
BUNDLEFLOW: Deep Menus for Combinatorial
Auctions by Diffusion-Based Optimization

Tonghan Wang
Harvard University

twang1@g.harvard.edu

Yanchen Jiang
Harvard University

yanchen_jiang@g.harvard.edu

David C. Parkes
Harvard University

parkes@eecs.harvard.edu

Abstract

Differentiable economics—the use of deep learning for auction design—has driven
progress in multi-item auction design with additive and unit-demand valuations.
However, there has been little progress for combinatorial auctions (CAs), even in
the simplest and yet important single bidder case, due to exponential growth of the
bundle space with the number of items. We address this challenge by introducing a
deep network architecture for a menu-based CA, which supports the first dominant-
strategy incentive compatible (DSIC), revenue-optimizing single-bidder CA. Our
idea is to generate a bundle distribution through an ordinary differential equation
(ODE) applied to a tractable initial distribution. Our method, BUNDLEFLOW,
learns suitable ODE-based transforms, one for each menu element, to optimize
expected revenue. BUNDLEFLOW achieves up to 2.23× higher revenue than
baselines on standard CA testbeds and scales up to 500 items. Compared with
other menu-learning baselines, BUNDLEFLOW also reduces training iterations by
3.6−9.5× and cuts training time by about 80% in settings with 50 and 100 items.

1 Introduction

When selling multiple items simultaneously, bidders often have complex valuations that exhibit
synergies among items. For instance, some items may act as complements, with their collective value
to a bidder exceed the sum of their individual values. Combinatorial auctions (CAs) support such
valuations by allowing bids on bundles of items. Recognized as early as 1922 [54] and formally
defined in 1982 [43], CAs have found a lot of application, from allocating airport runways to
auctioning spectrum licenses [9, 41], efforts whose far-reaching impact underpinned the 2020 Nobel
Prize in economics [46].

While multi-bidder CAs represent the most general framework, many real-world settings are single-
bidder CAs: a streaming platform curating a collection of movies for a viewer (e.g., Prime Video UK
publicly listed 65+ channels on March 2, 2022 [1]), a cloud provider packaging compute features
(hundreds of AWS EC2 instance types with CPU/GPU, memory, bandwidth, and storage options [2]),
an integrated facilities vendor offering configurable service lines (custodial, HVAC, security, pest
control, energy, etc.) across multiple sites [4]. This problem has also been studied as the so-called
“FedEx problem" [15]. The single-bidder CA model is also applicable in settings with multiple
bidders as long as supply constraints apply independently to each bidders; e.g., with information
goods, or services that can be replicated and sold any number of times.

Despite their prominence, designing revenue optimal CAs remains fundamentally challenging. As
with auctions for additive or unit-demand valuations, it is typical to seek mechanisms that are (1)

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

Figure 1: Demonstration of the BUNDLEFLOW method. The x- and y-axes represent the bundle
variables for two specific items: x = 1 and y = 1 correspond to item A and B, respectively, being
in the bundle. An ODE dst = φ(t, st)dt (blue curves) generates bundle distributions αT (sT) (blue
dots) from simple initial distributions α0(s0) (green dots). The opacity represents probability density.
Left. Stage 1: Fix α0(s0) and train the vector field, so the final distribution has all feasible bundles as
its support. Right. Stage 2: Fix the vector field and update initial distributions of menu elements to
manipulate bundle distributions. We present snapshots of four menu elements (organized in columns)
at different training iterations (organized in rows), showing the bundle distribution and price for
each element, along with the test-time auctioneer revenue from the entire menu at the corresponding
iteration (see Sec. 4).

dominant-strategy incentive compatible (DSIC, also strategy-proof), ensuring that bidders benefit
most by reporting their true values, and (2) revenue-maximizing from the auctioneer’s perspective.
However, even the seemingly simpler single-bidder combinatorial setting—a foundational building
block for multi-bidder scenarios—lacks a comprehensive theoretical characterization.

In recent years, researchers have explored the use of deep learning techniques for optimal auction
and mechanism design, commonly referred to as differentiable economics [13]. In particular, deep
learning together with menu-based methods show promise. This learns a menu of options for a
bidder, guaranteeing strategy-proofness provided the menu remains self-bid independent and agent-
optimizing [20]. For a CA, each option in a menu corresponds to a bundle of items (or a distribution
on bundles) and a price. Following RochetNet [13], various methods have been developed for
the single-bidder, non-combinatorial setting [10, 11, 13, 48], demonstrating the ability to discover
auctions that are provably optimal.

However, differentiable economics has made little headway on the problem of optimal CA design due
to the fundamental challenge of handling a number of bundles exponential in the number of items.
Dütting et al. [13] deal with two items and do not guarantee exact DSIC. Duan et al. [12] restrict
their attention to the class of the virtual valuation combinatorial auction (VVCA), which is not fully
general, and only scale to 10 items. Ravindranath et al. [44] consider a sequential CA setting, which
is generally suboptimal when items can be simultaneously auctioned. No previous work provides a
path towards DSIC and flexible, i.e., fully general, mechanisms for tens or hundreds of items, and
novel methodology is needed to make progress.

To understand the challenge of optimal CA design we compare menus for simpler valuations with
menus for combinatorial valuations. For a bidder whose value is additive on items, it suffices to
specify in a menu element the item-wise allocation probabilities, such as [0.3, 0.6] for two items,
along with a price. However, an item-wise allocation is ambiguous for a bidder with a more general
valuation function. For example, [0.3, 0.6] could be 0.3[1, 0]+0.6[0, 1] or 0.3[1, 1]+0.3[0, 1], with the
item-wise allocation decomposed as different bundle-wise allocations, leading to distinct valuations.
One could predefine how to interpret a marginal item-wise allocation to avoid ambiguity, for example
adopting product distribution semantics. But such interpretations sacrifice flexibility–many bundle-
wise allocations cannot be represented; e.g., 0.5[1, 1, 0] + 0.5[0, 0, 1] cannot be represented as a
product distribution. One way to address this is for a menu element to directly specify an allocation
probability for each possible bundle. However, the number of bundles grows exponentially with the
number of items, making an explicit representation intractable.

2

We solve this problem, developing a menu-based, deep learning method for DSIC and fully general,
single-bidder CAs that scales to as many as 500 items. The core idea is to avoid the need to directly
specify a probability for every possible bundle. Instead, we represent a distribution on bundles for
a menu element by a tractable and low-dimensional initial distribution, α0(s0), on initial bundle
variables, s0 ∈ Rm, and an ordinary differential equation (ODE): dst = φ(t, st)dt. The ODE
operates on bundle variables, st ∈ Rm, through the vector field φ(t, ·). Here m is the number of
items and t ∈ [0, T] is the ODE time. A feasible bundle corresponds to a bundle variable where the
entries are all 0s or 1s.

Formally, st is generated from a sample s0 by applying the ODE: st(s0) = s0 +
∫ t

0
φ(τ, sτ)dτ . We

omit the dependence on s0 and write st for simplicity. In this way, the ODE transforms the initial
distribution α0(s0) to a final distribution αT (sT) at time T . By designing the functional form of the
vector field and using the Liouville equation [36], we get a tractable closed-form expression of αT (sT)
that is fully differentiable and supports gradient-based training. Based on this, our method proceeds
in two steps: (1) train the vector field so that the support of the final distribution αT (sT) corresponds
to feasible bundles; (2) fix this trained vector field φ(t, ·), and backpropagate the revenue-maximizing
loss through the flow to update the initial distribution α0(s0) (which updates the final distribution
over bundles) and the price for each menu element. A demonstration of these two steps is shown in
Fig. 1.

This method draws inspiration from diffusion models [22, 32, 50, 51, 60] used in generative AI and
especially continuous normalizing flow [8, 37, 38]. The technical novelty is to extend generative
models to solve an optimization problem, seeking a bundle distribution (and price) for each menu
element that optimizes expected revenue. In particular, there is no known target distribution in our
work. By contrast, in classic generative AI tasks, the target distribution is known and observed as
the data distribution in large-scale pre-training datasets of natural images [14, 45], language [39],
and videos [53]. We call our method BUNDLEFLOW to emphasize the core idea of using continuous
normalizing flow to optimize bundle distributions.

We evaluate BUNDLEFLOW using single-bidder instantiations of CATS [35], a widely adopted CA
testbed. Experimental results demonstrate that our method consistently and significantly outperforms
all baselines across all benchmark settings and scales to auctions involving up to 500 items. For
auctions with 50 to 150 items, BUNDLEFLOW achieves 1.11−2.23× higher revenue. Moreover, this
substantially improved revenue does not compromise training efficiency. On the contrary, compared to
the baseline RochetNet that also learns allocations in menu elements, our method typically requires
3.6−9.5× fewer training iterations and reduces training time by about 80% in settings with 50 or 100
items.

We also make a critical observation when each menu element is forced to deterministically assign a
single bundle. The revenue in this case drops sharply—by as much as 52.7%—bringing performance
down to baseline levels. This underscores the necessity of supporting randomized bundle distributions
in differentiable economics for CAs, a feature that is unique to our method. We discuss a direction to
extend this work to multi-bidder CA design in Appx. B.

2 Preliminaries

Combinatorial Auction. We consider CAs with a single bidder and m items, M = {1, . . . ,m}.
The bidder has a valuation function, v : 2M → R≥0. v is drawn independently from a distribution
F defined on the space of possible valuation functions V , determining how valuable each bundle
S ∈ 2M is for the bidder. We consider bounded valuation functions: v(S) ∈ [0, vmax], S ⊂ 2M , with
vmax > 0, normalized so that v(∅) = 0. The auctioneer knows distribution F but not the valuation v.
The bidder reports their valuation function, perhaps untruthfully, as their bid (function), b ∈ V .

We seek an auction (g, p) that maximizes expected revenue. Here, g : V → X is the allocation rule,
where X is the space of feasible allocations (i.e., no item allocated more than once), so that g(b) ⊆ M
denotes the set of items (perhaps empty) allocated to the bidder at bid b. Also, p : V → R≥0 is
the payment rule, specifying the price associated with allocation g(b). This is a challenging design
problem that has not been solved computationally or analytically in prior work. The utility to the
bidder with valuation function v at bid b is u(v; b) = v(g(b))− p(b), which is the standard model of
quasi-linearity so that values are in effect quantified in monetary units, say dollars. In full generality,

3

the allocation and payment rules may be randomized, with the bidder assumed to be risk neutral and
seeking to maximize their expected utility.

In a dominant-strategy incentive compatible (DSIC) or strategy-proof (SP) auction, the bidder’s
utility is maximized by bidding their true valuation v, whatever this valuation; i.e., u(v; v) ≥ u(v; b),
for ∀v ∈ V, ∀b ∈ V . An auction is individually rational (IR) if the bidder receives a non-negative
utility when participating and truthfully reporting: u(v; v) ≥ 0, for ∀v ∈ V . Following the revelation
principle, it is without loss of generality to focus on SP and IR auctions, as any auction that achieves
a particular expected revenue in a dominant-strategy equilibrium can be transformed into an SP and
IR auction with the same expected revenue. Optimal auction design therefore seeks to identify an SP
and IR auction that maximizes expected revenue, i.e., Ev∼F [p(v)].

Menu-Based CAs. In a menu-based auction, allocation and payment rules are represented by a
menu, B, consisting of K ≥ 1 menu elements. We write B = (B(1), . . . , B(K)), and the kth
menu element, B(k), specifies allocation probabilities on bundles, α(k) : 2M → [0, 1], and a price,
β(k) ∈ R. We allow randomization, where α(k)(S) ∈ [0, 1] is the probability that bundle S ∈ 2M is
assigned in element k. The menu B corresponds to a menu-based representation of an auction. A
bidder with bid b is assigned the element from menu B that maximizes their utility according to the
reported valuation: k∗ ∈ argmaxk

∑
S∈2M α(k)(S)b(S) − β(k). We denote this optimal element

by (α∗(b), β∗(b)). The use of menu-based representations for auction design is DSIC and without
loss of generality [20]. The optimal auction design problem is to find a menu-based representation
that maximizes expected revenue, i.e., Ev∼F [β

∗(v)]. Menu-based architectures [13, 48] in the
differentiable economics literature [10, 11, 16, 24, 29, 30, 42, 56, 61, 63] learn to generate such
menus by neural networks but have not been applied to anything other than very small CA problems.

Diffusion Models and Continuous Normalizing Flow. Diffusion models perform a forward noising
process in which noise is incrementally added to training data over multiple steps, gradually corrupting
the original sample. A reverse diffusion process is then learned to iteratively remove noise, thereby
reconstructing data from near-random initial states. A deterministic reverse process modeled by an
ordinary differential equation (ODE) preserves the same marginal probability densities as a reverse
process modeled by a stochastic differential equation (SDE) [51]. A continuous normalizing flow
also learns to transform and manipulate distributions by an ODE, with a continuous normalizing flow
transporting an input x0 ∈ Rℓ to xt = ϕ(t,x0) at timestep t ∈ [0, T]. Here, ϕ(t, ·) : Rℓ → Rℓ is the
flow, and is governed by the ODE,

d

dt
xt = φ (t,xt) , (1)

where the vector field φ : [0, T] × Rℓ → Rℓ specifies the rate of change of the state x. The
flow ϕ transforms an initial distribution p0(x) to a final distribution pT (x) at time T . Continuous
normalizing flow methods [8] suggest to represent the vector field φ with a neural network.

Rectified Flow. A bottleneck that restricts the use of continuous normalizing flow in large-scale
problems is that the ODE (Eq. 1) is hard to solve when the vector field φ is complex. The rectified
flow [38] addresses this by encouraging the flow to follow the linear path:

min
φ

∫ T

0

Ex0∼p0(x),xT∼pT (x)

[
∥(xT − x0)− φ(t,xt)∥2

]
dt, xt = txT + (T − t)x0. (2)

Here, the target distribution pT (x) and the initial distribution p0(x) are known. xt for t ∈ [0, T] is
the interpolated point between xT and x0, and the rectified flow encourages the vector field to align
as closely as possible with the straight line xT − x0.

3 The Flow-Based Combinatorial Auction Menu Network

The major challenge in learning menus for CAs is to provide a suitable representation of bundle distri-
butions. This representation should be efficient to avoid bottlenecks associated with the exponential
number of bundles, while remaining differentiable to support gradient-based training.

3.1 Menu representation

Our key idea, inspired by score-based diffusion models and continuous normalizing flow, is to
construct a concise and differentiable representation of a bundle distribution by modeling this through

4

the solution of an ODE. Specifically, the kth menu element generates its bundle distribution by the
ODE,

ds
(k)
t = φ(t, s

(k)
t)dt, (3)

for a suitable vector field φ. The bundle variable at time t, s(k)t ∈ Rm, is generated from s
(k)
0

by s
(k)
t (s

(k)
0) = s

(k)
0 +

∫ t

0
φ(τ, s

(k)
τ)dτ . For clarity, we omit the superscript (k) and the explicit

dependence on s0 and write st when it is clear from the context.

We train the vector field φ so that, at time T , a bundle variable sT has all its entries being 0s or 1s
and thus represents a valid bundle. By the Liouville equation [36], the allocation probability of this
bundle, αT (sT), derived from Eq. 3 satisfies:

logαT (sT) = logα0(s0)−
∫ T

0

∇ · φ(t, st)dt, (4)

where α0(s0) is the initial probability and ∇ · φ(t, st) is the divergence of φ.

Training scheme. Both the vector field φ and the initial distribution α0 can influence the final
distribution αT . Our method proceeds in two stages, involving the training of each of these two
components in turn: (1) Flow Initialization. We fix the initial distribution α0 and train the vector
field φ(t, ·) so that the final distribution, αT , provides a reasonable coverage over bundles. (2) Menu
Optimization. We fix the vector field from Stage 1, and backpropagate the revenue-maximizing loss
through the flow to update the initial distribution α

(k)
0 for each menu element k.

φ and α0(s0) play a crucial role in ensuring a concise and easily differentiable representation for
efficient training. We next propose specific functional forms that meet these criteria.

Vector field. We adopt the following functional form for the vector field,

φ(t, st; ξ, θ) = η(t; ξ)Q(s0; θ)st, (5)

where Q : Rm → Rm×m, written as a function of s0, and the scalar factor η : R → R, written
as a function of the ODE time t ∈ [0, T], are neural networks with learnable parameters θ and ξ,
respectively. We omit dependence on θ and ξ when the context is clear. This formulation’s advantage
becomes apparent when we consider φ’s divergence:

∇ · φ(t, st) =
m∑
i=1

∂φi

∂st,i
=

m∑
i=1

∂

∂st,i
η(t)Qi(s0)st =

m∑
i=1

η(t)Qii(s0) = η(t) Tr[Q(s0)]. (6)

Here, φi and st,i are the ith element of φ and st, respectively, Qi is the ith row of Q, and Qii is the
ith diagonal element of Q. Thus, the probability density at T (Eq. 4) becomes

logαT (sT) = logα0(s0)− Tr[Q(s0)]

∫ T

0

η(t)dt. (7)

The integral in Eq. 7 is tractable as it only involves a scalar function, instead of bundle variables. We
can efficiently estimate this integral by time discretization.

Initial distribution. In Stage 1, we use a mixture-of-Gaussian distribution to model α0(s0), with
s0 ∼

∑D
d=1 wdN (µd, σ

2
dIm), where, for D components, µd ∈ Rm, σd ∈ R>0, Im is the m ×m

identity matrix, and wd ≥ 0,
∑D

d=1 wd = 1. In Stage 2, as discussed later, we ensure DSIC by
adopting a mixture-of-Dirac distribution for α0(s0), which is operationalized by setting a very small
variance σd in the mixture-of-Gaussian distribution.

3.2 Stage 1: Flow initialization

Stage 1 ensures that the flow maps any initial bundle variable s0 to a feasible bundle S ∈ 2M .
Denote the indicator vector of S by s = (I{i ∈ S}). si = 1 if item i is in S and 0 otherwise. In
practice, numerical issues make it challenging to obtain exactly s. To account for this, we allow
a small region around s to be approximated as s by modeling the bundle as a Gaussian variable,
Sσz

= N (s, σ2
zIm). We thereby define the target distribution α∗

T (sT) = 1
2m

∑
S∈2M Sσz

as a
uniform mixture-of-Gaussian model, with components centered around each feasible bundle. This

5

target distribution only applies in Stage 1, where it serves to encourage a balanced coverage of the
final distribution over feasible bundles. In Stage 2, we have an optimization problem, and there is no
longer a fixed target distribution.

For Stage1, we fix the initial distribution α0(s0) to a mixture-of-Gaussian model α0(s0) =∑D
d=1 wdN (µd, σ

2
dIm) with D components. The flow training loss is

LFLOW(θ, ξ) =E(s0,sT)∼(α0,α∗
T),t∼[0,T]

[
∥(sT − s0)− φ(t, st; θ, ξ)∥2

]
, (8)

st =t · sT + (T − t) · s0; φ(t, st; θ, ξ) = η(t; ξ)Q(s0; θ)st.

This loss is used to update the neural networks Q and η to encourage the vector field at interpolated
points st to point from s0 to sT . The expectation in the flow training loss is taken over (α0, α

∗
T), but

directly sampling from αT is intractable as it involves 2m bundles. Using a flow-based representation
provides a workaround. We first draw s0 ∼ α0, which is straightforward given that α0 comprises
a manageable number of components (D). We then round s0 to the nearest feasible bundle, s =
I(s0 ≥ 0.5) ∈ {0, 1}m, and sample sT ∼ N (s, σ2

zIm).

3.3 Stage 2: Menu optimization

In Stage 2, we train the menu to optimize the expected revenue. Trainable parameters are prices β(k),
and w

(k)
d , µ(k)

d that define initial distributions α(k)
0 . The vector field φ is fixed in Stage 2 and shared

among all menu elements. We always maintain a null menu element (zero allocation, zero price),
which ensures individual rationality (IR), so that the bidder has non-negative expected utility.

Computing the expected utility corresponding to a menu element with bundle distribution α(k) is
central to evaluating the revenue objective but intractable when done with a direct calculation, because
u(k)(v) =

∑
S∈2M α(k)(S)v(S) requires enumerating 2m bundles for a general valuation function.

By contrast, with a flow, we can get the bundle allocation probabilities by applying the exponential
operation to both sides of Eq. 7 and writing

u(k)(v) = E
s0∼α

(k)
0

[
α
(k)
0 (s0) exp

(
−Tr[Q(s0)]

∫ T

0

η(t)dt]

)
v (⌊sT (s0)⌉)

]
. (9)

Here, ⌊sT (s0)⌉ = I(ϕ(T, s0) ≥ 0.5) is the rounded final bundle, and sT (s0) is the solution of the
ODE, and solved by forward Euler,

sT (s0) = ϕ(T, s0) = s0 +Q(s0)

∫ T

0

η(t)stdt. (10)

Due to its simple form, a modern ODE solver can efficiently solve the ODE (Eq. 10) in just a few
steps. In this way, and since we also make the initial distribution simple, the calculation of u(k)(v)
becomes tractable.

To ensure DSIC, we need to accurately calculate the expectation in Eq. 9 to get the exact utility to the
bidder. We accomplish this by employing a mixture-of-Dirac distribution as the initial distribution,
which has finite support. To implement this in practice, we set, for Stage 2 only, a very small variance
to the Gaussian components, with σd = 1e-20 for every component d. In this way, the utility can be
obtained by enumerating over the finite support of the initial distribution:

u(k)(v) =

D∑
d=1

[
α
(k)
0 (µ

(k)
d) exp

(
−Tr[Q(µ

(k)
d)]

∫ T

0

η(t)dt]

)
v(⌊sT (µ(k)

d)⌉)

]
, (11)

where ⌊sT (µ(k)
d)⌉ = I(ϕ(T,µ(k)

d) ≥ 0.5). That is, the support of α(k)
0 consists, in effect, of the set

of means, one for each component. It is worth noting that D in Eq. 11 does not need to be the same
D as in Stage 1, and it could even vary across menu elements.

With u(k)(v) in Eq. 11, given a set of bidder valuations V , the revenue-maximization loss is defined as

LREV

(
{β(k)}Kk=1,

{
w

(k)
d

}
d∈[D]
k∈[K]

,
{
µ

(k)
d

}
d∈[D]
k∈[K]

)
= − 1

|V|
∑
v∈V

 ∑
k∈[K]

z(k)(v)β(k)

 , (12)

6

Table 1: Revenue comparison on CATS. When m = 10, menus of baselines are large enough to
accommodate all possible bundles. VCG has zero revenue for single-bidder CAs.

Methods
CATS-Regions Uniform Valuations CATS-Regions Normal Valuations

m=10 m=50 m=75 m=100 m=150 m=10 m=50 m=75 m=100 m=150

BUNDLEFLOW 196.19 555.05 454.96 417.83 385.68 173.93 603.70 448.35 389.51 394.82
VCG 0 0 0 0 0 0 0 0 0 0

RochetNet 189.17 288.41 290.14 292.11 312.65 167.16 270.23 300.55 270.23 291.83
Grand Bundle 162.57 316.27 321.10 317.00 314.93 142.54 319.06 328.89 305.06 309.73

Menu+ 202.26 399.85 354.48 322.68 329.17 181.93 459.97 405.36 306.60 312.21
Menu- 202.16 322.85 318.33 326.76 334.20 181.75 342.31 339.82 303.31 315.02

Methods
CATS-Arbitrary Uniform Valuations CATS-Arbitrary Normal Valuations

m=10 m=50 m=75 m=100 m=150 m=10 m=50 m=75 m=100 m=150

BUNDLEFLOW 211.55 560.71 467.79 434.77 420.75 235.80 646.37 490.03 428.54 394.37
VCG 0 0 0 0 0 0 0 0 0 0

RochetNet 205.02 316.79 312.41 313.76 334.51 221.49 348.41 312.79 304.00 316.81
Grand Bundle 175.09 329.62 340.40 343.66 345.98 186.59 354.86 345.88 329.99 336.45

Menu+ 233.26 396.78 351.70 357.44 351.07 248.16 478.67 349.34 335.75 339.10
Menu- 222.74 353.20 355.73 364.33 360.41 248.13 376.31 352.80 343.58 348.39

where z(k)(v) = SoftMaxk
(
λSOFTMAX · u(1)(v), . . . , λSOFTMAX · u(K)(v)

)
is a scaled SoftMax over

bidder utilities and λSOFTMAX is a scaling factor. In Stage 2, we fix the vector field φ (Q and η
networks) in Eq. 11 and update trainable parameters associated with the price and initial distribution
α
(k)
0 , i.e., β(k), {w(k)

d }Dd=1, and {µ(k)
d }Dd=1.

We formally prove that the learned mechanism is always DSIC.

Theorem 1. [Exact DSIC] The BUNDLEFLOW framework ensures the learned auction mechanisms
are DSIC.

The detailed proof can be found in Appx. A.

4 Visualization on a Didactic Example

We present an example to visualize the BUNDLEFLOW training process, adopting the Regions
environment from CATS [35] and considering a uniform value distribution and 5 items. For the flow
network architecture, the Q and σ networks in this example each have three and two 128-dimensional,
tanh-activated, fully-connected hidden layers, respectively. We use the Adam optimizer with a
learning rate of 5e-3 to train these networks, with 20K samples and 60K iterations. Fig. 1-left shows
the effect of Stage 1, where we fix the initial distribution and update the vector field. The x- and
y-axes are the bundle variables for the 3rd and 4th items, respectively (x = 1 and y = 1 mean that the
3rd and 4th items are in the bundle). The vector field gradually learns to cover all possible bundles
in this projected, two-item subspace, as indicated by points (0, 0), (0, 1), (1, 0), and (1, 1) in the
plots. Fig. 1-right illustrates the dynamics of Stage 2. The support size of the initial distributions
is set to 512, the menu size to 8, and λSOFTMAX to 1. The subplot is organized into four columns,
each displaying changes in the bundle allocation (depicted by blue dots) and price of a distinct menu
element. Changes in the bundle distribution for a menu element result from updates to the initial
distribution for this element. We observe that each menu element learns to allocate different bundles.
For example, Menu Element 3 manages bundles (0, 1) and (1, 0), and sets a price of 88.245 after
Train Iteration 1020, at which point the revenue reaches 64.31.

5 Experiments

Benchmark. We evaluate our method on CATS [35], a standard benchmark in CA research.1
Consistent with previous works [5, 6, 17, 19, 26–28, 47, 49, 59, 62], we focus our experiments on
Arbitrary and Regions environments, which represent the most challenging problem instances [34].
Valuations are expressed in the CATS XOR bidding language as sets of bundles paired with their
corresponding values (sets of atoms). We test different numbers of items: 10, 50, 75, 100, and 150

1We used the latest CATS v2.2 as is distributed under the “CATS License Agreement” (non-commercial
research use); see https://www.cs.ubc.ca/~kevinlb/CATS/.

7

https://www.cs.ubc.ca/~kevinlb/CATS/

0 100k 200k
0.0

200.0

400.0

600.0

0 400 800 0 10M 20M
Iteration Wall time (s) # Train Samples

Te
st

 R
ev

en
ue

0 200k 400k
0.0

100.0
200.0
300.0

0 2000 0 20M 40M
Iteration Wall time (s) # Train Samples

Te
st

 R
ev

en
ue

(a) 50 Items (b) 100 Items

(c) 150 Items (d) 50 Items, 50 XOR atoms

0 50k 100k 150k 200k
0.0

200.0

400.0

600.0

0 200 400 600 800 0 10M 20M

Small-Bundle Big-Bundle BundleFlow Bundle-RochetNet Grand-Bundle

Iteration Wall time (seconds) # Training Samples

Te
st

 R
ev

en
ue

0 100k 200k
0.0

100.0
200.0
300.0
400.0

0 400 800 0 10M 20M
Iteration Wall time (s) # Train Samples

Te
st

 R
ev

en
ue

0 200k 400k
0.0

200.0

400.0

0 1000 0 20M 40M
Iteration Wall time (s) # Train Samples

Te
st

 R
ev

en
ue

Menu- Menu+ BundleFlow RochetNet Grand Bundle

0 50k 100k 150k 200k
0.0

200.0

400.0

600.0

0 200 400 600 800 0 10M 20M

Small-Bundle Big-Bundle BundleFlow Bundle-RochetNet Grand-Bundle

Iteration Wall time (seconds) # Training Samples

Te
st

 R
ev

en
ue

Figure 2: Learning curves on CATS Arbitrary with normal valuations. (a-c) Results for 50, 100,
and 150 items, respectively. (d) Results for 50 items, increasing XOR atoms per value function from
5 to 50. Columns show the changes in test revenue as a function of the number of training iterations,
wall time in seconds, and the number of training samples, respectively.

Table 2: Effect of the support size of the initial distribution (D) on BUNDLEFLOW in different CATS
environments. The revenue drops dramatically when changing from D = 2 to D = 1.

Items (m)
CATS-Regions Normal Valuations CATS-Arbitrary Uniform Valuations

D=1 D=2 D=4 D=8 D=16 D=1 D=2 D=4 D=8 D=16

50 278.82 589.50 596.67 603.70 595.14 287.98 557.06 563.70 560.71 561.51
100 258.18 364.29 372.49 389.51 388.06 279.75 425.94 426.80 434.77 428.53
150 291.69 338.52 368.00 394.28 383.24 318.97 383.44 396.71 420.75 411.86

across all environments. On the Regions environment with normal value distributions, we further
test 200 and 500 items. When varying the number of items, we set the maximum XOR atoms per bid
to 5 (the default value). We also experiment with increasing the maximum number of atoms to 50.
Appx. D.1 discusses how to set up single-bidder auctions in CATS. All experiments are conducted on
a single NVIDIA A100 GPU. Our code is available online2.

Baselines. The classic Vickrey–Clarke–Groves (VCG) mechanism remains truthful in this single
bidder CA context but charges the bidder her externality, which is zero when there is only one
participant. Myerson’s virtual-value approach [40] is designed for single-item auctions and is not
well defined when items exhibit complementarities.

Learning-based methods that are DSIC fall in two broad categories. First, there are menu-based
methods with item-wise allocations such as RochetNet [13]. These methods have limited power for
CAs because they do not express general bundle distributions. We use RochetNet as the first baseline:

(1) RochetNet [13]: Interpret the item-wise allocation as a product distribution. Calculating bidder
values remains intractable due to the need to enumerate all bundles. We address this by employ-
ing the Gumbel-SoftMax technique [31], which enables sampling from product distributions and
backpropagation through the samples to update item-wise allocations.

Second, there are methods such as the affine maximizer auction (AMA) and its deterministic variant
the VVCA [10–12]. These explore a restricted family of affine mechanisms, with the result that
they exhibit restricted expressiveness and achieve suboptimal revenue. We include baselines that are
simplified versions of the AMA and VVCA methods, where we necessarily fix the menu to contain a
subset of all possible bundles in order to scale to instances with a large number of items:

(2) Menu+: The menu contains as elements the grand bundle (the bundle of all items), as well as the
largest bundles immediately smaller in size. When the menu size cannot accommodate all bundles of
a certain size, the selection of bundles of this size is random.

(3) Menu-: Similar to Menu+, but we begin by including elements that consist of single-item bundles,
expanding as the menu size permits, and always including the grand bundle.

2https://github.com/TonghanWang/BundleFlow.git

8

https://github.com/TonghanWang/BundleFlow.git

Table 3: Effect of increasing D, the support size of initial distributions, under varying menu sizes K,
the number of elements in a menu.

Menu Size K/4 K/2 K K ∗ 2
Environments m D=1 D=2 D=1 D=2 D=1 D=2 D=1 D=2

CATS-Regions
Normal

Valuations

50 228.34 575.52 259.95 568.94 278.82 589.50 315.88 602.98
100 213.26 324.04 226.11 345.51 258.18 364.29 270.65 419.12
150 245.22 312.82 268.78 318.21 291.69 338.52 302.04 385.08

CATS-Arbitrary
Uniform

Valuations

50 238.96 546.50 261.61 551.78 287.98 557.06 303.53 561.28
100 230.84 357.99 254.20 408.45 279.75 425.94 305.11 438.27
150 297.22 355.07 303.08 361.01 318.97 383.44 343.19 404.30

(4) Grand Bundle: This menu has the grand bundle as the only menu element.

For (2) and (3), we learn the prices corresponding to each element using gradient-based optimization.
For (4), the price on the single element, the grand bundle, is determined through a grid search to
maximize training revenue. Performance, as with all methods, is reported on the test set.

Hyperparameters. Detailed hyperparameter settings of BUNDLEFLOW and baselines can be found
in Appx. D. For BUNDLEFLOW, we set the support size of the initial distribution D to 8, and the
menu size K to 5000 when m ≤ 100, and 20000 otherwise. We did not extensively fine-tune the
remaining hyperparameters, such as neural network sizes, as the initial trial guided by prior practice
already yielded satisfactory results.

5.1 Experimental Results

Performance. Table 1 shows the revenue of our method and baselines. BUNDLEFLOW performs
consistently and significantly better when the number of items is large (10 < m < 200), achieving
significant revenue gains of 1.11−2.23× over baselines. It remains superior at scale: for 200 ≤
m < 500, BUNDLEFLOW continues to outperform all the baselines as shown in Table 4. The
learning curves in Fig. 2 reveal another advantage of BUNDLEFLOW. Compared to RochetNet,
which is the baseline that also learns allocations in a menu, our method achieves a 3.6−9.5×
improvement in the number of training iterations in CATS Arbitrary with normal value distributions
(for 10 < m < 200). Our method can also reduce training time in some settings. For example,
when m = 50, BUNDLEFLOW reduces the training duration from about 700 seconds to 140 seconds,
achieving a 5× improvement in training speed. These results highlight that BUNDLEFLOW, while
allowing improved representational capacity over baselines, formulates an optimization problem that
is tractable, enabling improved revenue as well as training efficiency. We discuss inference time in
Appendix D.4.

When the number of items is small (m=10), baselines (Menu+, Menu-, RochetNet) with a menu
size of 5K can already cover all possible bundles (210 = 1024). Although these settings are not our
primary focus, BUNDLEFLOW achieves comparable revenue to these baselines.

The support size of bundle distributions. Table 2 provides insights into why BUNDLEFLOW has
superior revenue. When we reduce the support size of initial distributions (D) to 1, each menu
element deterministically assigns a single bundle and no longer represents a bundle distribution.
Correspondingly, we observe a dramatic drop in revenue when D is decreased from D = 2 to
D = 1. For example, in the CATS Regions with normal value distributions and 50 items, the
revenue declines sharply from 589.50 to 278.82. This trend remains when we vary the menu size,
as shown in Table 3. This pronounced performance gap between D = 2 and D = 1 highlights the
importance of maintaining a randomized distribution over bundles in the application of differentiable
economics to CAs—a capability uniquely enabled by our method.

In Table 5, we vary the menu size in a smaller range (10, 20, 100, 200) and present the test revenue of
our method with D = 1, D = 2, and D = 16. When the menu size is small, increasing D beyond 2
can triple the test revenue. With increased menu sizes, the gain for D larger than 2 diminishes but
remains positive. We interpret this observation as follows. The representation capacity depends on
both the menu size and the support size of each menu element. For a small menu size, increasing
D beyond 2 continues to help. For a large menu size, the main gain comes from allowing some
randomization (increasing D from 1 to 2).

9

Table 4: Test revenue (large number of items).

Methods m = 200 m = 500

BUNDLEFLOW 375.90 397.33
Menu+ 298.0 312.9
Menu- 302.8 315.0

RochetNet 365.0 375.0
Grand Bundle 296.3 308.5

Table 5: A support size of D > 2 contributes more
significantly when the menu size is small.

Menu Size D = 1 D = 2 D = 16

Menu Size 10 43.86 106.00 303.51
Menu Size 20 67.84 272.12 337.82
Menu Size 100 130.46 402.85 449.27
Menu Size 200 148.47 439.61 449.18

Menu size and valuation function size. Table 3 presents the influence of menu sizes (K), specifically
when they are halved, quartered, or doubled. A randomized distribution over bundles is crucial in
each of these settings, with revenue falling sharply when D decreases to 1. Furthermore, increasing
the menu size tends to improve performance, although the gains are modest for a small number of
items. For example, in CATS Regions with normal value distributions and m = 100, increasing the
menu size from K/4 to K × 2 leads to a 29.34% revenue boost, in contrast to a merely 4.77% boost
when m = 50 . Increasing the maximum number of XOR atoms per valuation from 10 to 50 has
minimal effects on our method and baselines, as evidenced in Table 6 and Fig. 3.

6 Closing Remarks

The key contribution in this paper is an ODE-based framework that enables concise yet flexible
representation and efficient optimization for bundle distributions in CA deep learning. By keeping
these distributions tractable—avoiding an exponential representation size—we dramatically increase
revenue over baselines. Appx. B also suggests an interesting direction in extending this approach to
multi-bidder CA design, although its current complexity is prohibitive. Reducing this complexity is
key for future work.

References
[1] Amazon. 2022. Prime Video Pledges £10m to Support Training and Development in the UK

TV and Film Industry. press.aboutamazon.com (Mar 2022). Press page listing 65+ add-on
channels; Accessed Oct. 22, 2025.

[2] Amazon Web Services. 2025. Amazon EC2 Instance Types. https://aws.amazon.com/
ec2/instance-types/. Accessed Oct. 22, 2025.

[3] Brian DO Anderson. 1982. Reverse-time diffusion equation models. Stochastic Processes and
their Applications 12, 3 (1982), 313–326.

[4] Aramark. 2025. Facilities Management Services. https://www.aramark.com/
our-services/facilities-management-services. Accessed Oct. 22, 2025.

[5] Maria-Florina Balcan, Travis Dick, Tuomas Sandholm, and Ellen Vitercik. 2018. Learning to
branch. In International conference on machine learning. PMLR, 344–353.

[6] Maria-Florina F Balcan, Siddharth Prasad, Tuomas Sandholm, and Ellen Vitercik. 2021. Sample
complexity of tree search configuration: Cutting planes and beyond. Advances in Neural
Information Processing Systems 34 (2021), 4015–4027.

[7] Duygu Ceylan, Chun-Hao P Huang, and Niloy J Mitra. 2023. Pix2video: Video editing using
image diffusion. In Proceedings of the IEEE/CVF International Conference on Computer Vision.
23206–23217.

[8] Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. 2018. Neural
ordinary differential equations. Advances in neural information processing systems 31 (2018).

[9] Peter Cramton. 1997. The FCC spectrum auctions: An early assessment. Journal of Economics
& Management Strategy 6, 3 (1997), 431–495.

[10] Michael Curry, Tuomas Sandholm, and John Dickerson. 2022. Differentiable economics for
randomized affine maximizer auctions. arXiv preprint arXiv:2202.02872 (2022).

10

https://press.aboutamazon.com/uk/2022/3/prime-video-pledges-10m-to-support-training-and-development-in-the-uk-tv-and-film-industry
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/
https://www.aramark.com/our-services/facilities-management-services
https://www.aramark.com/our-services/facilities-management-services

[11] Zhijian Duan, Haoran Sun, Yurong Chen, and Xiaotie Deng. 2023. A Scalable Neural Network
for DSIC Affine Maximizer Auction Design. Advances in Neural Information Processing
Systems (2023).

[12] Zhijian Duan, Haoran Sun, Yichong Xia, Siqiang Wang, Zhilin Zhang, Chuan Yu, Jian Xu,
Bo Zheng, and Xiaotie Deng. 2024. Scalable Virtual Valuations Combinatorial Auction
Design by Combining Zeroth-Order and First-Order Optimization Method. arXiv preprint
arXiv:2402.11904 (2024).

[13] Paul Dütting, Zhe Feng, Harikrishna Narasimhan, David C Parkes, and Sai Srivatsa Ravin-
dranath. 2024. Optimal auctions through deep learning: Advances in differentiable economics.
J. ACM 71, 1 (2024), 1–53.

[14] Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini,
Yam Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. 2024. Scaling rectified flow
transformers for high-resolution image synthesis. In Forty-first International Conference on
Machine Learning.

[15] Amos Fiat, Kira Goldner, Anna R Karlin, and Elias Koutsoupias. 2016. The fedex problem. In
Proceedings of the 2016 ACM Conference on Economics and Computation. 21–22.

[16] Jessie Finocchiaro, Roland Maio, Faidra Monachou, Gourab K Patro, Manish Raghavan,
Ana-Andreea Stoica, and Stratis Tsirtsis. 2021. Bridging machine learning and mechanism
design towards algorithmic fairness. In Proceedings of the 2021 ACM conference on fairness,
accountability, and transparency. 489–503.

[17] Maxime Gasse, Didier Chételat, Nicola Ferroni, Laurent Charlin, and Andrea Lodi. 2019. Exact
combinatorial optimization with graph convolutional neural networks. Advances in neural
information processing systems 32 (2019).

[18] Nate Gruver, Samuel Stanton, Nathan Frey, Tim GJ Rudner, Isidro Hotzel, Julien Lafrance-
Vanasse, Arvind Rajpal, Kyunghyun Cho, and Andrew G Wilson. 2024. Protein design with
guided discrete diffusion. Advances in neural information processing systems 36 (2024).

[19] Prateek Gupta, Elias B Khalil, Didier Chetélat, Maxime Gasse, Yoshua Bengio, Andrea Lodi,
and M Pawan Kumar. 2022. Lookback for learning to branch. arXiv preprint arXiv:2206.14987
(2022).

[20] Peter J Hammond. 1979. Straightforward individual incentive compatibility in large economies.
The Review of Economic Studies 46, 2 (1979), 263–282.

[21] Jonathan Ho, William Chan, Chitwan Saharia, Jay Whang, Ruiqi Gao, Alexey Gritsenko,
Diederik P Kingma, Ben Poole, Mohammad Norouzi, David J Fleet, et al. 2022. Imagen video:
High definition video generation with diffusion models. arXiv preprint arXiv:2210.02303
(2022).

[22] Jonathan Ho, Ajay Jain, and Pieter Abbeel. 2020. Denoising diffusion probabilistic models.
Advances in neural information processing systems 33 (2020), 6840–6851.

[23] Jonathan Ho, Tim Salimans, Alexey Gritsenko, William Chan, Mohammad Norouzi, and David J
Fleet. 2022. Video diffusion models. Advances in Neural Information Processing Systems 35
(2022), 8633–8646.

[24] Safwan Hossain, Tonghan Wang, Tao Lin, Yiling Chen, David C Parkes, and Haifeng Xu.
2024. Multi-Sender Persuasion: A Computational Perspective. In International Conference on
Machine Learning. PMLR, 18944–18971.

[25] David Huang, Francisco Marmolejo-Cossío, Edwin Lock, and David Parkes. 2025. Accelerated
Preference Elicitation with LLM-Based Proxies. arXiv preprint arXiv:2501.14625 (2025).

[26] Taoan Huang, Aaron M Ferber, Yuandong Tian, Bistra Dilkina, and Benoit Steiner. 2023. Search-
ing large neighborhoods for integer linear programs with contrastive learning. In International
Conference on Machine Learning. PMLR, 13869–13890.

[27] Frank Hutter, Holger H Hoos, Kevin Leyton-Brown, and Thomas Stützle. 2009. ParamILS: an
automatic algorithm configuration framework. Journal of artificial intelligence research 36
(2009), 267–306.

[28] Frank Hutter, Lin Xu, Holger H Hoos, and Kevin Leyton-Brown. 2014. Algorithm runtime
prediction: Methods & evaluation. Artificial Intelligence 206 (2014), 79–111.

11

[29] Dima Ivanov, Paul Dütting, Inbal Talgam-Cohen, Tonghan Wang, and David C Parkes. 2024.
Principal-Agent Reinforcement Learning: Orchestrating AI Agents with Contracts. arXiv
preprint arXiv:2407.18074 (2024).

[30] Dmitry Ivanov, Iskander Safiulin, Igor Filippov, and Ksenia Balabaeva. 2022. Optimal-er
auctions through attention. Advances in Neural Information Processing Systems 35 (2022),
34734–34747.

[31] Eric Jang, Shixiang Gu, and Ben Poole. 2017. Categorical Reparameterization with Gumbel-
Softmax. In International Conference on Learning Representations. https://openreview.
net/forum?id=rkE3y85ee

[32] Zahra Kadkhodaie, Florentin Guth, Eero P Simoncelli, and Stéphane Mallat. 2024. General-
ization in diffusion models arises from geometry-adaptive harmonic representations. In The
Twelfth International Conference on Learning Representations.

[33] Ron Lavi, Ahuva Mu’Alem, and Noam Nisan. 2003. Towards a characterization of truthful
combinatorial auctions. In 44th Annual IEEE Symposium on Foundations of Computer Science,
2003. Proceedings. IEEE, 574–583.

[34] Kevin Leyton-Brown, Eugene Nudelman, and Yoav Shoham. 2009. Empirical hardness models:
Methodology and a case study on combinatorial auctions. J. ACM 56, 4, Article 22 (July 2009),
52 pages. doi:10.1145/1538902.1538906

[35] Kevin Leyton-Brown, Mark Pearson, and Yoav Shoham. 2000. Towards a universal test suite
for combinatorial auction algorithms. In Proceedings of the 2nd ACM conference on Electronic
commerce. 66–76.

[36] Joseph Liouville. 1838. Note sur la théorie de la variation des constantes arbitraires. Journal de
mathématiques pures et appliquées 3 (1838), 342–349.

[37] Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matthew Le. 2022.
Flow Matching for Generative Modeling. In The Eleventh International Conference on Learning
Representations.

[38] Xingchao Liu, Chengyue Gong, and Qiang Liu. 2022. Flow straight and fast: Learning to
generate and transfer data with rectified flow. arXiv preprint arXiv:2209.03003 (2022).

[39] Aaron Lou, Chenlin Meng, and Stefano Ermon. 2024. Discrete Diffusion Modeling by Esti-
mating the Ratios of the Data Distribution. In Forty-first International Conference on Machine
Learning.

[40] Roger B Myerson. 1981. Optimal auction design. Mathematics of operations research 6, 1
(1981), 58–73.

[41] Ignacio Palacios-Huerta, David C. Parkes, and Richard Steinberg. 2024. Combinatorial Auctions
in Practice. Journal of Economics Literature 62 (2024), 517–553.

[42] Jad Rahme, Samy Jelassi, and S Matthew Weinberg. 2020. Auction Learning as a Two-Player
Game. In International Conference on Learning Representations.

[43] Stephen J Rassenti, Vernon L Smith, and Robert L Bulfin. 1982. A combinatorial auction
mechanism for airport time slot allocation. The Bell Journal of Economics (1982), 402–417.

[44] Sai Srivatsa Ravindranath, Zhe Feng, Di Wang, Manzil Zaheer, Aranyak Mehta, and David C
Parkes. 2024. Deep Reinforcement Learning for Sequential Combinatorial Auctions. arXiv
preprint arXiv:2407.08022 (2024).

[45] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. 2022.
High-resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition. 10684–10695.

[46] Royal Swedish Academy of Sciences. 2020. The Sveriges Riksbank Prize in Economic Sciences
in Memory of Alfred Nobel 2020. Press release. https://www.nobelprize.org/prizes/
economic-sciences/2020/press-release/

[47] Lara Scavuzzo, Feng Chen, Didier Chételat, Maxime Gasse, Andrea Lodi, Neil Yorke-Smith,
and Karen Aardal. 2022. Learning to branch with tree mdps. Advances in neural information
processing systems 35 (2022), 18514–18526.

12

https://openreview.net/forum?id=rkE3y85ee
https://openreview.net/forum?id=rkE3y85ee
https://doi.org/10.1145/1538902.1538906
https://www.nobelprize.org/prizes/economic-sciences/2020/press-release/
https://www.nobelprize.org/prizes/economic-sciences/2020/press-release/

[48] Weiran Shen, Pingzhong Tang, and Song Zuo. 2019. Automated Mechanism Design via Neural
Networks. In Proceedings of the 18th International Conference on Autonomous Agents and
MultiAgent Systems. 215–223.

[49] Jialin Song, Yisong Yue, Bistra Dilkina, et al. 2020. A general large neighborhood search
framework for solving integer linear programs. Advances in Neural Information Processing
Systems 33 (2020), 20012–20023.

[50] Yang Song and Stefano Ermon. 2019. Generative modeling by estimating gradients of the data
distribution. Advances in neural information processing systems 32 (2019).

[51] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and
Ben Poole. 2021. Score-Based Generative Modeling through Stochastic Differential Equations.
In International Conference on Learning Representations.

[52] Ermis Soumalias, Yanchen Jiang, Kehang Zhu, Michael Curry, Sven Seuken, and David C
Parkes. 2025. LLM-Powered Preference Elicitation in Combinatorial Assignment. arXiv
preprint arXiv:2502.10308 (2025).

[53] Stability AI. 2023. Stable Diffusion 3. https://stability.ai/news/
stable-diffusion-3. [Online; accessed 24-January-2025].

[54] U.S. Congress. 1925. Exhibit B-1, Exhibits to Testimony. In Select Comm. to Inquire into
Oper., Policies, and Affairs of the U.S. Shipping Board and the U.S. Emergency Fleet Corp.
Government Printing Office: Washington, D.C., 3440–3443.

[55] Tonghan Wang, Heng Dong, Yanchen Jiang, David C Parkes, and Milind Tambe. 2024. On
Diffusion Models for Multi-Agent Partial Observability: Shared Attractors, Error Bounds, and
Composite Flow. arXiv preprint arXiv:2410.13953 (2024).

[56] Tonghan Wang, Paul Dütting, Dmitry Ivanov, Inbal Talgam-Cohen, and David C Parkes. 2023.
Deep contract design via discontinuous networks. Advances in Neural Information Processing
Systems 36 (2023), 65818–65836.

[57] Tonghan Wang, Yanchen Jiang, and David C Parkes. 2024. GemNet: Menu-Based, Strategy-
Proof Multi-Bidder Auctions Through Deep Learning. In Proceedings of the 25th ACM Confer-
ence on Economics and Computation. 1100–1100.

[58] Michael Weiss, Benjamin Lubin, and Sven Seuken. 2017. Sats: A universal spectrum auction
test suite. In Proceedings of the 16th Conference on Autonomous Agents and MultiAgent Systems.
São Paulo, Brazil, 51–59.

[59] Yaoxin Wu, Wen Song, Zhiguang Cao, and Jie Zhang. 2021. Learning large neighborhood
search policy for integer programming. Advances in Neural Information Processing Systems 34
(2021), 30075–30087.

[60] Xinyi Yang, Liang Zeng, Heng Dong, Chao Yu, Xiaoran Wu, Huazhong Yang, Yu Wang, Milind
Tambe, and Tonghan Wang. 2025. Policy-to-Language: Train LLMs to Explain Decisions with
Flow-Matching Generated Rewards. arXiv preprint arXiv:2502.12530 (2025).

[61] Edwin Zhang, Sadie Zhao, Tonghan Wang, Safwan Hossain, Henry Gasztowtt, Stephan Zheng,
David C Parkes, Milind Tambe, and Yiling Chen. 2024. Position: Social Environment Design
Should be Further Developed for AI-based Policy-Making. In International Conference on
Machine Learning. PMLR, 60527–60540.

[62] Tianyu Zhang, Amin Banitalebi-Dehkordi, and Yong Zhang. 2022. Deep reinforcement learning
for exact combinatorial optimization: Learning to branch. In 2022 26th international conference
on pattern recognition (ICPR). IEEE, 3105–3111.

[63] Stephan Zheng, Alexander Trott, Sunil Srinivasa, David C Parkes, and Richard Socher. 2022.
The AI Economist: Taxation policy design via two-level deep multiagent reinforcement learning.
Science advances 8, 18 (2022), eabk2607.

13

https://stability.ai/news/stable-diffusion-3
https://stability.ai/news/stable-diffusion-3

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Our abstract and introduction accurately describe our motivation, problem,
approach, and contributions.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discussed our limitations in Sec. 6.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]

14

Justification: The only theorem we have is Theorem 1. We provide the full proof in Appx.
A.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We describe the details of our algorithm in Sec. 3 and provide detailed
hyperparameter settings in Appx. D.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

15

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We provide code and data in the supplemental material.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Experimental settings and details are elaborated in detail in Sec. 5 and Appx.
D.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: Since auction settings general require deploying a single mechanism, we report
the best result for both our method and baselines.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

16

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We discuss the computer resources in Appx. D. Training time is reported in
Fig. 2.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have reviewed the code of ethics and comply with all aspects.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discussed the broader societal impacts of combinatorial auctions, as well
as its adoption in economics, in the Introduction section.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.

17

https://neurips.cc/public/EthicsGuidelines

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our problem setting and data generation are based on a given statistical
distribution and do not pose any risk.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We use the Combinatorial Auction Test Suite (CATS) v2.2 to generate the
synthetic valuation profiles for our experiments. CATS was introduced in [33] and is
distributed from https://www.cs.ubc.ca/~kevinlb/CATS/. It is covered by the “CATS
License Agreement” (2003, non-commercial research use only). We (a) cite the original
paper, (b) name the exact asset and version, (c) use CATS solely for non-commercial
academic research without modifying its source code, thereby respecting all license terms.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.

18

https://www.cs.ubc.ca/~kevinlb/CATS/

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: Every new component is fully specified in Sec. 3. The authors include the
codebase with a README describing the usage instructions and example commands.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: There are no human subjects experiments.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: There are no human subjects experiments.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

19

paperswithcode.com/datasets

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The paper’s methodology does not use LLM in any way, and LLM is not used
beyond editing and formatting purposes.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

20

https://neurips.cc/Conferences/2025/LLM

Appendix

A Proof

Theorem 1. [Exact DSIC] The BUNDLEFLOW framework ensures the learned auction mechanisms
are DSIC.

Proof. The seminal work by Hammond [20] establishes necessary and sufficient conditions for a
strategyproof menu-based auction: (1) Self-bid independent: the menu is independent of the bidder’s
bid; and (2) Agent-optimizing: the bidder is assigned the menu element that maximizes their utility.
As we analyze here, our method satisfies these two properties.

In BUNDLEFLOW, all element prices, as well as bundle allocations, which depend on initial distribu-
tions and the vector field, are trained on values sampled from the distribution F , without using any
information about the bidder’s specific valuation. Therefore, menus learned by BUNDLEFLOW are
self-bid independent.

As discussed in Sec. 3.3, we require the initial distribution for each menu element to have finite
support, which means that the bundle distribution for each menu element can be reconstructed without
any approximation error. This guarantees exact utility calculation for every menu element. Moreover,
unlike the SoftMax during training, we use hard argmax at test time, thereby selecting the menu
element with the highest utility to the bidder. In this way, BUNDLEFLOW is agent-optimizing.

B Discussion

Representation flexibility. In Stage 1, we initialize the vector field φ. The final distribution can
in principle cover all 2m bundles and is trained to seek to achieve this. In Stage 2, since the initial
distribution for a menu element has finite support of size D, the bundle distribution for a menu
element is also limited to finite support of size D. What is crucial, though, is that we can learn which
(up to) D bundles are represented in the distribution that corresponds to a menu element. In practice,
we find that a bounded D that is much smaller than 2m still gives very high expected revenue.

Extension to multi-bidder settings. By providing a tractable and yet fully flexible representation
of single-bidder menus for the CA setting, BUNDLEFLOW opens up the possibility of developing a
general DSIC multi-bidder CA mechanism. A principled approach is to adapt the idea of GemNet [57].
First, we can learn a separate BUNDLEFLOW menu for each bidder. The modification in the network
architecture is that these menus should now also depend on other bidders’ bids b-i. To achieve this,
we can condition the vector field, specifically the Q and σ networks, on b-i by concatenating them to
the inputs. For the price of each menu element, we can model them as the output of a neural network
whose input is b-i. During training, we can also introduce a compatibility loss in the same way as that
used in GemNet. This loss penalizes any over-allocation of items in the selected agent-optimizing
elements from individual menus.

The major challenge in adapting GemNet to the multi-bidder CA setting will arise during the post-
training stage of GemNet, which adjusts prices of menu elements so that there is provably never
any over-allocation of items. For this, GemNet constructs a grid over the space of bidder values.
On each grid point, GemNet formulates a mixed-integer linear program (MILP) to adjust prices to
ensure that, the utility of the best element that is compatible with the choices of others in the sense of
not over-allocating items is larger than that of all other elements by a safety margin. These safety
margins prevent an incompatible menu element from being selected in the regions between grid
points. Although the concise BUNDLEFLOW menu representation makes it possible for this MILP
to be directly adapted to the CA setting and used to adjust BUNDLEFLOW menus to obtain a DSIC
multi-bidder CA, the main issue is that the space of bidder values exhibits exponential dimensionality
in the CA setting, resulting in an excessively large grid. Reducing this complexity represents the
crucial remaining step in future work to enable the use of differentiable economics for learning a
general, DSIC, and multi-bidder CA mechanism.

21

C Additional Background

Bidding language. In CAs, a suitable bidding language is critical to allow a bidder to report their
bid without needing to enumerate a value for every possible bundle. There are many ways to do this
(including text-based preference elicitation via an LLM [25, 52]), but a common approach is to use
the XOR bidding language, which allows bidders to submit bid prices for each of multiple bundles
under an exclusive-or condition; in effect, only one bid price on a bundle can be accepted. Popular
CA testbeds such as CATS [35] and SATS [58] employ this bidding language extensively.3 The
semantics of the XOR bidding language is that the value on a bundle S is the maximum bid price on
any bundle S′, submitted as part of the XOR bid, and for which S′ ⊆ S. XOR bids are succinct for
valuation functions in which the bidder is only interested in a bounded number of possible bundles.

Diffusion models. Diffusion models have emerged as a powerful class of generative AI methods,
spurring notable advances in a wide range of tasks such as image generation [14, 45], video gen-
eration [7, 21, 23], molecular design [18], text generation [39], and multi-agent learning [55]. At
their core, these models perform a forward noising process in which noise is incrementally added
to training data over multiple steps, gradually corrupting the original sample. A reverse diffusion
process is then learned to iteratively remove noise, thereby reconstructing data from near-random
initial states. In our setting, instead of reconstructing data, we extend the diffusion process to develop
a tractable and differentiable method that optimizes a high-dimensional distribution.

In particular, score-based diffusion models enjoy strong mathematical and physical underpinnings.
The forward noising process is an Itô stochastic differential equation (SDE),

dx = f(x, t)dt+ h(t)dw, (13)

where x(t) ∈ Rℓ is the state at time t, for some ℓ ∈ Z>0, f(·, t) : Rℓ → Rℓ is the drift coefficient,
h(·) : R → R is the diffusion coefficient, and w is the standard Wiener process (Brownian motion).
Different forward processes are designed by specifying functional forms for f(·, t) and h(·). The
generation of data is then based on the reverse process, which is a diffusion process given by the
reverse-time SDE [3],

dx = [f(x, t)− h(t)2∇x log qt(x)]dt+ h(t)dw̄, (14)

where dt is an infinitesimal negative timestep, w̄ is the standard Brownian motion with reversed time
flow, and qt(x) is the distribution of state x(t) at time t. The principal task in diffusion models is to
learn the score function, ∇x log qt(x), which has been effectively achieved using neural networks in
recent work. This enables solving the reverse-time SDE and generating new data samples. Notably,
in the diffusion model (and more broadly, generative AI) literature, q0(x) is typically a known target
distribution over data samples from a pre-training dateset.

D Experiments

D.1 Benchmark

In CATS, the valuation functions of bidders are recorded as bundle-bid pairs in an output file, with
bundles from the same bidder identified by appending a dummy item tagged with a unique identifier.
In effect, the bundle-bid pairs in an output file involving the same dummy item form an XOR
representation of the bidder’s valuation function. To obtain single-bidder valuations, we generate
100,000 such files and extract valuation functions identified by a consistent dummy item. Of these,
95% are used for training, with the remaining 5% reserved for testing.

D.2 Hyperparameters

We do not extensively fine-tune hyperparameters. This suggests that our formulation of the ODE,
including its functional form (Eq. 5) and initial conditions, is well-suited to the needs of the CA
setting, making the optimization of the flow model relatively straightforward. Specifically, the Q

3When representing the values of multiple bidders these testbeds often also introduce so-called dummy items
for distinguishing the bids of different bidders. Still, the semantics for a single bidder is, in effect, that of the
XOR language.

22

Table 6: Revenue comparison against baselines across different CATS environments and value
distributions. The number of items is fixed at m = 50, and we increase the valuation function size:
a = 10, 20, 30, 40, and 50 as maximum XOR atoms per valuation, corresponding to the maxbid
parameter in CATS.

Environment Baseline a = 10 a = 20 a = 30 a = 40 a = 50

CATS-Regions
Uniform Private Valuations

Grand Bundle 314.46 309.11 316.04 320.61 314.35
Menu+ 374.28 369.29 357.91 372.39 363.13
Menu- 328.95 328.92 323.44 333.00 326.58

RochetNet 308.81 313.24 317.14 318.15 310.60
BUNDLEFLOW 533.42 528.46 528.26 539.92 537.36

CATS-Regions
Normal Private Valuations

Grand Bundle 322.74 301.54 310.38 304.38 334.95
Menu+ 434.32 375.51 404.74 381.05 430.24
Menu- 326.98 307.81 332.39 313.76 342.23

RochetNet 301.47 297.34 317.10 302.04 327.32
BUNDLEFLOW 564.13 524.24 535.35 525.68 566.51

CATS-Arbitrary
Uniform Private Valuations

Grand Bundle 331.21 334.43 330.33 351.01 336.68
Menu+ 355.92 351.02 341.76 347.26 348.92
Menu- 352.34 354.58 346.36 354.87 353.58

RochetNet 329.61 345.06 338.44 344.76 350.75
BUNDLEFLOW 565.54 583.60 568.01 579.01 581.39

CATS-Arbitrary
Normal Private Valuations

Grand Bundle 381.51 335.44 323.52 320.28 358.83
Menu+ 470.63 349.70 346.39 340.59 381.13
Menu- 402.23 341.79 337.44 332.90 368.26

RochetNet 367.44 329.28 333.88 327.57 365.40
BUNDLEFLOW 664.94 564.90 552.77 548.22 615.93

network comprises three 128-dimensional tanh-activated fully connected layers. When m > 100, we
increase the width of the last layer to 256. The σ network is simpler and has two 128-dimensional
tanh-activated fully connected layers.

Two important hyperparameters are D, the support size of the initial distribution, and K, the menu
size. By default, D is set to 8, a relatively small number. K is 5000 when m ≤ 100 and is 20000
otherwise. The same menu size is used for our method, Menu-, Menu+, and RochetNet. Notably,
the menu size K is adequate to encompass all possible bundles for smaller numbers of items, such as
m = 5 or 10. We show the impact of different values of D and K in ablation studies.

Menu optimization for BUNDLEFLOW is conducted using the Adam optimizer with a learning rate
of 0.3. λSOFTMAX is increased from 0.001 to 0.2 over the course of training. For comprehensive
details on our hyperparameter settings, please refer to the codebase. For the baselines, we fine-tuned
their hyperparameters so that they perform significantly better than the default RochetNet setting.
The modifications are achieved by performing a grid search to obtain the optimum combination
of λSOFTMAX and learning rate that yields the best revenue and also guarantees convergence. Both
Menu- and Menu+ use a learning rate of 0.3 and λSOFTMAX of 2, while RochetNet uses a learning
rate of 0.05 and λSOFTMAX of 20.

All experiments are conducted on a single NVIDIA A100 GPU.

D.3 Baselines.

We give an example of allocations in the menu of Menu+. With 3 items and a menu size of 3, the
menu would include [1, 1, 1] (the grand bundle) and a random subset of bundles containing 2 items,
such as [1, 1, 0] and [0, 1, 1].

D.4 Inference speed.

Inference for our method is fast in absolute time: for m = 100 with a batch size of 200 samples,
BUNDLEFLOW runs in 4.74× 10−3 ± 2.27× 10−4 s, compared with RochetNet at 6.39× 10−4 ±

23

0 50k 100k 150k 200k
0.0

100.0

200.0

300.0

400.0

500.0

0 200 400 600 800 0 10M 20M
Iteration Wall time (seconds) # Training Samples

Te
st

 R
ev

en
ue

0 100k 200k 300k 400k
0.0

100.0

200.0

300.0

400.0

500.0

0 500 1000 1500 0 20M 40M
Iteration Wall time (seconds) # Training Samples

Te
st

 R
ev

en
ue

0 50k 100k 150k 200k
0.0

200.0

400.0

600.0

0 200 400 600 800 0 10M 20M

Small-Bundle Big-Bundle BundleFlow Bundle-RochetNet Grand-Bundle

Iteration Wall time (seconds) # Training Samples

Te
st

 R
ev

en
ue

(a) 𝑎=10

(b) 𝑎=50

Figure 3: Learning curves of BUNDLEFLOW and baselines on CATS Regions with uniform valuation
distributions with different valuation function sizes. The two rows are results for a = 10 and 50
XOR atoms per valuation, respectively. The three columns show the changes of test revenue as
a function of the number of training iterations, wall time in seconds, and the number of training
samples, respectively.

3.01× 10−5 s, Menu+ at 3.70× 10−5 ± 4.70× 10−6 s, and Menu- at 3.60× 10−5 ± 2.30× 10−6 s
under the same conditions. While our method has a relatively higher inference time, it requires
significantly fewer training iterations to converge, maintaining a clear advantage in terms of overall
training time. After training, our method requires deploying a menu, where the allocation and price
of each menu element can be calculated before deployment. Users only need to check which bundles
(whose number is upper bounded by a constant) are in a menu element, calculate its utility, and assign
the best menu element.

24

	Introduction
	Preliminaries
	The Flow-Based Combinatorial Auction Menu Network
	Menu representation
	Stage 1: Flow initialization
	Stage 2: Menu optimization

	Visualization on a Didactic Example
	Experiments
	Experimental Results

	Closing Remarks
	Proof
	Discussion
	Additional Background
	Experiments
	Benchmark
	Hyperparameters
	Baselines.
	Inference speed.

