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Abstract

Exact inference in large Bayesian Networks (BNs) is computationally intractable,
limiting its practical application. Markov Chain Monte Carlo (MCMC) methods
like Gibbs sampling offer a scalable alternative but can be arbitrarily slowed by
highly coupled variables—addressable by jointly sampling some variables as a
block. We propose an automated block detection method to amortise inference
time: training a Graph Neural Network (GNN) to propose blocks directly from the
BN structure. We further introduce a novel coupling heuristic based on the Markov
chain’s spectral gap, which we show can be more robust than existing heuristics.
Our GNN, trained on a dataset of small, randomly generated BNs, generalizes well
to larger networks, accelerating MCMC sample efficiency in our experiments.

1 Introduction

Bayesian Networks (BNs) are a class of probabilistic graphical models that represent complex
multivariable distributions through local conditional dependencies. They provide an inerptretable
framework for probabilistic modeling, supporting arbitrary posterior inference queries given observed
evidence. BNs can be constructed from human expert knowledge, structure learning algorithms, or
even elicited from large language models. However, exact inference is computationally intractable
for larger networks. Approximate inference methods like Markov Chain Monte Carlo (MCMC)
offer a practical alternative for achieving acceptable accuracy within reasonable computation time.

Gibbs sampling is a common MCMC method for BNs due to its simple computation of local updates
and 100% acceptance ratio. However, highly coupled variables can severely slow convergence and
mixing. Blocked Gibbs sampling addresses this by grouping coupled variables into blocks that are
jointly sampled, breaking out of sticky Markov chain states. While practitioners can specify blocks a
priori using domain knowledge, automatic blocking methods are essential for general applicability.
Venugopal and Gogate (2013) present a robust algorithm for dynamically proposing blocks during
MCMC based on information revealed by initial samples. However, this approach faces a fundamental
catch-22: effective blocks require sufficient posterior samples of the full range of Markov chain
modal states to observe coupling, yet collecting this data is slowed by the couplings themselves.

Circumventing this issue, we train a Graph Neural Network (GNN) Kipf and Welling (2017)
to propose effective blocks directly from BN structure before MCMC starts; this can be used in
tandem with dynamic block refinement. Our GNN is trained offline on a diverse dataset of randomly
generated BNs, amortising the computational cost of block identification. We further introduce an
alternative coupling heuristic based on the Markov chain’s spectral gap, which demonstrates superior
performance on adversarially coupled BNs compared to existing measures.

Yoon et al. (2019) trained GNNs to directly do inference, though with fixed approximation error;
our method fully integrates into MCMC and can be used with existing techniques. GNN-proposed
blocks can still be refined further dynamically refined using MCMC samples (Venugopal and Gogate,
2013). Learned variable sampling distributions allow proposing larger blocks (Wang et al., 2018),
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non-uniform variable/block selection rates speed up convergence, and of course parallelisation across
chains and variables with non-intersecting Markov blankets is still effective (Gonzalez et al., 2011).

2 Guiding Block Selection in Gibbs MCMC with GNNs

We wish to block the variables (nodes) of a Bayesian network, V = {X,Y, . . . }, into a set cover
B = {Bi} such that the variables within each block are relatively more inter-coupled. Section 2.1
derives a heuristic metric to detect coupling between pairs of variables, which we show, in Section 2.3,
a GNN can be trained to approximate. This metric is used in the algorithm of Section 2.2 to propose
a block partition (for simplicity) which can then be used in Blocked Gibbs Sampling inference.

2.1 Deriving the spectral gap coupling heuristic

The underpinning of (blocked) Gibbs MCMC is a sequence of transitions within a finite discrete-time
Markov chain, where all variable assignments Zt = (X = x, Y = y, ...) are states within state space
S, and transition matrix Tij = P (Zt+1 = sj |Zt = si) dictates the stochastic evolution of the chain
Z0, Z1, ...; Z0 ∼ µ0 (initial dist.) For this Markov chain (S, T, µ0), convergence in total variation
distance (TVD) to the stationary distribution π is governed by its spectral gap Levin and Peres
(2017), per the bound ||µT

0 T
n − πT ||TV = O(λn

2 ), where λ2 ̸= 1 is the second-largest eigenvalue.
The spectral gap γ = 1 − λ2 thus provides a natural basis for block selection - "larger gap is a
better blocking B". However, there is a combinatorial number of block assignments B. Furthermore,
computing the spectral gap for multivariable chains is impractical except in special cases (see e.g.
Chimisov et al. (2018)), requiring enumeration of an exponentially large product state space.

Venugopal and Gogate (2013) importantly simplify the first problem by developing a coupling metric
for just pairs of variables: for X,Y in a BN, their joint posterior π(X,Y ) can be approximated from
samples of a short MCMC run as the |X | × |Y| matrix Q. The hellinger distance of Q vs its inde-
pendent assumption rank one approximation R = q⃗X q⃗Y

T , where e.g. (q⃗X)x =
∑

y∈Y Qxy , signifies
how wrong the indepence approximation is, and thus benefit from jointly re-sampling X,Y to more

efficiently capture their dynamics. Hence they compute HD(X,Y ) := 1√
2

√∑
i,j(

√
Qij −

√
Rij)2.

We propose an alternative pairwise score SG(X,Y ): we seek the spectral gap of the averaged
subset transition matrix TX,Y ∈ R|X ||Y|×|X||Y| that models marginal dynamics for (X,Y ) under
standard Gibbs sampling, TX,Y = 1

2T
X,Y
X + 1

2T
X,Y
Y , where e.g. TX,Y

Y represents sampling Y with
X fixed. Denoting their joint Markov Blanket as MB(X,Y ) = MB, the transition probabilities
TX,Y
Y : (x0, y0) → (x0, y

′) are derived by averaging over the distribution of MB, which we
approximate as MB ∼ π(MB|x0, y0) (as we Gibbs sample progressively over all variables in the
BN). Here e.g. P (Z|Pa(Z)) denotes the BN Conditional Probability Table (CPT) for variable Z
given its parents.

PGibbs(Y
′|X = x0, Y = y0,MB) ∝ P (Y ′|Pa(Y ))

∏
Z:Y ∈Pa(Z)

P (Z|Pa(Z)) |x0,MB (1)

PGibbs(Y
′|X = x0, Y = y0) ≈

∫
π(MB|x0, y0)PGibbs(Y

′|MB, x0)dMB (2)

Since π(MB|x0, y0) is intractable, we approximate Eq.(2) by averaging over y0 ∼ π(Y |X = x0) to
get uniform probabilities T̃X,Y

Y : (x0, ∗) → (x0, y
′). This represents a best-case mixing scenario

where sampling y′ jumps straight to the true posterior π(Y ′|X = x0), so is a lower bound for mixing
time of the actual Gibbs chain.

Ey0∼π(Y |x0) [PGibbs(Y
′|X = x0, Y = y0)] ≈ (3)∫ [∫

π(MB|x0, y0)PGibbs(Y
′|MB, x0)dMB

]
π(y0|x0)dy0 = (4)∫ [∫

π(MB|x0, y0)π(y0|x0)dy0

]
PGibbs(Y

′|MB, x0)dMB = (5)
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∫
π(MB|x0)PGibbs(Y

′|MB, x0)dMB = π(Y ′|X = x0) (6)

This allows us to derive an approximate matrix T̃X,Y and compute its spectral gap using only the
posterior π(X,Y ), i.e. the same information required for the Hellinger distance heuristic. While these
heuristics perform similarly on aggregate across random BNs, in certain adversarially constructed
BNs (e.g. see A.2), spectral gap substantially outperforms Hellinger distance for block proposals.

2.2 Adapting the greedy pairwise heuristic blocking algorithm

We adapt the greedy block merging algorithm from Venugopal and Gogate (2013). Given a BN of n
variables and a pairwise score function ρ(X,Y ) of each of the

(
n
2

)
pairs, where larger values indicate

stronger coupling, we construct a block partition B. Starting with n singleton blocks, we iteratively
merge the pair of blocks with highest inter-block score sum

∑
X∈Bi, Y ∈Bj

ρ(X,Y ) (or mean/max).
We explore replacing the hellinger distance based ρ with one from spectral gap. For simplicity we
constrain merged block size to a uniform cap rather than via more precise computational cost of
Gibbs sampling each block’s joint distribution — otherwise larger blocks are generally better.

2.3 Producing block proposals with GNNs

GNNs provide a natural architecture to analyse an input BN so as to produce block proposals.
Rather than learning to propose blocks directly, we train the GNN with supervision to produce
either ρHD or ρspectral with a final bilinear layer between node embeddings. We limit our training
dataset to randomly generated BNs of 10-40 nodes and average degree 1.7 so that computing ground
truth pairwise posteriors is computationally feasible. Despite this constraint, our GNNs generalise
effectively to larger networks, with spectral gap showing slight performance advantages over Hellinger
distance: see Figure 1.

Loopy Belief Propagation (LBP) Koller and Friedman (2009) inspires our architecture through
its effective graph-based message passing for computing single variable marginal posteriors.
LBP operates on factor graphs, where factors generalize CPTs P (X|Pa(X)) by removing nor-
malisation constraints. We convert BNs to factor graphs by replacing each CPT hyperedge
P (X|Pa(X) = {Y1, ..., Y|Pa(X)|}) with a factor node FX . Variable nodes X,Y1, ..., Y|Pa(X)|
connect bidirectionally to FX , enabling distinct message passing phases.

We employ 2 relational graph convolution layers Schlichtkrull et al. (2018) with GRU units Cho et al.
(2014) across 2 message passing rounds. While deeper networks with additional rounds would likely
improve performance, scaling proved challenging; future work could explore alternative architectures
like graph attention networks Veličković et al. (2018).

We trained on 22,732 discrete BNs using an 80-20 train-validation split. CPT encoding constrains
our architecture: we flatten each CPT as an initial node feature vector of size N

Np+1
d (max domain

size Nd = 5, max number of parents Np = 6) for factor nodes, and an factor-indicating one-hot flag,
while variable nodes are zero intialised. Edge types encode direction (to/from factor) and position
(0 for child, 1, ..., Np for parents), determining relational graph convolution parameters. Following
LBP’s unnormalised factors, we handle evidence by disconnecting observed variables from their
factors and contracting those CPTs to conforming entries, which become unnormalised. To encourage
GNN comprehension across all factors, we further add multiplicative noise to all CPTs making them
all unnormalised - this improves performance.

Randomly generated BNs were filtered to fit the max number of parents constraint, with CPTs
deliberately extremised with higher occurrence of entries in [0.99, 1.0] to encourage highly coupled
variables and hence the presence of some higher spectral gap / hellinger distance scores. Additional
training details are available in Appendix A.1.

3 Experiments

We evaluate our method’s practical utility, particularly its generalisation performance on larger BNs,
where exact inference is intractable.
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(a) Maximum block-size 2 (b) Maximum block-size 4

Figure 1: GNN block proposals on 100 small BNs (10-40 nodes) test-set achieve lower mean TVDs
than Gibbs and the control of random local blocking, across a range of MCMC sample sizes. Mean
and 95% confidence intervals shown.

We test our GNN’s block proposal performance on 100 BNs of 85–115 nodes each, measuring
mean TVD between MCMC 200-sample predicted and “ground truth” (7,000-sample) single variable
marginals. To account for stochasticity in highly coupled networks, we average results for 25
independent runs per BN. Figure 2 shows that both GNN-predicted spectral gap and Hellinger
distance blocking substantially outperform random local blocking across maximum block sizes (2
and 4 shown), with spectral gap yielding marginal gains over Hellinger distance.

Figure 2: 200 sample MCMC runs
of various maximum block-sizes, on
100 large BNs (85-115 nodes). GNN
guided block proposals generalise
well to larger BNs where exact infer-
ence is infeasible, outperforming the
random local blocking control; spec-
tral slightly outpeforms Hellinger.
Means shown as green triangles.

4 Conclusion

We presented a method to accelerate MCMC inference in Bayesian Networks using Graph Neural
Networks to propose variable blocks for joint sampling. This amortised approach circumvents the
catch-22 of dynamic blocking methods that require samples to identify the couplings that slow
sampling. Our experiments demonstrate that GNN-proposed blocks, trained on spectral gap or
Hellinger distance heuristics, substantially accelerate posterior convergence on large networks.

Future work could explore more expressive architectures like Graph Attention Networks with addi-
tional layers, to better capture global dependencies. A more ambitious direction would be to replace
heuristic supervision with direct block proposal mechanisms trained via reinforcement learning on
convergence speed, perhaps even with active exploration of sampling moves. Further analysis is
warranted to characterize the topological or parametric properties of BNs for which our proposed
spectral gap heuristic offers the greatest advantage over hellinger distance.
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Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., and Bengio, Y. (2018). Graph
attention networks.

Venugopal, D. and Gogate, V. (2013). Dynamic blocking and collapsing for gibbs sampling. arXiv
preprint arXiv:1309.6870.

Wang, T., Wu, Y., Moore, D., and Russell, S. J. (2018). Meta-learning mcmc proposals. Advances in
neural information processing systems, 31.

Yoon, K., Liao, R., Xiong, Y., Zhang, L., Fetaya, E., Urtasun, R., Zemel, R., and Pitkow, X. (2019).
Inference in probabilistic graphical models by graph neural networks. In 2019 53rd Asilomar
Conference on Signals, Systems, and Computers, pages 868–875. IEEE.

A Technical Appendices and Supplementary Material

A.1 GNN training and examples

We trained both the spectral gap and hellinger distance predicting GNNs on a single A600 for 20
epochs each. We used pyAgrum’s random bayesian network generator, which produces diverse
graphs, of varying degree (of given average, 1.7), varying CPTs (which we further extremised to
promote coupling), varying domain size up to a given cap (we constrained to Nd = 5). We rejection
sample out BNs satisfying the max number of parents constraint (Np = 6), and finally randomly
choose a number of evidence variables and their observed assignments, of between 1 and 20% of the
BN’s variables.

For spectral gap, we trained the GNN to predict the second largest eigenvalue of the approximate
Markov chain subset transition kernel of a pair of variables in the BN. For our randomly generated
BNs, this is quite an unbalanced distribution, with high concentration of values close to 0, same for
hellinger distance - however a few pairs of nodes have higher values corresponding to a higher degree
of coupling. In order to encourage the GNN to learn not just to predict 0 distance uniformly, we
actually employ mean cubed loss rather than mean squared, to more sharply penalise large errors.

A.2 Example Adversarial BN requiring spectral gap analysis

We constructed by hand a small BN of three nodes X,Y, Z and conditional structure Y → X; Y →
Z where both X,Y and Y, Z are desirable blocking candidates. However assuming a max block-
size of 2 where we only do a partition style blocking, the spectral gap and hellinger distance
metrics disagree on which is preferential to block. Y is a root node with uniform distribution
P (Y = i) = 0.25 for i ∈ {0, 1, 2, 3}, and the CPTs of P (X|Y ) and P (Z|Y ), shown in Figures 5b
and 5c, both ensure that the marginal probabilities P (X) and P (Z) are likewise uniform. The far more
extreme, 2x2-modal concentration of probabilities in P (X|Y ) actually lead to far slower convergence
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(a) GNN 2nd largest eigenvalue λ2

predictions. Corr-coeff 0.79
(b) GNN Hellinger distance predic-
tions. Corr-coeff 0.72

(c) MCMC convergence for differ-
ent blocking methods

Figure 3: GNN predictive accuracy of pairwise variable distance metrics, and MCMC convergence
performance, shown for a single validation set BN of 19 nodes.

(a) GNN 2nd largest eigenvalue λ2

predictions. Corr-coeff 0.77
(b) GNN Hellinger distance predic-
tions. Corr-coeff 0.65

(c) MCMC convergence for differ-
ent blocking methods

Figure 4: GNN predictive accuracy of pairwise variable distance metrics, and MCMC conver-
gence performance for a real life BN of 37 nodes: https://www.bnlearn.com/bnrepository/
discrete-medium.html#alarm, with evidence VENTALV: 0, HYPOVOLEMIA: 1, INSUF-
FANESTH: 0, HRBP: 1

of the Markov chain, as evidenced in Figure 5a, unlike the more weakly 4-modally concentrated
coupling in P (Z|Y ). Hellinger distance scores are however insensitive to this large discrepancy,
indeed giving preference to blocking Z, Y over X,Y : HD(X,Y ) = 0.532 and HD(Y, Z) = 0.543.
The eigenvalues of the approximate transition matrices T̃ (Y,Z) has 2nd largest eigenvalue 0.8652 so
spectral gap 0.1348 as opposed to T̃ (X,Y ) which has λ2 = 0.9994 and so a far smaller spectral gap
of 0.0006, so spectral gap based blocking correctly blocks X,Y . In this case random local blocking
blocks correctly half of the time.
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(a) MCMC convergence for max block-size 2

(b) X Given Y CPT

(c) Z Given Y CPT

Figure 5: Adversarial 3 node example BN Y → X; Y → Z has high degrees of coupling, but
magnitudes more so between X,Y than Z, Y . The spectral gap heuristic correctly identifies this
unlike hellinger distance, and so exhibits far better MCMC convergence. Shown here is the
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