
C2M 3: Cycle-Consistent Multi-Model Merging

Donato Crisostomi
Sapienza University of Rome

crisostomi@di.uniroma1.it

Marco Fumero
Institute of Science and Technology Austria

fumero@di.uniroma1.it

Daniele Baieri
Sapienza University of Rome
baieri@di.uniroma1.it

Florian Bernard
University of Bonn
fb@uni-bonn.de

Emanuele Rodolà
Sapienza University of Rome
rodola@di.uniroma1.it

Abstract

In this paper, we present a novel data-free method for merging neural networks
in weight space. Differently from most existing works, our method optimizes for
the permutations of network neurons globally across all layers. This allows us to
enforce cycle consistency of the permutations when merging n ≥ 3 models, allow-
ing circular compositions of permutations to be computed without accumulating
error along the path. We qualitatively and quantitatively motivate the need for
such a constraint, showing its benefits when merging sets of models in scenarios
spanning varying architectures and datasets. We finally show that, when coupled
with activation renormalization, our approach yields the best results in the task.

1 Introduction

In the early days of deep learning, modes — parameters corresponding to local minima of the loss
landscape — were considered to be isolated. Being depicted as points at the bottom of convex
valleys, they were thought to be separated by high-energy barriers that made the transition between
them impossible. However, a series of recent works have gradually challenged this perspective, first
showing that modes can be actually connected by paths of low energy [10, 14], and later that, in
some cases, these paths may even be linear [13]. While linear paths in [13] could only be obtained
after training the equally-initialized models for a few epochs, follow-up work [11] speculated that the
isolation of modes is a result of the permutation symmetries of the neurons. In fact, given a layer
Wℓ of a fixed network A, a large number of functionally-equivalent networks can be obtained by
permuting the neurons of Wℓ by some permutation P and then anti-permuting the columns of the
subsequent layer Wℓ+1. This intuition led to the conjecture that all modes lie in the same convex
region of the parameter space, denoted as basin, when taking into account all possible permutations
of the neurons of a network.This motivated a series of works trying to align different modes by
optimizing for the neuron permutations [1, 21, 29, 36]. This has strong implications for model
merging, where different models, possibly trained with different initializations [1, 29, 34] or on
different datasets and tasks [1, 36], are aggregated into a single one. In this work, we focus on the
data-free setting, aligning networks based on some similarity function that is computed directly
over the neurons themselves. To this end, we follow Ainsworth et al. [1] and formalize the problem
of model merging as an assignment problem, proposing a new algorithm that is competitive with
previous approaches while allowing global constraints to be enforced.

The problem We investigate the problem of merging n > 2 models, noting that existing pairwise
approaches such as [1] do not guarantee cycle consistency of the permutations (see Figure 1). As
shown in Figure 2b and Figure 2a, going from a model A to a model C through a model B, and
then mapping back to A, results in a different model than the starting one — specifically, the target

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

PBA

PCB

PAC

A

BC

(PA)⊤

(PB)⊤

(PC)⊤

PA

PB

PC

A

BC

U

Figure 1: Cycle-Consistent Multi-Model Merging over three models A,B,C. Left: existing methods
seek pairwise permutations that map between models; note that PAC ◦ PCB ◦ PBA ̸= I in general,
unless this is explicitly enforced. Right: our method computes permutations PA, PB , PC from each
model to a universe U , such that a pairwise permutation PBA mapping A to B can be obtained as
PBA = PB(PA)⊤. This way, cycle-consistency is enforced by design and PAC ◦PCB ◦PBA = I .

model ends up in a completely different basin. More formally, for these methods, the composition of
permutations along any cycle does not result in the identity map. This also holds for the n = 2 case,
where the permutations optimized to align model A to model B are not guaranteed to be the inverse
of those mapping B to A; this makes the alignment pipeline brittle, as it depends on an arbitrary
choice of a mapping direction.

Contribution To address this issue, we introduce a novel alignment algorithm that works for the
general case with n ≥ 2 models, while guaranteeing cycle consistency. The key idea is to factorize
each permutation mapping B to A as PAB = PA(PB)

⊤, where (PB)
⊤ maps B to a common space

denoted as universe, and PA maps from the universe back to A. This formulation ensures cycle
consistency by design, as any cyclic composition of such permutations equals the identity.

Our numerical implementation is based on the Frank-Wolfe algorithm [12], and optimizes for the
permutations of all the layers simultaneously at each step, naturally taking into account the inter-layer
dependencies in the process. This desirable property is in contrast with other approaches such
as Ainsworth et al. [1], which seek the optimal permutations for each layer separately, and thus can
not ensure coherence across the entire network.

We run an extensive comparison of our approach with existing ones both in the standard pairwise
setting and in merging n > 2 models, spanning a broad set of architectures and datasets. We then
quantitatively measure the influence of architectural width, confirming the existing empirical evidence
on its role in linear mode connectivity. Further, we assess how the performance of the merged model
depends on the number of models to aggregate, and show that the decay is graceful. We finally
analyze the basins defined by the models when mapped onto the universe, and investigate when and
to what extent these are linearly connected.

Wrapping up, our contributions are four-fold:

• We propose a new data-free weight matching algorithm based on the Frank-Wolfe algo-
rithm [12] that globally optimizes for the permutations of all the layers simultaneously;

• We generalize it to the case of n ≥ 2 models, enforcing guaranteed cycle-consistency of the
permutations by employing a universal space as a bridge;

• We leverage the multi-model matching procedure for model merging, using the universal
space as aggregation point;

• We conduct an extensive analysis showing how the merge is affected by the number of
models, their width and architecture, as well as quantitatively measuring the linear mode
connectivity in the universe basin.

Finally, to foster reproducible research in the field, we release a modular and reusable codebase
containing implementations of our approach and the considered baselines.1

1https://github.com/crisostomi/cycle-consistent-model-merging

2

https://github.com/crisostomi/cycle-consistent-model-merging

0.0 0.5 1.0
λ

0.4

0.6

0.8

Accuracy

0.0 0.5 1.0
λ

1

2

3

Loss

Git Re-Basin C2M3

(a) Loss and accuracy curves for a model A and the
model mapped back after a cyclic permutation. Mod-
els cyclically permuted with Git Re-Basin end up
in a different basin than the one they started from.

Permutation Git Re-Basin C2M3

d (A,PA→B→C→A(A)) 41.07 0.0
d (B,PB→C→A→B(B)) 41.18 0.0
d (C,PC→A→B→C(C)) 41.19 0.0

(b) Accumulated error obtained when cyclically
permuting models A, B and C as in Figure 1.
PA→B→C→A refers to the composition PAC ◦PCB ◦
PBA and d(·) is the ℓ2 loss.

Figure 2: Existing methods accumulate error when cyclically mapping a model through a series of
permutations, while C2M3 correctly maps the model back to the starting point.

2 Background

Mode connectivity As introduced in Section 1, mode connectivity studies the geometry of the loss
landscape with a particular interest on the regions corresponding to local minima. Following Frankle
et al. [13], we assess the connectivity for two given modes by computing their loss barrier:

Definition 2.1. (Loss barrier) Given two points ΘA,ΘB and a loss function L such that L (ΘA) ≈
L (ΘB), the loss barrier is defined as

max
λ∈[0,1]

L ((1− λ)ΘA + λΘB)−
1

2
(L (ΘA) + L (ΘB)) .

Intuitively, this quantity measures the extent of the loss increase when linearly moving from the basin
of a mode to the other. When two modes share the same basin, the loss does not increase at all and
results in a barrier close to zero.

Weight-space symmetries Following the rich line of works on mode connectivity and model
merging [1, 11, 13, 29, 36], we start from the essential insight of neuron permutation invariance in
neural networks. Let us focus on the simple case of a Multi-Layer Perceptrons (MLP), where we can
write the computation for an intermediate layer Wℓ ∈ Rdℓ+1×dℓ as zℓ+1 = σ (Wℓzℓ + bℓ), with zℓ
being the input at the ℓ-layer and σ denoting an element-wise activation function. For the sake of a
clear exposure, we consider the bias bℓ = 0 in the following. If apply a permutation matrix P ∈ P to
the rows of the Wℓ matrix (i.e. the neurons), we obtain z′ℓ+1 = σ (PWℓzℓ). Being an element-wise
operator, σ commutes with P and can be neglected wlog. Since z′ℓ+1 ̸= zℓ when P ̸= I , we can still
nullify the effect of the permutation by anti-permuting the columns of the subsequent layer for the
inverse permutation of P , i.e. P⊤. In fact,

z′ℓ+2 = Wℓ+1P
⊤z′ℓ+1 = Wℓ+1 P

⊤P︸ ︷︷ ︸
I

Wℓzℓ = zℓ+2

making pairs of models that only differ by a permutation of the neurons de facto functionally
equivalent. Given the enormous number of such permutations, it stands to reason that the resulting
weight-space symmetries act as a major factor in the isolation of modes.

Solving for the permutation Given the above considerations, Entezari et al. [11] speculated that
all models end up in a single basin after having accounted for permutation symmetries. Assuming
this to hold at least in practical cases, Ainsworth et al. [1] proposed a simple algorithm to find the
permutations matching two models by maximizing a local version of the sum of bi-linear problems:

arg max
{Pℓ∈P}

L∑
ℓ=1

⟨WA
ℓ , PℓW

B
ℓ PT

ℓ−1⟩ , (1)

3

with P0 := I . Noting that Equation (1) is NP-hard, Ainsworth et al. [1] tackle this problem by
considering one layer at a time, relaxing the bi-linear problems to a set of linear ones that can be
efficiently solved with any Linear Assignment Problem (LAP) solver, e.g., the Hungarian algorithm.
This layer-wise linearization of the objective function, however, corresponds to high variance in
the results that depend on the random order of the layers during optimization. See Table 7 for an
empirical evaluation confirming this issue.

Renormalizing the activations Notwithstanding the quality of the obtained matching, the loss
barrier can still be high due to the mismatch in the statistics of the activations. In fact, REPAIR [21]
empirically shows the presence of a decay in the variance of the activations after the interpolation.
They further show that the loss can be drastically reduced by “repairing” the mean and variance of the
activations, forcing the statistics of the merged network to interpolate those of the endpoint networks.
We refer the reader to Appendix A.4 for an in-depth explanation.

3 Approach

We now propose a novel algorithm to tackle the weight matching problem, first introducing its
formulation in the pairwise case and then generalizing it to match and merge a larger number n of
models in a cycle-consistent fashion.

Pairwise matching As we have seen, the NP-hardness of Equation (1) demands for a relaxation of
the problem to be tackled. Differently from Ainsworth et al. [1], we opt to maintain the objective
global with respect to the layers and instead iteratively optimize its linear approximation via the the
Frank-Wolfe algorithm [12]. This procedure requires the computation of the gradient of Equation (1)
with respect to each permutation Pi, thus we have to account for two contributions for each ∇Pi

,
i.e., its gradient from permuting the rows of Wi and the one from permuting the columns of Wi+1:

∇Pi
f = WA

i Pi−1(W
B
i)

⊤︸ ︷︷ ︸
from permuting rows

+(WA
i+1)

⊤
Pi+1W

B
i+1︸ ︷︷ ︸

from permuting columns

. (2)

The Frank-Wolfe algorithm then uses the gradient to iteratively update the solution by linearly
interpolating between the current solution and the projected gradient. We refer to Lacoste-Julien [24]
for theoretical guarantees of convergence. The full algorithm is reported in Appendix A.2.

Generalization to n models In order to generalize to n models, we jointly consider all pairwise
problems

arg max
Ppq

i ∈P

n∑
p=1

n∑
q=1
q ̸=p

L∑
i=1

⟨W p
i , P

pq
i W q

i (P
pq
i−1)

⊤⟩, (3)

where the superscript pq indicates that the permutations maps model q to model p, with P pq
0 := I . In

order to ensure cycle consistency by construction we replace the quadratic polynomial by a fourth-
order polynomial. Dropping the layer subscript for the sake of clear exposure, we replace the pairwise
matchings P pq in the objective of Equation (3) by factorizing the permutations into object-to-universe
matchings P pq = P p ◦ (P q)

⊤ so that each model q can be mapped back and forth to a common
universe u with a permutation and its transpose, allowing to map model q to model p by composition
of (P q)

⊤ (q → u) and P p (u→ p). This way, the objective of Equation (3) becomes
n∑

p ̸=q

L∑
i=1

⟨W p
i , P

p
i (P

q
i)

⊤
W q

i (P
p
i−1(P

q
i−1)

⊤
)⊤⟩ =

n∑
p ̸=q

L∑
i=1

⟨(P p
i)

⊤W p
i P

p
i−1, (P

q
i)

⊤W q
i P

q
i−1⟩. (4)

As stated by Theorem 3.1, the permutations we obtain using Equation (4) are cycle consistent. We
refer the reader to Bernard et al. [5] for the proof and a complete discussion of the subject.
Theorem 3.1. Given a set of n models p0, . . . , pn and object-to-universe permutations P pj

i computed
via Equation (4), the pairwise correspondences defined by P plpj

i = P pl

i ◦
(
P

pj

i

)T
are cycle-consistent,

i.e.,
P

p1pj

i ◦ · · · ◦ P p3p2

i ◦ P p2p1

i = I

for all layer indices i, 2 ≤ j ≤ n.

4

Similarly to the pairwise case, the approach requires computing the gradients for the linearization.
This time, however, each ∇PA

i
f has four different contributions: one from permuting the rows of its

corresponding layer, one from anti-permuting the columns of the subsequent layer, and two other
contributions that arise from the symmetric case where A becomes B. In detail,

∇PA
ℓ

= ∇rows
PA

ℓ
+∇cols

PA
ℓ
+∇rows,⇆

PA
ℓ

+∇cols,⇆
PA

ℓ

(5)

where

∇rows
PA

ℓ
= WA

ℓ PA
ℓ−1(P

B
ℓ−1)

⊤(WB
ℓ)⊤PB

ℓ ∇cols
PA

ℓ
= (WA

ℓ+1)
⊤PA

ℓ+1 (P
B
ℓ+1)

⊤ WB
ℓ+1 P

B
ℓ

∇rows,⇆
PA

ℓ

= WB
ℓ PB

ℓ−1(P
A
ℓ−1)

⊤(WA
ℓ)⊤PA

ℓ ∇cols,⇆
PA

ℓ

= (WB
ℓ+1)

⊤PB
ℓ+1 (P

A
ℓ+1)

⊤ WA
ℓ+1 P

A
ℓ

See Algorithm 1 for a complete description of the procedure.

Algorithm 1 Frank-Wolfe for n-Model Matching

Require: Weights of n models MN
i=1

tolerance ϵ > 0
Ensure: Approximate solution to Equation (4)

1: Pk ← identity matrices
2: repeat
3: for (p, q) ∈ [1, . . . , n]× [1, . . . , n] do
4: for i = 1 to L do
5: P p,k

i , P p,k
i−1 ← permutations over rows and columns of W p

i respectively
6: P q,k

i , P q,k
i−1 ← permutation over rows and columns of W q

i respectively
7: ∇Pp,k

i
f ± (W p

ℓ+1)
⊤P p

ℓ+1 (P
q
ℓ+1)

⊤ W q
ℓ+1 P

q
ℓ

8: ∇Pp,k
i−1

f ± (W p
ℓ+1)

⊤P p
ℓ+1 (P

q
ℓ+1)

⊤ W q
ℓ+1 P

q
ℓ

9: end for
10: end for
11: for P k

i ∈ Pk do
12: Πi ← LAP(∇PK

i
f)

13: end for
14: α← line search(f,Pk,Π)
15: for P k

i ∈ Pk do
16: P k+1

i = (1− α)P k
i + α Πi

17: end for
18: until ∥f(A,B,Pk+1)− f(A,B,Pk)∥ < ϵ
19: return Pk

Merging in the universe space Looking at the loss landscape resulting from interpolating models
in Figure 3, we see that the loss curves are much lower when the models are interpolated in the
universe space. In fact, the originally disconnected modes end up in the same basin when mapped onto
the universe, making it suitable to average the models. Therefore, our merging method aggregates the
models by taking the mean of the weights in the universe space, as detailed in Algorithm 2.

Algorithm 2 C2M3: Cycle-Consistent Multi Model Merging

Require: N models A1, . . . , AN with L layers
Ensure: merged model M

1: {P1, . . . , PN} ← Frank-Wolfe(M1, . . . ,MN)
2: for i = 1 to N do
3: M uni

i ← map to universe(Ai, Pi)
4: end for
5: M uni ← 1

N

∑N
i=1 M

uni
i

6: return M uni

5

ΘA

ΘB

ΘC

π(ΘA)

π(ΘB)

π(ΘC)

C2M 3
C2M 3

(a) ResNet20 over CIFAR100.

ΘA

ΘB

ΘC

π(ΘA)

π(ΘB)

π(ΘC)

C2M 3
C2M 3

(b) MLP over MNIST.

Figure 3: 2D projection of the loss landscape when matching three modes ΘA,ΘB ,ΘC ; the models
π(ΘA), π(ΘB), π(ΘC) are their resulting images in the universe, and lie in the same basin. Red
zones indicate low-loss regions (typically basins), while blue zones indicate high-loss ones.

4 Experiments

We now evaluate the quality of our proposed framework both in matching models and in the subse-
quent merging operation. Approaches suffixed with a † indicate the application of REPAIR.

2 4 6 8
Seed

0.72

0.74

0.76

0.78

0.80

A
cc

u
ra

cy

Git Re-Basin - train

Git Re-Basin - test

Frank-Wolfe - train

Frank-Wolfe - test

Figure 4: Accuracy of the interpolated
model using Git Re-Basin [1] over
different optimization seeds.

Matching and merging two models As described in
Section 3, our formalization can readily be used to match
n = 2 models. In this case, the energy is given by Equa-
tion (1) and the permutations are not factorized. We com-
pare the performance of our approach against the Git
Re-Basin algorithm [1] and the naive baseline that ag-
gregates the models by taking an unweighted mean on
the original model weights without applying any permu-
tation. In this setting, our method performs on par with
the state-of-the-art. Differently from the latter, however,
we do not depend on the random choice of layers, as the
optimization is performed over all layers simultaneously.
As presented in Figure 4, this results in Git Re-Basin
exhibiting variations of up to 10% in accuracy depending
on the optimization seed, while our method shows zero
variance. We refer the reader to Appendix B.1 for a thor-
ough evaluation of C2M3 over a set of different datasets
and architectures. In summary, our approach is able to match two models with the same accuracy as
the state-of-the-art, while being deterministic and independent of the random choice of layers.

Matching and merging n models We now evaluate C2M3 in matching and merging n models.
The matching is given by the factorized permutations obtained by Algorithm 1. We compare against
two baselines: the simple approach of naively averaging the weights without any matching, and
the MergeMany approach proposed by Ainsworth et al. [1]. The latter is reported in Appendix A
for convenience. As reported in Table 1, C2M3 obtains far superior results in terms of accuracy
and loss in all considered settings, with accuracy gains as high as +20%. Moreover, our approach
natively yields cycle-consistent permutations: Figure 2b shows that Git Re-Basin [1] accumulates
significant error when computing the distance between the source model and the model obtained
by applying a cyclic series of permutations, while our approach is able to perfectly recover the
source model. This is further confirmed in Figure 2a, where we show the loss and accuracy curves
when interpolating between a model A and the model mapped back after a cyclic permutation.

6

Matcher

EMNIST CIFAR10 CIFAR100

Accuracy (↑) Loss (↓) Accuracy (↑) Loss (↓) Accuracy (↑) Loss (↓)
train test train test train test train test train test train test

Naive

M
L
P

0.03 0.03 3.28 3.28

R
e
s
N
e
t

2
×

0.10 0.10 3.07 3.07

R
e
s
N
e
t

4
×

0.01 0.01 5.30 5.30
MergeMany 0.88 0.86 1.11 1.13 0.38 0.37 2.08 2.06 0.31 0.28 3.01 2.76
MergeMany† 0.88 0.86 1.11 1.13 0.50 0.50 2.34 2.30 0.24 0.22 3.31 3.12

C2M3 0.89 0.87 1.07 1.10 0.42 0.40 2.11 2.05 0.34 0.30 2.94 2.63
C2M3† 0.89 0.87 1.07 1.10 0.72 0.69 1.26 1.12 0.53 0.46 2.13 1.67
Naive

R
e
s
N
e
t

2
×

0.04 0.04 4.04 4.04

V
G
G
1
6

0.10 0.10 2.31 2.31

R
e
s
N
e
t

1
6
×

0.01 0.01 6.22 6.22
MergeMany 0.03 0.03 7.17 7.18 0.10 0.10 2.36 2.36 0.45 0.38 2.32 3.06
MergeMany† 0.03 0.03 4.74 4.72 0.60 0.57 1.43 1.32 0.41 0.35 2.27 2.68

C2M3 0.27 0.27 3.43 3.47 0.11 0.11 2.34 2.34 0.46 0.39 2.25 3.03
C2M3† 0.60 0.60 1.32 1.34 0.64 0.62 1.34 1.23 0.60 0.49 1.43 2.23

Table 1: Accuracy of the merged model when merging 5 models trained with different initializations.
The best results are highlighted in bold. † denotes models after the REPAIR operation.

Models cyclically permuted with Git Re-Basin end up in a different basin than the one they started
from, while our cycle-consistent approach ensures that the target model is exactly the same as the
source. Wrapping up, our approach matches and merges n models with a significant improvement in
performance over the state-of-the-art, while ensuring cycle-consistent permutations.

a b c d e

Model Symbol

a

b

c

d

e

M
od

el
S

ym
b

ol

1 0.32 0.3 0.32 0.32

0.12 1 0.31 0.32 0.31

0.11 0.12 1 0.31 0.32

0.12 0.12 0.12 1 0.31

0.11 0.12 0.12 0.12 1

Before mapping

After mapping

Figure 5: Cosine similarity of the
weights of 5 ResNet20 trained on
CIFAR10 with 2× width.

Model similarity before and after mapping As we can see
in Figure 5, the cosine similarity of the weights of the models
is 3× higher after mapping the latter to the universe. This sug-
gests that the initial quasi-orthogonality of models is at least
partially due to neuron permutation symmetries. We also report
in Appendix C.1.2 the similarity of the representations between
pairs of models. Interestingly, the latter does not change before
and after mapping to the universe, but only if we consider a
similarity measure that is invariant to orthogonal transforma-
tions such as CKA [22]. When using a measure that does not
enjoy this property, such as the Euclidean distance, the repre-
sentations become much more similar in the universe space. In
short, the models are 3× more similar in the universe space
and the mapping affects the representations as an orthogonal
transformation.

Figure 6: Interpolation curves of
VGG models in the universe.

Effect of activation renormalization Our empirical evidence
also points out the benefits of the REPAIR operation [21] that
is performed after the merging. In fact, the detrimental effect
of model averaging on the activation statistics [21] still applies
when taking the mean of n models instead of two. Our results
clearly show the benefit of REPAIR, making it a key ingredient
of our overall framework. Requiring meaningful interpolation
endpoints to be effective, REPAIR has lower benefit when em-
ployed on the MergeMany algorithm of Ainsworth et al. [1]. In
fact, iteratively taking means of different random model subsets
and aligning the left-out models to the mean is a more complex
process than interpolating between some endpoint models. By

taking the mean of models in the universe space, we are instead effectively interpolating between
endpoint models that can be used for the computation of the statistics in Equation (8). Figure 6 shows
the benefit of using the repair operation on 5 VGG models trained on CIFAR10 mapped to the universe
space. Specifically we fix one model “a” and we linearly interpolate in the universe space with respect
to the other models, measuring accuracy before and after applying REPAIR. Other than boosting
performance, we observe that the latter reduces the variance over interpolation paths, resulting in
the interpolation curves of all the models overlapping. Overall, using the models in the universe
as meaningful endpoints to gather activation statistics, our approach can fully leverage activation
renormalization techniques such as REPAIR.

7

5 10 15 20

Number of models

0.980

0.985

0.990

0.995

A
cc

Accuracy

5 10 15 20

Number of models

0.00

0.02

0.04

0.06

0.08

0.10

L
os

s

Loss

MergeMany (train)

MergeMany (test)

C2M3 (train)

C2M3 (test)

(a) MLPs trained over MNIST.

2 4 6 8 10

Number of models

0.6

0.7

0.8

A
cc

Accuracy

2 4 6 8 10

Number of models

0.50

0.75

1.00

1.25

1.50

1.75

2.00

L
o
ss

Loss

MergeMany (train)

MergeMany (test)

C2M3 (train)

C2M3 (test)

(b) ResNet20 models trained over CIFAR10.

Figure 7: Accuracy and loss when increasing the number n of models to match and merge.

Increasing n In this experiment, we show how the merged model behaves when increasing the
number of aggregated models. As we can see in Figure 7a, increasing the number of MLPS up
to 20 causes the performance to slightly deteriorate in a relative sense, but remaining stable in an
absolute sense as it doesn’t fall below 98%. More surprisingly, Figure 7b shows that for a ResNet20
architecture with 4× width the loss and accuracy are not monotonic, but rather they seem to slightly
fluctuate. This may hint at the merging process being more influenced by the composition of the
model set, than by its cardinality. Intuitively, a model that is difficult to match with the others will
induce a harder optimization problem, possibly resulting in a worse merged model. We dive deeper in
the effect of the composition of the set of models in Appendix C.2. In short, our approach is effective
in merging a larger number of models, suggesting promise in federated settings.

5 10 15

Width

0.4

0.6

0.8

1.0

A
cc

Accuracy

5 10 15

Width

0.0

0.5

1.0

1.5

2.0

2.5

L
os

s

Loss

Train †
Test †
Train

Test

Figure 8: Accuracy and loss when merging 3
ResNet20s trained over CIFAR10 with different
widths. † indicates models after applying REPAIR.

Varying widths We now measure how ar-
chitectural width affects model merging, tak-
ing into consideration ResNet20 architectures
with width W ∈ {1, 2, 4, 8, 16}. As we can
see in Figure 8, width greatly increases the
performance of the merged model, reaching
the zero-loss barrier first observed in [1] when
W = 16. This is in line with the observations
relating linear mode connectivity and network
widths [11, 1], and confirms the intuition that
the merging is only effective when modes can
be linearly connected.

a b c d e universe
60

65

70

75

80

85

A
cc

u
ra

cy

78.55

65.32

78.81
77.72

78.61

82.05

67.28

82.63
81.36

82.02

78.9

82.41

Accuracy of the merged model for different reference models

Pairwise mean – test

Pairwise mean – train

Pairwise – test

Pairwise – train

C2M3 – test

C2M3 – train

Figure 9: Accuracy of the merged model
when mapping towards one arbitrary model
(a, b, c, d, e) versus using C2M3 and the uni-
verse space.

Alternative: fixing one model as universe Alter-
natively, one could achieve cycle consistency by us-
ing one of the source models as reference and learn-
ing pairwise maps towards this one. This, however,
would require arbitrarily selecting one of the models,
making the overall merging dependent on an arbi-
trary choice. To see why this matters, we merged 5
ResNet20-4× by choosing one model as reference
and aggregating the models in its basin. Figure 9
shows severe oscillations in the results, with one
model reaching an accuracy as low as 65%, while
our approach performs as the best possible reference.
This approach, moreover, does not address multi-
model merging, as it is intrinsically pairwise: in a
multi-task setting, models optimally mapped to a ref-
erence basin would only be able to solve the task
solved by the reference model. This would prevent
merging to be used for models containing comple-
mentary information, such as knowledge fusion [19]

8

0.0 0.5 1.0
λ

0.2

0.4

0.6

0.8

Accuracy

0.0 0.5 1.0
λ

0

2

4

6

Loss

A - C

P>AA - P>C C

A - B

P>AA - P>BB

B - C

PB
>B - PC

>C

(a) 2D visualization of accuracy and loss of the models
sampled from the pairwise interpolation lines.

(b) 3D visualization of the loss of the models sampled
from the pairwise interpolation lines.

Figure 10: Linear mode connectivity before and after mapping to the universe for 3 ResNet20-2×
models trained over CIFAR10 according to Algorithm 1.

or multi-task merging [36]. In our setting, instead, the universe model must by design be a function
of all the models and act as a midpoint, hence aggregating information from all the models.

Linear mode connectivity in the universe Figure 10 shows that the loss curves of models interpo-
lated in the universe are much lower than those interpolated in the original space, suggesting that the
models are more connected in the former. These results, together with the loss landscape observed in
Figure 3, encourage merging the models in the universe space due to the lower loss barrier.

5 Related work

Mode Connectivity and model merging. Mode connectivity studies the weights defining local
minima. Frankle et al. [13] studied linear mode connectivity of models that were trained for a few
epochs from the same initialization and related it to the lottery ticket hypothesis. Without requiring
the same initialization, Entezari et al. [11] speculated that all models share a single basin after having
solved for the neuron permutations. Model merging aims at aggregating different models into a single
one to inherit their capacities without incurring in the cost and burden of ensembling. In this regard,
Singh and Jaggi [34] proposed an optimal-transport based weight-matching procedure, while Git
Re-Basin [1] proposed three matching methods and the MergeMany procedure seen in Section 4.
Subsequently, REPAIR [21] showed that a significant improvement in performance of the interpolated
model may be obtained by renormalizing its activactions rather than changing matching algorithm.
Differently from all these works, we consider merging n models and propose a principled way to
perform it with cycle-consistency guarantees.

Cycle consistency. Ensuring cycle consistency of pairwise maps is a recurring idea in the computer
vision and pattern recognition literature. In the realm of deep learning, earlier studies addressing
multi-graph matching achieved cycle consistency by synchronizing ex-post the predicted pairwise
permutations [40, 41]. The alternative approach using an object-to-universe matching framework,
which we adopt here, inherently ensures cycle consistency by construction, as demonstrated in [4, 16,
31]. To the best of our knowledge, none of the existing works tackles cycle-consistent alignment of
neural models. We refer to Appendix A.1 for a more detailed list of related works.

6 Conclusions

In this work, we treated the problem of model matching and merging. We first introduced a novel
weight matching procedure based on the Frank-Wolfe algorithm that optimizes for the permutation
matrices of all layers jointly, and then generalized it to the case of n models. Guaranteeing cycle-
consistency, the latter poses a principled way to merge a set of models without requiring an arbitrary
reference point. We then showed the approach to yield superior performance compared to existing
ones in merging multiple models in a set of scenarios spanning different architectures and datasets.
We believe the formalism to elegantly fit the requirement for the merging operation to unify the
different models into a cohesive one, rather than mapping all of them to one of the models in the set.

9

Acknowledgments

This work is supported by the ERC grant no.802554 (SPECGEO), PRIN 2020 project
no.2020TA3K9N (LEGO.AI), and PNRR MUR project PE0000013-FAIR. Marco Fumero is sup-
ported by the MSCA IST-Bridge fellowship which has received funding from the European Union’s
Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement
No 101034413. We thank Simone Scardapane for the helpful feedback on the paper.

References
[1] Samuel Ainsworth, Jonathan Hayase, and Siddhartha Srinivasa. Git Re-Basin: Merging models

modulo permutation symmetries. In The Eleventh International Conference on Learning
Representations, 2022.

[2] Federica Arrigoni and Andrea Fusiello. Synchronization problems in computer vision with
closed-form solutions. International Journal of Computer Vision, 128, 01 2020. doi: 10.1007/
s11263-019-01240-x.

[3] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

[4] Florian Bernard, Johan Thunberg, Paul Swoboda, and Christian Theobalt. Hippi: Higher-
order projected power iterations for scalable multi-matching. In Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV), October 2019.

[5] Florian Bernard, Daniel Cremers, and Johan Thunberg. Sparse quadratic optimisation over the
stiefel manifold with application to permutation synchronisation. In Neural Information Process-
ing Systems, 2021. URL https://api.semanticscholar.org/CorpusID:238253392.

[6] Daniel J Beutel, Taner Topal, Akhil Mathur, Xinchi Qiu, Javier Fernandez-Marques, Yan Gao,
Lorenzo Sani, Kwing Hei Li, Titouan Parcollet, Pedro Porto Buarque de Gusmão, et al. Flower:
A friendly federated learning research framework. arXiv preprint arXiv:2007.14390, 2020.

[7] Gregory Cohen, Saeed Afshar, Jonathan Tapson, and André van Schaik. Emnist: an extension
of mnist to handwritten letters, 2017.

[8] Luca Cosmo, Emanuele Rodolà, Andrea Albarelli, Facundo Mémoli, and Daniel Cremers.
Consistent partial matching of shape collections via sparse modeling. Computer Graphics
Forum, 36(1):209–221, 2017. doi: 10.1111/cgf.12796.

[9] Li Deng. The mnist database of handwritten digit images for machine learning research. IEEE
Signal Processing Magazine, 29(6):141–142, 2012.

[10] Felix Draxler, Kambis Veschgini, Manfred Salmhofer, and Fred A Hamprecht. Essentially no
barriers in neural network energy landscape. March 2018.

[11] Rahim Entezari, Hanie Sedghi, Olga Saukh, and Behnam Neyshabur. The role of permutation
invariance in linear mode connectivity of neural networks. October 2021.

[12] Marguerite Frank and Philip Wolfe. An algorithm for quadratic programming. Naval Research
Logistics Quarterly, 3(1-2):95–110, 1956. doi: https://doi.org/10.1002/nav.3800030109.

[13] Jonathan Frankle, Gintare Karolina Dziugaite, Daniel Roy, and Michael Carbin. Linear mode
connectivity and the lottery ticket hypothesis. In Proc. of ICML, volume 119 of Proceedings of
Machine Learning Research, pages 3259–3269. PMLR, 2020.

[14] Timur Garipov, Pavel Izmailov, Dmitrii Podoprikhin, Dmitry Vetrov, and Andrew Gordon
Wilson. Loss surfaces, mode connectivity, and fast ensembling of DNNs. February 2018.

[15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition, 2015.

10

https://api.semanticscholar.org/CorpusID:238253392

[16] Qi-Xing Huang and Leonidas Guibas. Consistent shape maps via semidefinite programming. In
Proceedings of the Eleventh Eurographics/ACMSIGGRAPH Symposium on Geometry Process-
ing, SGP ’13, page 177–186, Goslar, DEU, 2013. Eurographics Association.

[17] Qixing Huang, Fan Wang, and Leonidas Guibas. Functional map networks for analyzing and
exploring large shape collections. ACM Trans. Graph., 33(4), jul 2014. ISSN 0730-0301. doi:
10.1145/2601097.2601111. URL https://doi.org/10.1145/2601097.2601111.

[18] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training
by reducing internal covariate shift. In International conference on machine learning, pages
448–456. pmlr, 2015.

[19] Xisen Jin, Xiang Ren, Daniel Preotiuc-Pietro, and Pengxiang Cheng. Dataless knowledge fusion
by merging weights of language models. The Eleventh International Conference on Learning
Representations (ICLR), December 2022.

[20] Xisen Jin, Xiang Ren, Daniel Preotiuc-Pietro, and Pengxiang Cheng. Dataless knowledge fusion
by merging weights of language models, 2023.

[21] Keller Jordan, Hanie Sedghi, Olga Saukh, Rahim Entezari, and Behnam Neyshabur. REPAIR:
REnormalizing permuted activations for interpolation repair. In The Eleventh International
Conference on Learning Representations, January 2023.

[22] Simon Kornblith, Mohammad Norouzi, Honglak Lee, and Geoffrey Hinton. Similarity of neural
network representations revisited. May 2019.

[23] Alex Krizhevsky. Learning multiple layers of features from tiny images. 2009. URL https:
//api.semanticscholar.org/CorpusID:18268744.

[24] Simon Lacoste-Julien. Convergence rate of frank-wolfe for non-convex objectives. arXiv
preprint arXiv:1607.00345, 2016.

[25] Weishi Li, Yong Peng, Miao Zhang, Liang Ding, Han Hu, and Li Shen. Deep model fusion: A
survey, 2023.

[26] Ekdeep Singh Lubana, Eric J Bigelow, Robert P. Dick, David Krueger, and Hidenori Tanaka.
Mechanistic mode connectivity. In Proceedings of the 40th International Conference on Machine
Learning, volume 202, pages 22965–23004. PMLR, 23–29 Jul 2023.

[27] Aviv Navon, Aviv Shamsian, Ethan Fetaya, Gal Chechik, Nadav Dym, and Haggai Maron.
Equivariant deep weight space alignment, 2023.

[28] Deepti Pachauri, Risi Kondor, and Vikas Singh. Solving the multi-way matching problem by
permutation synchronization. In C.J. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K.Q.
Weinberger, editors, Advances in Neural Information Processing Systems, volume 26. Curran
Associates, Inc., 2013. URL https://proceedings.neurips.cc/paper_files/paper/
2013/file/3df1d4b96d8976ff5986393e8767f5b2-Paper.pdf.

[29] Fidel A Guerrero Peña, Heitor Rapela Medeiros, Thomas Dubail, Masih Aminbeidokhti, Eric
Granger, and Marco Pedersoli. Re-basin via implicit sinkhorn differentiation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 20237–20246,
2023.

[30] Xingyu Qu and Samuel Horvath. Rethinking model re-basin and linear mode connectivity, 2024.
URL https://arxiv.org/abs/2402.05966.

[31] Frank R. Schmidt, Eno Töppe, Daniel Cremers, and Yuri Boykov. Intrinsic mean for semi-
metrical shape retrieval via graph cuts. In Fred A. Hamprecht, Christoph Schnörr, and Bernd
Jähne, editors, Pattern Recognition, pages 446–455, Berlin, Heidelberg, 2007. Springer Berlin
Heidelberg. ISBN 978-3-540-74936-3.

[32] Xinchu Shi, Haibin Ling, Weiming Hu, Junliang Xing, and Yanning Zhang. Tensor power
iteration for multi-graph matching. In 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 5062–5070, 2016. doi: 10.1109/CVPR.2016.547.

11

https://doi.org/10.1145/2601097.2601111
https://api.semanticscholar.org/CorpusID:18268744
https://api.semanticscholar.org/CorpusID:18268744
https://proceedings.neurips.cc/paper_files/paper/2013/file/3df1d4b96d8976ff5986393e8767f5b2-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2013/file/3df1d4b96d8976ff5986393e8767f5b2-Paper.pdf
https://arxiv.org/abs/2402.05966

[33] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition, 2015.

[34] Sidak Pal Singh and Martin Jaggi. Model fusion via optimal transport. In Hugo Larochelle,
Marc’aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin, editors, Ad-
vances in Neural Information Processing Systems 33: Annual Conference on Neural Information
Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020.

[35] Richard Sinkhorn and Paul Knopp. Concerning nonnegative matrices and doubly stochas-
tic matrices. Pacific Journal of Mathematics, 21:343–348, 1967. URL https://api.
semanticscholar.org/CorpusID:50329347.

[36] George Stoica, Daniel Bolya, Jakob Brandt Bjorner, Pratik Ramesh, Taylor Hearn, and Judy
Hoffman. Zipit! merging models from different tasks without training. In The Twelfth
International Conference on Learning Representations.

[37] Paul Swoboda, Dagmar Kainmüller, Ashkan Mokarian, Christian Theobalt, and Florian Bernard.
A convex relaxation for multi-graph matching. In 2019 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pages 11148–11157, 2019. doi: 10.1109/CVPR.2019.
01141.

[38] Lanhui Wang and Amit Singer. Exact and stable recovery of rotations for robust synchronization.
Information and Inference: A Journal of the IMA, 2(2):145–193, 2013.

[39] Lirui Wang, Kaiqing Zhang, Allan Zhou, Max Simchowitz, and Russ Tedrake. Fleet policy
learning via weight merging and an application to robotic tool-use, 2023.

[40] Runzhong Wang, Junchi Yan, and Xiaokang Yang. Neural graph matching network: Learn-
ing lawler’s quadratic assignment problem with extension to hypergraph and multiple-graph
matching. CoRR, abs/1911.11308, 2019.

[41] Runzhong Wang, Junchi Yan, and Xiaokang Yang. Graduated assignment for joint multi-graph
matching and clustering with application to unsupervised graph matching network learning. In
H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin, editors, Advances in Neural
Information Processing Systems, volume 33, pages 19908–19919. Curran Associates, Inc.,
2020.

[42] Christopher Zach, Manfred Klopschitz, and Marc Pollefeys. Disambiguating visual relations
using loop constraints. In 2010 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, pages 1426–1433, 2010. doi: 10.1109/CVPR.2010.5539801.

[43] Allan Zhou, Kaien Yang, Kaylee Burns, Adriano Cardace, Yiding Jiang, Samuel Sokota, J. Zico
Kolter, and Chelsea Finn. Permutation equivariant neural functionals, 2023.

[44] Zhanpeng Zhou, Yongyi Yang, Xiaojiang Yang, Junchi Yan, and Wei Hu. Going beyond linear
mode connectivity: The layerwise linear feature connectivity, 2023.

12

https://api.semanticscholar.org/CorpusID:50329347
https://api.semanticscholar.org/CorpusID:50329347

Contents
1 Introduction 1

2 Background 3

3 Approach 4

4 Experiments 6

5 Related work 9

6 Conclusions 9

A Additional details 14
A.1 Extended related work . 14
A.2 Pairwise Frank-Wolfe Algorithm . 14
A.3 MergeMany Algorithm . 15
A.4 REPAIR . 15
A.5 Convergence and efficiency . 15
A.6 Architectural details . 16
A.7 Datasets, hyperparameters and hardware details 17
A.8 Proofs . 18

B Additional experiments 19
B.1 Pair-wise model matching and merging . 19

B.1.1 ResNet with BatchNorm . 19
B.2 Initialization strategies . 19
B.3 Variance of the results in Git Re-Basin . 20
B.4 Large-scale matching: ResNet50s trained over ImageNet 20
B.5 Federated Learning . 21

C Additional analysis 22
C.1 Similarity of models . 22

C.1.1 Representation-level similarity . 22
C.1.2 Weight-level similarity . 22

C.2 Merging different subsets . 22

D Discussion 24
D.1 On the cycle-consistency of C2M3 . 24
D.2 Limitations . 24
D.3 Societal impact and broader vision . 24

13

A Additional details

Here we report in-depth explanations and additional experimental details. In particular, Appendix A.1
extensively outlines the most related works, Appendix A.2 shows the Frank-Wolfe algorithm for the
pairwise case, while Appendix A.3 describes the MergeMany procedure presented in [1] for merging
multiple models. We also report the REPAIR method in Appendix A.4. Finally, we show how the
matching algorithm empirically converges in Appendix A.5.

A.1 Extended related work

We report here a thorough review of works that are relevant to our research, providing a comprehensive
understanding of the context of our work.

Linear mode connectivity Mode connectivity is interested in modes, i.e. model parameters at
convergence. In this regard, Frankle et al. [13] first studied the connectivity of the parameters of
models that were trained for a few epochs from the same initialization, while Garipov et al. [14]
investigated whether these can be connected through a high-accuracy path without requiring the same
initialization. Simultaneously, Draxler et al. [10] proposed an algorithm to find a Minimum Energy
Path (MEP) between two modes of a neural network, showing that these paths are mostly flat in both
the training and test landscapes. This implies that many minima actually live in a shared low-loss
valley rather than in distinct basins. On a different perspective, Zhou et al. [43] proposed to study a
class of neural functionals which are permutation-equivariant by design. Recent research proposes
to study model behavior in the weight space beyond linear mode connectivity: Lubana et al. [26]
show that different “mechanisms” in related models prevent simple paths of low loss in the weight
space, while Zhou et al. [44] studied the linear connections between the linear features of each layer
of differently trained models.

Model merging Model merging [1, 29, 34, 20, 39, 36] has seen a surge of interest in the last
years as a mean to ensemble models without incurring in the added computational cost. One of
the first works in this direction is Singh and Jaggi [34], who proposed an optimal-transport based
weight-matching procedure. Later, Ainsworth et al. [1] proposed three matching methods, one of
which being data-free. Closer to our global optimization, Peña et al. [29] proposed a gradient-descent
based procedure that iteratively updates soft permutation matrices maintaining their bistochasticity
via a differentiable Sinkhorn routine. When the models to match have been trained on different
tasks, Stoica et al. [36] introduce a more general “zip” operation that accounts for features that
may be task-specific and further allow obtaining multi-headed models. Most recently, Navon et al.
[27] proposed aligning models in the embedding space of a deep weight-space architecture. Finally,
weight merging proved useful for large language models [20] and robotics [39]. For a complete
survey of mode connectivity and model merging, we refer the reader to [25].

Cycle consistency Cycle consistency is a recurrent idea in computer vision and pattern recognition,
where it appears under different names (e.g., “synchronization”, “loop constraints”, or “multi-way
matching”) depending on the task. In the area of multi-view 3D reconstruction, Zach et al. [42]
were probably the first to make an explicit attempt at finding solutions meeting the cycle-consistency
requirement, although without ensuring theoretical guarantees on the result. In geometry processing,
Cosmo et al. [8] ensured cycle-consistent alignment of collections of 3D shapes using an n-fold
extension of the Gromov-Wasserstein distance with sparsity constraints. Overall, cycle consistency
is a recurring idea in the computer vision [38, 42, 2] graph matching [28, 37, 32] and geometry
processing literature [17, 8, 4].

A.2 Pairwise Frank-Wolfe Algorithm

As introduced in Section 3, we optimize a layer-global objective by iteratively optimizing its linear
approximation via the the Frank-Wolfe algorithm [12]. We compute the gradient of Equation (1) with
respect to each permutation Pi, as the sum of two contributions for each ∇Pi

: one from permuting
the rows of Wi and another from permuting the columns of Wi+1:

∇Pi
f = WA

i Pi−1(W
B
i)

⊤︸ ︷︷ ︸
from permuting rows

+(WA
i+1)

⊤
Pi+1W

B
i+1︸ ︷︷ ︸

from permuting columns

. (6)

14

We report in Algorithm 3 the Frank-Wolfe algorithm for the pairwise case.

Algorithm 3 Frank-Wolfe for pairwise Weight Matching

Require: Weights of two models A and B with L layers, tolerance ϵ > 0
Ensure: Approximate solution to Equation (1)

1: Pk ← identity matrices
2: repeat
3: for i = 1 to L do
4: P k

i ← permutation acting on rows of Wi

5: P k
i−1 ← permutation acting on columns of Wi

6: ∇PK
i
f += WA

i P k
i−1(W

B
i)⊤

7: ∇Pk
i−1

f += (WA
i)⊤P k

i W
B
i

8: end for
9: for P k

i ∈ Pk do
10: Πi ← LAP(∇PK

i
f)

11: end for
12: α← LINESEARCH(f,Pk,Π)
13: for P k

i ∈ Pk do
14: P k+1

i = (1− α)P k
i + α Πi

15: end for
16: until ∥f(A,B,Pk+1)− f(A,B,Pk)∥ < ϵ
17: return Pk

A.3 MergeMany Algorithm

Algorithm 4 reports the MergeMany procedure originally proposed by Ainsworth et al. [1] for merging
multiple models, mainly consisting in alternating matching and aggregation until convergence. In
practice, at each iteration, the procedure picks a reference model at random and matches all the other
models to it. Then, they are all aggregated by averaging the weights.

Algorithm 4 MERGEMANY

Require: Model weights Θ1, . . . ,ΘN

Ensure: A merged set of parameters Θ̃.
1: repeat
2: for i ∈ RANDOMPERMUTATION(1, . . . , N) do
3: Θ′ ← 1

N−1

∑
j∈{1,...,N}\{i} Θj

4: π ← PERMUTATIONCOORDINATEDESCENT(Θ′,Θi)
5: Θi ← π(Θi)
6: end for
7: until convergence
8: return 1

N

∑N
j=1 Θj

A.4 REPAIR

Observing a decay in the variance of the activations of the aggregated model, Jordan et al. [21]
proposed REPAIR, which renormalizes the activations of the merged model to match the statistics
of the original models. In particular, given two endpoint models with activations X1 and X2, the
activations Xα of the interpolated model are renormalized to have statistics:

E [Xα] = (1− α) · E [X1] + α · E [X2] (7)
std (Xα) = (1− α) · std (X1) + α · std (X2) . (8)

A.5 Convergence and efficiency

15

0 20 40 60 80
Iteration

6000

7000

8000

9000

10000

11000

O
b

je
ct

iv
e

Objective curve

Figure 11: Objective values during the
optimization. As guaranteed by the
Frank-Wolfe algorithm, the objective
value increases monotonically.

We report here the convergence of our matching algorithm.
In particular, Figure 11 shows the objective values dur-
ing the optimization, exhibiting the expected monotonic
increase, while Figure 12 shows the step sizes result of
the line search at each iteration. Interestingly, Figure 12a
shows that the step sizes are generally decreasing, but
descend in an alternating manner. This is likely due to
the fact that the permutations are obtained as consecutive
interpolations, where even steps result in a soft permu-
tation matrix that is the average of the current and next
permutation matrix, while odd steps generally result in a
hard permutation matrix with entries in [0, 1]. Figure 13
finally shows the intermediate permutation values during
the optimization: at each step, the entries of the permu-
tation matrix are the linear interpolation of the current
solution and the projected gradient with factor α given by
the step size. The red values in the figure represent entries
currently being updated, which are neither 1 (blue) or 0
(yellow).

We report in Appendix A.5 the wall-clock time when merging n = 2, 3 ResNet20 models having
1×, 2×, 4×, 8× and 16× width, together with their number of parameters.

1x 2x 4x 8x 16x

params 292k 1.166m 4.655m 18.600m 74.360m

n=2

C2M3 33.4s 33.5s 40.5s 80.8s 367.8s
MergeMany 0.24s 0.4s 3.4s 8.9s 59.4s

n=3

C2M3 time 32.9s 83.18s 91.0s 162.0s 715.8s
MergeMany 1.2s 4.1s 19.5s 105.8s 892.3s

Table 2: Wall-clock time for merging n = 3 ResNet20 models with different widths.

As can be inferred from the table, the scaling laws depend on the complexity of the resulting matching
problem and cannot be predicted merely from the number of parameters, with a 4-fold increase
in parameters resulting in no increase in runtime for the first three columns, a double increase in
the second-last column and a 5-fold increase in the last. Compared to MergeMany, our approach
enjoys a milder increase in running time when increasing the number of parameters. For simpler
settings, however, MergeMany is significantly faster. Being the two approaches on the same order of
magnitude and given the one-time nature of model merging, we believe this aspect to be of secondary
importance, especially considering merging to be, in many cases, an alternative to training a model
from scratch.

A.6 Architectural details

We report here the architectural details of all the architectures we have used in the experiments.

Multi-Layer Perceptrons We use a simple MLP mapping input to a 256-dimensional space
followed by 3 hidden layers of 512, 512 and 256 units respectively, followed by an output layer
mapping to the number of classes. We use ReLU activations for all layers except the output layer,
where we use a log softmax activation.

ResNet We consider a ResNet20 [15] architecture composed by three ResNet block groups, each
containing three residual blocks. The model starts with an initial convolutional layer followed by

16

0 20 40 60 80
Iteration

0.2

0.4

0.6

0.8

1.0

S
te

p
si

ze

Step size

(a) Step sizes for all iterations.

0 10 20 30
Iteration

0.2

0.4

0.6

0.8

1.0

S
te

p
si

ze

Step size for odd iterations

(b) Step sizes for odd iterations.

0 10 20 30
Iteration

0.2

0.4

0.6

0.8

1.0

S
te

p
si

ze

Step size for even iterations

(c) Step sizes for even iterations.

Figure 12: Step sizes during the optimization.

Initialization Step 2 Step 3

Step 4 Step 5 Step 6

Figure 13: First 6 steps of Algorithm 3 for one permutation matrix. At each step, the new solution is
given by the linear interpolation of the current solution and the gradient of Equation (1).

normalization and ReLU activation. It then passes through the three block groups with increasing
channel sizes (determined by the widen factor) and varying strides, followed by global average
pooling and a fully connected layer that outputs class logits. As normalization layers, we consider
both the most commonly used BatchNorm [18] and, for the sake of comparing with Git Re-Basin,
also LayerNorm [3]. The results in the main manuscript are all obtained with LayerNorm, while we
report the results with BatchNorm in Appendix B.1.1.

VGG We employ a VGG16 [33] architecture with LayerNorm [3] normalization layers. The model
has the following convolutional layer dimensions, with “M” indicating the presence of a max-pooling
layer

64, 64,M, 128, 128,M, 256, 256, 256,M, 512, 512, 512,M, 512, 512, 512,M (9)

The convolutional layers are organized in 5 blocks, each containing 2 or 3 convolutional layers,
followed by a max-pooling layer. The final classifier is composed of three fully connected layers with
512 hidden dimension and ReLU activations.

A.7 Datasets, hyperparameters and hardware details

We employ the most common datasets for image classification tasks: MNIST [9], CIFAR-10 [23],
EMNIST [7] and CIFAR-100 [23], having 10, 10, 26 and 100 classes respectively. We use the standard
train-test splits provided by torchvision for all datasets.

17

We use the same hyperparameters as Git Re-Basin where possible to ensure a fair comparison. In
particular, we train most of our models with a batch size of 100 for 250 epochs, using SGD with
momentum 0.9, a learning rate of 0.1, and a weight decay of 10−4. We use a cosine annealing
learning rate scheduler with a warm restart period of 10 epochs and a minimum learning rate of 0.
We report each and every one of the hyperparameters used for each experiment, as well as all the
trained models, in a WandB dashboard2.

All of the experiments were carried out using consumer hardware, in particular mostly on a 32GiB
RAM machine with a 12th Gen Intel(R) Core(TM) i7-12700F processor and an Nvidia RTX 3090
GPU, except for some of the experiments that were carried on a 2080. Our modular and reusable
codebase is based on PyTorch, leveraging PyTorch Lightning to ensure reproducible results and
modularity and NN-Template3 to easily bootstrap the project and enforce best practices.

A.8 Proofs

Theorem A.1. The gradient of the objective function
n−1∑
p=1

n∑
q=p+1

L∑
ℓ=1

⟨(P p
ℓ)

⊤W p
ℓ P

p
ℓ−1, (P

q
ℓ)

⊤W q
ℓ P

q
ℓ−1⟩

is Lipschitz continuous, implying our algorithm obtains a stationary point at a rate of O(1/
√
t) [24].

Proof. We recall that, for each layer permutation PA = {PA
1 , PA

2 , . . . , PA
L } of model A, we can

define the gradient of our objective function relatively to the model B we are matching towards:

f(PA
ℓ) = ∇rows

PA
ℓ

+∇cols
PA

ℓ
+∇rows,⇆

PA
ℓ

+∇cols,⇆
PA

ℓ

=[
WA

ℓ PA
ℓ−1(P

B
ℓ−1)

⊤(WB
ℓ)⊤ + (WA

ℓ+1)
⊤PA

ℓ+1(P
B
ℓ+1)

⊤WB
ℓ+1

]
PB
ℓ +[

WB
ℓ PB

ℓ−1(P
A
ℓ−1)

⊤(WA
ℓ)⊤ + (WB

ℓ+1)
⊤PB

ℓ+1(P
A
ℓ+1)

⊤WA
ℓ+1

]
PA
ℓ

To prove Lipschitz continuity, we need to show there exists a constant C such that ∀ p =
1, . . . , n, ℓ = 1, . . . , L ∥f(P p

ℓ) − f(Qp
ℓ)∥ ≤ C∥P p

ℓ − Qp
ℓ∥. To simplify passages, we only

consider a fixed ℓ and perform a generic analysis. We begin by observing that

f(P p
ℓ)− f(Qp

ℓ) =∑
q∈[1,n]\{p}

[
W p

ℓ P
p
ℓ−1(P

q
ℓ−1)

⊤(W q
ℓ)

⊤ + (W p
ℓ+1)

⊤P p
ℓ+1(P

q
ℓ+1)

⊤W q
ℓ+1

]
(P q

ℓ −Qq
ℓ)+[

W q
ℓ P

q
ℓ−1(P

p
ℓ−1)

⊤(W p
ℓ)

⊤ + (W q
ℓ+1)

⊤P q
ℓ+1(P

p
ℓ+1)

⊤W p
ℓ+1

]
(P p

ℓ −Qp
ℓ)

The last form of the above equation can be rewritten as a sum of the two sums:∑
q∈[1,n]\{p}

[
W p

ℓ P
p
ℓ−1(P

q
ℓ−1)

⊤(W q
ℓ)

⊤ + (W p
ℓ+1)

⊤P p
ℓ+1(P

q
ℓ+1)

⊤W q
ℓ+1

]
(P q

ℓ −Qq
ℓ)+∑

q∈[1,n]\{p}

[
W q

ℓ P
q
ℓ−1(P

p
ℓ−1)

⊤(W p
ℓ)

⊤ + (W q
ℓ+1)

⊤P q
ℓ+1(P

p
ℓ+1)

⊤W p
ℓ+1

]
(P p

ℓ −Qp
ℓ)

Since the first term does not depend on either P p
ℓ or Qp

ℓ , we assume as a worst case that its norm
is 0. Then, we remove transposes (since ∥M∥ = ∥M⊤∥) and apply the triangle inequality and the
sub-multiplicative property of matrix norms:

∥f(P p
ℓ)− f(Qp

ℓ)∥ ≤∑
q∈[1,n]\{p}

∥P p
ℓ −Qp

ℓ∥
(
∥W q

ℓ ∥∥P
q
ℓ−1∥∥P

p
ℓ−1∥∥W

p
ℓ ∥ + ∥W

q
ℓ+1∥∥P

q
ℓ+1∥∥P

p
ℓ+1∥∥W

p
ℓ+1∥

)
Let C = maxq∈[1,n]\{p}

{
∥W q

ℓ ∥∥P
q
ℓ−1∥∥P

p
ℓ−1∥∥W

p
ℓ ∥+ ∥W

q
ℓ+1∥∥P

q
ℓ+1∥∥P

p
ℓ+1∥∥W

p
ℓ+1∥

}
. Then,

∥f(P p
ℓ)− f(Qp

ℓ)∥ ≤ C
∑

q∈[1,n]\{p}

∥P p
ℓ −Qp

ℓ∥ = C(n− 1)∥P p
ℓ −Qp

ℓ∥

2Link concealed to preserve anonymity.
3https://github.com/grok-ai/nn-template

18

Matcher
Barrier

ResNet
2×

ResNet
4×

ResNet
8×

ResNet
16×

VGG16

Train Test Train Test Train Test Train Test Train Test

Naive 5.16 ± 1.83 5.45 ± 1.83 2.94 ± 0.27 3.26 ± 0.27 2.12 ± 0.03 2.40 ± 0.03 1.84 ± 0.18 2.12 ± 0.17 1.85 ± 0.00 2.31 ± 0.00
Git Re-Basin 0.73 ± 0.16 0.86 ± 0.17 0.74 ± 0.35 0.80 ± 0.40 0.19 ± 0.03 0.13 ± 0.02 0.17 ± 0.02 0.07 ± 0.02 0.08 ± 0.03 0.24 ± 0.03
Frank-Wolfe 0.73 ± 0.19 0.85 ± 0.19 0.78 ± 0.33 0.81 ± 0.38 0.19 ± 0.03 0.12 ± 0.02 0.16 ± 0.02 0.06 ± 0.02 0.08 ± 0.03 0.25 ± 0.03

Table 4: Mean and standard deviation of the test and train loss barrier for each method when matching
n = 2 models on CIFAR10.

we conclude that f(P p
ℓ) is Lipschitz continuous for all models and all layers, with Lipschitz constant

C(n− 1) depending on both the norm of the weights matrices and the number of models.

B Additional experiments

We report additional experiments and results in this section. In particular, Appendix B.1 presents
a complete evaluation of our matching method for the pairwise case, showing it to be generally
competitive with the state-of-the-art Git Re-Basin algorithm [1] and to outperform it on architec-
tures employing BatchNorm [18] normalization. We then discuss different permutation initialization
strategies in Appendix B.2.

B.1 Pair-wise model matching and merging

Matcher Barrier
Train Test

R
e
s
N
e
t

8
×

Naive 7.00 ± 1.24 8.37 ± 1.23
Git-Rebasin 1.04 ± 0.10 1.54 ± 0.13
Frank-Wolfe 0.92± 0.06 1.42± 0.10

V
G
G
1
6 Naive 5.79 ± 0.39 7.36 ± 0.38

Git-Rebasin 0.44 ± 0.03 0.64 ± 0.03
Frank-Wolfe 0.44± 0.05 0.63± 0.06

Table 3: Mean and standard deviation of
the test and train loss barriers for each
method when matching n = 2 models
on CIFAR100.

As described in Section 3, our formalization can readily
be used to match n = 2 models. In this case, the energy is
given by Equation (1) and the permutations are not factor-
ized. We compare the performance of our approach against
the Git Re-Basin algorithm [1] and the naive baseline
that aggregates the models by taking an unweighted mean
on the original model weights without applying any permu-
tation. From the data presented in Table 3, we observe that
the approach is competitive with Git Re-Basin [1], with
the two methods exhibiting analogously low test barrier
on CIFAR10. Focusing on the ResNet20 architecture, we
can see that width plays the same role in both approaches,
with the barrier decreasing as it increases. We can also
appreciate how, while the same architecture resulted in
similar barriers for the two approaches on CIFAR10, the

barrier is significantly lower for Frank-Wolfe in CIFAR100, possibly suggesting that the latter is
more robust to the complexity of the dataset.

B.1.1 ResNet with BatchNorm

Matcher loss barrier (↓)
train test

Naive 4.72 ± 0.86 4.99 ± 0.86
Git Re-Basin 4.33 ± 0.64 4.62 ± 0.65
Frank-Wolfe 3.53 ± 0.58 3.79 ± 0.57

Table 5: Mean and stddev of the test and
train loss barriers on 2 ResNet20-2×
models with BatchNorm normalization.

We also report the results of a ResNet20 with 2× width
using BatchNorm [18] layers instead of LayerNorm [3]
ones. This version, as noted in [21], is in fact harder to
match but also the one that is commonly used in practice.
We can see in Table 5 that the Frank-Wolfe matcher
is able to achieve a lower barrier than Git Re-Basin,
indicating the approach to be more robust to architectures
using different normalization layers.

B.2 Initialization strategies

As introduced in Algorithm 1, we initialize each N -dimensional permutation to be the N × N
identity matrix. We now compare this strategy against two alternatives that provide doubly stochastic

19

models 1 2 3 4 5 6 7 8 9 mean stddev max gap Frank-Wolfe

(1,2) train 0.76 0.78 0.78 0.80 0.77 0.76 0.78 0.75 0.81 0.78 0.018 0.057 0.78
test 0.73 0.75 0.75 0.77 0.74 0.73 0.74 0.72 0.78 0.74 0.018 0.060 0.75

(1,3) train 0.67 0.69 0.69 0.69 0.62 0.69 0.66 0.71 0.68 0.68 0.023 0.085 0.68
test 0.64 0.66 0.67 0.65 0.60 0.66 0.63 0.67 0.65 0.65 0.020 0.071 0.65

(2,3) train 0.75 0.74 0.75 0.72 0.76 0.74 0.70 0.73 0.78 0.74 0.020 0.074 0.76
test 0.70 0.71 0.71 0.68 0.72 0.70 0.67 0.70 0.74 0.70 0.020 0.071 0.72

Table 7: Accuracy of the interpolated model using Git Re-Basin [1] over different pairs of models
(1, 2), (1, 3), (2, 3) by changing random seed i = 1, . . . , 9 in the weight matching procedure.

models loss barrier (↓)
id barycenter Sinkhorn

(a, b) 0.52 0.47 0.60± 0.04
(b, c) 0.65 0.70 0.64± 0.06
(a, c) 0.97 0.95 0.92± 0.07

Table 6: Test barrier of
the interpolations of 3
ResNet20-2× models using
different initializations.

matrices, i.e., such that their rows and columns sum to one: i) the
Sinkhorn initialization [35] that initializes the permutation matrix as
the solution of the Sinkhorn-Knopp algorithm [35]; ii) the barycenter
of doubly stochastic matrices, i.e. the matrix where each element
is given by 1/N .Table 6 shows the test barrier of the interpolations
of three ResNet20-2× models a, b, and c when using the different
strategies over 10 different trials. We can see that the constant
initializations (identity and barycenter) work well in general, with
the additional benefit of having 0 variance in the results. On the other
hand, if computational cost is not a concern, one can still choose
to run a pool of trials with different Sinkhorn initializations and
finally select the best one, trading this way efficiency with some
extra accuracy points.

B.3 Variance of the results in Git Re-Basin

As introduced in Section 4, Git Re-Basin [1] depends on a random choice of layers, resulting in
variations of up to 10% in accuracy depending on the optimization seed, while our method shows
zero variance. While we have already seen the results for a model pair in Figure 4, we report, for
completeness, the results of matching and averaging models with Git Re-Basin using different
optimization seeds for additional pairs. As can be seen in Table 7, the trend is confirmed over these
ones, with results significantly oscillating and our approach always above or on par with their mean.

B.4 Large-scale matching: ResNet50s trained over ImageNet

Matcher Accuracy (↑) Loss (↓)
Naive 0.001 6.91

MergeMany 0.001 6.91
MergeMany† 0.30 4.87

C2M3 0.001 6.91
C2M3† 0.07 6.13

Table 8: Accuracy and loss of
the interpolated model using
different matchers over three
ResNet50 models trained on
ImageNet.

For this experiment, we matched three different ResNet50s trained
over ImageNet. We used three publicly available pretrained check-
points from timm, namely a1 in1k4, c1 1n1k5 and ram in1k 6. As
Table 8 shows, C2M3 underperforms the baseline in this case. To
see why, we report in Figure 14 the pairwise accuracies obtained
using pairwise weight matching over all the ResNet50 checkpoints
available in timm. Let us focus on the triplet (am, a2, ram) and
replace the model names with (a, b, c) for clarity. We see that, while
the mergings (a, b) and (b, c) result in high-accuracy models, the
merging (a, c) yields poor results. Given the cycle consistency of
our method, we inherit the difficulty of the hardest pair, which in
this case is (a, c). It is worth noting that this behavior is not present
in the other cases we investigated in this work, and might be due to
the considered models being trained with different training schedules and hyperparameters. Future
research could investigate new strategies to handle such cases, e.g. by iteratively merging models by
following a max-accuracy path in an accuracy weighted graph.

4https://huggingface.co/timm/resnet50.a1_in1k
5https://huggingface.co/timm/resnet50.c1_in1k
6https://huggingface.co/timm/resnet50.ram_in1k

20

https://huggingface.co/timm/resnet50.a1_in1k
https://huggingface.co/timm/resnet50.c1_in1k
https://huggingface.co/timm/resnet50.ram_in1k

am a2 a3 c1 a1 a1h b1k ram bt gluon tv2 c2 ra b2k
Models

am
a2

a3
c1

a1
a1

h
b

1k
ra

m
b

t
gl

u
on

tv
2

c2
ra

b
2k

M
od

el
s

0.69 0.70 0.62 0.71 0.33 0.64 0.01 0.00 0.01 0.12 0.53 0.01 0.62

0.15 0.26 0.13 0.02 0.31 0.70 0.20 0.65 0.07 0.17 0.55 0.14

0.36 0.06 0.15 0.30 0.69 0.22 0.68 0.08 0.33 0.66 0.26

0.44 0.00 0.01 0.49 0.05 0.54 0.00 0.01 0.51 0.01

0.13 0.28 0.72 0.24 0.71 0.07 0.17 0.67 0.29

0.01 0.36 0.04 0.23 0.00 0.01 0.17 0.01

0.65 0.31 0.64 0.00 0.01 0.60 0.01

0.00 0.00 0.10 0.47 0.01 0.61

0.00 0.45 0.02 0.00 0.22

0.07 0.41 0.01 0.57

0.00 0.04 0.00

0.43 0.01

0.58

Merging Accuracies

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 14: Pairwise accuracies obtained using Git Re-Basin [1] over different ResNet50 models
trained on ImageNet. Models are available from the timm library.

Round Accuracy

1 5 10 15 20 25 30 35 40 45

FedAvg 0.0942 0.394 0.4972 0.5517 0.5699 0.5893 0.6018 0.6063 0.6099 0.6136
C2M3 0.0941 0.4234 0.5193 0.5555 0.5783 0.5978 0.6077 0.6165 0.618 0.622

Table 9: Accuracy over 10 clients in a federated learning scenario. We report the accuracy for 50
aggregation rounds, with each client training for 20 local epochs. We report one every five rounds for
the sake of clarity.

B.5 Federated Learning

We here report the results of a preliminary experiment where we ran our framework in a federated
learning scenario. To this end, we have used the state-of-the-art federated learning library Flower 7 [6]
and employed our matching scheme over a set of 10 clients over CIFAR10, each adopting a small
CNN model. We observe the following:

• When all the clients start from the same initialization, our approach has no benefit and
falls back to standard averaging. In fact, the optimization process quickly returns identity
matrices as permutations, suggesting the models already share the same basin.

• When instead we initialize the clients from different random initializations, Tables 9 and 10
show that our approach visibly outperforms FedAVG. In particular, the benefits get more
pronounced when increasing the number of local epochs. This is in line with the intuition
that standard averaging becomes less effective when clients drift due to prolonged local
training and too infrequent aggregation.

While these results are not sufficient to claim an overall supremacy of the approach for the task due to
the limited evaluation and choice of models, they show the approach to be promising for the problem
and encourage further research.

7https://flower.ai/

21

https://flower.ai/

Round Accuracy

1 2 3 4 5 6 7 8 9 10

FedAvg 0.0942 0.2638 0.3543 0.3825 0.4165 0.4505 0.4742 0.4994 0.5169 0.5317
C2M3 0.0947 0.3303 0.3899 0.4441 0.4764 0.4968 0.5184 0.5334 0.5434 0.5536

Table 10: Accuracy over 10 clients in a federated learning scenario. We report the accuracy for 10
aggregation rounds, with each client training for 30 local epochs.

C Additional analysis

In this section, we report additional analyses that complement the results presented in the main text.
We first analyze in Appendix C.1 how mapping to universe affects the similarity of the models;
then, we evaluate how the composition of the match set affects the accuracy of the merged model in
Appendix C.2.

C.1 Similarity of models

We analyze here how similar are models before and after being mapped to the universe space, first by
comparing their representations and then by comparing their weights.

C.1.1 Representation-level similarity

Figures 15a and 15b show the Centered Kernel Alignment (CKA) [22] of the representations of 5
ResNet20 models trained on CIFAR10 with 2× width. The linear version of CKA is defined as

CKA(X,Y) =
HSIC(X,Y)√

HSIC(X,X)HSIC(Y, Y)
, (10)

where HSIC(X,Y) = 1
(N−1)2 tr(XHX⊤H), H = I − 1

N 11⊤ is a centering matrix, and 1 is a
vector of N ones. The denominator is introduced to scale CKA between zero and one, where a value
of one indicates equivalent representations. CKA is invariant to orthogonal transformations and
isotropic scaling. Being permutations orthogonal transformations, CKA stays exactly the same after
mapping the models to the universe. On the contrary, the Euclidean distance of the representations of
the models significantly decreases after mapping to the universe, as shown in Figures 15c and 15d.

C.1.2 Weight-level similarity

We have seen in Figure 5 that the cosine similarity of the weights is higher after mapping the weights
to the universe. This suggests that the models are more similar in the universe, which is consistent
with the fact that it constitutes a convenient space to merge them. We report here for completeness
the Figure 16 the Euclidean distance of the weights of 5 ResNet20 models trained on CIFAR10 with
2× width, showing the same trend as the cosine similarity.

C.2 Merging different subsets

We merge subsets of k < 5 models from the set of 5 models a, b, c, d, e to gauge the effect of the
match set composition over the accuracy of the merged model. As shown in Figure 17, we run two
different merging schemes: in the former (left column), we globally match all the 5 models jointly
and then consider subsets only at the aggregation step. In the second analysis (right column), we
instead consider model subsets from the start, therefore running the whole matching procedure on the
k models before averaging them. This way, we aim to disentangle the error resulting from imperfect
matching from the one naturally resulting from the aggregation. We highlight a few notable aspects:

1. While the accuracies are expectedly higher when matching a subset with permutations
expressly optimized for that same subset (right column), this is not the case for n = 2, in
which the permutations resulting from matching the superset of 5 models yield better results
when merging pairs of them. This hints at the added constraint of cycle consistency over a
wide number of models adding in some cases an advisable prior over the search space.

22

0 1 2 3 4

0
1

2
3

4
M

od
el

S
ym

b
ol

1

0.93 1

0.92 0.92 1

0.93 0.93 0.92 1

0.93 0.93 0.92 0.93 1

Centered Kernel Alignment

(a) Before mapping to universe.

0 1 2 3 4

0
1

2
3

4
M

od
el

S
ym

b
ol

1

0.93 1

0.92 0.92 1

0.93 0.93 0.92 1

0.93 0.93 0.92 0.93 1

Centered Kernel Alignment

(b) After mapping to universe.

0 1 2 3 4

0
1

2
3

4
M

od
el

S
ym

b
ol

0

281.7 0

274.1 266.2 0

273.6 274.3 256.1 0

268.8 258.4 258.6 260.4 0

Euclidean distance between representations

(c) Before mapping to universe.

0 1 2 3 4

0
1

2
3

4
M

od
el

S
ym

b
ol

0

146.4 0

146.6 153.1 0

136.9 145.8 141.4 0

139 144.9 141.6 137.4 0

Euclidean distance between representations

(d) After mapping to universe.

Figure 15: Cented Kernel Alignment and Euclidean distances of the representations of 5 ResNet20
trained on CIFAR10 with 2× width.

0 1 2 3 4

0
1

2
3

4
M

od
el

S
ym

b
ol

0

80.82 0

81.42 80.81 0

81.13 80.98 80.94 0

81.39 80.75 80.97 80.91 0

Euclidean Distance

(a) Before mapping to universe.

0 1 2 3 4

0
1

2
3

4
M

od
el

S
ym

b
ol

0

71.03 0

71.91 71.72 0

71.17 71.24 71.61 0

71.17 71.34 70.93 71.48 0

Euclidean Distance

(b) After mapping to universe.

Figure 16: Euclidean distance of the weights of 5 ResNet20 trained on CIFAR10 with 2× width.

23

2. The particular composition of the match set has a significant impact over the matching and
subsequent merge operation, yielding differences of up to ≈ 20 accuracy points for the
downstream model.

3. The standard deviations before the repair operation (red semi-transparent bars in the plots)
are way lower when optimizing for the permutations over the superset of all 5 models; this
suggests that the matching difficulty is spread over all the maps jointly, eventually yielding
more stable results.

D Discussion

We discuss in this section the limitations of our work, as well as potential future societal impact.

D.1 On the cycle-consistency of C2M3

Our method is natively cycle-consistent due to the mathematical formulation of the optimization
problem. If we were to not desire cycle consistency, the matching method would fall back to the
n = 2 Frank-Wolfe (FW) case presented in Section 3. One would then have to transform the pairwise
matching problem to a n-way matching problem, e.g. by using the n = 2 FW procedure as matching
step in the MergeMany [1] algorithm. Results for the n = 2 FW matching are reported in Table 3.

D.2 Limitations

From what we have observed in our experiments, permutations satisfying linear mode connectivity of
the models are hard to find for most architectures and datasets. In fact, given that there is no practical
way to prove or disprove the conjecture for which most models end up in the same basin modulo
permutations of the neurons, we cannot be sure that a certain set of models even allows finding such
permutations, let alone that the permutations found are the optimal ones. We therefore encourage
the community not to rely on the existence of such permutations in general. However, we have also
shown that we can always find permutations that improve the resulting aggregated model, which is a
promising practical result for model merging. As for all the existing works concerning linear mode
connectivity and model merging, the resulting models that we obtain are sensible to a wide variety
of factors, from training hyperparameters to the optimization algorithm used. Several works have
already observed the phenomenon in practice: among these, Ainsworth et al. [1] mention among
the known failure modes of their approaches models trained with SGD and too low learning rate, or
ADAM coupled with too high learning rate. Jordan et al. [21] show that the chosen normalization
layer incredibly affects the accuracy of the resulting merged model, while Qu and Horvath [30]
observe learning rate, weight decay, and initialization method to play a strong role as well. Being
a mostly empirical field, most of the technical choices that we make in our work mirror the ones
made in previous works and are not based on a solid theoretical foundation. We therefore release
all our code and encourage the community to investigate further on what training and optimization
hyperparameters effect linear mode connectivity and model merging.

D.3 Societal impact and broader vision

The work presented in this paper serves as an additional tool for the community to improve the
efficiency of deep learning models. By merging models, we can reduce the computational cost of
training and inference, as well as the memory footprint of the models. In fact, by aggregating the
information of a set of models into a single one with the same architecture, practitioners can benefit of
the effects of ensembling without incurring in its computational cost. Moreover, merging is in many
cases a practical necessity to guarantee confidentiality and privacy of user data, as it allows to train
models on different subsets of the data, e.g. originating from different clients, and then merge them
to obtain a single model integrating all the information. This is particularly important in the context
of federated learning, where the data is distributed among different clients and cannot be shared.
We believe that the work presented in this paper can be a stepping stone towards more efficient and
privacy-preserving deep learning models, and we encourage the community to further investigate the
potential of model merging in these contexts.

24

(b
,c,

d,
e)

(a
,c,

d,
e)

(a
,b

,d
,e)

(a
,b

,c,
e)

(a
,b

,c,
d)

0.4

0.5

0.6

0.7

0.8
A

cc
u

ra
cy

0.45

0.49 0.49

0.46

0.42

0.71
0.69 0.69

0.71

0.66

Vanilla – mean Repaired – mean Vanilla Repaired

(a) Subsets of 4 out of 5 jointly matched models.

(b
,c,

d,
e)

(a
,c,

d,
e)

(a
,b

,d
,e)

(a
,b

,c,
e)

(a
,b

,c,
d)

0.4

0.5

0.6

0.7

0.8

A
cc

u
ra

cy

0.54

0.38

0.54
0.56

0.61

0.70 0.70

0.74 0.75

0.71

Vanilla – mean Repaired – mean Vanilla Repaired

(b) Subsets of 4 matched models out of 5 models.

(a
,b

,c)

(a
,b

,d
)

(a
,b

,e)

(a
,c,

d)

(a
,c,

e)

(a
,d

,e)

(b
,c,

d)

(b
,c,

e)

(b
,d

,e)

(c
,d

,e)

0.4

0.5

0.6

0.7

0.8

A
cc

u
ra

cy

0.47

0.53 0.54
0.52

0.56 0.57

0.49

0.55 0.55 0.54

0.68
0.70

0.72

0.68

0.72 0.71
0.69

0.72 0.72 0.72

Vanilla – mean Repaired – mean Vanilla Repaired

(c) Subsets of 3 out of 5 jointly matched models.

(a
,b

,c)

(a
,b

,d
)

(a
,b

,e)

(a
,c,

d)

(a
,c,

e)

(a
,d

,e)

(b
,c,

d)

(b
,c,

e)

(b
,d

,e)

(c
,d

,e)

0.4

0.5

0.6

0.7

0.8

A
cc

u
ra

cy

0.58

0.67 0.66

0.57 0.58

0.50

0.65 0.65 0.66

0.56

0.74 0.73
0.75

0.72

0.76

0.72
0.74

0.75 0.75

0.71

Vanilla – mean Repaired – mean Vanilla Repaired

(d) Subsets of 3 matched models out of 5 models.

(a
,b

)
(a

,c)
(a

,d
)

(a
,e)

(b
,c)

(b
,d

)
(b

,e)
(c

,d
)

(c
,e)

(d
,e)

0.4

0.5

0.6

0.7

0.8

A
cc

u
ra

cy

0.63 0.63 0.62

0.69

0.61

0.69
0.68

0.64

0.70

0.65

0.75
0.73 0.72

0.77
0.74 0.75 0.76 0.76

0.78
0.76

Vanilla – mean Repaired – mean Vanilla Repaired

(e) Subsets of 2 out of 5 jointly matched models.

(a
,b

)
(a

,c)
(a

,d
)

(a
,e)

(b
,c)

(b
,d

)
(b

,e)
(c

,d
)

(c
,e)

(d
,e)

0.4

0.5

0.6

0.7

0.8

A
cc

u
ra

cy

0.69 0.67
0.69

0.54

0.68 0.68

0.64

0.70

0.63

0.56

0.74 0.73 0.74

0.70

0.75

0.72
0.73

0.77

0.74

0.70

Vanilla – mean Repaired – mean Vanilla Repaired

(f) Subsets of 2 matched models out of 5 models.

Figure 17: Accuracy of the resulting model when merging different model subsets. (left) performance
of models obtained from aggregating subsets of k < 5 models that were matched jointly. (right)
analoguous results for subsets of k models that are instead matched independently, i.e., by only
optimizing for the permutations that align those k models and discarding the remaining ones. The
semi-transparent bands represent the standard deviation of the accuracy.

25

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: All the claims are supported by experiments and sound reasoning.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss limitations and assumptions of our work in Appendix D.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate ”Limitations” section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

26

Justification: The paper mostly leverages existing theoretical results and properly cites each
of these ones.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We describe in great detail all of the presented algorithms and we report all the
technical details for the architectures. We also provide a modular and reusable codebase that
respects the highest software engineering standards with configuration parameters provided
as separate yaml files. All the experiments were performed by setting reproducible seeds
that are logged in WandB.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

27

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide a modular and reusable codebase that respects the highest software
engineering standards with configuration parameters provided as separate yaml files. Code
is highly reproducible and machine agnostic due to the extensive use of frameworks and
libraries such as PyTorch Lightning, WandB, Hydra and NN-template.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The most important details are provided in the paper, with the yaml configura-
tion files in the code providing all the remaining minor details.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report means and standard deviations for all our experiments when variance
is present. The only entries that do not have standard deviation are those that result in a
deterministic result that is not affected by random seed.

Guidelines:

• The answer NA means that the paper does not include experiments.

28

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The authors should answer ”Yes” if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: we reported in Appendix A the equipment used for the experiments, as well as
a discussion on the efficiency of our methods.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our research totally complies with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss in Appendix D the potential positive societal impact of our work.

29

https://neurips.cc/public/EthicsGuidelines

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We adequately cite all of the used datasets and architectures.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.

30

• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: While we provide a codebase that is extensible and modular enough to be
reused by many researchers in the field, we are not releasing any libraries or datasets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

31

paperswithcode.com/datasets

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

32

	Introduction
	Background
	Approach
	Experiments
	Related work
	Conclusions
	Additional details
	Extended related work
	Pairwise Frank-Wolfe Algorithm
	MergeMany Algorithm
	REPAIR
	Convergence and efficiency
	Architectural details
	Datasets, hyperparameters and hardware details
	Proofs

	Additional experiments
	Pair-wise model matching and merging
	ResNet with BatchNorm

	Initialization strategies
	Variance of the results in Git Re-Basin
	Large-scale matching: ResNet50s trained over ImageNet
	Federated Learning

	Additional analysis
	Similarity of models
	Representation-level similarity
	Weight-level similarity

	Merging different subsets

	Discussion
	On the cycle-consistency of C2M3
	Limitations
	Societal impact and broader vision

