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ABSTRACT

Evaluation metrics are the primary guide in modeling. For regression tasks, the
R2 score is the gold standard, offering a magnitude-agnostic measure of accuracy
that captures variance. However, R2 has three key limitations: it is limited to at
most two dimensional inputs, it reduces the score to a single scalar that hides rich
patterns of prediction accuracy, and it is sensitive to low-variance noise channels
which can yield large, uninterpretable negative values. We introduce the Dimen-
sional R2 score (Dim-R2), a simple extension of R2 that accepts data of arbitrary
dimensionality, provides a multidimensional view of accuracy, and reduces sensi-
tivity to noise. We demonstrate its advantages on both synthetic sinusoidal data
and data-constrained recurrent neural networks trained to simulate mouse neural
activity during a skilled motor task. Dim-R2 offers an interpretable and flexible
metric that illuminates patterns in regression accuracy, guiding regression model-
ing.

1 INTRODUCTION

Evaluation metrics are the lighthouse of modeling. They quantify how well the model’s predic-
tions match the target data and guides decisions such as model tuning and data cleaning (Jordan
& Mitchell, 2015). For regression tasks, the R2 score is considered the gold standard compared to
metrics like mean absolute error (MAE) or mean squared error (MSE) (Chicco et al., 2021). MAE
shows a simple magnitude based error but cannot differentiate between biased predictions and lazy
mean predictions. MSE penalizes variance and resolves the lazy mean prediction issue, but its value
ranges per data domain making it hard to interpret. In contrast, R2 is a normalized, data domain-
independent metric that reflects variance explained by the model normalized by the variance of the
data (Eq. 1). It ranges from 1 (perfect prediction) to −∞, with 0 indicating performance equal to the
lazy mean prediction. Due to its ability to capture variance and its normalized score, R2 is widely
used in regression evaluation (Chicco et al., 2021; Sykes, 1993; Ash & Shwartz, 1999; Sauerbrei
et al., 2020; Pedregosa et al., 2011).

However, R2 has three key limitations. First, R2 is defined for 1D data which is averaged across
channels for 2D data, and it cannot be directly applied to higher-dimensional regression data. Sec-
ond, the R2 reduces model performance to a single scalar, offering no insight into how accuracy
varies across data dimensions (Fig. 1). A multidimensional view of regression accuracy could reveal
structure that could help modelers target specific features of their data and model for improvement.
Third, R2 is highly sensitive to low-variance noise channels in multi-channel (2D) regression tasks.
It can yield large negative values when the true data has little variation, as is the case for noisy chan-
nels. When these R2 scores are averaged across channels for multi-channel data, the mean R2 can
be largely negative which obscures the presence of high accuracy channels (Fig. 2).

To address these limitations, we introduce the Dimensional R2 score (Dim-R2). Dim-R2 simply
flattens selected dimensions into independent observations and computes the standard R2, while re-
taining the shape of the remaining dimensions. It accepts regression data of arbitrary dimensionality,
overcoming the 2D limitation of conventional R2 by flexibly flattening any dimensions. As Dim-R2
can flatten and keep any dimensions, it also enables a multidimensional view of prediction accuracy
(Fig. 1). For example, in data shaped (Trials, Time, Channels) (Perich et al., 2020; Yoo et al., 2022),
Dim-R2 can reveal data regions that are predictable in certain trials, specific time periods, or certain
channels, highlighting noisy trials, temporally localized features, or task-relevant channels. This
multidimensional score helps modelers identify patterns in both their data and models. Finally, by
flattening selected dimensions into independent observations, high-variance (informative) channels
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Figure 1: Dim-R2 presents rich patterns of prediction accuracy across designated dimensions (Axis).

outweigh low-variance (noisy) ones, yielding a more robust score than the mean of per-channel R2
scores. This better highlights the presence of high accuracy channels (Fig. 2).

The paper is organized as follows. We introduce Dim-R2 as a simple extension of the conventional
R2 metric, designed to support three key improvements. We then present the dimensional view
of regression accuracy using Dim-R2, while emphasizing the effects of Dim-R2 arguments on the
result. Next, we evaluate the resilience of Dim-R2 by comparing it to conventional Mean-R2. The
input data dimensionality is not compared between Dim-R2 and R2 as it is the metric definition
rather than a property of the resulting scores. Both the dimensional-view and resilience features
are demonstrated using a toy sinusoidal data and a data-constrained recurrent neural network (DC-
RNN) (Perich et al., 2020; Perich & Rajan, 2020) trained to simulate mouse neural activity during
a reach-to-grab task. The DC-RNN example is a valuable in-silico model for neuroscience, with
applications in both theory and medicine (Barh et al., 2020; Sourmpis et al., 2025; Tuladhar et al.,
2021). Throughout this paper, the terms dimensions and axes, data and trials, and channels and
neurons are used interchangeably.

2 MATERIALS AND METHODS

2.1 REGRESSION METRICS: CONVENTIONAL AND DIMENSIONAL R2

The conventional R2 score is a negative squared error normalized by the variance of ytrue, defined
for a single channel data (1D) only (Eq. 1). The value of R2 ranges from [−∞, 1], where 1 indicates
perfect prediction, 0 corresponds to predicting ȳtrue, the mean of ytrue, and negative values indicate
worse performance than predicting ȳtrue.

R2 = 1− RSS

TSS
= 1−

∑
i (ytrue,i − ypred,i)

2∑
i (ytrue,i − ȳtrue)2

(1)

where i, RSS, TSS refers to observation index, residual sum of squares, and total sum of squares,
respectively. In the multi-channel case (2D), R2 score is measured per channel and averaged to yield
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Figure 2: Dim-R2 is resilient to noise channels than conventional mean R2, and presents the exis-
tence of high accuracy channels among noise channels.

Figure 3: Schematic of Dim-R2 calculation. There is one argument (Axis) and two optional argu-
ments (Axis ref, Axis bias).

the mean R2 (Eq. 2). As a result, the conventional R2 score supports 1D data, or at most 2D data
when computing mean R2.

Mean R2 =
1

C

C∑
c

[1−
∑

i (ytrue,c,i − ypred,c,i)
2∑

i (ytrue,c,i − ytrue,c)2
] (2)

where C, c refers to the number of channels and channel index, respectively.

Dim-R2 follows the concept of Eq. 1 but computes RSS and TSS in multidimensional form (Fig. 3,
Eq. 3-6):
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RSS =

NAxis∑
i∈Axis

(ytrue,i − ypred,i)
2 (3)

ȳtrue =
1

NAxis bias

NAxis bias∑
i∈Axis bias

ytrue,i (4)

TSS =
1

NAxis ref−Axis

NAxis ref−Axis∑
j∈Axis ref−Axis

NAxis∑
i∈Axis

(ytrue,i,j − ȳtrue)
2 (5)

Dim-R2 = 1− RSS

TSS
(6)

where NAxis, NAxis bias, and NAxis ref−Axis are the number of observations along the specified
axes, used to compute the mean. Dim-R2 takes one argument (Axis) and two optional arguments
(Axis ref, Axis bias). Axis is the dimension to collapse and is used to sum the error (RSS) and the
ytrue variance for normalizing (TSS). Axis ref is the dimension which the reference variance TSS is
aggregated additionally. When measuring TSS, averaging is applied to the axes in the set difference
of Axis and Axis ref (Axis-Axis ref), to keep the magnitude of TSS consistent. Axis bias specifies
the dimension used to compute ȳtrue. It must be a subset of Axis ref (Axis bias ⊂ Axis ref )
since the reference variance is measured as deviation from this mean. When summing RSS and
TSS, the specified dimensions (Axis, Axis ref) are treated as independent observations. Then Dim-
R2 is computed by broadcasting the shapes of RSS and TSS. This allows Dim-R2 to accept data of
arbitrary dimensionality. The Dim-R2 is implemented in Python using NumPy (Harris et al., 2020)
and follows the scikit-learn syntax (Pedregosa et al., 2011).

2.2 DATASETS

2.2.1 SYNTHETIC SINUSOIDAL DATASET

To illustrate the dimensional view of regression accuracy (Section 3.1), we generated a waveform of
shape (1000, 100, 5), corresponding to trials, time, and neurons, respectively (Fig. 4). Neuron N0
to N3 share the same sine wave while N4 is pure Gaussian noise adjusted to have the same variance
with clean signal N0. From N0 to N3, the noise conditions were: no noise (N0), linearly increasing
noise over time (N1), linearly decreasing noise over time (N2), and constant noise over time (N3).
The ytrue and ypred share the same underlying waveform but different independent random noise,
to show the gradual change in accuracy. To illustrate how Dim-R2 arguments affect the dimensional
view, two data conditions were used: one with no added bias (No Bias), and one with a time bias
varying from 0 to 4 across neurons N0 to N4, randomly assigned across trials (Varying neural bias)
(Fig. 4, 5). The No Bias condition contains no trial variability and minimal cross-neuron variability,
while the Varying Neural Bias condition contains both trial and cross-neuron variability.

To demonstrate how Dim-R2 better reflects the presence of high-accuracy channels compared to
mean R2 (Section 3.2), multichannel sinusoidal data of shape (100 timesteps, 100 channels) was
generated for ytrue and ypred across 100 random repetitions. A fixed ratio of channels was replaced
with Gaussian noise of set variance (Fig. 8). The noise channel variances for ytrue and ypred were
set independently as they affect the R2 calculation.

2.2.2 DATA-CONSTRAINED RECURRENT NEURAL NETWORK PREDICTIONS ON MOUSE
MOTOR CORTEX NEUROPIXEL RECORDINGS

2.2.3 DATA

A total of 22 sessions were collected from four mice performing a reach-to-grab task (Sauerbrei
et al., 2020; Guo et al., 2021; Levy et al., 2020). Neural activity (Spiketrains) was recorded simul-
taneously from the deep cerebellar nuclei (DCN), primary motor cortex (M1), Striatum, Thalamus
using Neuropixels probes (Steinmetz et al., 2021). Spiketrains were recorded at 500Hz (2ms bin)
where each value indicates the presence (1) or absence (0) of a spike. For each brain region, this
results in a binary array of shape (time, neurons).
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Figure 4: Example sinusoidal waveforms with time-varying noise, used for both ytrue and ypred
in showing dimensional accuracy. Different biases per neuron and trial were added to other data –
Consistent Neural Bias and Varying Neural Bias.

Hand kinematics were recorded using a camera at sampling rate of 500Hz, synchronized with the
Neuropixels. The 3D hand coordinates (Units: mm) were extracted using Animal Part Tracker
(Lee et al., 2020). Movement onset was defined as the time point when the hand position exited a
predefined square region representing the resting state.

2.2.4 PREPROCESSING

Preprocessing of spiketrains involved 5 steps: slicing it to the region of interest (100ms before to
400ms after movement onset), Gaussian filtering (σ=50ms), reordering neuron indices based on peak
activity for interpretability (does not affect training), normalizing activity range to match the range of
DC-RNN activation function, and stacking the neurons across brain regions. The train set metadata
was used to process the validation and test set for neuron reordering and activity normalization
stages.

2.2.5 EXPERIMENT SETUP

The DC-RNNs were trained with 5 by 3 fold nested k-fold cross validation with 3 different random
seeds, resulting in 5 × 3 × 3 = 45 experiments per condition. Each train, validation, test split were
stratified-split with respect to the number of reach success trials, to balance the data characteristics.
The random seeds affected model weight initialization and cross validation splits.

The DC-RNN was a vanilla RNN where the number of hidden neurons matched the number of
recorded neurons in the spiketrain data. The activation function was tanh. The Adam optimizer
(Kingma & Ba, 2014) was used to train the DC-RNN (Werbos, 1990) with learning rate of 1e-3
and batch size of 32. Early stopping stopped training by measuring Dim-R2 every 100 updates with
patience value of 100.

The ytrue and ypred were aggregated (Yoo et al., 2025) from predictions of different DC-RNN
sweeps under the same experiment conditions, to evaluate the experiment condition. Resulting ytrue
and ypred shapes were (Random seeds, Validation folds, Test batch, Time, Channels).

3 RESULTS

3.1 DIM-R2 PROVIDES A DIMENSIONAL VIEW OF REGRESSION ACCURACY

To demonstrate how Dim-R2 provides a dimensional view of regression accuracy, sinusoidal wave-
forms with time varying noise was used as ytrue and ypred (Fig. 4). No bias data, and varying time
bias across trials and neurons, were added to show different characteristics of Dim-R2 (Fig. 5, see
Section 2.2.1). Mean R2 was not measured as it is not defined for data over two dimensions.

Dim-R2 captures different types of variability depending on the Axis ref argument (Fig. 3). If
not specified, Axis ref defaults to the same dimension as Axis, measuring reference variance along
the collapsed dimension. For example, setting Axis ref = Trial causes Dim-R2 to set ytrue trial
variability as its reference (Fig. 6a, c, e, g). When trial variability exists in both ytrue and ypred,
capturing it is a meaningful regression goal. Thus, Dim-R2 yields high scores across all neurons
including the noise neuron 4 (Fig. 6a). While lazy mean prediction ȳtrue across the Axis should
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Figure 5: Three sinusoidal datasets with time-varying noise and different biases along the Time
dimension, used for both ytrue and ypred. Different biases are added to each data to show the
characteristics of Dim-R2. Color-coded lines in the bottom right indicate each dimension type.

Figure 6: Dim-R2 shows dimensional view of regression accuracy for synthetic sinusoidal dataset.
Each heatmap shows Dim-R2 computed between ytrue and the specified prediction, measured across
trials to reveal R2 scores across the Time and Neuron dimensions. (a) & (e) Dim-R2 on ypred with
Axis ref=Axis (Trial). (b) & (f) Dim-R2 on ȳtrue with Axis ref=Axis (Trial). (c) & (g) Dim-R2
on ypred with Axis ref=Time. (d) & (h) Dim-R2 on ȳtrue with Axis ref=Time. (a)-(d) Data with
varying neural bias across trials. (e)-(h) Data with no bias across trials.

yield an R2 of zero by definition, time-averaged ȳtrue can still capture trial variability since the
signal is time-averaged time while Axis ref is set across trials. As a result, Dim-R2 yields a high
score when trial variability exists (Fig. 6b), and a near-zero score when it does not (Fig. 6f). When
ytrue has very small variance (TSS), R2 amplifies small prediction errors (RSS), producing large
negative scores. The same occurs in Dim-R2 when trial variability in ytrue is negligible, where
setting Axis ref=Trial causes Dim-R2 to yield largely negative values (Fig. 6e).
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Figure 7: Dim-R2 shows dimensional view of regression accuracy for data-constrained recurrent
neural networks trained to recreate neural activity. Each heatmap shows Dim-R2 computed be-
tween ytrue and the specified prediction, measured across different dimensions to reveal R2 scores
across other remaining dimensions. Dashed lines separate neurons by brain region (from left):
DCN (orange), M1 (green), Striatum (red), Thalamus (purple). (a) & (e) Dim-R2 on ypred with
Axis ref=Axis. (b) & (f) Dim-R2 on ȳtrue with Axis ref=Axis. (c) & (g) Dim-R2 on ypred
with Axis ref=Time. (d) & (h) Dim-R2 on ȳtrue with Axis ref=Time. (a)-(d) Dim-R2 with
Axis=(Random seed, Cross validation folds, Trials). (e)-(h) Dim-R2 with Axis=(Random seed,
Cross validation folds, Time).

While capturing trial-variability is important, it is also meaningful to assess how well each neuron is
predicted across time, regardless of trial variability. By setting Axis ref=Time and measuring Dim-
R2 across trials, the time-varying accuracy of each neuron is revealed (Fig. 6c, g). This shifts the
reference variance to the time dimension not trials, resulting in identical Dim-R2 values for datasets
with and without trial biases–reflecting only the time-varying noise in ytrue and ypred (Fig. 4).

Note that when the Axis (Trials) and the averaging dimension of ȳtrue (Time) differ, Dim-R2 mea-
sured with ȳtrue does not yield a value of 0. This is because R2 equals 0 when the prediction is the
mean across the given Axis. The Dim-R2 for ȳtrue with Axis ref=Time reflects the time-varying
error patterns of the sine wave, showing increased scores at the start, middle, and end for Neurons
0 to 3 (Fig. 6d, h). Therefore, interpreting Dim-R2 correctly under different Axis and Axis ref
settings, along with selecting a proper domain-specific negative control such as ȳtrue, is critical for
meaningful analysis with Dim-R2.

To demonstrate a use case of Dim-R2, DC-RNNs were trained to reproduce neural spiketrains from
wild-type mouse motor circuits during a reach-to-grab task (Fig. 13). Dim-R2 with Axis=(Trials,
cross validation folds) reveals accuracy across Time and Neuron dimensions (Fig. 7a), where high
values correspond to periods of strong trial variability (Fig. 6a,b,e,f). The DC-RNN captures trial
variability well in DCN throughout most of the trial and in M1 after lift onset (100ms). In the
ground truth ytrue, trial variability peaks at each neuron’s maximal activation (Fig. 7b). Since
neurons are sorted by peak activation time within each brain region, this appears as a diagonal band
of high scores per region. This trial variability is also reflected in Dim-R2 with Axis=(Time, cross
validation folds) (Fig. 7e, f), where the neurons with higher trial variability show vertical bands with
higher scores for both ypred and ȳtrue.
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(a) (b)

Figure 8: Example waveforms of ytrue and ypred with their corresponding mean R2 and Dim-R2

scores. (a) Noise channel variance: ytrue = 0.01, ypred = 0.01, (b) ytrue = 0.01, ypred = 1.00.
Full variance combinations of ytrue and ypred noise channels are presented in Fig. 11.

(a)

Figure 9: Dim-R2 highlights the presence of channels with high predictive accuracy in the presence
of noisy channels. Scores were measured on simulated sinusoidal data (Fig. 8) across hyperparame-
ter sweeps. Each entry shows the mean±standard deviation measured across 100 random repetitions.

Setting Axis ref=Time evaluates each neuron’s prediction accuracy across time within individual
trials. Dim-R2 reveals that some neurons in the DCN and late-onset neurons in M1 are well predicted
by the DC-RNN (Fig. 7c, g), despite widespread trial variability in most neurons (Fig. 7b, f).
Comparing Fig 7g and h shows that DC-RNN recreates activity in specific DCN and M1 neurons.
Some noisy trials can also be identified in Fig. 7g, appearing as horizontal bands with low scores.
Fig. 7h correctly yields a Dim-R2 of 0 when Axis=Time as ȳtrue are time averaged signals. Fig. 7d
indirectly shows the underlying structure of the spiketrains, similar to Fig. 6d,g. These dimensional
views reveal both the structure of the data ytrue and the prediction patterns of the DC-RNN, guiding
the modeling process.

3.2 DIM-R2 BETTER REFLECTS HIGH-ACCURACY CHANNELS THAN MEAN R2 IN THE
PRESENCE OF NOISE CHANNELS

When ytrue has low variance, the normalizing term of R2 (TSS) becomes small which amplifies
modest prediction errors into large negative values. This drags mean R2 to a negative value when
multichannel ytrue contains noise channels. In contrast, Dim-R2 with Axis set to all dimensions
treats the collapsed dimensions as independent observations, allowing high variance informative
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(a)

Figure 10: Dim-R2 highlights the presence of channels with high predictive accuracy in the presence
of noisy channels. Scores were measured on data-constrained recurrent neural network predictions
on neural spiketrains across hyperparameter sweeps. Each entry shows the mean±standard devia-
tion.

channels to dominate the score. This reduces the effect of low variance noise channels, and better
highlights the presence of high accuracy informative channels compared to mean R2.

To demonstrate how Dim-R2 better reflects the presence of high-accuracy channels, two-
dimensional sinusoidal 2D data was generated for ytrue and ypred (Fig. 8, 11. See Section 2.2.1).
When the ytrue noise channel variance is low (0.01) compared to the signal channels (0.5), Dim-R2
yields significantly higher scores than mean R2 that highlight the presence of high accuracy chan-
nels (Fig. 9). This advantage decreases as the ytrue noise channel variance increases and eventually
exceeds the signal channel variance (Fig. 12). Both mean R2 and Dim-R2 decrease as ypred noise
channel variance increases.

To demonstrate the noise channel resilience use case of Dim-R2, Dim-R2 and mean R2 were mea-
sured on DC-RNN predictions of neural spiketrains across different recording sessions and Gaussian
filter sizes used in preprocessing (Fig. 10). The scores gradually increase with larger filter sizes, as
both ytrue and ypred become smoother. While this trend is visible in Dim-R2, it is less apparent in
Mean R2 due to the low-variance noise channels that pull the score down. For instance, Sessions 3
and 12 at a 25ms filter size yield a moderately large negative mean R2 than other filter sizes, which
is an outlier effect not observed in Dim-R2. This noise resilience can also be seen in each ytrue
and ypred pairs from both trial-averaged and single trial neural activity (Fig. 13, Table 1). Thus,
Dim-R2 allows users to identify the effects of hyperparameters on RNN performance without the
confounding influence of noise.

4 CONCLUSION

We introduced Dim-R2, a regression metric that accepts data of arbitrary dimensionality, enables
dimensional evaluation of regression accuracy, and highlights the presence of high-accuracy chan-
nels in the presence of noisy channels. When using Dim-R2 to assess accuracy across dimensions,
careful consideration of Axis and Axis ref is essential, especially when they differ. In such cases, a
Dim-R2 score of 0 does not imply equivalence to mean prediction but may instead reflect the data
structure (Fig. 6d, h; 7d). To interpret these dimensional scores meaningfully, it is important to com-
pare against domain-specific controls, such as time-averaged ȳtrue. Dim-R2 offers a bird’s-eye view
of regression accuracy and a noise-resilient score for reliable hyperparameter exploration, offering
guidance for model evaluation in fields such as artificial intelligence and neuroscience (Huang et al.,
2024; Yoo et al., 2024; Badrulhisham et al., 2024; Zador et al., 2023; Yang & Wang, 2020; Lin et al.,
2023).
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A APPENDIX

A.1 METHODS DETAILS

DC-RNN weights were initialized using He initialization, a uniform distribution

U(−
√

1
hidden size ,

√
1

hidden size , which is the default in PyTorch (Paszke et al., 2017). The
DC-RNN was implemented with PyTorch (Paszke et al., 2017). The learning rate and batch size
were selected after initial parameter sweep with learning rate of 1e-2, 1e-3, and batch size of 16, 32.

A.2 THE USE OF LARGE LANGUAGE MODELS (LLMS)

The Large Language Model ChatGPT (https://chatgpt.com/) was used only to revise grammar in
writing.

A.3 SUPPLEMENTARY MATERIALS
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 11: Example schematic waveforms of ytrue and ypred with their corresponding mean R2

and Dim-R2 scores. Each example shows sine waves with varying phases phases across 5 channels,
where 2 channels have been replaced with Gaussian noise of specified variance. Rows share the
same ytrue noise channel variance; columns share the same ypred noise channel variance. Legends
show variances.
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(a)

(b)

(c)

(d)

Figure 12: Dim-R2 highlights the presence of channels with high predictive accuracy in the presence
of noisy channels. Scores were measured on simulated sinusoidal data (Fig. 8) across hyperparam-
eter sweeps. Each entry shows the mean±standard deviation across 100 random repetitions.
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Figure 13: Examples of ytrue and ypred from DC-RNN trained to reproduce neural activity. This
single session contains 78 trials, with 42, 93, 11, and 106 neurons from DCN, M1, Striatum, and
Thalamus, respectively. This session corresponds to Session index 21 with a 50ms Gaussian filter
in Fig. 10. Dashed lines separate neurons by brain region (from left): DCN (orange), M1 (green),
Striatum (red), Thalamus (purple). (a) & (d) Trial averaged activity, (b) & (e) Single trial example
1, (c) & (f) Single trial example 2. (a)-(c) ytrue, (d)-(f) ypred.

Trial averaged (a) & (d) Single trial 1 (b) & (e) Single trial 2 (c) & (f)
Dim-R2 0.92 0.44 0.57
Mean R2 0.57 -0.28 -0.41

Table 1: Dim-R2 and Mean R2 measured on ytrue and ypred of Fig. 13. Dim-R2 yields higher
scores than mean R2 when the ytrue and ypred are similar, even in the presence of noise.
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