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Abstract

Despite the impressive performance of vision-language models (VLMs) on down-
stream tasks, their ability to understand and reason about causal relationships in
visual inputs remains unclear. Robust causal reasoning is fundamental to solving
complex high-level reasoning tasks, yet existing benchmarks often include a mix-
ture of reasoning questions, and VLMs can frequently exploit object recognition
and activity identification as shortcuts to arrive at the correct answers, making
it challenging to truly assess their causal reasoning abilities. To bridge this gap,
we introduce VQA-Causal and VCR-Causal, two new benchmarks specifically
designed to isolate and rigorously evaluate VLMs’ causal reasoning abilities. Our
findings reveal that while VLMs excel in object and activity recognition, they
perform poorly on causal reasoning tasks, often only marginally surpassing random
guessing. Further analysis suggests that this limitation stems from a severe lack
of causal expressions in widely used training datasets, where causal relationships
are rarely explicitly conveyed. We additionally explore fine-tuning strategies with
hard negative cases, showing that targeted fine-tuning can improve model’s causal
reasoning while maintaining generalization and downstream performance. Our
study highlights a key gap in current VLMs and lays the groundwork for future
work on causal understanding.

1 Introduction

Pre-trained vision-language models have demonstrated impressive performance across a wide range
of tasks, including visual question answering [l [14], reasoning [35]], and object detection [15]].
However, strong performance on these benchmarks does not necessarily reflect a rich understanding
of visual inputs. Recent studies have revealed that VLMs struggle with tasks demanding high-level
visual understanding, such as verb comprehension, spatial reasoning, attribute attachment, and
counting 2|19, 121} 31} 34]. Crucially, whether VLMs possess genuine causal reasoning abilities
remains largely unexplored. For instance, can VLMs distinguish between “The woman holding
an umbrella is caused by the rain.” and “The rain is caused by the woman holding an umbrella.”?
Robust causal understanding and reasoning are fundamental to tackling complex real-world decision
making [[10], but this capability in VLMs remains largely unexplored.

Existing benchmarks that aim to assess reasoning in VLMs often conflate causal reasoning with
other types of reasoning tasks [[1}[35]], and many questions can be answered by object recognition or
activity understanding alone. For example, our analysis of the Visual Question Answering (VQA)
and Visual Commonsense Reasoning (VCR) benchmarks reveals that only 0.92% of questions in
the VQA validation set [[1] and 35.43% in the VCR validation set [35] involve causal reasoning.
Our analysis of 100 randomly selected VCR questions found that 46% could be answered correctly
through object detection or activity understanding alone, without requiring genuine causal reasoning.



37
38

39
40
41
42
43
44
45
46
47
48

49
50
51
52
53
54
55

56
57
58
59
60
61
62
63

64
65
66

in jacket

next to

the cause
of

7

prep——— N

VQA-Causal:
This woman is holding an umbrella is caused by it is raining. /
It is raining is caused by this woman is holding an umbrella. X

Object and Activity Understanding Test:
This woman is holding an umbrella.
This woman is running.

It is raining.

It is sunny.

*QN*N

Figure 1: Examples from the VQA-Causal test and the Object and Activity Understanding test.
Models tend to focus on low-level visual features such as objects and activities which are represented
by the red and blue nodes in the scene graph on the left, but fail to capture high-level visual features
such as relationships between activities, especially causal relationships in our case, which are
represented by the green nodes in the scene graph.

These issues make it difficult for current benchmarks to independently and effectively evaluate the
causal reasoning ability of VLMs.

To address this gap, we introduce VQA-Causal and VCR-Causal, the first benchmarks specifically
designed to rigorously and independently evaluate VLMs’ causal reasoning abilities. Constructed
from different sources, VQA [1]] and VCR [35]], this dual-benchmark setup enables fine-tuning on
VQA data and both in-domain (VQA-Causal) and out-of-domain (VCR-Causal) evaluation, thereby
providing a robust assessment of models’ causal reasoning capabilities and their generalizability
across datasets. VQA-Causal consists of 1,947 instances, and VCR-Causal contains 3,511 instances,
with each image paired with 12 caption pairs using different causal conjunctions. Each caption pair
differs only in the causal relationship between events, as illustrated in Figure[I] This counterfactual
approach ensures a comprehensive evaluation of the model’s understanding of causal relationships,
avoiding potential biases toward specific causal expressions.

We evaluate 10 widely-used VLMs, covering a broad spectrum of architectures and objectives,
including score-based and generative models trained with diverse objectives. The evaluated models
include CLIP [23]], NegCLIP [34], BLIP [11], FLAVA [28] , LLaVA [18] and so on. All models
perform poorly on both VQA-Causal and VCR-Causal, with nine out of ten achieving no more than
52% accuracy, which is only marginally above a random guess (50%) and significantly below human
performance (98%). These findings highlight a fundamental limitation of existing VLMs in causal
reasoning.

To better understand whether the poor performance on causal reasoning tasks stems from a lack of
basic visual understanding, we constructed a controlled evaluation set by modifying the VQA-Causal
dataset. This modified dataset contains the same 1,947 instances as VQA-Causal, but each image is
paired with four captions, two of which correctly describe the image. The incorrect captions differ
by altering the object or modifying the described activity, as illustrated in Figure[I] Our results
reveal that while VLMs perform well in recognizing objects and activities, they struggle significantly
with reasoning about causal relationships between activities, further reinforcing our findings from
VQA-Causal and VCR-Causal.

We then investigate why VLMs trained on large-scale image-text corpora fail to learn causal rela-
tionships between events in visual inputs. Focusing on LAION-400M [26] (used by OpenCLIP) and
MSCOCO [I17] (used in FLAVA and NegCLIP) [28}134]], we found that explicit causal expressions
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are extremely rare. Quantitatively, only 0.08% of LAION-400M and 0.01% of MSCOCO instances
contain explicit causal expressions. This scarcity explains why VLMs excel at object and activity
recognition but struggle with causal reasoning.

To mitigate this limitation, we explored fine-tuning strategies incorporating hard negative cases,
captions that differ from the correct ones only in the causal order, demonstrating that targeted fine-
tuning can significantly enhance causal reasoning. Our fine-tuned model, CausalCLIP, achieves
notable improvements on both in-domain and out-of-domain benchmarks while maintaining strong
performance on downstream tasks.

Our contributions are as follows:

* We introduce VQA-Causal and VCR-Causal, the first benchmarks specifically designed to
isolate and comprehensively evaluate causal reasoning in VLMs, addressing a critical limitation
in existing benchmarks. Moreover, this setup allows us to use one dataset (e.g., VQA) as
an in-domain source for fine-tuning and evaluate the model’s causal reasoning ability on both
in-domain (VQA-Causal) and out-of-domain (VCR-Causal) benchmarks to assess generalization.

* Our experimental results reveal that while VLMs excel in object and activity understanding,
they perform poorly on causal reasoning tasks, with some only marginally surpassing random
guessing. Additionally, our analysis of four widely used datasets for VLM training, fine-tuning,
and benchmarking uncovers a severe lack of causal expressions, providing insight into why
models fail to learn causal relationships between different activities during training process.

* We explore fine-tuning with hard negative cases and demonstrate that targeted fine-tuning can
enhance causal reasoning performance. Our approach achieves notable improvements on both
in-domain and out-of-domain benchmarks while maintaining minimal impact on downstream
task performance.

2 Benchmarks for Causal Order Reasoning

Existing benchmarks, such as VQA [1],
VCR [35]], and GQA [7], include questions re-
lated to causal reasoning. However, many in-
stances within these datasets involve multiple :
types of reasoning, making it difficult to isolate d P
and evaluate a model’s specific understanding
of causal relationships. Additionally, a signifi-

e

n holding on to a rope?

Q: Why is the perso

cant portion of the causal reasoning examples
fail to truly assess a model’s comprehension of
causality.

For example, as illustrated in Figure 2] the
VCR [35] question “Why is the person hold-
ing on to a rope?” allows a model to select
the correct answer by merely identifying the ab-
sence of specific objects, such as train tracks, in
the image, thus eliminating an incorrect option.
Furthermore, by recognizing that the depicted
activity is not “tying the rope to something,” or
“climbing over the boat” the model can exclude
another 2 options. With only basic object and
activity recognition, the model can reach the
correct answer without demonstrating genuine
reasoning about the causal relationships between
different entities in the visual input.

In contrast, our proposed datasets place a strong

Answer Choices:

1. The person is climbing over the boat.

2. The person is trying to tie the rope to something.

3. The rope helps the person get to the other side of the
train tracks.

4. To keep from being washed away.

Figure 2: The VCR dataset fails to genuinely eval-
uate a model’s causal reasoning ability. In this
example, the model can eliminate choice 3 by rec-
ognizing that there is no train tracks in the image.
It can also rule out captions 2 and 1 by observing
that the person is not tying the rope to or climb
over anything. As a result, the model can arrive
at the correct answer purely through object and
activity understanding, without requiring genuine
causal reasoning.

emphasis on requiring models to understand the causal relationships between various events within
the visual input. Our newly developed evaluation corpora adopt the format proposed by Kamath
et al. [9], featuring an image paired with several captions that vary only in causal order. Specifically,
VQA-Causal and VCR-Causal are constructed from the widely-used VQA and VCR datasets [1} 35].
A key contribution of our work is that every instance in our dataset demands models to genuinely
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reason about the causal relationships between different events in the visual input, rather than taking
shortcuts by merely identifying objects and activities to arrive at the correct answer.

2.1 Dataset Construction

VQA-Causal We constructed the VQA-Causal dataset using the validation set and validation
annotation files from the VQA dataset [1]. Specifically, we selected all instances from the validation
set where the questions contained the keyword “Why” to form our VQA-Causal dataset. Each original
question and answer pair was transformed into two sentences connected by causal conjunctions,
differing only in the causal order while keeping everything else identical. For example, given an
image with the original VQA question “Why is this woman holding an umbrella?” and the correct
answer “It is raining”, we retained the image and generated two captions using the causal conjunction
is caused by : “This woman is holding an umbrella is caused by it is raining.” and “It is raining is
caused by this woman is holding an umbrella.”, as illustrated in Figure

We used 12 causal conjunctions to create 12 groups of caption pairs for each image. These conjunc-
tions were carefully chosen to capture variations in the syntactic ordering of causes and effects, as such
variations can potentially influence a model’s performance on causal reasoning tasks. Specifically,
some conjunctions, such as is due fo, is caused by, is a result of, is the effect of, is the consequence of,
because, and owe to, place the effect before the cause in the sentence structure. In contrast, others
such as result in, cause, lead to, give rise to, and bring about to, place the cause before the effect.
Each group contains one caption expressing a correct causal relationship and one expressing an
incorrect relationship, differing only in the causal direction.

In total, we extracted 1,947 instances from the VQA dataset, with each image paired with 12 distinct
caption pairs. This setup offers several advantages: (1) It enables a rigorous evaluation of the
model’s ability to reason about causal relationships within visual inputs. (2) The use of diverse
causal conjunctions allows us to assess the model’s understanding and sensitivity to different causal
expressions, while also mitigating potential biases that may arise from over-reliance on any single
conjunction during the reasoning process.

VCR-Causal Similarly, we constructed the VCR-Causal dataset using the validation set and
annotation files from the VCR dataset. We selected instances containing “Why” in their questions to
form the VCR-Causal dataset. The VCR-Causal dataset contains a total of 3,511 instances, with each
image associated with 12 caption pairs.

We conducted human verification on a randomly sampled subset of both VQA-Causal and VCR-
Causal. Two human annotators with NLP backgrounds were asked to judge whether captions for
each instance were (1) semantically coherent given the image context and (2) fluent. Each annotator
reviewed 50 image-caption pairs from each dataset. Results show that over 96% of the captions
were rated as both fluent and reasonable, indicating that our generation process yields high-quality,
interpretable inputs for evaluating causal reasoning.

2.2 Causal Order Reasoning Test

Task For the VQA-Causal and VCR-Causal benchmarks, we follow the experimental setup used by
Kamath et al. [9]]. The input consists of an image paired with two caption options, which differ only
in their causal order, as illustrated in Figurem Consistent with Kamath et al. [9], we evaluate the
models under a zero-shot setting. Our evaluation metric is the proportion of images for which the
matching score between the image and the correct caption is higher than the matching score between
the image and the incorrect caption.

Models We select both score-based and text-generation based models:

* Score-based models: CLIP ViT-B/32, CLIP ViT-L/14 [23|, FLAVA [28], BLIP ITM ViT-B,
BLIP ITM ViT-L [11]], BLIP2 ITM [13]], BLIP2 Feature Extractor [[13]], NegCLIP [34],
and RobustCLIP [25]. These models produce matching scores for each image-caption
pair independently. Among them, NegCLIP is fine-tuned with hard negatives samples,
making it more sensitive to the word order and RobustCLIP is fine-tuned with adversarial
augmentations to improve the model’s robustness.
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¢ Text-generation models: LLaVA1.5 [18]], Vicunal.5 [5138]. We include Vicuna to vali-
date that a language model relying solely on text input cannot effectively solve the causal
reasoning tasks in our benchmark, thereby demonstrating the benchmark’s reliability. By
comparing Vicuna with LLaVA, which takes both image and text inputs, we further in-
vestigate whether LLaVA is capable of leveraging visual information to support causal
reasoning.

For LLaVA, we follow the settings in Kamath et al. [9]] and reformulate the task by converting the
two captions into two questions. For example:

1. “This woman is holding an umbrella is caused by it is raining. Does it reflect the proper causal
relationship?”

2. “It is raining is caused by this woman is holding an umbrella. Does it reflect the proper causal
relationship?”

We measure the probabilities of models answering “yes” or “no” to these questions. Correctness is
determined based on one of the following criteria:

1. The model assigns the highest “yes” probability to the correct option.

2. If both answers are “no”, the lowest “no” probability is assigned to the correct option.

2.3 Benchmarking Results

Table [T] present the performance of nine score-based models and two generation-based models on our
VQA-Causal and VCR-Causal benchmarks, respectively. Overall, all models perform near random
and far below human estimate, revealing a clear lack of robust causal reasoning ability in current
VLMs. Detailed results for each model across the twelve causal conjunctions are provided in Table ??
and Table ??.

Model | VQA-Causal | VCR-Causal
Score-Based Models
BLIP ITM Base 48.94 50.66
BLIP ITM Large 48.68 47.99
BLIP2 ITM 50.76 49.95
BLIP2 FE 51.51 50.76
CLIP ViT B/32 51.62 50.35
CLIP ViT L/14 50.74 51.66
NegCLIP 50.89 51.30
RobustCLIP 50.66 53.68
FLAVA 48.52 49.99
Text-Generation Models
Vicuna 1.5 50.86 56.03
LLaVA 1.5 53.19 52.12
Random 50.00 50.00
Human Estimate 99.17 98.17

Table 1: Accuracy on the causal-order reasoning tests of ten VLMs for the VQA-Causal and VCR-
Causal benchmarks. All models perform only marginally above random guessing and remain
significantly below human-level performance. “BLIP2 FE” denotes the BLIP2 feature extractor
model. Detailed results for each of the twelve causal conjunctions are provided in Table ?? and
Table ?? in Appendix.

Causal Conjunctions Performance Across both the VQA-Causal and VCR-Causal benchmarks, the
CLIP model family, including CLIP ViT B/32, CLIP ViT L/14, NegCLIP and RobustCLIP [23}[25]134]],
demonstrates relatively stronger performance on conjunctions such as is caused by, is due to, is the
consequence of, because, owe to, and is the effect of. These conjunctions share a common syntactic
structure in which the result precedes the cause. In contrast, these models perform notably worse
on conjunctions such as result in, cause, lead to, give rise to, and bring about to, where the cause
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appears before the result. However, FLAVA [28]] exhibits the opposite trend. On the VQA-Causal
benchmark, it performs relatively poorly on conjunctions where the result comes first, but shows
stronger performance on those where the cause precedes the result. These observations suggest that
the syntactic ordering of cause and effect within a sentence plays a critical role in model performance,
and that certain models may be sensitive to specific linguistic patterns of causal expression.

Impact of Prior Fine-Tuning Strategies Fine-tuning for caption order improves a model’s sensi-
tivity to word order, thereby improving its performance on certain causal order tests. For instance,
NegCLIP outperforms CLIP models when tested on conjunctions like is due to and is caused by
in most cases, demonstrating substantial improvements. However, for conjunctions like result in,
cause, and lead to, NegCLIP underperforms compared to CLIP models. This suggests that fine-tuning
for word order amplifies the model’s strengths for specific conjunctions but also exacerbates its
weaknesses for others, particularly those it initially struggled with. Moreover, adversarial robustness
fine-tuning, as implemented in RobustCLIP, does not lead to significant improvements in causal order
reasoning performance.

3 Activity and Object Understanding Test

To further investigate whether the poor causal reasoning performance of VLMs arises from a lack
of understanding of entities in visual inputs, we conducted the Activity and Object Understanding
Test. The results show that VLMs exhibit strong capabilities in recognizing objects and activities
within images. This suggests that VLMs tend to focus on learning low-level visual features such
as objects and activities recognition but fail to capture high-level features like causal relationships
between activities.

Data Construction We extended the VQA-Causal dataset to construct this evaluation. For each
original instance, we generated four captions: two correct captions that preserve the original causal
event but decompose it into independent factual statements, and two incorrect captions, which were
carefully crafted by modifying the object or the activity from the correct captions to make them
factually inaccurate. This setup allows us to isolate the model’s understanding of objects and activities
from its ability to reason about causal relationships. An illustration is provided in Figure[I]

Object and Activity Understanding Test We conducted experiments with all score-based VLMs
mentioned in Section 2.2 to assess their understanding of objects and activities within the input
images. The input to each model consisted of an image paired with four captions described in the
last paragraph, as illustrated in Figure [I| We considered the model’s response correct if the two
captions with the highest scores were the correct ones. This task setup requires models to accurately
understand both the objects and activities depicted in the input image to achieve a correct response.

Results and Analysis As shown in Table[2] all models achieve strong performance on the object
and activity understanding task. In Figure[I] the red nodes represent objects, the blue nodes indicate
the attributes of these objects, and the green nodes depict the relationships between different objects
and activities. VLMs tend to focus on learning low-level features which is the red and blue node
in the scene graph but fail to capture high-level features which is the green node representing the
relationships between objects and activities. This limitation in capturing structured visual relation-
ships may explain why VLMs perform close to random on high-level reasoning tasks, including
causal reasoning, as well as on other complex reasoning tasks like spatial reasoning [9]] and verb
understanding [31], which have been highlighted in previous studies.

4 Why Struggling with Causal Reasoning? A Data-Level Exploration

All evaluated VLMs were pretrained and fine-tuned on large-scale image-text corpora and have shown
strong performance on traditional benchmarks. To explore why they fail to learn causal relationships,
we investigate this limitation from a data-level perspective.

We selected four widely-used datasets for VLM pretraining and benchmark: LAION-400M [26]],
which was used to train OpenCLIP [4} 8123} 27]], and MSCOCO [17], which was used in FLAVA’s
training and NegCLIP’s fine-tuning. For benchmark datasets, we analyzed VQA and VCR [} 35],
two standard datasets commonly used to evaluate the reasoning capabilities of VLMs.
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Model | VQA-Causal O&A Test

BLIP ITM Base 48.94 94.61
BLIP ITM Large 48.68 95.53
BLIP2 ITM 50.76 92.24
BLIP2 FE 51.51 83.98
CLIP ViT B/32 51.62 76.53
CLIP ViT L/14 50.74 85.31
NegCLIP 50.89 87.62
RobustCLIP 50.66 83.26
FLAVA 48.52 71.85

Table 2: Accuracy on the Object and Activity Understanding Test (O&A Test) versus the Causal Order
Reasoning Test (VQA-Causal). All models exhibit strong performance on the O&A Test, indicating
that while VLMs effectively recognize objects and activities, they struggle with causal reasoning task.
“BLIP2 FE” denotes the BLIP2 feature extractor model.

Pre-Training Datasets We randomly sampled about 5,200,000 captions from the LAION-400M
dataset to examine the prevalence of causal expressions. Specifically, we looked for captions
containing any of the following causal-related terms: because, cause, lead to, reason, is the reason
why, is the effect of, owe to, give rise to, bring about to, result in. Among the sampled captions, only
4,026 captions (~0.08%) included causal expressions. Similarly, in the MSCOCO dataset, where we
analyzed 415,795 captions, only 53 captions (~0.01%) contained causal relationships.

These findings reveal that causal relationships are exceedingly rare in the training datasets, with
less than 0.1% of captions involving causal reasoning, making it difficult for VLMs to learn and
generalize causal understanding from visual inputs.

Benchmark Datasets We then examined the causal reasoning content of two commonly used VLM
benchmarks: VQA and VCR [1},135]. In the VQA validation set, only 1,962 out of 214,354 questions
(~0.92%) involved causal reasoning related to visual inputs; In the VCR validation set, 9,401 out of
26,534 questions (~35.43%) involved causal reasoning.

To further analyze the VCR dataset, we randomly selected 100 questions from the subset involving
causal reasoning and conducted a detailed human annotation. We found that 46% of these questions
could be answered correctly by relying solely on object detection or activity understanding without
requiring any genuine understanding of causal relationships. As shown in Figure 2} a model could
eliminate one incorrect option by recognizing the absence of objects such as “train tracks” in the
image. Furthermore, the model could identify the actions of the person in the image (e.g., not tying
a rope to something or climbing over the boat) to select the correct answer. In such cases, models
rely on object detection and activity recognition to arrive at the correct answer without reasoning
about the causal relationships between events in the image and thus have good performance on such
benchmarks.

5 Data-Level Improvement

We extract a subset of data from the VQA [1] training set and, for each instance, generate 10 caption
pairs, each consisting of one correct caption reflecting a valid causal relationship and one incorrect
caption serving as a hard negative example. These examples are used to fine-tune the models.
This fine-tuning strategy significantly improves the models’ causal reasoning performance on both
in-domain and out-of-domain datasets, while preserving downstream performance.

Dataset Following the VQA-Causal construction methodology, we extracted all “why”” questions
from the VQA training set along with their corresponding correct answers, resulting in a total of 4,891
instances. For each instance, we constructed 10 caption pairs using ten different causal conjunctions:
is due to, is caused by, is a result of, is the effect of, because, result in, cause, lead to, give rise to,
and bring about to. Each pair consists of two captions that differ only in the direction of the causal
relationship, with all other elements remaining identical.

Finetuning We adopt the fine-tuning setup from NegCLIP [34]] and extend CLIP’s [23] contrastive
learning objective to better support causal reasoning. For each image-caption pair, we introduce hard
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VQA-Causal (In-Domain)
Model Avg | CWlI CW2 CW3 CW4 CW5 CW6 CW7 CW8 CW9 CWI0O CWIl CWI2

NegCLIP ‘50.89‘62.51 62.25 64.77 67.33 6697 5994 69.75 28.45 3939 3385 2933 26.14
61.46

CausalCLIP 70.57 71770 69.54 73.81 72.16 61.43 5645 55.68 48.84 57.22 5372 46.38
VCR-Causal (Zero-Shot)

Model Avg | CWI CW2 CW3 CW4 CW5 CW6 CW7 CW8 CW9 CWI0 CWIl CWI2
NegCLIP 51.30 | 52.21 53.89 54.80 5523 57.11 50.04 50.87 47.22 50.19 5132 4543 47.34
CausalCLIP | 57.37 | 59.10 6249 61.29 63.69 6292 5497 50.16 5896 53.00 5833 5138 52.15

Table 3: CausalCLIP demonstrates strong generalization on both VQA-Causal (in-domain) and VCR-
Causal (zero-shot) benchmarks. CW1-CW12 correspond to the following twelve causal conjunctions:
is due to, is caused by, is a result of, is the effect of, is the consequence of, because, owe to, result in,
cause, lead to, give rise to, and bring about to.

COoCoO Flickr30K
Model Ml M2 M3 M4 M5 M6 M7 M8 | MlI M2 M3 M4 M5 M6 M7 M8
OpenCLIP |0.30 0.56 0.50 0.75 0.30 0.56 0.10 0.34|0.59 0.84 0.79 095 0.59 0.84 0.16 0.57
NegCLIP 041 0.68 056 0.80 0.41 0.68 0.11 0.39]0.67 0.89 0.79 0.95 0.67 0.89 0.16 0.62
CausalCLIP | 0.38 0.64 0.54 0.78 0.38 0.64 0.11 0.38|0.64 0.87 0.78 0.94 0.64 0.87 0.16 0.60

Table 4: CausalCLIP exhibits minimal performance loss compared to NegCLIP and even outper-
forms OpenCLIP on retrieval tasks across both MSCOCO and Flickr30K datasets. Metrics M1-M8
correspond to: ImagePrec@ 1, ImagePrec @5, TextPrec@ 1, TextPrec@5, ImageRecall@ 1, ImageRe-
call@5, TextRecall@1, and TextRecall@5, respectively.

negative captions, including (1) the incorrect causal order caption for the same image, and (2) three
randomly sampled negative captions from other instances in the dataset. Additionally, we randomly
sample one alternative image per instance to serve as a negative image, helping ensure generalization
and reduce overfitting.

We conduct fine-tuning experiments using NegCLIP [34], a ViT-B/32 variant of CLIP. For each batch
of N images Iy, we concatenate the N corresponding correct captions and N incorrect captions to
form a 2N caption batch. We then compute a similarity matrix between all images and all captions.
Following Yuksekgonul et al. [34], we obtain both row-wise and column-wise cross-entropy losses,
while ignoring the loss terms from negative captions in the column-wise direction.

Baseline Since we fine-tune on the NegCLIP model, its original performance on the causal
reasoning benchmarks serves as our baseline. It is worth noting that our fine-tuning only uses 10
causal conjunctions and is performed exclusively on data from the VQA training set. However,
we evaluate the model on all 12 causal conjunctions using both VQA-Causal (as the in-domain
benchmark) and VCR-Causal (as the out-of-domain benchmark). Notably, VCR-Causal serves as a
zero-shot test set. This setup allows us to evaluate the model’s generalization in two ways: (1) to
unseen causal conjunctions not present during fine-tuning, and (2) to out-of-domain dataset, thereby
providing a more comprehensive assessment of its causal reasoning abilities.

Evaluation As shown in Table[3] our fine-tuned model CausalCLIP achieves strong causal reasoning
performance on both in-domain and out-of-domain benchmarks. Furthermore, Table d]shows that this
fine-tuning strategy preserves downstream performance and even outperforms OpenCLIP on retrieval
tasks over MSCOCO [17] and Flickr30k [33], following the setup of Yuksekgonul et al. [34].

6 Related Work

VLMs have excelled across a wide range of multimodal tasks, including object detection [[15}
36], image-text retrieval [11} 13} 23] , visual question answering [, [14} [18] and commonsense
reasoning [35]. However, many recent benchmarks have been proposed to test specific visual
understanding capabilities of VLMs and revealed that VLMs perform poorly on tasks requiring fine-
grained reasoning skills, such as counting [20, 21], spatial reasoning [3} 9} 130], verb understanding [6,
31], attribute composition[29, |34} 37]. These suggest that models fail to possess high-level visual
understanding beyond low-level recognition.
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Among these reasoning abilities, causal reasoning is one of the most foundamental abilities, as it
allows models to plan interventions and infer underlying mechanisms crucial for complex real-world
decision making tasks [10], but remains largely underexplored. Many existing benchmarks for
evaluating reasoning ability often focus on video-language models [12} 22} |24} [32]] and frequently
conflate causal reasoning with other forms of reasoning [, [7, (19, [35]. Moreover, Li et al. [16]]
introduced MuCR by generating images conditioned on given causes and designing evaluation tasks
such as selecting the correct effect from multiple candidates. However, many of these benchmarks
can still be solved through shortcut strategies—for instance, by detecting salient objects or identifying
specific activities—as illustrated in Figure [2| This makes it difficult to determine whether models
truly capture the causal order between causes and effects.

Our work addresses this critical gap by introducing two dedicated benchmarks—VQA-Causal and
VCR-Causal—that explicitly evaluate whether VLMs can distinguish between alternative causal
interpretations of the same visual scene, thus enabling rigorous causal reasoning evaluation in
multimodal models.

7 Conclusion

We introduce VQA-Causal and VCR-Causal, the first benchmarks designed to comprehensively
evaluate VLMs’ causal reasoning abilities across 12 causal conjunctions. Despite strong performance
in object and activity recognition, all ten evaluated models perform poorly on causal reasoning
tasks—nine achieving no more than 53% accuracy, barely above chance. To understand this limitation,
we analyze four commonly used datasets including LAION-400M, MSCOCO, VQA, and VCR, and
find that explicit causal expressions are exceedingly rare in LAION-400M and MSCOCO datasets,
with fewer than 0.1% of instances involving causal relationships. Moreover, only 0.92% of VQA and
35.43% of VCR questions require causal reasoning, and 46% of sampled VCR questions can be solved
using shortcuts without genuine causal reasoning. Finally, we extract 4,891 causality-related instances
from the VQA training set and construct contrastive training data by pairing correct captions with
hard negative examples that differ only in causal direction. Fine-tuning with this data significantly
improves causal reasoning performance on both in-domain and out-of-domain benchmarks, while
maintaining downstream task performance.

8 Limitations

Our work uncovers the weaknesses of current VLMs on causal reasoning tasks. By analyzing
both their training data and benchmark datasets, we proposed a data-level fine-tuning strategy that
significantly enhances causal reasoning ability with minimal impact on downstream performance.
However, this approach mainly focuns on data-level and does not address the underlying model
architecture. A promising direction for future research is to improve causal and fine-grained reasoning
at the model architectural level. For example, researchers could adjust attention weights to guide the
model foucs more on fine-grained visual features or implement broadly generalizable modifications
to specific VLM components to improve both causal reasoning ability and fine-grained visual
understanding. Finally, although our study focuses on vision—language models, causal reasoning and
fine-grained visual reasoning in other multimodal settings, such as video—language models, remains
an important direction for further investigation.
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