• Tent 0.6322 -1.2819 0.0191 0.1897 0.0276 0.1204
• EATA 0.6554 -0.9669 0.0018 0.0312 0.0017 0.0178
• TLM (Ours) 0.7005 -0.5603 0.0463 0.2559 0.0728 0.1844

Llama3-8B-Instruct 0.6628 -0.7486 0.0136 0.1398 0.0343 0.0911
• Tent 0.5525 -1.3487 0.0014 0.0113 0.0006 0.0089
• EATA 0.6072 -1.1079 0.0011 0.0139 0.0011 0.0100
• TLM (Ours) 0.7095 -0.4781 0.0486 0.2646 0.0836 0.1889

Llama2-13B-chat 0.6559 -0.5971 0.0158 0.1439 0.0397 0.0956
• Tent 0.6235 -0.5867 0.0100 0.1250 0.0261 0.0874
• EATA 0.6543 -0.4349 0.0145 0.1465 0.0410 0.1007
• TLM (Ours) 0.6988 -0.4615 0.0512 0.2370 0.0890 0.1760

Qwen2.5-7B-Instruct 0.6561 -0.6598 0.0136 0.1441 0.0369 0.0909
• Tent 0.5884 -1.1911 0.0097 0.0548 0.0214 0.0454
• EATA 0.6408 -0.7171 0.0163 0.1672 0.0304 0.1202
• TLM (Ours) 0.7082 -0.5964 0.0623 0.2623 0.1003 0.1967

Table 13. Comparison of experimental results on the Finance dataset of DomainBench.

Method BERTScore ↑ BLEURT ↑ BLEU ↑ Rouge-1 ↑ Rouge-2 ↑ Rouge-L ↑

Llama3.2-3B-Instruct 0.6809 -0.6532 0.0360 0.2425 0.0791 0.1602
• Tent 0.6322 -1.2819 0.0191 0.1149 0.0549 0.1084
• EATA 0.5028 -1.2700 0.0010 0.0150 0.0001 0.0149
• TLM (Ours) 0.7060 -0.5113 0.0801 0.3206 0.1255 0.2367

Llama3-8B-Instruct 0.6862 -0.6230 0.0407 0.2530 0.0873 0.1682
• Tent 0.5919 -0.9704 0.0032 0.0390 0.0072 0.0351
• EATA 0.6431 -1.2160 0.0149 0.1398 0.0567 0.1183
• TLM (Ours) 0.7153 -0.4411 0.0952 0.3514 0.1448 0.2576

Llama2-13B-chat 0.6814 -0.6217 0.0427 0.2591 0.0892 0.1722
• Tent 0.4878 -1.1973 0.0006 0.0049 0.0000 0.0049
• EATA 0.6203 -1.0560 0.0250 0.1241 0.0574 0.1113
• TLM (Ours) 0.6979 -0.5110 0.0628 0.3009 0.1104 0.2064

Qwen2.5-7B-Instruct 0.6978 -0.5370 0.0639 0.2969 0.1124 0.2025
• Tent 0.6623 -1.1316 0.0313 0.1835 0.0845 0.1533
• EATA 0.7103 -0.5746 0.0810 0.3127 0.1358 0.2409
• TLM (Ours) 0.7220 -0.3890 0.0968 0.3607 0.1487 0.2616
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Table 14. Comparison of experimental results on the Alpaca-GPT4 dataset of InstructionBench.

Method BERTScore ↑ BLEURT ↑ BLEU ↑ Rouge-1 ↑ Rouge-2 ↑ Rouge-L ↑

Llama3.2-3B-Instruct 0.7260 -0.5164 0.0953 0.3885 0.1712 0.2619
• Tent 0.5656 -1.5454 0.0054 0.0351 0.0032 0.0305
• EATA 0.6553 -1.2411 0.0220 0.1513 0.0753 0.1359
• TLM (Ours) 0.7523 -0.4148 0.1239 0.4170 0.2062 0.3184

Llama3-8B-Instruct 0.7353 -0.4655 0.1082 0.4076 0.1863 0.2796
• Tent 0.6712 -1.0652 0.0421 0.2193 0.1193 0.1881
• EATA 0.6398 -0.8220 0.0271 0.1499 0.0725 0.1332
• TLM (Ours) 0.7669 -0.3090 0.1479 0.4582 0.2349 0.3528

Llama2-13B-chat 0.7326 -0.5290 0.1091 0.4068 0.1830 0.2777
• Tent 0.6249 -1.4903 0.0108 0.0998 0.0444 0.0937
• EATA 0.5073 -0.7398 0.0094 0.0813 0.0191 0.0799
• TLM (Ours) 0.7386 -0.5150 0.1229 0.4311 0.1987 0.3040

Qwen2.5-7B-Instruct 0.7624 -0.2949 0.1556 0.4803 0.2353 0.3406
• Tent 0.6787 -0.9809 0.0501 0.2323 0.1315 0.2031
• EATA 0.0000 -1.9681 0.0000 0.0000 0.0000 0.0000
• TLM (Ours) 0.7829 -0.2137 0.1749 0.4919 0.2648 0.3819

Table 15. Comparison of experimental results on the Dolly dataset of InstructionBench.

Method BERTScore ↑ BLEURT ↑ BLEU ↑ Rouge-1 ↑ Rouge-2 ↑ Rouge-L ↑

Llama3.2-3B-Instruct 0.7289 -0.4824 0.0946 0.3778 0.1903 0.2935
• Tent 0.6866 -0.5922 0.0797 0.2374 0.1398 0.2039
• EATA 0.5767 -1.5690 0.0027 0.0092 0.0002 0.0086
• TLM (Ours) 0.7334 -0.4783 0.1030 0.3878 0.1997 0.3048

Llama3-8B-Instruct 0.7415 -0.4088 0.1114 0.4126 0.2137 0.3222
• Tent 0.5905 -1.4648 0.0000 0.0036 0.0000 0.0036
• EATA 0.6559 -1.2475 0.0275 0.1991 0.0868 0.1661
• TLM (Ours) 0.7497 -0.3972 0.1194 0.4239 0.2226 0.3388

Llama2-13B-chat 0.7074 -0.8015 0.0743 0.3274 0.1550 0.2407
• Tent 0.4111 -0.7963 0.0008 0.0076 0.0000 0.0076
• EATA 0.5355 -0.9809 0.0076 0.0632 0.0175 0.0577
• TLM (Ours) 0.7108 -0.8169 0.0789 0.3411 0.1625 0.2516

Qwen2.5-7B-Instruct 0.7212 -0.4784 0.0911 0.3501 0.1790 0.2634
• Tent 0.6674 -1.1697 0.0420 0.2373 0.1036 0.1051
• EATA 0.6737 -1.1244 0.0491 0.2482 0.1132 0.1963
• TLM (Ours) 0.7216 -0.5209 0.0931 0.3567 0.1832 0.2685
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Table 16. Comparison of experimental results on the InstructionWild dataset of InstructionBench.

Method BERTScore ↑ BLEURT ↑ BLEU ↑ Rouge-1 ↑ Rouge-2 ↑ Rouge-L ↑

Llama3.2-3B-Instruct 0.7019 -0.4837 0.0337 0.2796 0.0942 0.1699
• Tent 0.5409 -1.2307 0.0018 0.0341 0.0008 0.0341
• EATA 0.4537 -1.3202 0.0011 0.0123 0.0006 0.0122
•TLM (Ours) 0.7044 -0.4503 0.0506 0.3104 0.1136 0.2004

Llama3-8B-Instruct 0.7071 -0.4469 0.0363 0.2846 0.0976 0.1735
• Tent 0.6092 -0.5438 0.0148 0.0933 0.0317 0.0910
• EATA 0.6455 -0.5337 0.0133 0.0956 0.0452 0.1125
• TLM (Ours) 0.7133 -0.3669 0.0554 0.3206 0.1207 0.2050

Llama2-13B-chat 0.7025 -0.4040 0.0464 0.3032 0.1062 0.1860
• Tent 0.5390 -0.6001 0.0253 0.1294 0.0464 0.1260
• EATA 0.5869 -0.7337 0.0159 0.1129 0.0295 0.0947
• TLM (Ours) 0.7056 -0.3792 0.0499 0.3122 0.1119 0.1926

Qwen2.5-7B-Instruct 0.7071 -0.4295 0.0436 0.3116 0.1070 0.1875
• Tent 0.6865 -1.0060 0.0153 0.1829 0.1232 0.1615
• EATA 0.6911 -0.9889 0.0157 0.1830 0.1233 0.1615
• TLM (Ours) 0.7261 -0.2746 0.0813 0.3806 0.1498 0.2472
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