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ABSTRACT

Sliced Optimal Transport (OT) simplifies the OT problem in high-dimensional
spaces by projecting supports of input measures onto one-dimensional lines, then
exploiting the closed-form expression of the univariate OT to reduce the compu-
tational burden of OT. Recently, the Tree-Sliced method has been introduced to
replace these lines with more intricate structures, known as tree systems. This
approach enhances the ability to capture topological information of integration
domains in Sliced OT while maintaining low computational cost. Inspired by this
approach, in this paper, we present an adaptation of tree systems on OT problem
for measures supported on a sphere. As counterpart to the Radon transform vari-
ant on tree systems, we propose a novel spherical Radon transform, with a new
integration domain called spherical trees. By leveraging this transform and ex-
ploiting the spherical tree structures, we derive closed-form expressions for OT
problems on the sphere. Consequently, we obtain an efficient metric for measures
on the sphere, named Spherical Tree-Sliced Wasserstein (STSW) distance. We
provide an extensive theoretical analysis to demonstrate the topology of spherical
trees, the well-definedness and injectivity of our Radon transform variant, which
leads to an orthogonally invariant distance between spherical measures. Finally,
we conduct a wide range of numerical experiments, including gradient flows and
self-supervised learning, to assess the performance of our proposed metric, com-
paring it to recent benchmarks.

1 INTRODUCTION

Despite being embedded in high dimensional Euclidean spaces, in practice, data often reside on
low dimensional manifolds (Fefferman et al., 2016). The hypersphere is one such manifold with
various practical applications. The range of applications involving distributions on a hypersphere
is remarkably broad, underscoring the significance of spherical geometries across multiple fields.
These applications encompass spherical statistics (Jammalamadaka, 2001; Mardia & Jupp, 2009;
Ley & Verdebout, 2017; Pewsey & Garcı́a-Portugués, 2021), geophysical data (Di Marzio et al.,
2014), cosmology (Jupp, 1995; Cabella & Marinucci, 2009; Perraudin et al., 2019), texture map-
ping (Elad et al., 2005; Dominitz & Tannenbaum, 2009), magnetoencephalography imaging (Vrba
& Robinson, 2001), spherical image representations (Coors et al., 2018; Jiang et al., 2024), omnidi-
rectional images(Khasanova & Frossard, 2017), and deep latent representation learning (Wu et al.,
2018; Chen et al., 2020; Wang & Isola, 2020; Grill et al., 2020; Caron et al., 2020; Davidson et al.,
2018; Liu et al., 2017; Yi & Liu, 2023).

Optimal Transport (OT) (Villani, 2008; Peyré et al., 2019) is a geometrically natural metric for
comparing probability distributions, and it has received significant attention in machine learning in
recent years. However, OT faces a significant computational challenge due to its supercubic com-
plexity in relation to the number of supports in input measures (Peyré et al., 2019). To alleviate
this issue, several variants have been developed to reduce the computational burden, including en-
tropic regularization (Cuturi, 2013; Scetbon et al., 2021), minibatch OT (Fatras et al., 2019), and the
Sliced-Wasserstein distance (Rabin et al., 2011; Bonneel et al., 2015).

Related work. There has been growing interest in utilizing OT to compare spherical probability
measures (Cui et al., 2019; Hamfeldt & Turnquist, 2022). To mitigate the computational burden,
recent studies have focused on sliced spherical OT (Quellmalz et al., 2023; Bonet et al., 2022; Tran
et al., 2024a). Quellmalz et al. (2023) introduced the vertical slice transform and a normalized
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version of the semicircle transform to define sliced OT on the sphere. The semicircle transform
was also employed in (Bonet et al., 2022) to define a spherical sliced Wasserstein. Meanwhile,
Tran et al. (2024a) utilized stereographic projection to create a spherical distance between measures
via univariate OT problems. However, projecting spherical measures onto a line or circle poses
challenges due to the loss of topological information. Furthermore, comparing one-dimensional
measures on circles is computationally more expensive, as it requires an additional binary search.

Tran et al. (2024b) offers an alternative method by substituting one-dimensional lines in the Sliced
Wasserstein framework with more complex domains, referred to as tree systems. These systems
operate similarly to lines but with a more advanced and intricate structure. This approach is expected
to enhance the capture of topological information while preserving the computational efficiency
of one-dimensional OT problems. Inspired by this observation, we propose an adaptation of tree
systems to the hypersphere, called spherical trees, to develop a new metric for measures on the
hypersphere. Spherical trees satisfy two important criteria: (i) spherical measures can be projected
onto spherical trees in a meaningful manner, and (ii) OT problems on spherical trees admit a closed-
form expression for a fast computation.

Contribution. Our contributions are three-fold:

1. We provide a comprehensive theoretical construction of spherical trees on the sphere, analogous
to the notion of tree systems. We demonstrate that spherical trees, as topological spaces, are metric
spaces defined by tree metrics, which ensures that OT problems on these spaces can be analytically
solved with closed-form solutions.

2. We propose the Spherical Radon Transform on Spherical Trees, which transforms functions on
the sphere to functions on spherical trees. We also present the concept of splitting maps for the
sphere, a key component of this new Spherical Radon Transform, which describes how mass at a
point is distributed across the spherical tree. In addition, we examine the orthogonal invariance of
splitting maps, which later proves to be a sufficient condition for the injectivity of the Spherical
Radon Transform.

3. We propose the novel Spherical Tree-Sliced Wasserstein (STSW) distance for probability distri-
butions on the sphere. By selecting orthogonal invariant splitting maps, we demonstrate that STSW
is a invariant metric under orthogonal transformations. Finally, we derive a closed-form approxima-
tion for STSW, enabling an efficient and highly parallelizable implementation.

Organization. The rest of the paper is organized as follows: we review Wasserstein distance vari-
ants in §2. We propose the notion of Spherical Trees on the Sphere with a formal construction in
§3. We introduce the Spherical Radon Transform on Spherical Trees, and discusses its injectivity in
§4. In §5, we propose Spherical Tree-Sliced Wasserstein (STSW) distance and derive a closed-form
approximation for STSW. Finally, we evaluate STSW on various tasks in §6. Theoretical proofs and
experimental details are provided in Appendix.

2 PRELIMINARIES

In this section, we review Wasserstein distance, Sliced Wasserstein distance, Wasserstein distance
on tree metric spaces and Tree-Sliced Wasserstein distance on Systems of Lines.

Wasserstein Distance. Let Ω be a measurable space, endowed with a metric d, and let µ, ν be
two probability distributions on Ω. Denote P(µ, ν) as the set of probability distributions π on the
product space Ω×Ω such that π(A×Ω) = µ(A) and π(Ω×B) = ν(B) for all measurable sets A,
B. For p ⩾ 1, the p-Wasserstein distance Wp (Villani, 2008) between µ, ν is defined as:

Wp(µ, ν) = inf
π∈P(µ,ν)

(∫
Ω×Ω

d(x, y)p dπ(x, y)

) 1
p

. (1)

Sliced Wasserstein Distance. The Radon Transform (Helgason & Helgason, 2011) is the operator
R : L1(Rd) ! L1(R × Sd−1) defined by: for f ∈ L1(Rd), we have Rf ∈ L1(R × Sd−1) such
that Rf(t, θ) =

∫
Rd f(x) · δ(t − ⟨x, θ⟩) dx. Note that R is a bijection. The Sliced p-Wasserstein
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(SW) distance (Bonneel et al., 2015) between µ, ν ∈ P(Rd) is defined by:

SWp(µ, ν) :=

(∫
Sd−1

Wp
p(Rfµ(·, θ),Rfν(·, θ)) dσ(θ)

) 1
p

, (2)

where σ = U(Sd−1) is the uniform distribution on Sd−1; and fµ, fν are the probability density
functions of µ, ν, respectively.

Tree Wasserstein Distances. Let T be a rooted tree (as a graph) with non-negative edge lengths,
and the ground metric dT , i.e. the length of the unique path between two nodes. Given two proba-
bility distributions µ and ν supported on nodes of T , the Wasserstein distance with ground metric
dT , i.e., tree-Wasserstein (TW) (Le et al., 2019), yields a closed-form expression as follows:

WdT ,1(µ, ν) =
∑
e∈T

we ·
∣∣µ(Γ(ve))− ν(Γ(ve))

∣∣, (3)

where ve is the endpoint of edge e that is farther away from the tree root, Γ(ve) is a subtree of T
rooted at ve, and we is the length of e.

Tree-Sliced Wasserstein Distances on Systems of Lines. Tree systems (Tran et al., 2024b) are
proposed as replacements of directions in SW. As a topological space, they are constructed by join-
ing (gluing) multiple copies of R based on a tree (graph) framework, forming a measure metric
space in which optimal transport problems admit closed-form solutions. By developing a variant
of the Radon Transform that transforms functions on Rd to functions on tree systems, Tree-Sliced
Wasserstein Distances on Systems of Lines (TSW-SL) is are introduced in a similar manner as SW.
The mentioned closed-form expressions lead to a highly parallelizable implementation for TSW-SL.
We next extend the tree systems for measures on a sphere.

3 SPHERICAL TREES ON THE SPHERE

Let d be a positive integer. Recall the notion of the d-dimensional sphere in Rd+1,

Sd :=
{
x = (x0, x1, . . . , xd) ∈ Rd+1 : ∥x∥2 = 1

}
⊂ Rd+1.

The sphere Sd is a complete metric space with metric dSd defined as dSd(a, b) = arccos ⟨a, b⟩Rd+1

for a, b ∈ Sd, where ⟨·, ·⟩Rd+1 is the standard dot product in Rd+1. For x ∈ Sd, denote Hx be the
hyperplane passes through 0 ∈ Rd+1 and orthogonal to x, i.e. Hx = {y ∈ Rd+1 : ⟨x, y⟩ = 0}.

We consider the stereographic projection corresponding to x, denoted by φx, which is a map from
Sd \ {x} to Hx defined by: for y ∈ Sd \ {x}, φx(y) is the unique intersection between the line
passes through x, y and the hyperplane Hx. In concrete, the formula for φx is as follows

φx : Sd \ {x} −! Hx

y 7−!
−⟨x, y⟩
1− ⟨x, y⟩

· x+
1

1− ⟨x, y⟩
· y. (4)

It is well-known that φx is a smooth bijection between Sd \ {x} and Hx. Moreover, it is convenient
to extend φx to a map that we also denote by φx, from Sd to Hx ∪ {∞}, with φx(x) = ∞.
Remark. As a topological space, Hx is homeomorphic to Rd, and Hx ∪ {∞} is the one-point
compactification of Hx, which is homeomorphic to Sd. Also, Hx ∩ Sd is homeomorphic to Sd−1.
Definition 3.1 (Spherical rays in Rd+1). For y ∈ Sd, ray in Rd+1 with direction y is defined as
the set {t · y : t > 0} ∪ {∞}. For x ∈ Sd, and y ∈ Sd ∩ Hx, the spherical ray with root x and
direction y, denoted by rxy , is defined as the preimage of the ray with direction y through φx, i.e.,
rxy := φ−1

x

(
{t · y : t > 0} ∪ {∞}

)
.

An illustration of stereographic projection, rays and spherical rays are presented in Figure 1. In
words, a spherical ray with root x and direction y is the great semicircle on surface of the hypersphere
passes through y with one endpoint x. We have rxy is isometric to the closed interval [0, π] via
z 7! arccos ⟨x, z⟩, and we also have a parameterization of rxy as (t, rxy ) for 0 ⩽ t ⩽ π. In particular,

φ−1
x (0) = −x 7! π and φ−1

x (∞) = x 7! 0.

3
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Figure 1: Illustrations of stereographic projection, rays in R3, and spherical rays in S2.

Let k be a positive integer, x ∈ Sd and y1, . . . , yk ∈ Sd ∩Hx be k distinct points. We have k distinct
spherical rays rxyi with root x and direction yi. Consider an equivalence relation ∼ on the disjoint
union

⊔
i=1,...,k r

x
yi as follows: For (t, rxyi) ∈ rxyi and (t′, rxyj ) ∈ rxyj , we have (t, rxyi) ∼ (t′, rxyj )

if and only if (t, rxyi) = (t′, rxyj ) in Sd. In other words, we identify k point with coordinate 0 on k
spherical rays rxyi . Denote T x

y1,...,yk
as the set of all equivalence classes in

⊔
i=1,...,k r

x
yi with respect

to the equivalence relation ∼, i.e., T x
y1,...,yk

:=
(⊔

i=1,...,k r
x
yi

)
/∼.

Recall the notion of disjoint union topology and quotient topology in (Hatcher, 2005). For i =
1, . . . , k, consider the injection

fi : rxyi ↪−!
⊔

i=1,...,k

rxyi

(t, rxyi) 7−! (t, rxyi).

The disjoint union
⊔
i=1,...,k r

x
yi now becomes a topological space with the disjoint union topology,

i.e. the finest topology on
⊔
i=1,...,k r

x
yi such that the map fi is continuous for all i = 1, . . . , k.

Consider the quotient map by the equivalent relation ∼,

π :
⊔

i=1,...,k

rxyi −! T x
y1,...,yk

=

 ⊔
i=1,...,k

rxyi

 /∼

(t, rxyi) 7−! [(t, rxyi)].

T x
y1,...,yk

now becomes a topological space with the quotient topology, i.e. the finest topology on
T x
y1,...,yk

such that the map π is continuous. In other words, T x
y1,...,yk

is formed by gluing k spherical
rays rxyi at the points with coordinate 0 on each spherical rays.

Definition 3.2 (Spherical Trees in Sd). The topological space T x
y1,...,yk

is called a spherical tree on
Sd. We said that x is the root and y1, . . . , yk are the edges of T x

y1,...,yk
.

A visualization for construction of spherical trees is presented in Figure 2a. The number of edges
of a spherical tree is usually denoted by k. For simplicity, we sometimes omit the root x and edges
y1, . . . , yk and simply denote a spherical tree as T . The collection of all spherical trees with k edges
on Sd is denoted by Tdk. Since Sd∩Hx is homeomorphic to the sphere Sd−1, we have the one-to-one
correspondence between Tdk and the product Sd × (Sd ∩Hx)

k as follows:

T x
y1,...,yk

1−1
 −−−! x ∈ Sd and (y1, . . . , yk) ∈ (Sd ∩Hx)

k ≈ (Sd−1)k. (5)

From this observation, we can define a distribution σ on the space of spherical trees Tdk as the joint
distribution of distributions on Sd and Sd−1. For the rest of the paper, let σ be the joint distribution
of (k + 1) independent distributions, consists of one uniform distributions on Sd, i.e. U(Sd), and k
uniform distributions on Sd−1, i.e. U(Sd−1). The topological space T is metrizable by the metric
dT defined as: For a = (t, rxyi) and b = (t′, rxyj ) in T ,

dT (a, b) =

{
|t− t′|, if i = j, and
t+ t′, if i ̸= j.

(6)

Moreover, this metric is a tree metric on T . We verify this by showing for every pair of two points
a, b in T , all paths from a be b in T are homotopic to each other. Then dT (a, b) is the length of the
shortest path from a to b in T . Moreover, we can define a measure on T that induced from the Borel
measure on the closed interval [0, π]. The proof of these properties is similar as the proofs in (Tran
et al., 2024b). We summarize our results by a theorem.
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(a) Spherical Tree (b) Radon Transform

Figure 2: (a) An illustration of 5 spherical rays with the same root x, along with the corresponding
spherical tree rooted at x. Note that, even when endpoints differ from x of these spherical rays
are all identical to −x on the sphere, the spherical tree treats these as five distinct points, and only
identifies the root x. (b) An illustration of Radon Transform on Spherical Trees. Consider a point z.
The hyperplane passing through z and orthogonal to x cuts edges of the spherical tree at 5 points.
The mass at z under operator Rα is distributed across these 5 intersections, depending on α.

Theorem 3.3 (Spherical trees are metric spaces with tree metric). T is a metric space with tree
metric dT . The topology on T induced by dT is identical to the topology of T .

With this design, in the next section, we will define Lebesgue integrable functions on spherical trees.

4 SPHERICAL RADON TRANSFORM ON SPHERICAL TREES

In this section, we introduce the spherical Radon Transform on Spherical Trees, and discuss the
injectivity of our spherical Radon transform variant.

4.1 A SPHERICAL RADON TRANSFORM VARIANT

We introduce the notions of the space of Lebesgue integrable functions on spherical trees. First,
denote L1(Sd) as the space of Lebesgue integrable functions on Sd with norm ∥ · ∥1:

L1(Sd) =
{
f : Sd ! R : ∥f∥1 =

∫
Sd

|f(x)| dx <∞
}
. (7)

Two functions f1, f2 ∈ L1(Sd) are considered to be identical if f1(x) = f2(x) for almost every-
where on Sd. Consider a spherical tree T with root x and k edges y1, . . . , yk, a Lebesgue integrable
function on T is a function f : T ! R such that ∥f∥T :=

∑k
i=1

∫ π
0
|f(t, rxyi)| dt <∞.

The space of Lebesgue integrable functions on T is denoted by L1(T ). Two functions f1, f2 ∈
L1(T ) are considered to be identical if f1(x) = f2(x) for almost everywhere on T . The space
L1(L) with norm ∥ · ∥T is a Banach space.

Let ∆k−1 :=
{
(ai)

k
i=1 : 0 ⩽ ai ⩽ 1 and

∑k
i=1 ai = 1

}
⊂ Rk be the (k−1)-dimensional standard

simplex. Denote C
(
Sd × Tdk,∆k−1

)
as the space of continuous maps from Sd × Tdk to ∆k−1, and

called a map in C
(
Sd × Tdk,∆k−1

)
by a splitting map. Let T be a spherical tree with root x and k

edges y1, . . . , yk, α be a splitting map in C
(
Sd × Tdk,∆k−1

)
, we define an operator associated to α

that transforms a Lebesgue integrable functions on Sd to a Lebesgue integrable functions on T . For
f ∈ L1(Sd), define

Rα
T f : T −! R (8)

(t, rxyi) 7−!

∫
Sd
f(y) · α(y, T )i · δ(t− arccos ⟨x, y⟩) dy, (9)

where δ is the Dirac delta function. We have Rα
T f ∈ L1(T ) for f ∈ L1(Sd), and moreover,

∥Rα
T f∥T ⩽ ∥f∥1. The operator Rα

T : L1(Sd) ! L1(T ) is a well-defined linear operator. The
proof of these properties can be found in Appendix A.1. An illustration of Rα

T is presented in
Figure 2b. We next present a novel spherical Radon Transform variant on spherical trees.

5
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Definition 4.1 (Spherical Radon Transform on Spherical Trees). For α ∈ C
(
Sd × Tdk,∆k−1

)
, the

operator Rα that is defined as follows:

Rα : L1(Sd) −!
∏

T ∈Td
k

L1(T )

f 7−! (Rα
T f)T ∈Td

k
.

is called the Spherical Radon Transform on Spherical Trees.

4.2 INJECTIVITY OF RADON TRANSFORM ON SPHERICAL TREES

We discuss on the injectivity of our spherical Radon Transform variant. Consider the Euclidean
norm on Rd, i.e. ∥ · ∥2.

Orthogonal group O(d) and its actions. The orthogonal group O(d) is the group of linear trans-
formations of Rd that preserves the Euclidean norm ∥ · ∥2,

O(d) =
{

linear transformation f : Rd ! Rd : ∥x∥2 = ∥f(x)∥2 for all x ∈ Rd
}
. (10)

It is well-known that O(d) is isomorphic to the group of orthogonal matrices under multiplication,

O(d) =
{
Q ∈Md×d(R) : Q ·Q⊤ = Q⊤ ·Q = Id

}
. (11)

The canonical group action of O(d) on Rd is defined by: For g = Q ∈ O(d) and y ∈ Rd, we have
y 7! gy = Q · y. By the norm preserving, the action of O(d + 1) on Rd+1 canonically induces an
action of O(d+1) on the sphere Sd. Moreover, the action of O(d) on Rd preserves the standard dot
product, so the action of O(d+ 1) on Sd preserves the metric dSd .

Group actions of O(d+ 1) on space of spherical trees Tdk. Under g ∈ O(d+ 1), the spherical ray
rxy transforms to rgxgy . It implies that the action of O(d + 1) on Sd canonically induces an action of
O(d+ 1) on Tdk as

T = T x
y1,...,yk

7−! gT := T gx
gy1,...,gyk

. (12)

Moreover, each g ∈ O(d+ 1) presents a morphism T ! gT that is isometric.

O(d + 1)-invariant splitting maps. Given a map f : X ! Y and a group G acts on X . The
map f is called G-invariant if f(gx) = f(x) for all g ∈ G and x ∈ X . We have the definition of
O(d+ 1)-invariance in splitting maps.
Definition 4.2. A splitting map α in C(Sd × Tdk,∆k−1) is said to be O(d+ 1)-invariant, if we have

α(gy, gT ) = α(y, T ) (13)

for all (y, T ) ∈ Sd × Tdk and g ∈ O(d+ 1).

With an O(d+ 1)-invariant splitting maps, our spherical Radon Transform variant is injective.
Theorem 4.3. Rα is injective for an O(d+ 1)−invariant splitting map α.

The proof of Theorem 4.3 is presented in Appendix A.3. Finally, we present a candidate for O(d+1)-
invariant splitting maps. Define the map β : Sd × Tdk ! Rk as follows:

β(y, T x
y1,...,yk

)i =


0, if y = x or y = −x,

arccos

 ⟨y, yi⟩√
1− ⟨x, y⟩2

 ·
√
1− ⟨x, y⟩2, if y ̸= ±x. (14)

Remark. The construction of β will be explained in Appendix A.2.

The map β is continuous and O(d + 1)-invariant. The derivation of β and the proof for these
properties are presented in Appendix A.2. We choose α : Sd × Tdk ! ∆k−1 as follows:

α(y, T ) = softmax
(
{ζ · β(y, T )i}i=1,...,k

)
(15)

Here, ζ ∈ R is treated as a tuning parameter. The intuition behind this choice of α is that it reflects
the proximity of points to the rays of the spherical trees. As |ζ| increases, the resulting value of α
tends to become more sparse, emphasizing the importance of each ray relative to a specific point.

6
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5 SPHERICAL TREE-SLICED WASSERSTEIN DISTANCE

In this section, we propose our novel Spherical Tree-Sliced Wasserstein Distance (STSW). We also
derive a closed-form approximation of STSW that allows an efficient implementation.

5.1 SPHERICAL TREE-SLICED WASSERSTEIN DISTANCE

Given two probability distributions µ, ν in P(Sd), a tree T ∈ Tdk and an O(d+1)-invariant splitting
map α ∈ C(Sd × Tdk,∆k−1). By the Radon Transform Rα

T in Definition 4.1, µ and ν tranform
to two probability distributions Rα

Lµ and Rα
Lν in P(T ). T is a metric space with tree metric dT

(Tran et al., 2024b), so we can compute Wasserstein distance WdT ,1(Rα
T µ,Rα

T ν) between Rα
T µ

and Rα
T ν by Equation (3).

Definition 5.1 (Spherical Tree-Sliced Wasserstein Distance). The Spherical Tree-Sliced Wasserstein
Distance between µ, ν in P(Sd) is defined by:

STSW(µ, ν) :=

∫
Td
k

WdT ,1(Rα
T µ,Rα

T ν) dσ(T ). (16)

Remark. Note that, the definition of STSW depends on the space Tdk, the distribution σ on Tdk, and
the splitting map α as in Equation (15). We omit them to simplify the notation.

The STSW distance is, indeed, a metric on P(Sd).
Theorem 5.2. STSW is a metric on P(Sd). Moreover, STSW is invariant under orthogonal trans-
formations: For g ∈ O(d+ 1), we have

STSW(µ, ν) = STSW(g♯µ, g♯ν), (17)

where g♯µ, g♯ν as the push-forward of µ, ν via orthogonal transformation g : Sd ! Sd, respectively.

The proofs of Theorem 5.2 is presented in Appendix A.4.

5.2 COMPUTATION OF STSW

To approximate the intractable integral in Equation (16), we use the Monte Carlo method as
ŜTSW(µ, ν) = (1/L) ·ΣLl=1WdTl

,1(Rα
Tl
µ,Rα

Tl
ν), where T1, . . . , TL are drawn independently from

the distribution σ on T, and are referred to as projecting tree systems. We present the way to sample
Ti and compute WdTl

,1(Rα
Tl
µ,Rα

Tl
ν).

Sampling spherical trees. Recall that σ is the joint distribution of k + 1 independent distributions,
consists of one uniform distributions on Sd, and k uniform distributions on Sd−1. This comes from
the one-to-one correspondence between Tdk and Sd× (Sd−1)k as in Equation (5). In applications, to
perform a sampling process for T = T x

y1,...,yk
∈ Tdk from σ, we sample by two steps as follows:

1. Sample k + 1 points x, y1, . . . , yk in Rd+1. Normalize them to get x, y1, . . . , yk lie on Sd.

2. For each i, take the intersection of the line passes through x, yi with Hx, i.e. φx, then
normalize Φx to get new yi lies on Hx ∩ Sd.

This results in a sampling process based on distribution σ.

Computing WdT ,1(Rα
T µ,Rα

T ν). In applications, given discrete distributions µ and ν as µ(x) =∑n
j=1 uj ·δ(x−aj) and ν(x) =

∑n
j=1 vj ·δ(x−aj). We can present µ and ν with the same supports

by combining their supports and allow some uj or vj to be 0. For spherical tree T = T x
y1,...,yk

, we
want to compute WdT ,1(Rα

T µ,Rα
T ν). For 1 ⩽ j ⩽ n, let cj = dSd(x, aj). Also let c0 = 0. By

re-indexing, we assume that 0 = c0 ⩽ c1 ⩽ . . . ⩽ cn. By Radon Transform in Definition 4.1, µ, ν
transform to Rα

T µ,Rα
T ν supported on {(cj , rxyi)}1⩽i⩽k,1⩽j⩽n of T , with

Rα
T µ(cj , r

x
yi) = α(aj , T )i · uj and Rα

T ν(cj , r
x
yi) = α(aj , T )i · vj (18)
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By Equation (3), WdT ,1(Rα
T µ,Rα

T ν) has a closed-form approximation as follows

WdT ,1(Rα
T µ,Rα

T ν) =

n∑
j=1

(cj − cj−1) ·

 k∑
i=1

∣∣∣∣∣∣
n∑
p=j

α(ap, T )i · (up − vp)

∣∣∣∣∣∣
 . (19)

The detailed derivation of Equation (19) is presented in Appendix A.5. The closed-form expression
in Equation (19) leads to a highly parallelizable implementation of STSW distance. We summarize
our results in this section by Algorithm 1.

Algorithm 1 Spherical Tree-Sliced Wasserstein distance.

Input: µ, ν ∈ P(Sd) as µ(x) =
∑n
j=1 uj · δ(x − aj), ν(x) =

∑n
j=1 vj · δ(x − aj), number of

spherical trees L, number of rays in spherical trees k, splitting maps α with weight δ ∈ R.
for l = 1 to L do

Sample x(l), y(l)1 , . . . , y
(l)
k

i.i.d∼ N (0, Idd+1).
Compute x(l)  x(l)/∥x(l)∥2 and y(l)j  φx(l)(y

(l)
j )/∥φx(l)(y

(l)
j )∥2.

Contruct spherical tree Tl = T x(l)

y
(l)
1 ,...,y

(l)
k

.

Compute WdTl
,1(Rα

Tl
µ,Rα

Tl
ν) by Equation (19).

end for
Compute ŜTSW(µ, ν) = (1/L) · ΣLl=1WdTl

,1(Rα
Tl
µ,Rα

Tl
ν)

Return: ŜTSW(µ, ν).

6 EXPERIMENTAL RESULTS

In this section, we present the results of our four main tasks: Gradient Flow, Self-Supervised Learn-
ing, Earth Density Estimation, and Sliced-Wasserstein Auto-Encoder. We provide a detailed eval-
uation for each task, including quantitative metrics, visualizations, and a comparison with relevant
baseline methods. Experimental details can be found in Appendix B.

6.1 GRADIENT FLOW

Our first experiment focuses on learning a target distribution ν from a source distribution µ by
minimizing STSW(ν, µ). We solve this optimization using projected gradient descent, as discussed
in Bonet et al. (2022). We compare the performance of our method against baselines: SSW (Bonet
et al., 2022), and S3W variants (Tran et al., 2024a).

Following Tran et al. (2024a), we use a mixture of 12 von Mises-Fisher distributions (vMFs) as our
target ν. The training is conducted over 500 epochs with a full batch size, and each experiment is
repeated 10 times. We adopt the evaluation metrics from Tran et al. (2024a), which include log 2-
Wasserstein distance, negative log-likelihood (NLL), and training time. As shown in Table 1, STSW
outperforms the baselines in all metrics and achieves faster convergence, as illustrated in Figure 10.

6.2 SELF-SUPERVISED LEARNING (SSL)

Normalizing feature vectors to the hypersphere has been shown to improve the quality of learned
representations and prevent feature collapse (Chen et al., 2020; Wang & Isola, 2020). In previous
work, Wang & Isola (2020) identified two properties of contrastive learning: alignment (bringing
positive pairs closer) and uniformity (distributing features evenly on the hypersphere). Adopting
the approach in Bonet et al. (2022), we propose replacing the Gaussian kernel uniformity loss with
STSW, resulting in the following contrastive objective:

L =
1

n

n∑
i=1

∥∥zAi − zBi
∥∥2
2︸ ︷︷ ︸

Alignment loss

+
λ

2

(
STSW(zA, ν) + STSW(zB , ν)

)︸ ︷︷ ︸
Uniformity loss

, (20)

8
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Table 1: Learning target distribution 12 vFMs. We use NR = 30 rotations for ARI-S3W and an
additional learning rate LR = 0.05 for SSW.

Method logW2 # NLL # Runtime(s)

SSW (LR=0.01) -3.21 ± 0.16 -4980.01 ± 1.89 55.20 ± 0.15
SSW (LR=0.05) -3.36 ± 0.12 -4976.58 ± 2.23 55.31 ± 0.33

S3W -2.37 ± 0.21 -4749.67 ± 84.34 1.93 ± 0.06
RI-S3W (1) -3.12 ± 0.18 -4964.50 ± 27.98 2.03 ± 0.12
RI-S3W (5) -3.47 ± 0.06 -4984.80 ± 7.32 5.68 ± 0.51
ARI-S3W (30) -4.39 ± 0.19 -5020.37 ± 6.35 20.25 ± 0.15

STSW -4.69 ± 0.01 -5041.13 ± 0.84 1.89 ± 0.05

Table 2: CIFAR-10 linear evaluation accuracy for encoded (E) features and projected (P) features
on S9, along with pretraining time per epoch. ARI-S3W and RI-S3W use 5 rotations.

Method Acc. E(%) " Acc. P(%) " Time (s/ep.)

Hypersphere 79.81 74.64 10.18
SimCLR 79.97 72.80 9.34
SW 74.39 67.80 9.65
SSW 70.23 64.33 10.59

S3W 78.59 73.83 10.14
RI-S3W (5) 79.93 73.95 10.22
ARI-S3W (5) 80.08 75.12 10.19

STSW 80.53 76.78 9.54

where ν = U(Sd), λ > 0 is regularization factor, zA, zB ∈ Rn×(d+1) are embeddings of two image
augmentations mapped onto Sd. Similar to Bonet et al. (2022) and Tran et al. (2024a), we train
ResNet18 (He et al., 2016) based encoder on the CIFAR-10 (Krizhevsky et al., 2009) w.r.t L. After
this, we train a linear classifier on the features extracted from the pre-trained encoder.

Table 2 demonstrates the improvement of STSW in comparison to baselines: Hypersphere (Wang
& Isola, 2020), SimCLR (Chen et al., 2020), SW, SSW, and S3W variants. We also conduct ex-
periments with d = 2 to visualize learned representations. Figure 12 illustrates that STSW can
effectively distribute encoded features around the sphere while keeping similar ones close together.

6.3 EARTH DENSITY ESTIMATION

We now demonstrate the application of STSW in density estimation on S2. Data used in this task
is collected by (Mathieu & Nickel, 2020) which consists of Fire (Brakenridge, 2017), Earthquake
(EOSDIS, 2020) and Flood (EOSDIS, 2020). As in (Bonet et al., 2022), we employ an exponential
map normalizing flow model (Rezende et al., 2020) which are invertible transformations T and
aim to minimize minT STSW(T#µ, pZ), where µ is the empirical distribution, and pZ is a prior
distribution on S2 which we use uniform distribution. The density for any point x ∈ S2 is then
estimated by fµ(x) = pZ(T (x))|detJT (x)| where JT (x) is the Jacobian of T at x.

Our baselines are exponential map normalizing flows with SW, SSW, and S3W variants, and stere-
ographic projection-based (Dinh et al., 2016) normalizing flows. As seen in Table 3, STSW even
with fewer epochs and shorter training time (10K epochs over 2h10m for STSW versus 20K epochs
over 4h30m for ARI-S3W, both on Fire dataset) still outperforms or is competitive with SSW and
S3W variants.

6.4 SLICED-WASSERSTEIN AUTO-ENCODER (SWAE)

We apply STSW to generative modeling using the Sliced-Wasserstein Auto-Encoder (SWAE)
(Kolouri et al., 2018) framework, which regularizes the latent space distribution to match a prior

9
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Table 3: Negative log-likelihood on test data, averaged over 5 runs with different data split.

Method Quake # Flood # Fire #

Stereo 1.94± 0.21 1.92± 0.04 1.31± 0.12

SW 0.99± 0.05 1.47± 0.03 0.55± 0.21
SSW 0.84± 0.06 1.26± 0.04 0.23± 0.20

S3W 0.89± 0.08 1.35± 0.04 0.34± 0.05
RI-S3W (1) 0.80± 0.07 1.25± 0.03 0.14± 0.06
ARI-S3W (50) 0.77± 0.06 1.24± 0.03 0.08± 0.05

STSW 0.68 ± 0.04 1.23 ± 0.03 -0.67 ± 0.05

Table 4: SWAE results evaluated on latent regularization of CIFAR-10 test data.

Method log W2 # NLL # BCE # Time (s/ep.)

SW -3.2943 -0.0014 0.6314 3.4060
SSW -2.2234 0.0005 0.6309 8.2386

S3W -3.3421 0.0013 0.6329 4.5138
RI-S3W (5) -3.1950 -0.0039 0.6354 4.9682
ARI-S3W (5) -3.3935 0.0012 0.6330 4.7347

STSW -3.4191 -0.0051 0.6341 3.5460

distribution q. Let φ : X ! Sd and ψ : Sd ! X be the parametric encoder and decoder. The
objective of the SWAE is:

min
φ,ψ

Ex∼p [c(x, ψ(φ(x)))] + λ · STSW (φ#p, q) (21)

where λ controls regularization, p is data distribution. We use SW, SSW (Bonet et al., 2022) and
S3W variants (Tran et al., 2024a) as baselines, Binary Cross Entropy (BCE) for reconstruction loss
and a mixture of 10 vMFs as the prior, similar to Tran et al. (2024a). We provide results in Table 4.
We note that STSW has the best results in log 2-Wasserstein and NLL with a competitive training
time, though its BCE slightly underperforms the others.

7 CONCLUSION

This paper introduces the Spherical Tree-Sliced Wasserstein (STSW) distance, a novel approach
leveraging a new integration domain called spherical trees. In contrast to the traditional one-
dimensional lines or great semicircles often used in the spherical Sliced Wasserstein variant, STSW
ultilizes spherical trees to better capture the topology of spherical data and provides closed-form
solutions for optimal transport problems on spherical trees, leading to expected improvements in
both performance and efficiency. We rigorously develop the theoretical basis for our approach by
introducing spherical Radon Transform on Spherical Tree then verifying the core properties of the
transform such as its injectivity. We thoroughly develop the theoretical foundation for this method
by introducing the spherical Radon Transform on Spherical Trees and validating its key properties,
such as injectivity. STSW is derived from the Radon Transform framework, and through care-
ful construction of the splitting maps, we obtain a closed-form approximation for the distance.
Through empirical tasks on spherical data, we demonstrate that STSW significantly outperforms
recent spherical Wasserstein variants. Future research could explore spherical trees further, such
as developing sampling processes for spherical trees or adapting Generalized Radon Transforms to
enhance STSW.
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Meyer Scetbon, Marco Cuturi, and Gabriel Peyré. Low-rank Sinkhorn factorization. International
Conference on Machine Learning (ICML), 2021.

Huy Tran, Yikun Bai, Abihith Kothapalli, Ashkan Shahbazi, Xinran Liu, Rocio P Diaz Martin, and
Soheil Kolouri. Stereographic spherical sliced wasserstein distances. In Forty-first International
Conference on Machine Learning, 2024a.

Viet-Hoang Tran, Trang Pham, Tho Tran, Tam Le, and Tan M Nguyen. Tree-sliced wasserstein
distance on a system of lines. arXiv preprint arXiv:2406.13725, 2024b.

C. Villani. Optimal Transport: Old and New, volume 338. Springer Science & Business Media,
2008.

Jiri Vrba and Stephen E Robinson. Signal processing in magnetoencephalography. Methods, 25(2):
249–271, 2001.

Tongzhou Wang and Phillip Isola. Understanding contrastive representation learning through align-
ment and uniformity on the hypersphere. In International conference on machine learning, pp.
9929–9939. PMLR, 2020.

Zhirong Wu, Yuanjun Xiong, Stella X Yu, and Dahua Lin. Unsupervised feature learning via non-
parametric instance discrimination. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 3733–3742, 2018.

Jiacheng Xu and Greg Durrett. Spherical latent spaces for stable variational autoencoders. arXiv
preprint arXiv:1808.10805, 2018.

Mingxuan Yi and Song Liu. Sliced wasserstein variational inference. In Asian Conference on
Machine Learning, pp. 1213–1228. PMLR, 2023.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

NOTATION

Rd d-dimensional Euclidean space
∥ · ∥2 Euclidean norm
⟨·, ·⟩ standard dot product
Sd d-dimensional hypersphere
θ unit vector
⊔ disjoint union
arccos inverse of cosine function
L1(X) space of Lebesgue integrable functions on X
P(X) space of probability distributions on X
µ, ν measures
δ(·) 1-dimensional Dirac delta function
U(Sd) uniform distribution on Sd

♯ pushforward (measure)
C(X,Y ) space of continuous maps from X to Y
d(·, ·) metric in metric space
O(d) orthogonal group of order d
g element of group
Wp p-Wasserstein distance
SWp Sliced p-Wasserstein distance
Γ (rooted) subtree
e edge in graph
we weight of edge in graph
φx stereographic projection at x
Hx hyperplane passes through x and orthogonal to x
rxy spherical ray
T , T x

y1,...,yk
spherical tree

Tdk space of spherical trees of k edges on Sd

σ distribution on space of tree systems
L number of spherical tree
k number of edges in spherical tree
R original Radon Transform
Rα spherical Radon Transform on Spherical Trees
∆k−1 (k − 1)-dimensional standard simplex
α splitting map
ζ tuning parameter in splitting maps
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A THEORETICAL PROOFS

A.1 PROPERTIES OF Rα
T f

Proof. Let f ∈ L1(Sd). We show that ∥Rα
T f∥T ⩽ ∥f∥1. Note that, arccos ⟨x, y⟩ ∈ [0, π], so we

have

∥Rα
T f∥T =

k∑
i=1

∫ π

0

∣∣Rα
T f(t, r

x
yi)
∣∣ dt

=

k∑
i=1

∫ π

0

∣∣∣∣∫
Sd
f(y) · α(y, T )i · δ(t− arccos ⟨x, y⟩) dy

∣∣∣∣ dt
⩽

k∑
i=1

∫ π

0

(∫
Sd

|f(y)| · α(y, T )i · δ(t− arccos ⟨x, y⟩) dy
)
dt

=

k∑
i=1

∫
Sd

(∫ π

0

|f(y)| · α(y, T )i · δ(t− arccos ⟨x, y⟩) dt
)
dy

=

k∑
i=1

∫
Sd

|f(y)| · α(y, T )i ·
(∫ π

0

δ(t− arccos ⟨x, y⟩) dt
)
dy

=

k∑
i=1

∫
Sd

|f(y)| · α(y, T )i dy

=

∫
Sd

|f(y)| ·

(
k∑
i=1

α(y, T )i

)
dy

=

∫
Sd

|f(y)| dy

15
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= ∥f∥1 <∞.

It implies that Rα
T f ∈ L1(T ), which means the operator Rα

T : L1(Sd) ! L1(T ) is well-defined.
Clearly, Rα

T is a linear operator.

A.2 DERIVATION AND PROPERTIES OF SPLITTING MAPS

We recall the construction for a splitting map α presented in Subsection 4.2. We have a map β : Sd×
Tdk ! Rk defined as follows:

β(y, T x
y1,...,yk

)i =


0, if y = x or y = −x, and

arccos

 ⟨y, yi⟩√
1− ⟨x, y⟩2

 ·
√
1− ⟨x, y⟩2, if y ̸= x,−x. (22)

Then α : Sd × Tdk ! ∆k−1 is defined as follows:

α(y, T ) = softmax
(
{δ · β(y, T )i}i=1,...,k

)
(23)

We will show that

1. Where does β come from?
2. α is continuous.
3. α is O(d+ 1)-invariant.

Proof. We prove each part.

1. For (y, T x
y1,...,yk

) ∈ Sd × Tdk, let Ny be the hyperplane passes through Y and orthogonal to x.
Then Ny intersects the spherical ray rxyi at a single point a, and intersects the vector x at a single
point b. The β(y, T )i is the length of the small arc from y to a on the circle centered at b passes
through y and a. Indeed, if y = x and y = −x, this length is equal to 0, the same as the definition
of β. If y ̸= x,−x, let c is the intersection of the line passes through x, y, and the hyperplane Hx;
moreover, let d be the unique intersection of the segment with endpoints 0, c, and the hyperplane
Hx. In details, we have

c = φx(y) and d =
c

∥c∥2
. (24)

Note that, the condition y ̸= x,−x is to guarantee that c ̸= 0,∞. We compute c in details as follows:

c =
−⟨x, y⟩
1− ⟨x, y⟩

· x+
1

1− ⟨x, y⟩
· y, (25)

so

d =
c

∥c∥2
=

−⟨x, y⟩
1− ⟨x, y⟩

· x+
1

1− ⟨x, y⟩
· y∥∥∥∥ −⟨x, y⟩

1− ⟨x, y⟩
· x+

1

1− ⟨x, y⟩
· y
∥∥∥∥
2

(26)

=

−⟨x, y⟩
1− ⟨x, y⟩

· x+
1

1− ⟨x, y⟩
· y√〈

−⟨x, y⟩
1− ⟨x, y⟩

· x+
1

1− ⟨x, y⟩
· y
〉 (27)

=

−⟨x, y⟩
1− ⟨x, y⟩

· x+
1

1− ⟨x, y⟩
· y√

∥x∥22 ·
⟨x, y⟩2

(1− ⟨x, y⟩)2
+ ∥y∥22 ·

1

(1− ⟨x, y⟩)2
− 2 · ⟨x, y⟩ · ⟨x, y⟩

(1− ⟨x, y⟩)2

(28)
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=

−⟨x, y⟩
1− ⟨x, y⟩

· x+
1

1− ⟨x, y⟩
· y√

1− ⟨x, y⟩2

(1− ⟨x, y⟩)2

(29)

=
−⟨x, y⟩ · x+ y√

1− ⟨x, y⟩2
. (30)

Note that, since b is the projection of y on vector x, so we have

b = ⟨x, y⟩ · x. (31)

By similarity, we have

length of arc from y to a on the circle centered at b passes through y and a
length of arc from d to yi on the circle centered at 0 passes through d and yi

=
∥y − b∥2
∥d− 0∥2

. (32)

Note that, the length of arc from d to yi on the circle centered at 0 passes through d and yi is

dSd(d, yi) = arccos ⟨d, yi⟩ , (33)

so

length of arc from y to a on the circle centered at b passes through y and a (34)

= arccos ⟨d, yi⟩ ·
∥y − b∥2
∥d− 0∥2

(35)

= arccos ⟨d, yi⟩ · ∥y − b∥2 (36)

= arccos

〈
−⟨x, y⟩ · x+ y√

1− ⟨x, y⟩2
, yi

〉
· ∥y − ⟨x, y⟩ · x∥2 (37)

= arccos

 ⟨y, yi⟩√
1− ⟨x, y⟩2

 ·
√
∥y∥22 + ⟨x, y⟩2 · ∥x∥22 − 2 ⟨x, y⟩ · ⟨x, y⟩ (38)

= arccos

 ⟨y, yi⟩√
1− ⟨x, y⟩2

 ·
√
1− ⟨x, y⟩2 (39)

= β(y, T x
y1,...,yk

)i. (40)

We finish the derivation of β. In context of splitting maps, this is a reasonable choice, since it relates
to evaluate distances from a point to a spherical ray.

2. The derivation of β clearly implies that β is continuous. We can also check the continuous of β
directly from the formula of β. Since β is continuous, we have α is continuous.

3. We have β is O(d + 1)-invariant since orthogonal transformations preserve the standard dot
product. Since β is O(d+ 1)-invariant, we have α is O(d+ 1)-invariant.

A.3 PROOF OF THEOREM 4.3

Proof. Recall the notion of (vertical) Radon Transform (Quellmalz et al., 2023). Let Φd be the
collection of all spherical rays on Sd, i.e.

Φd := {rxy : x ∈ Sd, y ∈ Hx}. (41)

Note that, this is the same as the collection of all spherical trees with one edge, i.e. Td1. For
f ∈ L1(Sd), consider the map

(
Rrxy

)
f : rxy ≡ [0, π]! R defined by(

Rrxy
)
f(t) =

∫
Sd
f(z) · δ(t− arccos ⟨z, x⟩)dz. (42)

17
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Similar to Appendix A.1, we can show that
(
Rrxy

)
f ∈ L1(rxy ). We have an operator

R : L1(Sd) −!
⊔

rxy∈Φd

L1(rxy ) (43)

f 7−!

((
Rrxy

)
f

)
rxy∈Φd

(44)

This is exactly the (vertical) Radon Transform for Lebesgue integrable functions on Sd, as in (Quell-
malz et al., 2023). This is proved to be an injective linear operator, so if

(
Rrxy

)
f = 0 for all

rxy ∈ Φd, then f = 0.

Back to the problem. Recall that Tdk is the space of all spherical trees of k edges on Sd,

Tdk = {T x
y1,...,yj = (rxy1 , . . . r

x
yk
) : x ∈ Sd and y1, . . . , yk ∈ Hx}. (45)

For an 1 ⩽ i ⩽ k and rxy ∈ Φd, define

Tdk(i, rxy ) :=
{
T x
y1,...,yj : y = yi

}
. (46)

In words, Tdk(i, rxy ) is a subcollection of Tdk consists of all spherical trees with root x and the ith

spherical ray is rxyi . It is clear that Tdk is the disjoint union of all Tdk(i, rxy ) for rxy ∈ Φd,

Tdk =
⊔

rxy∈Φd

Tdk(i, rxy ). (47)

We have some observations on subcollections Tdk(i, rxy ).

Result 1. Each orthogonal transformation g ∈ O(d+1) define a bijection between Tdk(i, rxy ) and
Tdk(i, rgxgy ). In details, the map ϕg defined by

ϕg : Tdk(i, rxy ) −! Tdk(i, rgxgy ) (48)

T x
y1,...,yk

7−! T gx
gy1,...,gyk

. (49)

is a well-defined and is a bijection. This can be verified directly by definitions.

Result 2. For 1 ⩽ i ⩽ k and rxy , r
x′

y′ ∈ Φd, we have∫
Td
k(i,r

x
y )

α(z, T )i dT =

∫
Td
k(i,r

x′
y′ )

α(z′, T )i dT (50)

for all z, z′ ∈ Sd such that dSd(x, z) = dSd(x
′, z′). Note that, the intergrations are taken over a

Tdk(i, rxy ) and Tdk(i, rx
′

y′ ) with measures induced from the measure of Ldk. To prove Equation (50),
we first show it in two specific cases as follows:

• Case 1. Assume x = x and y = y.

• Case 2. Assume z lies on rxy and z′ lies on rx
′

y′ .

If we can show that Equation (50) holds for assumptions in case 1 and 2, then Equation (50) holds
for all x, y, z, x′, y′, z′. Indeed, assume that Equation (50) holds for assumptions in case 1 and 2.
Then for all x, y, z, x′, y′, z′, we consider t ∈ rxy and t′ ∈ rx

′

y′ such that

dSd(x, t) = dSd(x, z) = dSd(x
′, z′) = dSd(x

′, t′). (51)

Then from the results in case 1 and 2, we have

18
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∫
Td
k(i,r

x
y )

α(z, T )i dT
by case 1
=

∫
Td
k(i,r

x
y )

α(t, T )i dT (52)

by case 2
=

∫
Td
k(i,r

x′
y′ )

α(t′, T )i dT
by case 1
=

∫
Td
k(i,r

x′
y′ )

α(z′, T )i dT . (53)

So Equation (50) holds for all x, y, z, x′, y′, z′. Now we prove it holds for case 1 and 2.

For case 1, from the transitivity of orthogonal transformations on Sd, there exists g ∈ O(d+1) such
that

gx = x, gy = y, gz = z′. (54)

From Result 1, there is a corresponding bijection ϕg from Tdk(i, rxy ) to Tdk(i, rxy ). We have∫
Td
k(i,r

x
y )

α(z′, T )i dT =

∫
Td
k(i,r

x
y )

α(z′, gT )i d(gT ) (change of variables) (55)

=

∫
Td
k(i,r

x
y )

α(gz, gT )i d(gT ) (since z′ = gz) (56)

=

∫
Td
k(i,r

x
y )

α(z, T )i d(gT ) (since α is O(d+ 1)-invariant) (57)

=

∫
Td
k(i,r

x
y )

α(z, T )i d(T ) (since |det(g)| = 1) (58)

(59)

So Equation (50) holds for case 1. A similar proof can be processed for case 2. From the transitivity
of orthogonal transformations on Sd, there exists h ∈ O(d+ 1) such that

hx = x′, hy = y′, hz = z′. (60)

From Result 1, there is a corresponding bijection ϕh from Tdk(i, rxy ) to Tdk(i, rx
′

y′ ). We have∫
Td
k(i,r

x′
y′ )

α(z′, T )i dT =

∫
Td
k(i,r

x
y )

α(z′, hT )i d(hT ) (change of variables) (61)

=

∫
Td
k(i,r

x
y )

α(hz, hT )i d(hT ) (since z′ = hz) (62)

=

∫
Td
k(i,r

x
y )

α(z, T )i d(hT ) (since α is O(d+ 1)-invariant) (63)

=

∫
Td
k(i,r

x
y )

α(z, T )i d(T ) (since |det(h)| = 1) (64)

(65)

We finish the proof for Result 2.

Result 3. From Result 2, for all 1 ⩽ i ⩽ k and t ∈ [0, π], we can define a constant ci(t) such that

ci(t) :=

∫
Td
k(i,r

x
y )

α(z, T )i dT (66)

for all rxy ∈ Φd and z ∈ Sd such that t = dSd(x, z) = arccos ⟨x, z⟩. Then for all t ∈ [0, π], we have

c1(t) + c2(t) + . . .+ ck(t) = 1. (67)

To show this, first, denote Tdk(x) as the collection of all spherical trees with root x on Sd. We have

Tdk(x) =
⊔

y∈Hx∩Sd
Tdk(i, rxy ), (68)
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so we have ∫
Td
k(x)

α(z, T )i dT =

∫
Hx∩Sd

(∫
Td
k(i,r

x
y )

α(z, T )i dT

)
dy (69)

=

∫
Hx∩Sd

ci(arccos ⟨x, z⟩) dy (70)

= ci(arccos ⟨x, z⟩). (71)
Then

c1(arccos ⟨x, z⟩) + . . .+ ck(arccos ⟨x, z⟩) =
k∑
i=1

∫
Td
k(x)

α(z, T )i dT (72)

=

∫
Td
k(x)

(
k∑
i=1

α(z, T )i

)
dT (73)

=

∫
Td
k(x)

1 dT (74)

= 1. (75)

We finish the proof for Result 3.

Consider a splitting map α in C(Sd × Tdk,∆k−1) that is O(d + 1)-invariant. For a function f ∈
L1(Sd), for each 1 ⩽ i ⩽ k, define a function gi ∈ L1([0, π]× Φd) as follows

gi : [0, π]× Φd −! R (76)

(t, rxy ) 7−!

∫
Td
k(i,r

x
y )

Rα
T f(t, r

x
y ) dT . (77)

From the definition of Rα
T f ,

Rα
T f : T −! R (78)

(t, rxyi) 7−!

∫
Sd
f(y) · α(y, T )i · δ(t− arccos ⟨x, y⟩) dy, (79)

we have

gi(t, r
x
y ) =

∫
Td
k(i,r

x
y )

Rα
T f(t, r

x
y ) dT (80)

=

∫
Td
k(i,r

x
y )

(∫
Sd
f(z) · α(z, T )i · δ(t− arccos ⟨x, z⟩) dz

)
dT (81)

=

∫
Sd

(∫
Td
k(i,r

x
y )

f(z) · α(z, T )i · δ(t− arccos ⟨x, z⟩) dT

)
dz (82)

=

∫
Sd
f(z) · δ(t− arccos ⟨x, z⟩) ·

(∫
Td
k(i,r

x
y )

α(z, T )i dT

)
dz (83)

=

∫
Sd
f(z) · δ(t− arccos ⟨x, z⟩) · ci(arccos ⟨x, z⟩) dz (84)

= ci(t) ·
∫
Sd
f(z) · δ(t− arccos ⟨x, z⟩) dz (85)

= ci(t) ·
(
Rrxy

)
f(t). (86)

So
k∑
i=1

gi(t, r
x
y ) =

k∑
i=1

ci(t) ·
(
Rrxy

)
f(t) (87)
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=

(
k∑
i=1

ci(t)

)
·
(
Rrxy

)
f(t) = 1 ·

(
Rrxy

)
f(t) =

(
Rrxy

)
f(t) (88)

Let f ∈ KerRα, which means Rα
T f = 0 for all T ∈ Tdk. So g = 0 ∈ L1([0, π] × Φd) for all

1 ⩽ i ⩽ k. It implies
(
Rrxy

)
f = 0 ∈ L1(rxy ) for all rxy ∈ Φd. So, from the (vertical) Radon

Transform is injective, we conclude that f = 0 ∈ L1(Sd). so Rα is injective.

Remark. To formalize the proof above, the notion of Haar measure for compact groups is required.
However, we simplify the explanation as it goes beyond the scope of this paper.

A.4 PROOF OF THEOREM 5.2

Proof. We want to show that

STSW(µ, ν) =

∫
Td
k

WdT ,1(Rα
T µ,Rα

T ν) dσ(T ). (89)

is a metric on P(Sd).

Positive definiteness. For µ, ν ∈ P(Sd), it is clear that STSW(µ, µ) = 0 and STSW(µ, ν) ⩾ 0. If
STSW(µ, ν) = 0, then WdT ,1(Rα

T µ,Rα
T ν) = 0 for all T ∈ Tdk. Since WdT ,1 is a metric on P(T ),

we have Rα
T µ = Rα

T ν for all T ∈ Tdk. By the injectivity of our Radon transform variant, we have
µ = ν.

Symmetry. For µ, ν ∈ P(Sd), we have:

STSW(µ, ν) =

∫
Td
k

WdT ,1(Rα
T µ,Rα

T ν) dσ(T ) (90)

=

∫
Td
k

WdT ,1(Rα
T ν,Rα

T µ) dσ(T ) = STSW(ν, µ). (91)

So STSW(µ, ν) = STSW(ν, µ).

Triangle inequality. For µ1, µ2, µ3 ∈ P(Sd), we have:

STSW(µ1, µ2) + STSW(µ2, µ3) (92)

=

∫
Td
k

WdT ,1(Rα
T µ1,Rα

T µ2) dσ(T ) +

∫
Td
k

WdT ,1(Rα
T µ2,Rα

T µ3) dσ(T ) (93)

=

∫
Td
k

(
WdT ,1(Rα

T µ1,Rα
T µ2) + WdT ,1(Rα

T µ2,Rα
T µ3)

)
dσ(T ) (94)

⩾
∫
Td
k

WdT ,1(Rα
T µ1,Rα

T µ3) dσ(T ) (95)

= STSW(µ1, µ3). (96)

So the triangle inequality holds for STSW.

We conclude that STSW is a metric on the space P(Sd).

O(d+ 1)-invariance of STSW. For g ∈ O(d+ 1), we show that

STSW(µ, ν) = STSW(g♯µ, g♯ν), (97)

where g♯µ, g♯ν as the pushforward of µ, ν via orthogonal transformation g : Sd ! Sd, respectively.
For T = T x

y1,...,yk
∈ Tdk, we have gT = T gx

gy1,...,gyk
. Note that |det(g)| = 1, so

Rα
gT (g♯µ)(t, r

gx
gyi) =

∫
Sd
g♯µ(y) · α(y, gT )i · δ(t− arccos ⟨gx, y⟩) dy (98)
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=

∫
Sd
µ(g−1y) · α(y, gT )i · δ(t− arccos ⟨gx, y⟩) dy (99)

=

∫
Sd
µ(g−1gy) · α(gy, gT )i · δ(t− arccos ⟨gx, gy⟩) d(gy) (100)

=

∫
Sd
µ(y) · α(y, T )i · δ(t− arccos ⟨x, y⟩) d(y) (101)

= Rα
T µ(t, r

x
yi). (102)

Similarly, we have

Rα
gT (g♯ν)(t, r

gx
gyi) = Rα

T ν(t, r
x
yi). (103)

Since g induces an isometric transformation T ! gT , so

WdT ,1(Rα
T µ,Rα

T ν) = WdgT ,1(Rα
gT g♯µ,Rα

gT g♯ν). (104)

We have

STSW(g♯µ, g♯ν) =

∫
Td
k

WdT ,1(Rα
T g♯µ,Rα

T g♯ν) dσ(T ) (105)

=

∫
Td
k

WdgT ,1(Rα
gT g♯µ,Rα

gT g♯ν) dσ(gT ) (106)

=

∫
Td
k

WdT ,1(Rα
T µ,Rα

T ν) dσ(T ) (107)

= STSW(µ, ν) (108)

So STSW is O(d+ 1)-invariant.

A.5 DERIVATION FOR THE CLOSED-FORM APPROXIMATION OF STSW

We derive the closed-form approximation of STSW for two discrete probability distributions µ and
ν given as follows

µ(x) =

n∑
j=1

uj · δ(x− aj) and ν(x) =

n∑
i=j

vj · δ(x− aj). (109)

We can write µ and ν in these forms by combining their supports and allow some uj and vj to be 0.
Consider spherical tree T = T x

y1,...,yk
. For 1 ⩽ j ⩽ n, let cj = dSd(x, aj), and also let c0 = 0. By

re-indexing, we assume that the sequence c0, . . . , cn is increasing,

0 = c0 ⩽ c1 ⩽ c2 ⩽ . . . ⩽ cn. (110)

For 0 ⩽ j ⩽ n and 1 ⩽ i ⩽ k, consider all points x(i)j = (cj , r
x
yi) on the spherical tree T . Since

c0 = 0, we have

x
(1)
0 = x

(2)
0 = . . . = x

(k)
0 = x, (111)

and for 1 ⩽ j ⩽ n, x(i)j is exactly the unique intersection between the hyperplane passes through aj
and orthogonal to x, and the spherical ray rxyi . We compute Rα

T µ: For t ∈ [0, π] and 1 ⩽ i ⩽ k,

Rα
T µ(t, r

x
yi) =

∫
Sd
µ(y) · α(y, T )i · δ(t− arccos ⟨x, y⟩) dy (112)

=

∫
Sd

 n∑
j=1

uj · δ(y − aj)

 · α(y, T )i · δ(t− arccos ⟨x, y⟩) dy (113)

=

n∑
j=1

uj ·
∫
Sd
α(y, T )i ·

(
δ(y − aj) · δ(t− arccos ⟨x, y⟩)

)
dy. (114)

So,
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1. If t /∈ {c1, . . . , cn}, then Rα
T µ(t, r

x
yi) = 0; and,

2. If t = cj for some j, then Rα
T µ(t, r

x
yi) = Rα

T µ(cj , r
x
yi) = Rα

T µ(x
(i)
j ) = α(aj , T )i · uj .

Similarly, we have

1. If t /∈ {c1, . . . , cn}, then Rα
T ν(t, r

x
yi) = 0; and,

2. If t = cj for some j, then Rα
T ν(t, r

x
yi) = Rα

T ν(cj , r
x
yi) = Rα

T ν(x
(i)
j ) = α(aj , T )i · vj .

For 1 ⩽ j ⩽ n and 1 ⩽ i ⩽ k, let

u
(i)
j = α(aj , T )i · uj and v

(i)
j = α(aj , T )i · vj . (115)

Consider T as a graph with nodes x(i)j for 1 ⩽ i ⩽ k, 0 ⩽ j ⩽ n. Note that x(i)0 = x for all i, and
we assign this is the root of T . Two nodes is adjacent is the shortest path on T does not contain any
other nodes. In other words, the set of edges in T are e(i)j = (x

(i)
j , x

(i)
j−1) for 1 ⩽ i ⩽ k, 1 ⩽ j ⩽ n,

and e(i)j = (x
(i)
j , x

(i)
j−1) has length cj − cj−1. For an edge e(i)j , its further endpoint from the root

is x(i)j . Also, for a node x(i)j with j > 0, the corresponding subtree Γ(x
(i)
j ) contains all nodes

x
(i)
p with j ⩽ p ⩽ n. From these above observations, we can see µ and ν transform to Rα

T µ and
Rα

T ν supported on nodes of T , where the mass at node x(i)j is u(i)j and v(i)j , respectively. So, from
Equation (3), we have

WdT ,1(Rα
T µ,Rα

T ν) =
∑
e∈T

we ·
∣∣µ(Γ(ve))− ν(Γ(ve))

∣∣ (116)

=

k∑
i=1

n∑
j=1

(cj − cj−1) ·
∣∣µ(Γ(x(i)j ))− ν(Γ(x

(i)
j ))

∣∣ (117)

=

n∑
j=1

(cj − cj−1) ·

(
k∑
i=1

∣∣µ(Γ(x(i)j ))− ν(Γ(x
(i)
j ))

∣∣) (118)

=

n∑
j=1

(cj − cj−1) ·

 k∑
i=1

∣∣∣∣∣∣
n∑
p=j

µ(x(i)p )−
n∑
p=j

ν(x(i)p )

∣∣∣∣∣∣
 (119)

=

n∑
j=1

(cj − cj−1) ·

 k∑
i=1

∣∣∣∣∣∣
n∑
p=j

u(i)p −
n∑
p=j

v(i)p

∣∣∣∣∣∣
 (120)

=

n∑
j=1

(cj − cj−1) ·

 k∑
i=1

∣∣∣∣∣∣
n∑
p=j

(
u(i)p − v(i)p

)∣∣∣∣∣∣
 (121)

=

n∑
j=1

(cj − cj−1) ·

 k∑
i=1

∣∣∣∣∣∣
n∑
p=j

α(ap, T )i · (up − vp)

∣∣∣∣∣∣
 (122)

(123)
This is identical to Equation (19). We finish the derivation.

B EXPERIMENTAL DETAILS

All our experiments were conducted on a single NVIDIA H100 80G GPU. For all tasks, if not
specified, hyperparameter ζ in STSW is set to its default value of 2.

B.1 EVOLUTION OF STSW

In this section, we examine the evolution of STSW as well as different distances when measuring
two distributions. In line with (Bonet et al., 2022; Tran et al., 2024a), we select source distribution
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Figure 3: Runtime Comparison, averaged over 15 runs. We set L = 200 for all methods. For our
STSW, we use 200 trees and 10 lines. The computation time of STSW includes the generation of
the tree system.

vMF(·, 0) a.k.a uniform distribution and target distribution vMF(µ, κ). We initialize 500 samples in
each distribution. We use κ = 10, L = 200 trees, k = 10 lines for STSW, L = 200 projections
for other sliced metrics, NR = 100 rotations for RI-S3W, ARI-S3W, and a pool size of 1000 for
ARI-S3W in all experiments unless specified otherwise. Results are averaged over 20 runs.

Figure 4: Evolution between vMF(µ, κ) and vMF(·, 0)) w.r.t κ on Sd−1 across various methods. We
use κ ∈ {1, 5, 10, 20, 30, 40, 50, 75, 100, 150, 200, 250}

Evolution w.r.t κ. Figure 4 shows the evolution of various methods w.r.t to κ. As expected, STSW
aligns with the trends in S3W and SSW, decreasing with higher dimensions, unlike KL divergence.
Here, we use a derived form for KL divergence (Davidson et al., 2018; Xu & Durrett, 2018) as
follows:

KL(vMF(µ, κ)∥vMF(·, 0)) = κ
I(d+1)/2(κ)

I(d+1)/2−1(κ)
+

(
d+ 1

2
− 1

)
log κ− d+ 1

2
log(2π)

− log I(d+1)/2−1(κ) +
d+ 1

2
log π + log 2− log Γ

(
d+ 1

2

)
.

Evolution w.r.t rotated vMFs. Next, we evaluate a fixed vMF distribution and its rota-
tion along a great circle. Specifically, we compute metric between vMF((1, 0, 0, . . . ), κ) and
vMF((cos θ, sin θ, 0, . . . ), κ) for θ ∈ {(kπ)/6}12k=0. We plot results in Figure 5
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Figure 5: Evolution between rotated vMFs distributions, averaged over 100 runs. d denotes data
dimension.

Figure 6: Evolution of STSW between the source and target distributions when varying number of
trees L ∈ {1, 10, 50, 100, 200, 400, 500, 750, 900, 1000}.

Evolution of STSW w.r.t Number of Trees, Number of Lines and ζ. Next, we study the effect
of the number of trees and lines on STSW. If not specified, we fix κ = 10 and d = 3. We present
the results in Figure 6, Figure 7, and Figure 8

B.2 RUNTIME ANALYSIS

Runtime Comparison. We now perform a runtime comparison with other commonly used dis-
tance metrics, including the traditional Wasserstein, Sinkhorn (Cuturi, 2013), Sliced-Wasserstain
(SW), Spherical Sliced-Wasserstein (SSW) (Bonet et al., 2022) as well as Stereographic Spherical
Sliced Wasserstein (S3W) (Tran et al., 2024a) and its variants (RI-S3W, ARI-S3W). For a fair com-
parison, we also include SSW2 with binary search (BS) and Unif when a closed form is available
for uniform distribution. The runtime of applying each of these methods on two distribution on S2 is
illustrated in Figure 3. We highlight that STSW offers a significant improvement in computational
efficiency over other metrics.

Runtime Evolution. To further assess STSW performance, we conduct a runtime analysis to un-
derstand the computational cost associated with different configurations. We again choose uniform
distribution and vMF(µ, κ) where κ = 10 as our source and target distribution and use STSW to
measure distance between these two probabilities. All experiments are repeated 20 times with de-
fault parameters set to L = 200 trees, k = 10 lines and N = 500 samples, unless otherwise stated.

We vary the number of trees L ∈ {200, 400, 500, 750, 900, 1000, 1250, 1500, 1750, 2000} in Figure
9a, adjust the number of lines k across {5, 10, 25, 50, 100, 150, 200, 300, 500, 750, 1000} in Fig-
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Figure 7: Evolution of STSW between two distributions w.r.t number of lines k ∈
{1, 10, 50, 100, 200, 400, 500, 600, 700, 750}.

Figure 8: Evolution of STSW between two distributions w.r.t ζ ∈
{1, 2, 5, 10, 20, 25, 50, 75, 100, 150, 200}

ure 9b and change the number of samples N within {500, 1000, 3000, 5000, 7000, 8000, 10000} in
Figure 9c. We note that the runtime of STSW scales linearly with these parameters.

B.3 GRADIENT FLOW

The probability density function of the von Mises-Fisher distribution with mean direction µ ∈ Sd is
given by:

f(x;µ, κ) = Cd(κ) exp(κµ
Tx)

where κ > 0 is concentration parameter and the normalization constantCd(κ) =
κd/2−1

(2π)p/2Ip/2−1(κ)

Our target distribution, 12 vMFs with 2400 samples (200 per vFM), have κ = 50 and

µ1 = (−1, ϕ, 0), µ2 = (1, ϕ, 0), µ3 = (−1,−ϕ, 0), µ4 = (1,−ϕ, 0)
µ5 = (0,−1, ϕ), µ6 = (0, 1, ϕ), µ6 = (0,−1,−ϕ), µ8 = (0, 1,−ϕ)
µ9 = (ϕ, 0,−1), µ10 = (ϕ, 0, 1), µ11 = (−ϕ, 0,−1), µ12 = (−ϕ, 0, 1)

where ϕ =
1 +

√
5

2
. The projected gradient descent as described in (Bonet et al., 2022):{

x(k+1) = x(k) − γ∇x(k)STSW(µ̂k, ν),

x(k+1) = x(k+1)

∥x(k+1)∥2
,

Setup. We fix L = 200 trees and k = 5 lines. For the rest, we use L = 1000 projections. As in
the original setup, ARI-S3W (30) has 30 rotations with a pool size of 1000 while RI-S3W (1) and
RI-S3W (5) have 1 and 5 rotations respectively. We train with Adam (Kinga et al., 2015) optimizer
lr = 0.01 over 500 epochs and an additional lr = 0.05 for SSW.

Results. As seen from Table 1 and Figure 10, STSW provides better results in log 2-Wasserstein
distance and NLL, while also being efficient in terms of both runtime and convergence speed.

We perform additional experiments on the most informative sliced methods including MAX-STSW,
MAX-SSW, and MAX-SW. We present in Table 5 the results after training for 1000 epochs with
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(a) (b)

(c)

Figure 9: Runtime of STSW w.r.t number of trees, lines and samples

Figure 10: Log 2-Wasserstein distance between source and target distributions

a learning rate LR = 0.01. Each experiment is repeated 10 times. Figure 11 illustrates the log
2-Wasserstein distance between the source and target distribution during training. We observe that
MAX-STSW performs better than others.

B.4 SELF-SUPERVISED LEARNING

Encoder. Consistent with the setup in (Bonet et al., 2022; Tran et al., 2024a), we train a ResNet18
(He et al., 2016) on CIFAR-10 (Krizhevsky, 2009) data for 200 epochs using a batch size of 512.
We use SGD as our optimizer with initial lr = 0.05 a momentum 0.9, and a weight decay 10−3.
The standard data augmentations used to generate positive pairs are similar to prior works (Wang
& Isola, 2020; Bonet et al., 2022; Tran et al., 2024a) which include resizing, cropping, horizontal
flipping, color jittering, and random grayscale conversion.

We set L = 200 trees and k = 20 lines for STSW and fix L = 200 projections for all other sliced
distances. NR = 5 and a pool size of 100 are used for RI-S3W and ARI-S3W as in Tran et al.
(2024a). For settings of the regularization coefficient, please refer to Table 6.

Linear Classifier. A linear classifier is then trained on feature representations from the pre-trained
encoder. Similar to Bonet et al. (2022), we train it for 100 epochs using the Adam (Kinga et al., 2015)
optimizer with a learning rate of 10−3, a weight decay of 0.2 at epoch 60 and 80.
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Table 5: Learning target distribution 12 vFMs, trained for 1000 epochs and averaged over 10 runs.

Method logW2 # NLL #

MAX-SW -3.10 ± 0.06 -4959.14 ± 12.22
MAX-SSW -2.76 ± 0.02 -4868.78 ± 60.51
MAX-STSW -3.19 ± 0.03 -5007.72 ± 16.34

Figure 11: Log 2-Wasserstein distance between source and target distributions

Results. We report in Table 2 the best accuracy of the linear evaluation on features taken before
and after projection on Sd where d = 9. The visualizations of learned representations when d = 2
can be found in Figure 12.

B.5 EARTH DATA ESTIMATION

Similar to Bonet et al. (2022) and Tran et al. (2024a), we use an exponential mapping normalizing
flows model consisting of 48 radial blocks with 100 components each, totaling 24000 parameters.
The model is then trained with full batch gradient descent via Adam optimizer. Dataset details are
provided in Table 7.

Setup. Our settings for STSW in this task are L = 1000 trees, k = 100 lines, and ζ = −100. We
use lr = 0.05 for STSW, S3W, RI-S3W and ARI-S3W and lr = 0.1 for SW and SSW. We train
other sliced distances for 20,000 epochs as in the original setup while our STSW is only trained for
10,000 epochs.

Results. Table 3 highlights the competitive performance of STSW compared to the baseline meth-
ods. To further evaluate the efficiency of our approach, we compare the training time of STSW with
that of the second-best performer, ARI-S3W, using the Fire dataset. Our findings show that STSW
(2 hours 10 minutes) is twice as fast as ARI-S3W (4 hours 30 minutes). We also present in Figure
13 the normalized density maps of test data learned.

B.6 GENERATIVE MODELS

Setup. We use Adam (Kinga et al., 2015) optimizer with learning rate lr = 10−3. We train with a
batch size of 500 over 100 epochs using BCE loss as our reconstruction loss. We choose L = 200
trees and k = 10 lines for STSW. Following the same settings in Tran et al. (2024a), we fix L = 100
projections for others, NR = 5 rotations for RI-S3W and ARI-S3W, and a pool size of 100 random
rotations ARI-S3W. We use prior 10 vMFs, λ = 1 for STSW, λ = 10 for SSW, and λ = 10−3 for
SW and S3W variants.
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Table 6: Regularization coefficient λ across various methods w.r.t projection on Sd in Self-
Supervised Learning task.

STSW SSW SW S3W variants

d = 9 λ = 10.0 λ = 20.0 λ = 1.0 λ = 0.5
d = 2 λ = 10.0 λ = 20.0 λ = 1.0 λ = 0.1

Table 7: Earth datasets.

Earthquake Flood Fire

Train 4284 3412 8966
Test 1836 1463 3843

Data size 6120 4875 12809

Additional Results on MNIST. For quantitative analysis, we train the SWAE framework on
MNIST and report the FID score in Table 8, along with the generated images in Figure 14. We
follow the same settings as in Tran et al. (2024a), which use the latent prior U(S2) and train the
model with a batch size of 500 over 100 epochs. For STSW, we fix L = 200 trees and k = 10 lines
with a learning rate LR = 0.01 and λ = 1. For other sliced methods, we use L = 100 projections
and a learning rate LR = 10−3, as described in Tran et al. (2024a). The FID scores are computed
using 10,000 samples from the test set.

We use the same model architecture as specified in Tran et al. (2024a)

CIFAR-10 Model Architecture.

Encoder:

x ∈ R3×32×32 ! Conv2d32 ! ReLU! Conv2d32 ! ReLU
! Conv2d64 ! ReLU! Conv2d64 ! ReLU
! Conv2d128 ! ReLU! Conv2d128 ! Flatten
! FC512 ! ReLU! FC3

! ℓ2 normalization! z ∈ S2

Decoder:

z ∈ S2 ! FC512 ! FC2048 ! ReLU
! Reshape(128× 4× 4)! Conv2dT128 ! ReLU
! Conv2dT64 ! ReLU! Conv2dT64 ! ReLU
! Conv2dT32 ! ReLU! Conv2dT32 ! ReLU
! Conv2dT3 ! Sigmoid

MNIST Model Architecture.

Encoder:

x ∈ R28×28 ! Conv2d32 ! ReLU! Conv2d32 ! ReLU
! Conv2d64 ! ReLU! Conv2d64 ! ReLU
! Conv2d128 ! ReLU! Conv2d128 ! Flatten
! FC512 ! ReLU! FC3

! ℓ2 normalization! z ∈ S2

Decoder:

z ∈ S2 ! FC512 ! FC512 ! ReLU
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(a) STSW

(b) ARI-S3W (c) RI-S3W

(d) S3W (e) SSW

(f) SimCLR (g) Hypersphere

Figure 12: Distributions of CIFAR-10 validation set on S2 after pre-training.

! Reshape(128× 2× 2)! Conv2dT128 ! ReLU
! Conv2dT64 ! ReLU! Conv2dT64 ! ReLU
! Conv2dT32 ! ReLU! Conv2dT32 ! ReLU
! Conv2dT1 ! Sigmoid
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(a) Ground Truth Fire (b) STSW Fire

(c) Ground Truth Flood (d) STSW Flood

(e) Ground Truth Earthquake (f) STSW Earthquake

Figure 13: Density estimation on earth data. The left figures (ground truth) represent training data
estimated with KDE. The right ones depict the normalized log likelihood of the trained models on
test data.

Table 8: Average FID of 5 runs on MNIST.

Method FID #

SW 73.35 ± 2.01
SSW 76.14 ± 2.73
S3W 75.55 ± 2.80
RI-S3W (10) 72.80 ± 3.39
ARI-S3W (30) 70.37 ± 2.58

STSW 69.16 ± 2.74
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(a) SW (b) SSW (c) S3W

(d) RI-S3W (10) (e) ARI-S3W (30) (f) STSW

Figure 14: Generated images of different methods on MNIST of SWAE.
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