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Abstract

Steering vectors—directions in activation space encoding behavioral traits
like formality or creativity—enable fine-grained control over language model
outputs but must be regenerated for each new model, creating deployment
barriers. We present a method for transferring these vectors between dif-
ferent language models by learning structure-preserving transformations
while matching corresponding text pairs across models. Our approach
achieves strong alignment (0.50-0.56 cosine similarity, where 1.0 represents
perfect alignment and 0.0 represents random chance) across all model pairs
tested. Crucially, we demonstrate that semantic pairing—ensuring each text
contrast is matched across models during training—improves transfer per-
formance by 72%: proper pairing achieves 0.529 cosine similarity compared
to 0.308 with shuffled pairs within traits and 0.00 with random pairing
across traits. We evaluate our method across 26 behavioral traits on three
architecturally distinct models (Gemma-7B, LLaMA-3-8B, and Mistral-7B),
using dimensionality reduction to handle their different hidden dimensions.
Our results provide evidence for the Platonic Representation Hypothesis,
showing that different language models encode behavioral preferences in
similar geometric structures. This enables practical reuse of curated steering
vectors across model families and advances our understanding of how neural
networks represent human preferences.

1 Introduction

This work addresses the challenge of reusing behavioral control mechanisms across different
language models. We develop a novel method to transfer steering vectors across diverse
model families, enabling the reuse of curated behavioral controls without regeneration. This
capability addresses critical deployment barriers: organizations cannot maintain reusable
steering libraries, researchers need generation access to study behaviors, and computational
resources are wasted regenerating identical controls. Steering vectors—directions in activation
space learned from pairs of contrasting behaviors—provide precise control over language
model outputs without retraining Turner et al. (2023); Zou et al. (2023). These vectors are
extracted by computing activation differences between contrasting behaviors (e.g., formal vs.
informal text) and operate through activation engineering without modifying model weights.
However, they remain applicable only within individual models: a formality vector extracted
from GPT-4 cannot be used to steer LLaMA-3, requiring new vectors to be regenerated
for every new model deployment. These limitations arise from architectural differences
including different hidden dimensions (e.g., 3072 for Gemma-7B-Instruct versus 4096 for
LLaMA-3-8B-Instruct), attention mechanisms, and learned representations.

Our goal is to understand if different language models encode behavioral traits in similar
linear subspaces. We approach this problem by identifying orthogonal transformations
between paired steering vectors across different models, using geometric alignment (structure-
preserving transformations) and semantic pairing (matching identical text contrasts across
models). The degree of representational universality—how much different models share
similar representations for behavioral traits—remains an open question in neural network
research.
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Three key applications emerge from successful steering vector transfer: (1) Large-scale
curation: Libraries containing thousands of steering vectors can be transferred to new models
in under 10 minutes, compared to days or weeks of regeneration from scratch. (2) Data-
restricted domains: Organizations can generate vectors once on secure systems with sensitive
data, then transfer them to deployment models without retaining the original training data.
(3) Model-restricted research: Researchers can study behavioral controls in closed commercial
systems by transferring vectors from open-source alternatives.

Surprisingly, our investigation reveals that despite substantial architectural differences,
instruction-tuned models (Mistral-7B-Instruct Jiang et al. (2023), Gemma-7B-Instruct
Gemma Team et al. (2024), and Llama-3-8B-Instruct Dubey et al. (2024)) exhibit significant
representational universality: they encode preference traits in alignable linear subspaces.
This finding provides empirical evidence for the Platonic Representation Hypothesis Huh et al.
(2024), demonstrating that neural networks converge to shared representations specifically
in the domain of behavioral traits. Our work operationalizes this hypothesis by quanti-
fying the degree of alignment and showing that LLMs encode preferences in structured,
linearly-alignable representations despite their architectural diversity. Crucially, we find
that preserving relationships between vectors—not just individual vectors—is essential for
successful transfer.

Our contributions are:

1. We develop a novel method for cross-model steering vector transfer that preserves
geometric structure through orthogonal transformations and scaling, maintaining
relationships between vectors.

2. We demonstrate that matching text contrasts across models (semantic pairing)
improves transfer performance by 77% (from 0.30 to 0.529 cosine similarity).

3. We validate our method across 26 behavioral traits and 3 model families, revealing
that objective linguistic traits transfer well (>0.55 cosine similarity) while subjective
traits transfer poorly (<0.45 cosine similarity).

The success of linear alignment with semantic pairing opens new research directions for
understanding the geometric structure of preference representations and developing universal
behavioral control interfaces across model families. Our evaluation focuses on geometric
alignment metrics rather than downstream behavioral validation, which we leave for future
work.

2 Related Work

Steering Vectors. Steering vectors, introduced by Turner et al. (2023) as Activation
Addition, enable fine-grained control over model behavior without optimization. Zou et al.
(2023) extend this with Representation Engineering, demonstrating behavioral control across
multiple dimensions. Arditi et al. (2024) show that refusal is mediated by a single direction,
while Liu et al. (2024) demonstrate in-context steering. All these approaches remain model-
specific. Our work enables transfer across model families, making steering vectors practical
for multi-model deployments.

Representation Alignment Methods. Prior work has developed various approaches
for comparing and aligning neural representations. Kornblith et al. (2019) and Raghu
et al. (2017) provide metrics for measuring representational similarity but do not enable
practical transfer between models. Model stitching Bansal et al. (2021) connects layers
across models but requires matching architectures (e.g., ResNet-50 to ResNet-101), not
diverse model families with different attention mechanisms and dimensions like Gemma
to LLaMA. Domain adaptation literature has explored geometric approaches including
Grassmann manifolds Gong et al. (2012) and matrix manifold optimization Absil et al. (2008)
for representation alignment. The Platonic Representation Hypothesis Huh et al. (2024)
provides theoretical motivation, suggesting models converge to shared representations. While
prior work focused primarily on mathematical frameworks for alignment, we demonstrate
that preserving the correspondence between specific text contrasts across models is equally
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Figure 1: Steering vector transfer via semantic pairing. (a) Three model architectures
with varying dimensions and attention mechanisms. (b) Steering vector extraction from
contrasting trait text pairs at the sixth-to-last layer, computed as normalized differences
between positive and negative trait examples. (c) Semantic pairing preserves instance-level
correspondence by ensuring the same text contrast pairs are matched across models during
alignment. (d) Procrustes alignment pipeline using PCA reduction followed by whitening
and orthogonal rotation to learn structure-preserving transformations.

important for successful behavioral transfer. Our use of Procrustes analysis Schönemann
(1966); Gower (1975) provides both theoretical grounding through its optimality properties
and practical efficiency.

3 Preliminaries

3.1 Behavioral Traits

In our framework, a trait represents a measurable behavioral or stylistic dimension along
which text can vary. Each trait is defined through contrastive text pairs that exemplify
opposite ends of the dimension—for instance, formal vs. informal writing style, verbose
vs. concise expression, or assertive vs. passive tone. We study 26 traits spanning linguistic
properties (e.g., formality, clarity, specificity), emotional dimensions (e.g., optimism, empathy,
enthusiasm), and communicative styles (e.g., directness, persuasiveness, authority). These
traits are operationalized through 65,329 human-curated or naturally-occurring text pairs
that demonstrate clear contrasts along each dimension.

3.2 Problem Formulation

Given these behavioral traits, our approach enables transfer when models encode similar
semantic structure despite architectural differences. Let V(i)

s ∈ Rds and V(i)
t ∈ Rdt denote

steering vectors for trait i in source and target models respectively, where ds and dt are

3
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the hidden dimensions. Our goal is to learn an orthonormal transformation R ∈ SO(d)
(specifically a rotation matrix) and scale factor s ∈ R+ that enable transfer:

V(i)
t ≈ T (V(i)

s ) = s ·R(V(i)
s ) (1)

where the rotation matrix R preserves geometric structure (angles and relative distances)
and the scale factor s accounts for differences in activation magnitudes between models,
which arise from varying initialization schemes, training dynamics, and normalization layers.

Orthogonal transformations preserve angles and relative distances, ensuring meaningful
alignments that reflect true structural similarities rather than arbitrary mappings Kornblith
et al. (2019). Following prior work that uses PCA projection to identify relevant subspaces
before alignment Raghu et al. (2017), we first reduce dimensionality to concentrate trait-
relevant information. This approach builds on methods like SVCCA Raghu et al. (2017) and
CKA Kornblith et al. (2019) that analyze neural network representations, though our focus
is on enabling practical transfer rather than measurement alone. The complete alignment
pipeline, including PCA projection and Procrustes analysis, is detailed in Section 3.

4 Method

We present our approach for transferring steering vectors across language models through
linear geometric alignment with semantic pairing. Steering vectors encode behavioral traits
as directions in activation space. For each contrast pair (t+, t−) representing positive
and negative examples of a trait, we encode both texts through each model and extract
hidden states from intermediate layers. The steering vector is computed as the normalized
difference between these hidden states: v = h(t+)−h(t−)

||h(t+)−h(t−)||2 , where h(·) denotes the hidden
state extraction function. This normalization ensures that all steering vectors have unit
magnitude, facilitating comparison across different traits and models.

Our method achieves cross-model steering vector transfer through three key modules: (1)
PCA projection to identify trait-relevant subspaces where information is concentrated, (2)
Procrustes alignment to learn orthogonal transformations that preserve geometric structure,
and (3) semantic pairing to maintain instance-level correspondence.

4.1 Steering Vector Transport

To concentrate trait-relevant information, we first project steering vectors to a lower-
dimensional subspace. For each model, we first collect steering vectors across all 26 traits:
{V(1), . . . ,V(26)}. We then apply global mean-centering (across all traits) to remove the
average activation pattern, apply PCA to identify the top-k principal components, and
project vectors to this k-dimensional subspace.

We choose k to capture sufficient variance while maintaining computational efficiency. Im-
portantly, we use PCA without whitening to preserve the relative scale of variations along
different principal components.

We use Procrustes alignment Schönemann (1966); Gower (1975) to learn orthogonal trans-
formations that preserve geometric structure. Given projected source vectors X ∈ Rn×k and
target vectors Y ∈ Rn×k, we learn an orthogonal transformation R ∈ Rk×k and scale factor
s ∈ R+ that minimize:

min
R,s

∥Y − sXR∥2F s.t. RTR = I (2)

The closed-form solution via SVD is:

M = Y TX = UΣV T (3)

R∗ = V UT (4)

s∗ =
tr(Σ)
∥X∥2F

(5)
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where U, V ∈ Rk×k are the left and right singular vectors from the SVD decomposition of M ,
and Σ is diagonal containing the singular values. This closed-form solution was first derived
by Schönemann (1966).

Semantic pairing ensures that row i in the source matrix corresponds to the exact same text
contrast pair in the target matrix, preserving the correspondence between specific contrast
instances during alignment.

For example, if text pair 247 contrasts “The results clearly demonstrate...” (formal) with
“So basically what happened was...” (informal) to generate steering vector 247 in Gemma-
7B-Instruct, then the exact same text pair generates vector 247 in Llama-3-8B-Instruct and
Mistral-7B-Instruct. By ensuring these vectors are paired during alignment (row 247 to row
247), the transformation learns the correct mapping between how different models encode
this same contrast.

The complete transfer operator T combines PCA projection, Procrustes alignment, and
reconstruction:

T (v) = µt +Wt(s ·WT
s (v − µs) ·R) (6)

where µs, µt are mean vectors, Ws,Wt are PCA projection matrices, and R, s are the learned
rotation and scale.

Each component serves a specific purpose: PCA identifies trait-relevant subspaces (helping
reduce dimensionality from 3072/4096 to 1300), Procrustes learns the geometric relationship
between models, and reconstruction maps back to the target space.

Algorithm 1 Pseudocode for Steering Vector Transfer via Linear Alignment

Require: Source vectors Xs ∈ Rn×ds , Target vectors Xt ∈ Rn×dt

Ensure: Transfer operator T : Rds → Rdt

1: Training Phase:
2: Split data: Xtrain

s , Xtest
s , Xtrain

t , Xtest
t (80/20 split)

3: Fit PCA on Xtrain
s : Ws, µs = PCA(Xtrain

s , k = 1300) ▷ Identify subspace
4: Project: Zs = WT

s (Xtrain
s − µs), Zt = WT

s (Xtrain
t − µs) ▷ Reduce dimension

5: Solve Procrustes: R∗, s∗ = argminR,s ∥Zt − sZsR∥2F ▷ Learn alignment
6: Inference Phase:
7: function Transfer(v ∈ Rds)
8: z = WT

s (v − µs) ▷ Project to PCA space
9: z′ = s∗ ·R∗ · z ▷ Apply transformation

10: return µt +Wt · z′ ▷ Reconstruct in target
11: end function

5 Experiments

We test the hypothesis that behavioral traits are encoded in geometrically similar subspaces
across different language models, enabling steering vector transfer through linear alignment.
Our experiments evaluate whether preserving instance-level correspondence (semantic pairing)
is necessary for successful transfer.

We conduct experiments under three conditions: (1) proper semantic pairing where each
text contrast is matched across models, (2) within-trait shuffling that preserves trait identity
but loses instance correspondence, and (3) cross-trait shuffling as a null baseline (expected
performance if vectors had no meaningful structure).

5.1 Scrambling Experiments

To validate the importance of semantic pairing, we conduct controlled scrambling experiments
comparing three pairing protocols: (i) proper pairing, where row i in the source model
corresponds to row i in the target model, preserving the same text contrast; (ii) within-
trait shuffling, which randomly permutes rows within each trait category, maintaining trait
identity but destroying instance correspondence; and (iii) cross-trait shuffling, which globally
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permutes all rows, eliminating both trait and instance structure. These experiments quantify
the contribution of different structural levels to successful transfer and demonstrate that
semantic correspondence is not merely beneficial but essential for alignment.

Our primary evaluation metric is cosine similarity between transferred and actual target
vectors:

sim(vs, vt) =
T (vs) · vt

||T (vs)|| · ||vt||

We additionally track the train-test generalization gap (the difference in performance between
training and test sets) to verify that our learned transformations generalize beyond the training
distribution, and conduct per-trait performance analysis to identify systematic patterns in
transferability, examining which traits transfer well versus poorly and understanding the
underlying linguistic factors.

5.2 Models, Datasets, and Trait Selection

We experiment with three architecturally distinct instruction-tuned models: Gemma-7B-
Instruct Gemma Team et al. (2024) (28 layers, hidden dimension d = 3072, multi-query
attention), Llama-3-8B-Instruct Dubey et al. (2024) (32 layers, hidden dimension d = 4096,
grouped-query attention), and Mistral-7B-Instruct Jiang et al. (2023) (32 layers, hidden
dimension d = 4096, sliding window attention)

We use the instruction-tuned variants as they have been aligned through supervised fine-
tuning (SFT) and reinforcement learning from human feedback (RLHF) to better follow
human preferences, making them more suitable for studying behavioral steering. These
models vary significantly in architecture, training data, and scale, providing a rigorous test
of transfer generalizability.

We evaluate on 26 behavioral traits spanning linguistic, stylistic, and semantic dimensions,
totaling 65,329 contrast pairs. Data was sourced from public datasets where available (e.g.,
ParaDetox Logacheva et al. (2022), CNN/DailyMail See et al. (2017), Go-Emotions Demszky
et al. (2020)) and generated manually for traits lacking appropriate datasets. Table 1 shows
the distribution; see Appendix A for detailed data sources and extraction methods.

Table 1: Distribution of contrast pairs across 26 behavioral traits.

Trait # Pairs Trait # Pairs

Accessibility 5,000 Inclusivity 3,000
Assertiveness 3,000 Objectivity 4,000
Authority 3,000 Optimism 5,000
Certainty 104 Persuasiveness 230
Clarity 5,000 Politeness 100
Concreteness 106 Precision 106
Creativity 100 Professionalism 5,000
Directness 3,000 Register 4,000
Emotional Tone 5,000 Specificity 4,000
Empathy 100 Technical Complexity 106
Enthusiasm 5,000 Urgency 521
Formality 4,577 Verbosity 5,000
Hedging 179
Humor 100

Total 65,329

For each trait, we systematically harvest contrastive text pairs from appropriate datasets.
We extract contrast pairs that exhibit clear differentiation along the target trait dimension,
filtering texts to reasonable lengths for model processing.
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For steering vector generation, hidden states are extracted from the sixth last layer for
each model (layer 22 for Gemma-7B-Instruct and layer 26 for Mistral-7B-Instruct and
LLaMA-3-8B-Instruct).

5.3 Implementation Details and Hyper-parameters

We employ an 80/20 train-test split stratified by trait, resulting in 52,263 training and
13,066 testing vector pairs per model pair. Each text prompt appears exclusively in either
training or test sets to prevent leakage, while semantic pairing is preserved across both
splits to maintain instance correspondence. For dimensionality reduction, we apply PCA
with k = 1300 dimensions, capturing 94-96% of the variance (see Appendix for the variance
computation). The PCA transformation is fitted on training data only and uses non-whitened
projection to preserve scale information, which proves crucial for learning accurate scale
factors during Procrustes alignment.

We implement our method using common Python libraries: PyTorch Paszke et al. (2019),
NumPy Harris et al. (2020) for array operations, and SciPy Virtanen et al. (2020). Vector
extraction requires approximately 6 hours total across all models using a single NVIDIA
A100 GPU, though this is a one-time cost. The alignment procedure itself is extremely
efficient: PCA fitting completes in under 10 seconds, Procrustes alignment requires less than
1 second, and the full pipeline for each model pair finishes within 1 minute on CPU. Storage
requirements are minimal, with transformation matrices occupying approximately 100MB
per model pair. Code is available as supplementary material for reproducibility.

6 Results

We evaluate our steering vector transfer method across 26 behavioral traits between three
model families: Gemma-7B-Instruct, LLaMA-3-8B-Instruct, and Mistral-7B-Instruct. Our
experiments demonstrate strong transfer performance, reveal the critical importance of
semantic pairing, and identify trait-specific transfer patterns.

6.1 Main Transfer Results

Table 2 presents the transfer performance across all six directional pairs. Our method
achieves test cosine similarities ranging from 0.506 to 0.564 (mean 0.530), demonstrating
successful alignment despite the models’ architectural differences.

Table 2: Steering vector transfer results across model pairs. All values computed on held-out
test sets (20% of data). Values shown as mean ± standard deviation, across five trials.
Number of vectors used for each is 13,066.

Transfer Direction Test Cosine Scale Factor Train-Test Gap

Gemma → LLaMA 0.559 ± 0.008 0.727 0.004
Gemma → Mistral 0.513 ± 0.011 0.722 0.005
LLaMA → Gemma 0.559 ± 0.008 1.000 0.004
LLaMA → Mistral 0.516 ± 0.007 0.841 0.006
Mistral → Gemma 0.513 ± 0.011 0.926 0.005
Mistral → LLaMA 0.516 ± 0.007 0.868 0.006

Mean 0.529 0.847 0.005

Three patterns emerge from these results. First, all transfer directions achieve cosine
similarity exceeding 0.50, indicating robust cross-model alignment despite architectural
differences. Second, the scale factors ranging from 0.733 to 1.012 reveal systematic differences
in representation magnitudes across models, with Gemma-7B-Instruct employing more
compact representations relative to its counterparts. Finally, train-test gaps of 0.003 or less
demonstrate that our method generalizes effectively to unseen vectors, suggesting the learned
transformations capture fundamental rather than dataset-specific alignments.
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6.2 Scrambling Hierarchy: The Importance of Semantic Pairing

To understand which structural properties enable successful transfer, we conducted a con-
trolled experiment comparing three pairing protocols during alignment. In proper pairing,
we preserve instance correspondence where vector i in the source model matches vector i
in the target model. Within-trait shuffling randomly permutes pairings within each trait
category, maintaining trait identity but destroying instance correspondence. Cross-trait
shuffling applies global random permutation across all traits, eliminating both trait and
instance structure.

Figure 2c presents the complete scrambling hierarchy results, demonstrating the critical im-
portance of semantic pairing for successful transfer. There is a 72% performance improvement
from proper pairing versus random within-trait pairing.

This hierarchy reveals a crucial insight: semantic pairing improves transfer performance by
72%. The results demonstrate a two-level structure in steering vector representations that
can be conceptually decomposed as vi = µtrait + ϵi, where µtrait represents the trait-level
direction (58% of signal, preserved under within-trait shuffling at 0.308 similarity) and ϵi
captures instance-specific variations (42% of signal, requiring proper pairing for the full 0.529
similarity).The complete failure with cross-trait shuffling (0.00 cosine) serves as a permutation
test validating that the observed alignment arises from genuine structural correspondence
between models rather than artifacts of our processing pipeline. The probability of achieving
0.529 similarity by chance is essentially zero (p≈0), confirming that models encode behavioral
traits in genuinely aligned geometric structures requiring both trait-level and instance-level
correspondence.
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6.3 Per-Trait Transfer Performance

Not all traits transfer equally well. We observe systematic variation in transfer quality
across trait categories. Clarity (0.914), specificity (0.887), and accessibility (0.752) achieve
the strongest transfer performance, while assertiveness (0.017), persuasiveness (0.039), and
urgency (0.129) show substantially weaker alignment. This pattern distinguishes objective
linguistic traits from subjective or culturally-dependent traits. Formality and clarity have
explicit linguistic markers—pronoun usage, sentence structure, vocabulary choice—that
models consistently recognize across architectures. In contrast, assertiveness and optimism
depend heavily on cultural context and interpersonal dynamics that vary across training
corpora, leading to more model-specific representations.

Table 3: Top and bottom performing traits in transfer quality (mean across all model pairs)

Top 5 Traits Bottom 5 Traits
Trait Cosine Sim. Trait Cosine Sim.

Clarity 0.914 Assertiveness 0.017
Specificity 0.887 Persuasiveness 0.039
Accessibility 0.752 Urgency 0.129
Authority 0.717 Optimism 0.157
Politeness 0.703 Humor 0.210

6.4 Computational Efficiency

Our method demonstrates remarkable computational efficiency. Full alignment between any
model pair completes in under 1 minute on CPU, with inference requiring sub-millisecond
time per vector transfer. Memory requirements remain minimal at approximately 100MB for
storing transformation matrices per model pair. The method is both computationally efficient
and theoretically grounded through its use of structure-preserving orthogonal transformations.
This efficiency, combined with the method’s reliance on standard linear algebra operations,
makes it highly practical for deployment in production environments where rapid adaptation
to new models is essential.

7 Discussion and Conclusion

Limitations and Future Work: In this paper, we focus on measuring geometric alignment,
and not on the effects of the transfer. Current experiments focus on similar smaller models
ranging from 7 to 8 billion parameters. We evaluate only behavioral/stylistic properties,
not factual knowledge or reasoning. Fixed layer selection may not be optimal for all traits.
Future work would include quantifying and validating the actual effects of the transfer,
scaling up the methods to work with larger models, and look more into how to adaptively
choose layers for different traits.

Conclusion:

We introduce a computationally efficient and interpretable method for transferring steering
vectors across language model families through linear geometric alignment with semantic
pairing. Preserving instance-level correspondence roughly doubles transfer performance,
with experiments across 26 traits and three model families yielding a mean cosine similarity
of 0.530. This suggests that models converge on linearly related subspaces for behavioral
traits, enabling effective transfer of preference representations. Our ablations show a two-
level structure: trait-level alignment (58%) captures average behavioral directions, while
instance-level alignment (42%) preserves fine-grained expression of traits. This validates
averaging multiple contrast pairs to build steering vectors while revealing cross-model
agreement on specific linguistic realizations. Transfer is most reliable for objective traits
with explicit linguistic markers (verbosity, clarity, formality) and less effective for subjective
or culturally dependent traits (assertiveness, optimism, persuasiveness), providing guidance
for constructing robust cross-model steering libraries.
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8 Ethics Statement

While steering vectors offer fine-grained control over language model behavior, their de-
ployment entails both opportunities and risks. Our cross-model transfer method enables
beneficial uses such as reducing toxicity or improving clarity to scale efficiently across models,
but it also lowers barriers for harmful manipulation. Because the method preserves geometric
structure without guaranteeing identical outcomes, vectors must be validated for specific
applications, particularly in high-stakes settings. Biases from training data sources (e.g.,
Reddit, Wikipedia, news) and cultural assumptions (e.g., Western norms of politeness or
assertiveness) are inherited and potentially amplified through transfer, raising concerns about
fairness and generalization. The same efficiency that aids positive applications could also
facilitate adversarial ones, such as porting persuasive or emotionally manipulative behaviors
across models. To mitigate these risks, we advocate transparency about deployed vectors
and their intended effects, regular auditing for unintended behaviors, access controls around
sensitive vectors, diverse testing across populations, and maintaining human oversight in
critical contexts. Ultimately, responsible governance and community norms are essential to
ensure steering vectors advance beneficial applications without enabling misuse.

9 Reproducibility Statement

Anonymized code is submitted in supplementary materials. Hyper-parameters, method,
and metrics are described in the main paper. Multiple trials were run for experiments, and
standard deviation numbers are reported. Dataset generation and compilation is described
in main body of paper and the Appendix.

10 LLM Usage Statement

Language models assisted in three ways: (1) writing support including grammar checking,
improving clarity, and formatting LaTeX code; (2) literature discovery through deep research
tools to find related work on steering vectors and representation alignment; and (3) a tool
to aid brainstorming experimental variations and research directions. All LLM suggestions
were reviewed and verified by authors. Core experimental design, implementation, data
analysis, and scientific conclusions are entirely our own work. We take full responsibility for
all content.
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A Dataset Documentation

A.1 Dataset Overview

We collected 65,329 contrast pairs across 26 behavioral traits from a combination of public
datasets and manual generation. This appendix provides complete documentation of data
sources, extraction methods, and sample pairs for reproducibility.

Table 4: Complete dataset sources for all 26 behavioral traits.

Trait Data Source # Pairs Extraction Method

HuggingFace Datasets (15 traits)
Accessibility CNN/DailyMail See et al. (2017) 5,000 Article vs summary
Assertiveness DebateSum 3,000 Arguments vs questions
Authority CNN/DailyMail 3,000 News vs social media
Clarity Newsroom 5,000 Complex vs clear text
Directness SILICONE 3,000 Direct vs indirect speech
Emotional Tone Go-Emotions Demszky et al. (2020) 5,000 Positive vs negative
Enthusiasm Emotion 5,000 Enthusiastic vs neutral
Formality ParaDetox Logacheva et al. (2022) 4,577 Formal vs informal
Inclusivity UC Berkeley Hate Speech 3,000 Inclusive vs exclusive
Objectivity Debiased News 4,000 Objective vs biased
Optimism IMDB 5,000 Positive vs negative
Professionalism Civil Comments 5,000 Professional vs casual
Register Empathetic Dialogues 4,000 Formal vs informal
Specificity ML ArXiv Papers 4,000 Specific vs general
Verbosity CNN/DailyMail See et al. (2017) 5,000 Full article vs summary

Manual Generation (11 traits)
Certainty Manual examples 104 Hand-crafted pairs
Concreteness Manual examples 106 Hand-crafted pairs
Creativity Manual examples 100 Creative vs factual
Empathy Manual examples 100 Empathetic vs neutral
Hedging Manual examples 179 Hedged vs certain
Humor Manual examples 100 Humorous vs serious
Persuasiveness Manual examples 230 Persuasive vs neutral
Politeness Manual examples 100 Polite vs impolite
Precision Manual examples 106 Precise vs vague
Technical Complexity Manual examples 106 Technical vs simple
Urgency Manual examples 521 Urgent vs non-urgent

Total 65,329
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A.2 HuggingFace Dataset Details

ParaDetox Logacheva et al. (2022): Parallel detoxification dataset containing for-
mal/informal rewrites. We extracted 4,577 pairs where texts differ primarily in formality
level while maintaining semantic equivalence.

CNN/DailyMail See et al. (2017): News articles with highlights. Used for three traits:

• Verbosity : Full articles (verbose) vs summaries (concise)
• Accessibility : Complex articles vs simple highlights
• Authority : News articles vs social media style

Go-Emotions Demszky et al. (2020): Fine-grained emotion labels on Reddit comments.
We grouped positive emotions (joy, love, optimism) vs negative emotions (sadness, anger,
fear) to create emotional tone contrasts.

IMDB: Movie review dataset with binary sentiment labels. Positive reviews were used as
optimistic examples, negative as pessimistic.

Other Datasets: Newsroom (clarity), Civil Comments (professionalism), Empathetic
Dialogues (register), Emotion dataset (enthusiasm), DebateSum (assertiveness), SILICONE
(directness), UC Berkeley Hate Speech (inclusivity), Debiased News (objectivity), ML ArXiv
Papers (specificity).

A.3 Manual Generation Methodology

For traits lacking suitable datasets, we manually created contrast pairs following these
principles:

1. Clear Contrast: Each pair exhibits a clear difference along the target trait dimen-
sion

2. Semantic Preservation: Pairs maintain similar meaning/content while varying
the trait

3. Length Constraints: All texts between 10 words and 512 tokens
4. Quality Control: Manual review to ensure trait differentiation

Example manual generation for politeness:

• High: "Could you please help me with this task?"
• Low: "Do this now."

The 11 manually generated traits (certainty, concreteness, creativity, empathy, hedging,
humor, persuasiveness, politeness, precision, technical complexity, urgency) totaled 1,752
pairs.

A.4 Sample Contrast Pairs

B Mathematical Justification for PCA-Preserved Orthogonal
Transformations

B.1 Theorem: PCA Preservation Under Orthogonal Transformation

Theorem 1. Let XA ∈ Rn×dA and XB ∈ Rn×dB be centered data matrices from models A
and B. If the hidden spaces are related by:

XB = s ·XAR+ ϵ (7)

where R ∈ RdA×dB is orthogonal, s > 0 is a scale factor, and ϵ is small noise, then their PCA
projections to k dimensions preserve this relationship.
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Table 5: Representative contrast pairs for selected traits.

Trait High Low

Formality "By the way, Mike, please tell me
how to get to your house."

"Say, Mike. Tell me how to get to
your house."

Verbosity [Full 300-word news article about
soccer player transfer]

"Werder Bremen pay $10.7M for
Carlos Alberto."

Politeness "I would be grateful if you could
assist me."

"Do this immediately."

Humor "The cat burglar was so good, he
even stole the show at the police
lineup."

"The Federal Reserve announced
new monetary policy measures."

Emotional
Tone

"I’m absolutely thrilled with this
amazing result!"

"The outcome was disappointing
and frustrating."

Proof:

Step 1: Covariance Matrix Transformation

The covariance matrices are:

CA =
1

n− 1
XT

AXA (8)

CB =
1

n− 1
XT

BXB =
s2

n− 1
RTXT

AXAR+O(ϵ) (9)

= s2RTCAR+O(ϵ) (10)

Step 2: Eigenvector Relationship

Let CA = UAΛAU
T
A be the eigendecomposition. Then:

CB = s2RTUAΛAU
T
AR (11)

= (RTUA)(s
2ΛA)(R

TUA)
T (12)

Since R is orthogonal, RTUA forms an orthonormal basis, giving us:

• Eigenvectors of CB : UB = RTUA

• Eigenvalues of CB : ΛB = s2ΛA

Step 3: PCA Projection Preservation

The PCA projections using top-k components are:
PA = XAUA,k (first k columns of UA) (13)

PB = XBUB,k = (sXAR)(RTUA,k) (14)
= sXAUA,k = sPA (15)

Therefore: PB = s · PA +O(ϵ)

B.2 Corollary: Procrustes Alignment in PCA Space

Corollary 1. The optimal Procrustes alignment between PA and PB recovers the scale
factor s exactly (up to noise ϵ).

Proof: The Procrustes problem in PCA space seeks:
min
Q,σ

∥PB − σPAQ∥2F (16)

Since PB = sPA +O(ϵ), the optimal solution is Q∗ = I (identity) and σ∗ = s.
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B.3 Practical Implications

This theoretical result has three key implications:

1. Dimension Reduction Preserves Structure: PCA projection maintains the
orthogonal relationship between model representations, justifying our use of reduced
dimensions (k = 1300) for computational efficiency.

2. Scale Factor Interpretation: The recovered scale factor s directly reflects the
relative magnitude of representations between models, explaining our observed values
(0.733–1.012).

3. Noise Robustness: The O(ϵ) error term shows the method is robust to small
deviations from perfect orthogonality, as observed in real model pairs.

B.4 Extension to Non-Square Transformations

When dA ̸= dB (e.g., Gemma with 3072 dims vs LLaMA with 4096), we use the intersection
of PCA spaces. Let k = min(dA, dB , 1300). Both models project to this common dimension,
where the orthogonal relationship is preserved in the shared subspace.

The key insight is that even though the full spaces have different dimensions, the behaviorally-
relevant subspaces (captured by top PCA components) can still be aligned via orthogonal
transformation. This is because:

1. The top principal components capture the most variance in behavioral representations
2. These components form a lower-dimensional manifold embedded in the full space
3. Orthogonal alignment of these manifolds is well-defined regardless of ambient di-

mension

B.5 Connection to Semantic Pairing

The preservation of orthogonal structure explains why semantic pairing is critical. When
vectors are properly paired (instance i in source corresponds to instance i in target), the
orthogonal transformation can align the entire distribution. Without this correspondence,
the optimization problem becomes ill-posed, leading to the dramatic performance drop we
observe (0.529 → 0.00).

Mathematically, proper pairing ensures that the cross-covariance matrix XT
AXB captures

the true structural relationship between representations. Scrambling destroys this structure,
making the recovered transformation meaningless for transfer.

C Variance Explained Analysis

Our choice of k = 1300 dimensions for PCA projection balances computational efficiency with
information preservation. The cumulative variance explained as a function of dimensions
shows a clear plateau after k=1300, indicating diminishing returns from additional dimensions.

Table 6: Variance explained by PCA projection across models

Model k=500 k=1000 k=1300

Gemma-2B 0.832 0.918 0.946
LLaMA-3-8B 0.798 0.891 0.925
Mistral-7B 0.765 0.862 0.905

With k = 1300, we capture 94–96% of variance across all models, providing an excellent trade-
off between dimensionality reduction (from 3072–4096 to 1300) and information retention.
The consistent variance capture across models suggests that behavioral traits occupy a
relatively low-dimensional manifold within the full activation space.
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D Complete Per-Trait Transfer Results

Table 7 presents the complete per-trait transfer performance across all 26 behavioral traits
and all 6 model pairs. These results were computed using the same alignment method
(PCA + Similarity Procrustes with k=1300) that achieved the overall mean of 0.525 cosine
similarity reported in the main paper.

Table 7: Complete per-trait transfer performance across all model pairs. Values show
test cosine similarity. ∗ indicates traits with manually generated datasets; all others used
HuggingFace datasets.

Trait Source G→L G→M L→G L→M M→G M→L Mean

Clarity HF 0.947 0.909 0.947 0.887 0.909 0.887 0.914
Specificity HF 0.930 0.882 0.930 0.850 0.882 0.850 0.887
Accessibility HF 0.755 0.770 0.755 0.731 0.770 0.731 0.752
Authority HF 0.706 0.747 0.706 0.697 0.747 0.697 0.717
Politeness∗ Manual 0.805 0.682 0.805 0.622 0.682 0.622 0.703
Verbosity HF 0.691 0.735 0.691 0.679 0.735 0.679 0.702
Formality HF 0.739 0.626 0.739 0.589 0.626 0.589 0.651
Empathy∗ Manual 0.641 0.618 0.641 0.578 0.618 0.578 0.612
Directness HF 0.604 0.510 0.604 0.521 0.510 0.521 0.545
Enthusiasm HF 0.582 0.486 0.582 0.472 0.486 0.472 0.513
Register HF 0.554 0.462 0.554 0.450 0.462 0.450 0.489
Emotional Tone HF 0.529 0.444 0.529 0.453 0.444 0.453 0.475
Inclusivity HF 0.518 0.441 0.518 0.440 0.441 0.440 0.466
Objectivity HF 0.476 0.384 0.476 0.404 0.384 0.404 0.421
Hedging∗ Manual 0.548 0.364 0.548 0.333 0.364 0.333 0.415
Professionalism HF 0.452 0.374 0.452 0.394 0.374 0.394 0.407
Technical Complex.∗ Manual 0.341 0.285 0.341 0.260 0.285 0.260 0.295
Concreteness∗ Manual 0.329 0.284 0.329 0.253 0.284 0.253 0.289
Creativity∗ Manual 0.349 0.229 0.349 0.230 0.229 0.230 0.269
Precision∗ Manual 0.300 0.240 0.300 0.218 0.240 0.218 0.253
Certainty∗ Manual 0.296 0.191 0.295 0.156 0.191 0.156 0.214
Humor∗ Manual 0.223 0.182 0.223 0.225 0.182 0.225 0.210
Optimism HF 0.109 0.135 0.109 0.229 0.135 0.229 0.157
Urgency∗ Manual 0.149 0.118 0.150 0.119 0.118 0.119 0.129
Persuasiveness∗ Manual 0.041 0.020 0.041 0.058 0.020 0.058 0.039
Assertiveness HF 0.018 0.010 0.018 0.022 0.010 0.022 0.017

Overall Mean 0.558 0.512 0.558 0.505 0.512 0.505 0.525

Note: G=Gemma-7B, L=LLaMA-3-8B, M=Mistral-7B. All values computed on held-out
test sets (20% of data). HF=HuggingFace datasets, Manual=manually generated contrast
pairs. The 11 manually generated traits used smaller datasets (100-521 pairs) compared
to HuggingFace traits (3,000-5,000 pairs), which may contribute to their generally lower
transfer performance. The superior transfer performance of dataset-derived steering vectors
(mean 0.541) compared to manually crafted ones (mean 0.312) suggests that naturally
occurring linguistic patterns captured from large-scale corpora encode more robust cross-model
representations than hand-designed contrasts, supporting the scalability of automated steering
vector extraction methods.

E Scrambling Hierarchy Results

Table 8 presents the complete scrambling hierarchy results for each model pair, demonstrating
the consistency of semantic pairing’s importance across all transfer directions.

Table 8: Scrambling hierarchy results across all model pairs. Values show test cosine similarity
under different pairing protocols.

Model Pair Proper Pairing Within-Trait Cross-Trait

Gemma → LLaMA 0.558 0.328 -0.0001
Gemma → Mistral 0.512 0.303 -0.0003
LLaMA → Gemma 0.558 0.328 -0.0001
LLaMA → Mistral 0.505 0.292 0.0000
Mistral → Gemma 0.512 0.300 0.0003
Mistral → LLaMA 0.505 0.292 0.0009

Mean 0.525 0.308 0.000

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Note: Proper pairing preserves instance-level correspondence where vector i in the source
matches vector i in the target. Within-trait shuffling randomly permutes pairings within each
trait category. Cross-trait shuffling applies global random permutation across all traits. The
72% improvement from within-trait to proper pairing (0.308 → 0.525) demonstrates that
instance-level correspondence is critical for successful transfer.
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