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Abstract

Despite the impressive performance of vision-language models (VLMs) on down-1

stream tasks, their ability to understand and reason about causal relationships in2

visual inputs remains unclear. Robust causal reasoning is fundamental to solving3

complex high-level reasoning tasks, yet existing benchmarks often include a mix-4

ture of reasoning questions, and VLMs can frequently exploit object recognition5

and activity identification as shortcuts to arrive at the correct answers, making6

it challenging to truly assess their causal reasoning abilities. To bridge this gap,7

we introduce VQA-Causal and VCR-Causal, two new benchmarks specifically8

designed to isolate and rigorously evaluate VLMs’ causal reasoning abilities. Our9

findings reveal that while VLMs excel in object and activity recognition, they10

perform poorly on causal reasoning tasks, often only marginally surpassing random11

guessing. Further analysis suggests that this limitation stems from a severe lack12

of causal expressions in widely used training datasets, where causal relationships13

are rarely explicitly conveyed. We additionally explore fine-tuning strategies with14

hard negative cases, showing that targeted fine-tuning can improve model’s causal15

reasoning while maintaining generalization and downstream performance. Our16

study highlights a key gap in current VLMs and lays the groundwork for future17

work on causal understanding.18

1 Introduction19

Pre-trained vision-language models have demonstrated impressive performance across a wide range20

of tasks, including visual question answering [1, 14], reasoning [35], and object detection [15].21

However, strong performance on these benchmarks does not necessarily reflect a rich understanding22

of visual inputs. Recent studies have revealed that VLMs struggle with tasks demanding high-level23

visual understanding, such as verb comprehension, spatial reasoning, attribute attachment, and24

counting [2, 9, 21, 31, 34]. Crucially, whether VLMs possess genuine causal reasoning abilities25

remains largely unexplored. For instance, can VLMs distinguish between “The woman holding26

an umbrella is caused by the rain.” and “The rain is caused by the woman holding an umbrella.”?27

Robust causal understanding and reasoning are fundamental to tackling complex real-world decision28

making [10], but this capability in VLMs remains largely unexplored.29

Existing benchmarks that aim to assess reasoning in VLMs often conflate causal reasoning with30

other types of reasoning tasks [1, 35], and many questions can be answered by object recognition or31

activity understanding alone. For example, our analysis of the Visual Question Answering (VQA)32

and Visual Commonsense Reasoning (VCR) benchmarks reveals that only 0.92% of questions in33

the VQA validation set [1] and 35.43% in the VCR validation set [35] involve causal reasoning.34

Our analysis of 100 randomly selected VCR questions found that 46% could be answered correctly35

through object detection or activity understanding alone, without requiring genuine causal reasoning.36



VQA-Causal:
This woman is holding an umbrella is caused by it is raining.
It is raining is caused by this woman is holding an umbrella. 

Object and Activity Understanding Test:
This woman is holding an umbrella.
This woman is running.
It is raining.
It is sunny.

woman

walking holding

umbrellarainning

woman

in black in jacket

next to

the cause
of

Figure 1: Examples from the VQA-Causal test and the Object and Activity Understanding test.
Models tend to focus on low-level visual features such as objects and activities which are represented
by the red and blue nodes in the scene graph on the left, but fail to capture high-level visual features
such as relationships between activities, especially causal relationships in our case, which are
represented by the green nodes in the scene graph.

These issues make it difficult for current benchmarks to independently and effectively evaluate the37

causal reasoning ability of VLMs.38

To address this gap, we introduce VQA-Causal and VCR-Causal, the first benchmarks specifically39

designed to rigorously and independently evaluate VLMs’ causal reasoning abilities. Constructed40

from different sources, VQA [1] and VCR [35], this dual-benchmark setup enables fine-tuning on41

VQA data and both in-domain (VQA-Causal) and out-of-domain (VCR-Causal) evaluation, thereby42

providing a robust assessment of models’ causal reasoning capabilities and their generalizability43

across datasets. VQA-Causal consists of 1,947 instances, and VCR-Causal contains 3,511 instances,44

with each image paired with 12 caption pairs using different causal conjunctions. Each caption pair45

differs only in the causal relationship between events, as illustrated in Figure 1. This counterfactual46

approach ensures a comprehensive evaluation of the model’s understanding of causal relationships,47

avoiding potential biases toward specific causal expressions.48

We evaluate 10 widely-used VLMs, covering a broad spectrum of architectures and objectives,49

including score-based and generative models trained with diverse objectives. The evaluated models50

include CLIP [23], NegCLIP [34], BLIP [11], FLAVA [28] , LLaVA [18] and so on. All models51

perform poorly on both VQA-Causal and VCR-Causal, with nine out of ten achieving no more than52

52% accuracy, which is only marginally above a random guess (50%) and significantly below human53

performance (98%). These findings highlight a fundamental limitation of existing VLMs in causal54

reasoning.55

To better understand whether the poor performance on causal reasoning tasks stems from a lack of56

basic visual understanding, we constructed a controlled evaluation set by modifying the VQA-Causal57

dataset. This modified dataset contains the same 1,947 instances as VQA-Causal, but each image is58

paired with four captions, two of which correctly describe the image. The incorrect captions differ59

by altering the object or modifying the described activity, as illustrated in Figure 1. Our results60

reveal that while VLMs perform well in recognizing objects and activities, they struggle significantly61

with reasoning about causal relationships between activities, further reinforcing our findings from62

VQA-Causal and VCR-Causal.63

We then investigate why VLMs trained on large-scale image-text corpora fail to learn causal rela-64

tionships between events in visual inputs. Focusing on LAION-400M [26] (used by OpenCLIP) and65

MSCOCO [17] (used in FLAVA and NegCLIP) [28, 34], we found that explicit causal expressions66
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are extremely rare. Quantitatively, only 0.08% of LAION-400M and 0.01% of MSCOCO instances67

contain explicit causal expressions. This scarcity explains why VLMs excel at object and activity68

recognition but struggle with causal reasoning.69

To mitigate this limitation, we explored fine-tuning strategies incorporating hard negative cases,70

captions that differ from the correct ones only in the causal order, demonstrating that targeted fine-71

tuning can significantly enhance causal reasoning. Our fine-tuned model, CausalCLIP, achieves72

notable improvements on both in-domain and out-of-domain benchmarks while maintaining strong73

performance on downstream tasks.74

Our contributions are as follows:75

• We introduce VQA-Causal and VCR-Causal, the first benchmarks specifically designed to76

isolate and comprehensively evaluate causal reasoning in VLMs, addressing a critical limitation77

in existing benchmarks. Moreover, this setup allows us to use one dataset (e.g., VQA) as78

an in-domain source for fine-tuning and evaluate the model’s causal reasoning ability on both79

in-domain (VQA-Causal) and out-of-domain (VCR-Causal) benchmarks to assess generalization.80

• Our experimental results reveal that while VLMs excel in object and activity understanding,81

they perform poorly on causal reasoning tasks, with some only marginally surpassing random82

guessing. Additionally, our analysis of four widely used datasets for VLM training, fine-tuning,83

and benchmarking uncovers a severe lack of causal expressions, providing insight into why84

models fail to learn causal relationships between different activities during training process.85

• We explore fine-tuning with hard negative cases and demonstrate that targeted fine-tuning can86

enhance causal reasoning performance. Our approach achieves notable improvements on both87

in-domain and out-of-domain benchmarks while maintaining minimal impact on downstream88

task performance.89

2 Benchmarks for Causal Order Reasoning90

Q: Why is the person holding on to a rope?

Answer Choices:
1. The person is climbing over the boat.
2. The person is trying to tie the rope to something.
3. The rope helps the person get to the other side of the 
train tracks.
4. To keep from being washed away.

Figure 2: The VCR dataset fails to genuinely eval-
uate a model’s causal reasoning ability. In this
example, the model can eliminate choice 3 by rec-
ognizing that there is no train tracks in the image.
It can also rule out captions 2 and 1 by observing
that the person is not tying the rope to or climb
over anything. As a result, the model can arrive
at the correct answer purely through object and
activity understanding, without requiring genuine
causal reasoning.

Existing benchmarks, such as VQA [1],91

VCR [35], and GQA [7], include questions re-92

lated to causal reasoning. However, many in-93

stances within these datasets involve multiple94

types of reasoning, making it difficult to isolate95

and evaluate a model’s specific understanding96

of causal relationships. Additionally, a signifi-97

cant portion of the causal reasoning examples98

fail to truly assess a model’s comprehension of99

causality.100

For example, as illustrated in Figure 2, the101

VCR [35] question “Why is the person hold-102

ing on to a rope?” allows a model to select103

the correct answer by merely identifying the ab-104

sence of specific objects, such as train tracks, in105

the image, thus eliminating an incorrect option.106

Furthermore, by recognizing that the depicted107

activity is not “tying the rope to something,” or108

“climbing over the boat” the model can exclude109

another 2 options. With only basic object and110

activity recognition, the model can reach the111

correct answer without demonstrating genuine112

reasoning about the causal relationships between113

different entities in the visual input.114

In contrast, our proposed datasets place a strong115

emphasis on requiring models to understand the causal relationships between various events within116

the visual input. Our newly developed evaluation corpora adopt the format proposed by Kamath117

et al. [9], featuring an image paired with several captions that vary only in causal order. Specifically,118

VQA-Causal and VCR-Causal are constructed from the widely-used VQA and VCR datasets [1, 35].119

A key contribution of our work is that every instance in our dataset demands models to genuinely120
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reason about the causal relationships between different events in the visual input, rather than taking121

shortcuts by merely identifying objects and activities to arrive at the correct answer.122

2.1 Dataset Construction123

VQA-Causal We constructed the VQA-Causal dataset using the validation set and validation124

annotation files from the VQA dataset [1]. Specifically, we selected all instances from the validation125

set where the questions contained the keyword “Why” to form our VQA-Causal dataset. Each original126

question and answer pair was transformed into two sentences connected by causal conjunctions,127

differing only in the causal order while keeping everything else identical. For example, given an128

image with the original VQA question “Why is this woman holding an umbrella?” and the correct129

answer “It is raining”, we retained the image and generated two captions using the causal conjunction130

is caused by : “This woman is holding an umbrella is caused by it is raining.” and “It is raining is131

caused by this woman is holding an umbrella.”, as illustrated in Figure 1.132

We used 12 causal conjunctions to create 12 groups of caption pairs for each image. These conjunc-133

tions were carefully chosen to capture variations in the syntactic ordering of causes and effects, as such134

variations can potentially influence a model’s performance on causal reasoning tasks. Specifically,135

some conjunctions, such as is due to, is caused by, is a result of, is the effect of, is the consequence of,136

because, and owe to, place the effect before the cause in the sentence structure. In contrast, others137

such as result in, cause, lead to, give rise to, and bring about to, place the cause before the effect.138

Each group contains one caption expressing a correct causal relationship and one expressing an139

incorrect relationship, differing only in the causal direction.140

In total, we extracted 1,947 instances from the VQA dataset, with each image paired with 12 distinct141

caption pairs. This setup offers several advantages: (1) It enables a rigorous evaluation of the142

model’s ability to reason about causal relationships within visual inputs. (2) The use of diverse143

causal conjunctions allows us to assess the model’s understanding and sensitivity to different causal144

expressions, while also mitigating potential biases that may arise from over-reliance on any single145

conjunction during the reasoning process.146

VCR-Causal Similarly, we constructed the VCR-Causal dataset using the validation set and147

annotation files from the VCR dataset. We selected instances containing “Why” in their questions to148

form the VCR-Causal dataset. The VCR-Causal dataset contains a total of 3,511 instances, with each149

image associated with 12 caption pairs.150

We conducted human verification on a randomly sampled subset of both VQA-Causal and VCR-151

Causal. Two human annotators with NLP backgrounds were asked to judge whether captions for152

each instance were (1) semantically coherent given the image context and (2) fluent. Each annotator153

reviewed 50 image-caption pairs from each dataset. Results show that over 96% of the captions154

were rated as both fluent and reasonable, indicating that our generation process yields high-quality,155

interpretable inputs for evaluating causal reasoning.156

2.2 Causal Order Reasoning Test157

Task For the VQA-Causal and VCR-Causal benchmarks, we follow the experimental setup used by158

Kamath et al. [9]. The input consists of an image paired with two caption options, which differ only159

in their causal order, as illustrated in Figure 1. Consistent with Kamath et al. [9], we evaluate the160

models under a zero-shot setting. Our evaluation metric is the proportion of images for which the161

matching score between the image and the correct caption is higher than the matching score between162

the image and the incorrect caption.163

Models We select both score-based and text-generation based models:164

• Score-based models: CLIP ViT-B/32, CLIP ViT-L/14 [23], FLAVA [28], BLIP ITM ViT-B,165

BLIP ITM ViT-L [11], BLIP2 ITM [13], BLIP2 Feature Extractor [13], NegCLIP [34],166

and RobustCLIP [25]. These models produce matching scores for each image-caption167

pair independently. Among them, NegCLIP is fine-tuned with hard negatives samples,168

making it more sensitive to the word order and RobustCLIP is fine-tuned with adversarial169

augmentations to improve the model’s robustness.170
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• Text-generation models: LLaVA1.5 [18], Vicuna1.5 [5, 38]. We include Vicuna to vali-171

date that a language model relying solely on text input cannot effectively solve the causal172

reasoning tasks in our benchmark, thereby demonstrating the benchmark’s reliability. By173

comparing Vicuna with LLaVA, which takes both image and text inputs, we further in-174

vestigate whether LLaVA is capable of leveraging visual information to support causal175

reasoning.176

For LLaVA, we follow the settings in Kamath et al. [9] and reformulate the task by converting the177

two captions into two questions. For example:178

1. “This woman is holding an umbrella is caused by it is raining. Does it reflect the proper causal179

relationship?”180

2. “It is raining is caused by this woman is holding an umbrella. Does it reflect the proper causal181

relationship?”182

We measure the probabilities of models answering “yes” or “no” to these questions. Correctness is183

determined based on one of the following criteria:184

1. The model assigns the highest “yes” probability to the correct option.185

2. If both answers are “no”, the lowest “no” probability is assigned to the correct option.186

2.3 Benchmarking Results187

Table 1 present the performance of nine score-based models and two generation-based models on our188

VQA-Causal and VCR-Causal benchmarks, respectively. Overall, all models perform near random189

and far below human estimate, revealing a clear lack of robust causal reasoning ability in current190

VLMs. Detailed results for each model across the twelve causal conjunctions are provided in Table ??191

and Table ??.192

Model VQA-Causal VCR-Causal
Score-Based Models

BLIP ITM Base 48.94 50.66
BLIP ITM Large 48.68 47.99
BLIP2 ITM 50.76 49.95
BLIP2 FE 51.51 50.76
CLIP ViT B/32 51.62 50.35
CLIP ViT L/14 50.74 51.66
NegCLIP 50.89 51.30
RobustCLIP 50.66 53.68
FLAVA 48.52 49.99

Text-Generation Models

Vicuna 1.5 50.86 56.03
LLaVA 1.5 53.19 52.12

Random 50.00 50.00
Human Estimate 99.17 98.17

Table 1: Accuracy on the causal-order reasoning tests of ten VLMs for the VQA-Causal and VCR-
Causal benchmarks. All models perform only marginally above random guessing and remain
significantly below human-level performance. “BLIP2 FE” denotes the BLIP2 feature extractor
model. Detailed results for each of the twelve causal conjunctions are provided in Table ?? and
Table ?? in Appendix.

Causal Conjunctions Performance Across both the VQA-Causal and VCR-Causal benchmarks, the193

CLIP model family, including CLIP ViT B/32, CLIP ViT L/14, NegCLIP and RobustCLIP [23, 25, 34],194

demonstrates relatively stronger performance on conjunctions such as is caused by, is due to, is the195

consequence of, because, owe to, and is the effect of. These conjunctions share a common syntactic196

structure in which the result precedes the cause. In contrast, these models perform notably worse197

on conjunctions such as result in, cause, lead to, give rise to, and bring about to, where the cause198
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appears before the result. However, FLAVA [28] exhibits the opposite trend. On the VQA-Causal199

benchmark, it performs relatively poorly on conjunctions where the result comes first, but shows200

stronger performance on those where the cause precedes the result. These observations suggest that201

the syntactic ordering of cause and effect within a sentence plays a critical role in model performance,202

and that certain models may be sensitive to specific linguistic patterns of causal expression.203

Impact of Prior Fine-Tuning Strategies Fine-tuning for caption order improves a model’s sensi-204

tivity to word order, thereby improving its performance on certain causal order tests. For instance,205

NegCLIP outperforms CLIP models when tested on conjunctions like is due to and is caused by206

in most cases, demonstrating substantial improvements. However, for conjunctions like result in,207

cause, and lead to, NegCLIP underperforms compared to CLIP models. This suggests that fine-tuning208

for word order amplifies the model’s strengths for specific conjunctions but also exacerbates its209

weaknesses for others, particularly those it initially struggled with. Moreover, adversarial robustness210

fine-tuning, as implemented in RobustCLIP, does not lead to significant improvements in causal order211

reasoning performance.212

3 Activity and Object Understanding Test213

To further investigate whether the poor causal reasoning performance of VLMs arises from a lack214

of understanding of entities in visual inputs, we conducted the Activity and Object Understanding215

Test. The results show that VLMs exhibit strong capabilities in recognizing objects and activities216

within images. This suggests that VLMs tend to focus on learning low-level visual features such217

as objects and activities recognition but fail to capture high-level features like causal relationships218

between activities.219

Data Construction We extended the VQA-Causal dataset to construct this evaluation. For each220

original instance, we generated four captions: two correct captions that preserve the original causal221

event but decompose it into independent factual statements, and two incorrect captions, which were222

carefully crafted by modifying the object or the activity from the correct captions to make them223

factually inaccurate. This setup allows us to isolate the model’s understanding of objects and activities224

from its ability to reason about causal relationships. An illustration is provided in Figure 1.225

Object and Activity Understanding Test We conducted experiments with all score-based VLMs226

mentioned in Section 2.2 to assess their understanding of objects and activities within the input227

images. The input to each model consisted of an image paired with four captions described in the228

last paragraph, as illustrated in Figure 1. We considered the model’s response correct if the two229

captions with the highest scores were the correct ones. This task setup requires models to accurately230

understand both the objects and activities depicted in the input image to achieve a correct response.231

Results and Analysis As shown in Table 2, all models achieve strong performance on the object232

and activity understanding task. In Figure 1, the red nodes represent objects, the blue nodes indicate233

the attributes of these objects, and the green nodes depict the relationships between different objects234

and activities. VLMs tend to focus on learning low-level features which is the red and blue node235

in the scene graph but fail to capture high-level features which is the green node representing the236

relationships between objects and activities. This limitation in capturing structured visual relation-237

ships may explain why VLMs perform close to random on high-level reasoning tasks, including238

causal reasoning, as well as on other complex reasoning tasks like spatial reasoning [9] and verb239

understanding [31], which have been highlighted in previous studies.240

4 Why Struggling with Causal Reasoning? A Data-Level Exploration241

All evaluated VLMs were pretrained and fine-tuned on large-scale image-text corpora and have shown242

strong performance on traditional benchmarks. To explore why they fail to learn causal relationships,243

we investigate this limitation from a data-level perspective.244

We selected four widely-used datasets for VLM pretraining and benchmark: LAION-400M [26],245

which was used to train OpenCLIP [4, 8, 23, 27], and MSCOCO [17], which was used in FLAVA’s246

training and NegCLIP’s fine-tuning. For benchmark datasets, we analyzed VQA and VCR [1, 35],247

two standard datasets commonly used to evaluate the reasoning capabilities of VLMs.248
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Model VQA-Causal O&A Test
BLIP ITM Base 48.94 94.61
BLIP ITM Large 48.68 95.53
BLIP2 ITM 50.76 92.24
BLIP2 FE 51.51 83.98
CLIP ViT B/32 51.62 76.53
CLIP ViT L/14 50.74 85.31
NegCLIP 50.89 87.62
RobustCLIP 50.66 83.26
FLAVA 48.52 71.85

Table 2: Accuracy on the Object and Activity Understanding Test (O&A Test) versus the Causal Order
Reasoning Test (VQA-Causal). All models exhibit strong performance on the O&A Test, indicating
that while VLMs effectively recognize objects and activities, they struggle with causal reasoning task.
“BLIP2 FE” denotes the BLIP2 feature extractor model.

Pre-Training Datasets We randomly sampled about 5,200,000 captions from the LAION-400M249

dataset to examine the prevalence of causal expressions. Specifically, we looked for captions250

containing any of the following causal-related terms: because, cause, lead to, reason, is the reason251

why, is the effect of, owe to, give rise to, bring about to, result in. Among the sampled captions, only252

4,026 captions (∼0.08%) included causal expressions. Similarly, in the MSCOCO dataset, where we253

analyzed 415,795 captions, only 53 captions (∼0.01%) contained causal relationships.254

These findings reveal that causal relationships are exceedingly rare in the training datasets, with255

less than 0.1% of captions involving causal reasoning, making it difficult for VLMs to learn and256

generalize causal understanding from visual inputs.257

Benchmark Datasets We then examined the causal reasoning content of two commonly used VLM258

benchmarks: VQA and VCR [1, 35]. In the VQA validation set, only 1,962 out of 214,354 questions259

(∼0.92%) involved causal reasoning related to visual inputs; In the VCR validation set, 9,401 out of260

26,534 questions (∼35.43%) involved causal reasoning.261

To further analyze the VCR dataset, we randomly selected 100 questions from the subset involving262

causal reasoning and conducted a detailed human annotation. We found that 46% of these questions263

could be answered correctly by relying solely on object detection or activity understanding without264

requiring any genuine understanding of causal relationships. As shown in Figure 2, a model could265

eliminate one incorrect option by recognizing the absence of objects such as “train tracks” in the266

image. Furthermore, the model could identify the actions of the person in the image (e.g., not tying267

a rope to something or climbing over the boat) to select the correct answer. In such cases, models268

rely on object detection and activity recognition to arrive at the correct answer without reasoning269

about the causal relationships between events in the image and thus have good performance on such270

benchmarks.271

5 Data-Level Improvement272

We extract a subset of data from the VQA [1] training set and, for each instance, generate 10 caption273

pairs, each consisting of one correct caption reflecting a valid causal relationship and one incorrect274

caption serving as a hard negative example. These examples are used to fine-tune the models.275

This fine-tuning strategy significantly improves the models’ causal reasoning performance on both276

in-domain and out-of-domain datasets, while preserving downstream performance.277

Dataset Following the VQA-Causal construction methodology, we extracted all “why” questions278

from the VQA training set along with their corresponding correct answers, resulting in a total of 4,891279

instances. For each instance, we constructed 10 caption pairs using ten different causal conjunctions:280

is due to, is caused by, is a result of, is the effect of, because, result in, cause, lead to, give rise to,281

and bring about to. Each pair consists of two captions that differ only in the direction of the causal282

relationship, with all other elements remaining identical.283

Finetuning We adopt the fine-tuning setup from NegCLIP [34] and extend CLIP’s [23] contrastive284

learning objective to better support causal reasoning. For each image-caption pair, we introduce hard285
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VQA-Causal (In-Domain)
Model Avg CW1 CW2 CW3 CW4 CW5 CW6 CW7 CW8 CW9 CW10 CW11 CW12

NegCLIP 50.89 62.51 62.25 64.77 67.33 66.97 59.94 69.75 28.45 39.39 33.85 29.33 26.14
CausalCLIP 61.46 70.57 71.70 69.54 73.81 72.16 61.43 56.45 55.68 48.84 57.22 53.72 46.38

VCR-Causal (Zero-Shot)
Model Avg CW1 CW2 CW3 CW4 CW5 CW6 CW7 CW8 CW9 CW10 CW11 CW12

NegCLIP 51.30 52.21 53.89 54.80 55.23 57.11 50.04 50.87 47.22 50.19 51.32 45.43 47.34
CausalCLIP 57.37 59.10 62.49 61.29 63.69 62.92 54.97 50.16 58.96 53.00 58.33 51.38 52.15

Table 3: CausalCLIP demonstrates strong generalization on both VQA-Causal (in-domain) and VCR-
Causal (zero-shot) benchmarks. CW1–CW12 correspond to the following twelve causal conjunctions:
is due to, is caused by, is a result of, is the effect of, is the consequence of, because, owe to, result in,
cause, lead to, give rise to, and bring about to.

COCO Flickr30K
Model M1 M2 M3 M4 M5 M6 M7 M8 M1 M2 M3 M4 M5 M6 M7 M8

OpenCLIP 0.30 0.56 0.50 0.75 0.30 0.56 0.10 0.34 0.59 0.84 0.79 0.95 0.59 0.84 0.16 0.57
NegCLIP 0.41 0.68 0.56 0.80 0.41 0.68 0.11 0.39 0.67 0.89 0.79 0.95 0.67 0.89 0.16 0.62
CausalCLIP 0.38 0.64 0.54 0.78 0.38 0.64 0.11 0.38 0.64 0.87 0.78 0.94 0.64 0.87 0.16 0.60

Table 4: CausalCLIP exhibits minimal performance loss compared to NegCLIP and even outper-
forms OpenCLIP on retrieval tasks across both MSCOCO and Flickr30K datasets. Metrics M1–M8
correspond to: ImagePrec@1, ImagePrec@5, TextPrec@1, TextPrec@5, ImageRecall@1, ImageRe-
call@5, TextRecall@1, and TextRecall@5, respectively.

negative captions, including (1) the incorrect causal order caption for the same image, and (2) three286

randomly sampled negative captions from other instances in the dataset. Additionally, we randomly287

sample one alternative image per instance to serve as a negative image, helping ensure generalization288

and reduce overfitting.289

We conduct fine-tuning experiments using NegCLIP [34], a ViT-B/32 variant of CLIP. For each batch290

of N images IN , we concatenate the N corresponding correct captions and N incorrect captions to291

form a 2N caption batch. We then compute a similarity matrix between all images and all captions.292

Following Yuksekgonul et al. [34], we obtain both row-wise and column-wise cross-entropy losses,293

while ignoring the loss terms from negative captions in the column-wise direction.294

Baseline Since we fine-tune on the NegCLIP model, its original performance on the causal295

reasoning benchmarks serves as our baseline. It is worth noting that our fine-tuning only uses 10296

causal conjunctions and is performed exclusively on data from the VQA training set. However,297

we evaluate the model on all 12 causal conjunctions using both VQA-Causal (as the in-domain298

benchmark) and VCR-Causal (as the out-of-domain benchmark). Notably, VCR-Causal serves as a299

zero-shot test set. This setup allows us to evaluate the model’s generalization in two ways: (1) to300

unseen causal conjunctions not present during fine-tuning, and (2) to out-of-domain dataset, thereby301

providing a more comprehensive assessment of its causal reasoning abilities.302

Evaluation As shown in Table 3, our fine-tuned model CausalCLIP achieves strong causal reasoning303

performance on both in-domain and out-of-domain benchmarks. Furthermore, Table 4 shows that this304

fine-tuning strategy preserves downstream performance and even outperforms OpenCLIP on retrieval305

tasks over MSCOCO [17] and Flickr30k [33], following the setup of Yuksekgonul et al. [34].306

6 Related Work307

VLMs have excelled across a wide range of multimodal tasks, including object detection [15,308

36], image-text retrieval [11, 13, 23] , visual question answering [1, 14, 18] and commonsense309

reasoning [35]. However, many recent benchmarks have been proposed to test specific visual310

understanding capabilities of VLMs and revealed that VLMs perform poorly on tasks requiring fine-311

grained reasoning skills, such as counting [20, 21], spatial reasoning [3, 9, 30], verb understanding [6,312

31], attribute composition[29, 34, 37]. These suggest that models fail to possess high-level visual313

understanding beyond low-level recognition.314
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Among these reasoning abilities, causal reasoning is one of the most foundamental abilities, as it315

allows models to plan interventions and infer underlying mechanisms crucial for complex real-world316

decision making tasks [10], but remains largely underexplored. Many existing benchmarks for317

evaluating reasoning ability often focus on video-language models [12, 22, 24, 32] and frequently318

conflate causal reasoning with other forms of reasoning [1, 7, 19, 35]. Moreover, Li et al. [16]319

introduced MuCR by generating images conditioned on given causes and designing evaluation tasks320

such as selecting the correct effect from multiple candidates. However, many of these benchmarks321

can still be solved through shortcut strategies—for instance, by detecting salient objects or identifying322

specific activities—as illustrated in Figure 2. This makes it difficult to determine whether models323

truly capture the causal order between causes and effects.324

Our work addresses this critical gap by introducing two dedicated benchmarks—VQA-Causal and325

VCR-Causal—that explicitly evaluate whether VLMs can distinguish between alternative causal326

interpretations of the same visual scene, thus enabling rigorous causal reasoning evaluation in327

multimodal models.328

7 Conclusion329

We introduce VQA-Causal and VCR-Causal, the first benchmarks designed to comprehensively330

evaluate VLMs’ causal reasoning abilities across 12 causal conjunctions. Despite strong performance331

in object and activity recognition, all ten evaluated models perform poorly on causal reasoning332

tasks—nine achieving no more than 53% accuracy, barely above chance. To understand this limitation,333

we analyze four commonly used datasets including LAION-400M, MSCOCO, VQA, and VCR, and334

find that explicit causal expressions are exceedingly rare in LAION-400M and MSCOCO datasets,335

with fewer than 0.1% of instances involving causal relationships. Moreover, only 0.92% of VQA and336

35.43% of VCR questions require causal reasoning, and 46% of sampled VCR questions can be solved337

using shortcuts without genuine causal reasoning. Finally, we extract 4,891 causality-related instances338

from the VQA training set and construct contrastive training data by pairing correct captions with339

hard negative examples that differ only in causal direction. Fine-tuning with this data significantly340

improves causal reasoning performance on both in-domain and out-of-domain benchmarks, while341

maintaining downstream task performance.342

8 Limitations343

Our work uncovers the weaknesses of current VLMs on causal reasoning tasks. By analyzing344

both their training data and benchmark datasets, we proposed a data-level fine-tuning strategy that345

significantly enhances causal reasoning ability with minimal impact on downstream performance.346

However, this approach mainly focuns on data-level and does not address the underlying model347

architecture. A promising direction for future research is to improve causal and fine-grained reasoning348

at the model architectural level. For example, researchers could adjust attention weights to guide the349

model foucs more on fine-grained visual features or implement broadly generalizable modifications350

to specific VLM components to improve both causal reasoning ability and fine-grained visual351

understanding. Finally, although our study focuses on vision–language models, causal reasoning and352

fine-grained visual reasoning in other multimodal settings, such as video–language models, remains353

an important direction for further investigation.354
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