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ABSTRACT

This paper presents a payoff perturbation technique, introducing a strong convex-
ity to players’ payoff functions in games. This technique is specifically designed
for first-order methods to achieve last-iterate convergence in games where the gra-
dient of the payoff functions is monotone in the strategy profile space, potentially
containing additive noise. Although perturbation is known to facilitate the con-
vergence of learning algorithms, the magnitude of perturbation requires careful
adjustment to ensure last-iterate convergence. Previous studies have proposed a
scheme in which the magnitude is determined by the distance from a periodi-
cally re-initialized anchoring or reference strategy. Building upon this, we pro-
pose Gradient Ascent with Boosting Payoff Perturbation, which incorporates a
novel perturbation into the underlying payoff function, maintaining the periodi-
cally re-initializing anchoring strategy scheme. This innovation empowers us to
provide faster last-iterate convergence rates against the existing payoff perturbed
algorithms, even in the presence of additive noise.

1 INTRODUCTION

This study considers online learning in monotone games, where the gradient of the payoff function is
monotone in the strategy profile space. Monotone games encompassed diverse well-studied games
as special instances, such as concave-convex games, zero-sum polymatrix games (Cai & Daskalakis,
2011; Cai et al., 2016), A-cocoercive games (Lin et al., 2020), and Cournot competition (Monderer
& Shapley, 1996). Due to their wide-ranging applications, there has been growing interest in devel-
oping learning algorithms to compute Nash equilibria in monotone games.

Typical learning algorithms such as Gradient Ascent (Zinkevich, 2003) and Multiplicative Weights
Update (Bailey & Piliouras, 2018) have been extensively studied and shown to converge to equilibria
in an average-iterate sense, which is termed average-iterate convergence. However, averaging the
strategies can be undesirable because it can lead to additional memory or computational costs in
the context of training Generative Adversarial Networks (Goodfellow et al., 2014) and preference-
based fine-tuning of large language models (Munos et al., 2024; Swamy et al., 2024). In contrast,
last-iterate convergence, in which the updated strategy profile itself converges to a Nash equilibrium,
has emerged as a stronger notion than average-iterate convergence.

Payoftf-perturbed algorithms have recently been regaining attention in this context (Sokota et al.,
2023; Liu et al., 2023). Payoff perturbation, a classical technique referenced in Facchinei & Pang
(2003), introduces a strongly convex penalty to the players’ payoff functions to stabilize learning.
This leads to convergence toward approximate equilibria, not only in the full feedback setting where
the perfect gradient vector of the payoff function can be used to update strategies, but also in the
noisy feedback setting where the gradient vector is contaminated by noise.

However, to ensure convergence toward a Nash equilibrium of the underlying game, the magnitude
of perturbation requires careful adjustment. As a remedy, it is adjusted by the distance from an
anchoring or reference strategy. Koshal et al. (2010) and Tatarenko & Kamgarpour (2019) simply
decay the magnitude in each iteration, and their methods asymptotically converge, since the per-
turbed function gradually loses strong convexity. In response to this, recent studies (Perolat et al.,
2021; Abe et al., 2023; 2024) re-initialize the anchoring strategies periodically, or in a predefined
interval, so that they keep the perturbed function strongly convex and achieve non-asymptotic con-
vergence.
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We should also mention the optimistic family of learning algorithms, which incorporates recency
bias and exhibits last-iterate convergence (Daskalakis et al., 2018; Daskalakis & Panageas, 2019;
Mertikopoulos et al., 2019; Wei et al., 2021). Unfortunately, the property has mainly been proven in
the full feedback setting. Although it might empirically work with noisy feedback, the convergence
is slower, as demonstrated in Section 6. The fast convergence in the noisy feedback setting is another
reason why payoff-perturbed algorithms have been gaining renewed interest.

The most recent payoff-perturbed algorithm, Adaptively Perturbed Mirror Descent (APMD) (Abe
etal., 2024), achieves O(1/v/T)" and O(1/T 1) last-iterate convergence rates in the full/noisy feed-
back setting, respectively. The motivation of this study lies in improving these convergence rates.
We propose an elegant one-line modification of APMD, which effectively accelerates convergence.
In fact, we just add the difference between the current anchoring strategy and the initial anchoring
strategy to the payoff perturbation function in APMD.

Our contributions are manifold. Firstly, we propose a novel payoff-perturbed learning algorithm
named Gradient Ascent with Boosting Payoff Perturbation (GABP). This method incorporates a
unique perturbation payoff function, enabling it to achieve fast convergence. Subsequently, we
prove that GABP exhibits accelerated O(1/T) and O(1/T %) last-iterate convergence rates to a
Nash equilibrium with full and noisy feedback, respectivelyz. To derive these rates, we utilize the
concept of the potential function used in Cai & Zheng (2023). Specifically, the potential function we
employ is customized for handling noisy feedback. We further show that each player’s individual
regret is at most O ((ln T)Q) in the full feedback setting, provided all players play according to
GABP. Finally, through our experiments, we demonstrate the competitive or superior performance
of GABP over the Optimistic Gradient algorithm (Daskalakis et al., 2018; Wei et al., 2021), the
Accelerated Optimistic Gradient algorithm (Cai & Zheng, 2023), and APMD in concave-convex
games, irrespective of the presence of noise.

2 PRELIMINARIES

Monotone games. In this study, we focus on a continuous multi-player game, which is denoted
as ([N, (X;)ie(n)> (vi)iev))- [N] = {1,2,---, N} denotes the set of N players. Each player
i € [N] chooses a strategy m; from a d;-dimensional compact convex strategy space X;, and we
write X = HiE[N] X;. Each player ¢ aims to maximize her payoff function v; : X — R, which
is differentiable on X. We denote m_; € [] ki X as the strategies of all players except player 4,
and m = (m;);c(n) € X as the strategy profile. This paper particularly studies learning in smooth
monotone games, where the gradient operator V' (-) = (V,vi(:))ie[n] of the payoff functions is
monotone: Vr, 7’ € X,

(V(r) = V(r),m—n') <0, (1)
and L-Lipschitz for L > 0,
IV (r) = V(x)| < Lz — ', 2)
where || - || denotes the ¢o-norm.

Many common and well-studied games, such as concave-convex games, zero-sum polymatrix games
(Cai et al., 2016), A-cocoercive games (Lin et al., 2020), and Cournot competition (Monderer &
Shapley, 1996), are included in the class of monotone games.

Example 2.1 (Concave-convex games). Consider a game defined by ({1, 2}, (X3, X2), (v, —v)),
where v : &} x Ay — R. In this game, player 1 wishes to maximize v, while player 2 aims to
minimize v. If v is concave in m; € X and convex in o € A5, the game is called a concave-convex
game or minimax optimization problem, and it is not hard to see that this game is a special case of
monotone games.

Example 2.2 (Cournot Competition). Consider a Cournot competition model with a linear price
function. There are N firms in competition, and each independently and simultaneously chooses a
quantity m; € X; := [0, C;] to produce certain goods, where C; is a constant greater than 0. The

'We use O to denote a Landau notation that disregards a polylogarithmic factor.
2For a more detailed comparison of our rates with other works, please refer to Table 2 in Appendix E.2.
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price of the goods is determined by a linear function P(7) = a — b Zie[ ~] Ti» Where a and b are

constants greater than 0. The payoff for each firm ¢ is calculated as the total revenue from producing
; units of the goods, minus the associated production cost, i.e., v;(7) = m; P(7) — ¢;m;. This game
has been shown to satisfy the property of monotone games as defined in Eq. (1) (Bravo et al., 2018).

Nash equilibrium and gap function. A Nash equilibrium (Nash, 1951) is a widely used solution
concept for a game, which is a strategy profile where no player can gain by changing her own
strategy. Formally, a strategy profile 7* € X is called a Nash equilibrium, if and only if 7* satisfies
the following condition:

Vi € [N],Vm; € X, vi(n],7";) > vi(ms, m5,).
We define the set of all Nash equilibria to be II*. It has been shown that there exists at least one
Nash equilibrium (Debreu, 1952) for any smooth monotone games.

To quantify the proximity to Nash equilibrium for a given strategy profile m € X, we use the gap
function, which is defined as:

GAP(m) := max (V(rm), 7 —m).

Additionally, we use another measure of proximity to Nash equilibrium, referred to as the tangent
residual. This measure is defined as:

r®(7):= min |-V (7)+al,
(m):= _ min_|=V(m)+al
where Nx(m) = {(ai)icin) € Hfil R4 Zf\;l<ai,7r§ —m) <0, Vr' € X} is the normal cone
atm € X. Itis easy to see that GAP(7) > 0 (resp. r**%(wr) > 0) for any 7 € X, and the equality

holds if and only if 7 is a Nash equilibrium. Defining D := sup,, ¢y ||7 — 7’| as the diameter of
X, the gap function for any given strategy profile m € X is upper bounded by its tangent residual:

Lemma 2.3 (Lemma 2 of Cai et al. (2022a)). For any m € X, we have:
GAP(7) < D - (7).

The gap function and the tangent residual are standard measures of proximity to Nash equilibrium;
e.g., it has been used in Cai & Zheng (2023); Abe et al. (2024).

Problem setting. This study focuses on the online learning setting in which the following process
repeats from iterations ¢ = 1 to 7" (i) Each player i € [N] chooses her strategy 7! € X;, based on

previously observed feedback; (ii) Each player 7 receives the (noisy) gradient vector @,rlvi (mt) as
feedback. This study examines two feedback models: full feedback and noisy feedback. In the full
feedback setting, each player observes the perfect gradient vector V., v;(n') = V., v;(7?). In the
noisy feedback setting, each player’s gradient feedback V., v;(n?) is contaminated by an additive
noise vector &, i.e., Vrvi(mt) = Vivi(nt) + &L, where ¢¢ € R%. Throughout the paper, we
assume that &! is the zero-mean and bounded-variance noise vector at each iteration .

Payoff-perturbed learning algorithms. To facilitate the convergence in the online learning set-
ting, recent studies have utilized a payoff perturbation technique, where payoff functions are per-
turbed by strongly convex functions (Sokota et al., 2023; Liu et al., 2023; Abe et al., 2022). However,
while the addition of these strongly convex functions leads learning algorithms to converge to a sta-
tionary point, this stationary point may be significantly distant from a Nash equilibrium. Therefore,
the magnitude of perturbation requires careful adjustment. Perolat et al. (2021); Abe et al. (2023;
2024) have introduced a scheme in which the magnitude is determined by the distance (or divergence
function) from an anchoring strategy o;, which is periodically re-initialized. Specifically, Adaptively
Perturbed Mirror Descent (APMD) (Abe et al., 2024) perturbs each player’s payoff function by a
strongly convex divergence function G(7;,0;) : X; X X; — [0,00), where the anchoring strategy
o; is periodically replaced by the current strategy 7t every predefined iterations T,.

i
Let us denote the number of updates of o; up to iteration ¢ as k(t), and the anchoring strategy
after k(t) updates as af ). Since o is overwritten every T, iterations, we can write k(t) = | (¢t —
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Algorithm 1 GABP for player .

Require: Learning rates {n; };>0, perturbation strength 1, update interval T, initial strategy 7,
Ik« 1, 7+0
2: ail — 7T,L~1
3: fort=1,2,--- ,T do R
4:  Receive the gradient feedback V., v; (")
5:  Update the strategy by

7T¢+1:argmax n v v»(wt)—uu—u(ﬂ'?—ak) T —EH,QC—W?HQ
7 X, t i V1 k41 i i) 2 i

6: T+ 71741

7. if 7 =T, then

8: k< k+1, 7«0

9: af<—7r,f+1

10:  end if

11: end for

1)/T5| 4+ 1 and a,f ® = W?”(k(t)_l)ﬂ. Except for the payoff perturbation and the update of the
anchor strategy, APMD updates each player ¢’s strategy in the same way as standard Mirror Descent
algorithms:
7t = arg max {77t <§mvi(7rt) — Vg, G(rt, af(t))7 m> — Dy (z, Wf)} ,
rEX;

where 7, is the learning rate at iteration ¢, 4 € (0, 00) is the perturbation strength, and D, (m;, 7)) =
Y(m) — Y(rl) — (V(nrl), m — 7}) is the Bregman divergence associated with a strictly convex
function ¢ : X; — R. When both G and D, is set to the squared ¢2-distance, this algorithm can be
equivalently written as:

- 1

7t = arg max {nt <Vﬂivi(7rt) —u (Wf — Jf(t)> ,x> - = Hx — 7er2} .
reX; 2

We refer to this version of APMD as Adaptively Perturbed Gradient Ascent (APGA). Abe et al.

(2024) have shown that APGA exhibits the convergence rates of O(1/+/T') and O(1/T'1 ) with full
and noisy feedback, respectively.

3 GRADIENT ASCENT WITH BOOSTING PAYOFF PERTURBATION

This section proposes a novel payoff-perturbed learning algorithm, Gradient Ascent with Boosting
Payoff Perturbation (GABP). The pseudo-code of GABP is outlined in Algorithm 1. At each iter-
ation ¢t € [T], GABP receives the gradient feedback @,rivi(wt), and updates each player’s strategy
by the following update rule:

k(t) 1

t+1 S t o, ~ —0; t k() 1 )2

=g (o) w2 (1) ) - -
———

()
o; is overwritten every 7, iterations, and thus crll‘C ®) is define as crll‘C ®© To(k®=D+1 The term

= 7Ti
(*) in Eq. (3) is our proposed additional perturbation term. It shrinks as k(¢), the number of updates

()

k() .
of o;"", increases.

For a more intuitive explanation of the proposed perturbation term, we present the following update
rule, which is equivalent to Eq. (3):

= k(o 4 o1 1 2
t+1 _ oty t_ i i N
w = arger;lfx {nt <Vﬂvl(7r ) — i <7r1 7]{@) 1 , T 5 ||J: 7TZH )
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According this formula, it is evident that GABP perturbs the gradient vector @in(wt) so that 7t
k(t)af(t)Jra'il (
E(t)+1

compared to o#(*) itself, is anticipated to contribute to the stabilization of the learning dynamics.
There is a tradeoff between the shrinking speed of the term (x) and the stabilizing impact on the last-
iterate convergence rate of GABP. The shrinking speed of 1/(k(t)+ 1) achieves a faster convergence
rate, and we believe that this represents the optimal balance for this trade-off. We remark that
the term () bears a resemblance to the update rule of the Accelerated Optimistic Gradient (AOG)
algorithm (Cai & Zheng, 2023). However, AOG differs in the sense that it actually modifies the
proximal point in gradient ascent, instead of perturbing the gradient vector. A detailed comparison
is discussed in Appendix E.1.

approaches , instead of UZ’-c Y This gradual evolution of the anchoring strategy in GABP,

4 LAST-ITERATE CONVERGENCE RATES

This section provides the last-iterate convergence rates of GABP. Specifically, we derive @(1 /T)
and O(1/T'7) rates for the full/noisy feedback setting, respectively.

4.1 FULL FEEDBACK SETTING

First, we demonstrate the last-iterate convergence rate of GABP with full feedback where each player
receives the perfect gradient vector as feedback at each iteration ¢, i.e., @m vi(mh) = V,vi(rh).
Theorem 4.1 shows that the last-iterate strategy profile 77 updated by GABP converges to a Nash
equilibrium with an O(1/T) rate in the full feedback setting.

Theorem 4.1. If we use the constant learning rate n; = n € (0, -~ ) and the constant perturba-

(Ltp)?
. _ 61n3(T+1)
tion strength . > 0, and set T, = ¢ - max(1, m) for some constant ¢ > 1, then the strategy

7t updated by GABP satisfies for any t € [T):
17¢D? (6111 3(T+1) + 1) (

GAP(r'+!) < D - pton(rt+1) < In(T+nw)
- - t

1+nL
Hﬂ),

This rate is competitive compared to the previous state-of-the-art rate of O(1/T") (Yoon & Ryu,
2021; Cai & Zheng, 2023). Note that the rate in Theorem 4.1 holds for any fixed p > 0.

4.2 NOISY FEEDBACK SETTING

Next, we establish the last-iterate convergence rate in the noisy feedback setting, where each
player i observes a noisy gradient vector contaminated by an additive noise vector & € R%:
Vi vi(mh) = Vig,vi(rh) + €. We assume that the noisy vector &! is zero-mean and its variance
is bounded. Formally, defining the sigma-algebra generated by the history of the observations as
Fi=0 ((Vﬂivi(wl))ie[]v]7 el (vai(ﬂt_l))iem), Vt > 1, the noisy vector &! is assumed to
satisfy the following conditions:

Assumption 4.2. ¢! satisfies the following properties for all t > 1 and i € [N]: (a) Zero-mean:
E[¢f|Fi] = (0,---,0)T; (b) Bounded variance: E[||&¢||?| F;] < C2 with some constant C > 0.

Assumption 4.2 is standard in online learning in games with noisy feedback (Mertikopoulos &
Zhou, 2019; Hsieh et al., 2019; Abe et al., 2024) and stochastic optimization (Nemirovski et al.,
2009; Nedi¢ & Lee, 2014). Under Assumption 4.2 and a decreasing learning rate sequence 7;, we

can obtain a faster last convergence rate O(1/7'7) than O(1/T15) of APGA (Abe et al., 2024).

Theorem 4.3. Let v = 5,0 = 3”2;;?I‘Z. Suppose that Assumption 4.2 holds and V(w) < (

for any m € X. We also assume that T, is set to satisfy T, = c - Inax(T%, 1) for some constant

c > 1. If we use the constant perturbation strength p > 0 and the decreasing learning rate sequence
1 TH1 4 .

M = T RO T30 then the strategy w1+ satisfies:

E[GAP(x"+1)] =0 (1;7T> :
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4.3 PROOF SKETCH OF THEOREMS 4.1 AND 4.3

This section outlines the sketch of the proofs for Theorems 4.1 and 4.3. The complete proofs are
placed in Appendix A and B.

We define the stationary point F#’Uk(t), which satisfies the following condition: Vi € [N],
k(1) k(t) R 2
w7 = arg max {vi(ac,ﬂ“f )- £ Hx - af(t)H } :
TEX; 2

k() k(t)oFM 4ol
where g, = W

rates lies in the construction of the following potential function P*®*), which can be utilized in the
proofs for both full and noisy feedback settings:

. The primary technical challenge in deriving the last-iterate convergence

o (8) — 2
e o

Pk(t) :k‘(t)(k?(t) + 1) + <a_k(t) _ 71_'uﬂ’@(t)—l : Trll,,ﬂk(t)*l _ a_k(t)—1>

2
Specifically, we demonstrate that this potential function is approximately non-increasing regard-
less of the presence of noise. Although the potential function P*®) is inspired by one in Cai

s

~ I 2
& Zheng (2023), their potential function contains the term 7 3=,y vai(ﬂ't) — Vi (nt=2)

which could have a high value in the noisy feedback setting even if 7wt = 7=% holds®. This com-
plicates providing a last-iterate convergence result for the noisy feedback setting via their potential
function. In contrast, our potential function P*(*) does not include the term dependent on Vo, (7).
This enables us to provide the last-iterate convergence rates even for the noisy feedback setting.

(1) Potential function for bounding the distance between 77" and ¢*®). As mentioned

above, our main technical contribution is proving that P*(*) is approximately non-increasing (as
shown in Lemma A.3). That is, we have for any ¢ > 1 such that k() > 2:

PO+ < pk(t) | (k(t) + 1)2 L0 (‘ T o O Uk(t)H) . 4)

k()
ot _ 0k<t>+1H 4 ‘

By telescoping of Eq. (4) and the first-order optimality condition for F/L’”k(t), we can derive the
following upper bound on the distance between 7" and 6F();

(k(t) + V(@) +2)
2

k(t)

Hﬂ.u,o

, K(t)
_gk® H <O0() + (k(t) +1)* S0 (Hﬂ“"’l - al“H) .
=1

Applying the definition of 6%() and Cauchy-Schwarz inequality to this inequality, we obtain:

O |zt ® _ Sk k(t)
oot s A ot ol ).

Note that the non-increasing property of our potential function, as described in Eq. (4), holds even
in the noisy feedback setting. This implies that a similar proof technique for deriving Eq. (5) can be
utilized to provide last-iterate convergence results both in full and noisy feedback settings.

(2) Convergence rate of o*()+! to the stationary point 7% . Leveraging the strong con-
vexity of the perturbation payoff function, & |z — &f ®© |2, we show that ¥ converges to o™
exponentially fast in the full feedback setting (as shown in Lemma A.1). Specifically, we have for
any t > 1:

e k() ? _

(6)

2 1
k(t)
wa ‘H+W s(

t—(k(t)—1)Ts
I+ W)

3The comparison of the potential function of Cai & Zheng (2023) with ours can be found in Appendix E.1.
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61n3(T+1)
In(1+nup)

easily show that Hw“"’l - al+1H = Hw“"’l — qlol+l ’ < O(k(t)=3) for any I < k(t). Hence, from

By using Eq. (6) and the assumption that 7, > in the full feedback setting, we can

Eq. (5), we can derive the following convergence rate of the distance between 7" and ok ®
with respect to k(¢) (as shown in Lemma A.2):

HWW’“” - ak(t)H < O1/k(1)). )

(3) Decomposition of the gap function of the last-iterate strategy profile 771, Let us define
K := |T/T,]. From Cauchy-Schwarz inequality and Lemma 2.3, we can decompose the gap
function GAP (7T *1) as follows:

GAP(rT+) < GAP(W“"’K) +0 (HWWTK - 7rT+1H>

<D-. min b H—V(ﬂ“"TK) + aH + O (HW“’UK — 7rT+1H) .
)

a€Nx (mwh:o

From the first-order optimality condition for 7%, we can see that V(w“"’K) - u(w““’K -6 ¢

Ny (7r‘WK ). Thus, from the triangle inequality and L-smoothness of the gradient operator in Eq. (2),
the gap function GAP (77 *1) can be bounded as:

GAP(xTTH < O(1/K)+ O (HW"’”K - O'KH) +0 (Hﬂ“’”K — 7TT+1H) . (8)

(4) Putting it all together: last-iterate convergence rate of 77 1. By combining Eq. (6), Eq. (7),
and Eq. (8), it holds that GAP (77 *+1) < O(1/K) in the full feedback setting. Hence, given K =
|T/T, |, we can deduce that GAP(xT+1) < O(T,/T). Finally, taking T, = O(InT'), we obtain
the upper bound on the gap function for the full feedback setting: GAP(77*1) < O(InT/T). Note
that using a similar proof technique, we can also derive an upper bound on the tangent residual for
the full feedback setting.

In the context of the noisy feedback setting, we achieve the following convergence rate to T

instead of Eq. (6) (as shown in Lemma B.1):
o (t 2 Int
] e e e B 9
{” S e e (X y Py ©)
By using Eq. (9) and the assumption that 7, = G(T%), we can still derive Eq. (7) and Eq. (8) for
the noisy feedback setting. Therefore, we conclude that: E [GAP(77 )] < O(InT/T 7).

5 INDIVIDUAL REGRET BOUND

In this section, we present an upper bound on an individual regret for each player. Specifically, our
study examines two performance measures: the external regret and the dynamic regret (Zinkevich,
2003). The external regret is a conventional measure in online learning. In online learning in games,
the external regret for player ¢ is defined as the gap between the player’s realized cumulative payoff
and the cumulative payoff of the best fixed strategy in hindsight:
T
Reg,(T) = max 2 (vi(w,7";) —vi(7")) .
The dynamics regret is a much stronger performance metric, which is given by:

T
DynamicReg;(T) := Z (max vi(m, ;) — ’Ui(ﬂ't)) .

TEX;
t=1
We show in Theorem 5.1 that the individual regret is at most O ((InT))?) if each player i € [N]
plays according to GABP in the full feedback setting. The proof is given in Appendix C.
Theorem 5.1. In the same setup of Theorem 4.1, we have for any player i € [N] and T > 2:

Reg;(T) < DynamicReg,(T) < O ((InT)?).

This regret bound is significantly superior to the O(v/T) regret bound of the Optimistic Gradient
(OG) algorithm, and it is slightly inferior to the O(In T") regret bound of AOG (Cai & Zheng, 2023).
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Figure 1: Performance of 7t for GABP, APGA, OG, and AOG with full and noisy feedback in
the random payoff and hard concave-convex games, respectively. The shaded area represents the
standard errors. Note that we report the gap function for the random payoff game, while the tangent
residual is reported for the hard concave-convex game.
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Figure 2: Dynamic regret for GABP, APGA, OG, and AOG with full and noisy feedback.

6 EXPERIMENTS

In this section, we present the empirical results of our GABP, comparing its performance with APGA
(Abe et al., 2024), OG (Daskalakis et al., 2018; Wei et al., 2021), and AOG (Cai & Zheng, 2023).
We conduct experiments on two classes of concave-convex games. One is random payoff games,
which are two-player zero-sum normal-form games with payoff matrices of size d. Each player’s
strategy space is represented by the d-dimensional probability simplex, i.e., X; = X, = A?. All
entries of the payoff matrix are drawn independently from a uniform distribution over the interval
[~1,1]. We set d = 50 and the initial strategies are set to 1} = 73 = él. The other is a hard
concave-convex game (Ouyang & Xu, 2021), formulated as the following max-min optimization
problem: max, ey, minyex, f(z,y), where f(z,y) = —2z"Hx +h"2 + (Az — b,y). Following
the setup in Cai & Zheng (2023), we choose X; = X = [—200,200]? with d = 100. The precise
terms of H € R%*4, A € R¥*4 b € R?, and h € R? are provided in Appendix D.2. All algorithms
are executed with initial strategies 71 = 73 = él. The detailed hyperparameters of the algorithms,
tuned for best performance, are shown in Table 1 in Appendix D.3.

Figure 1 illustrates the logarithmic GAP or 7*2" values per iteration for two games with each feed-

back. For the random payoff games with full or noisy feedback, 50 payoff matrices are generated
using different random seeds. Likewise, for the hard concave-convex games, we use 10 different
random seeds. We assume that the noise vector £! is generated from the multivariate Gaussian dis-
tribution AV(0, 0.1%I) in an i.i.d. manner for both games. In the former game with full feedback,
GABP performs almost as well as the others. With noisy feedback, GABP outperforms the others,
although the margin from APGA is slight. In the latter game, under the full feedback setting, GABP
is competitive against AOG, whereas, under the noisy feedback setting, it demonstrates a substantial
advantage over the others.

Figure 2 illustrates the dynamic regret in the hard concave-convex game. GABP exhibits lower regret
than APGA and OG with both feedback, demonstrating its efficiency and robustness. Note that
APGA and OG exhibit almost identical trajectories with full feedback, with their plots overlapping
completely. In addition, GABP achieves competitive regret in comparison to AOG.
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7 RELATED LITERATURE

No-regret learning algorithms have been extensively studied with the intent of achieving key objec-
tives such as average-iterate convergence or last-iterate convergence. Recently, learning algorithms
introducing optimism (Rakhlin & Sridharan, 2013a;b), such as optimistic Follow the Regularized
Leader (Shalev-Shwartz & Singer, 2006) and optimistic Mirror Descent (Zhou et al., 2017; Hsieh
et al., 2021), have been introduced to admit last-iterate convergence in a broad spectrum of game
settings. These optimistic algorithms with full feedback have been shown to achieve last-iterate con-
vergence in various classes of games, including bilinear games (Daskalakis et al., 2018; Daskalakis
& Panageas, 2019; Liang & Stokes, 2019; de Montbrun & Renault, 2022), cocoercive games (Lin
et al., 2020), and saddle point problems (Daskalakis & Panageas, 2018; Mertikopoulos et al., 2019;
Golowich et al., 2020b; Wei et al., 2021; Lei et al., 2021; Yoon & Ryu, 2021; Lee & Kim, 2021;
Cevher et al., 2023). Recent studies have provided finite convergence rates for monotone games
(Golowich et al., 2020a; Cai et al., 2022a;b; Gorbunov et al., 2022; Cai & Zheng, 2023).

Compared to the full feedback setting, there are significant challenges in learning with noisy feed-
back. For example, a learning algorithm must estimate the gradient from feedback that is contam-
inated by noise. Despite the challenge, a vast literature has successfully achieved last-iterate con-
vergence with noisy feedback in specific classes of games, including potential games (Cohen et al.,
2017), strongly monotone games (Giannou et al., 2021b;a), and two-player zero-sum games (Abe
et al., 2023). These results have often leveraged unique structures of their payoff functions, such as
strict (or strong) monotonicity (Bravo et al., 2018; Kannan & Shanbhag, 2019; Hsieh et al., 2019;
Anagnostides & Panageas, 2022) and strict variational stability (Mertikopoulos & Zhou, 2019; Mer-
tikopoulos et al., 2019; 2022; Azizian et al., 2021). Without these restrictions, convergence is mainly
demonstrated in an asymptotic manner, with no quantification of the rate (Hsieh et al., 2020; 2022;
Abe et al., 2023). Consequently, an exceedingly large number of iterations might be necessary to
reach an equilibrium.

There have been several studies focusing on payoff-regularized learning, where each player’s pay-
off or utility function is perturbed or regularized via strongly convex functions (Cen et al., 2021;
2023; Pattathil et al., 2023). Previous studies have successfully achieved convergence to stationary
points, which are approximate equilibria. For instance, Sokota et al. (2023) have demonstrated that
their perturbed mirror descent algorithm converges to a quantal response equilibrium (McKelvey &
Palfrey, 1995; 1998). Similar results have been obtained with the Boltzmann Q-learning dynam-
ics (Tuyls et al., 2006) and penalty-regularized dynamics (Coucheney et al., 2015) in continuous-
time settings (Leslie & Collins, 2005; Abe et al., 2022; Hussain et al., 2023). To ensure convergence
toward a Nash equilibrium of the underlying game, the magnitude of perturbation requires careful
adjustment. Several learning algorithms have been proposed to gradually reduce the perturbation
strength 1 in response to this (Bernasconi et al., 2022; Liu et al., 2023; Cai et al., 2023). These
include well-studied methods such as iterative Tikhonov regularization (Facchinei & Pang, 2003;
Koshal et al., 2010; 2013; Yousefian et al., 2017; Tatarenko & Kamgarpour, 2019). Alternatively,
Perolat et al. (2021) and Abe et al. (2023) have employed a payoff perturbation scheme, where the
magnitude of perturbation is determined by the distance from an anchoring strategy, which is period-
ically re-initialized by the current strategy. Recently, Abe et al. (2024) have established O(1/v/T)
and O(1/T %) last-iterate convergence rates for the payoff perturbation scheme in the full/noisy

feedback setting, respectively. Our algorithm achieves faster O(1/T") and O(1/T'7) last-iterate
convergence rates by modifying the periodically re-initializing anchoring strategy scheme so that
the anchoring strategy evolves more gradually.

8 CONCLUSION

This study proposes a novel payoff-perturbed algorlthm Gradient Ascent with Boosting Payoff Per-
turbation, which achieves O(1/T') and O(1/T'7) last-iterate convergence rates in monotone games
with full/noisy feedback, respectively. Extending our results in settings where each player only
observes bandit feedback is an intriguing and challenging future direction.
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A PROOFS FOR THEOREM 4.1

A.1 PROOF OF THEOREM 4.1

Proof of Theorem 4.1. From the first-order optimality condition for 7¢, we have for any x € X:
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k(t—1)+1 n
k=1
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Lemma A.1. [fwe use the constant learning rate n; = 7 € (0, ﬁ), we have for any t > 1:
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Combining Eq. (10) and Lemma A.1, we have:
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Lemma A.2. Ifwe setn, =n € (0, W) and T, > max(1, %) we have for any t > 1:
[t — k]| < 2P
= k() +1
By combining Eq. (11) and Lemma A.2, we get:
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A.2 PROOF OF LEMMA A.1
Proof of Lemma A. 1. First, we have for any three vectors a, b, c:

1 1 1
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Thus, we have for any ¢ > 1:
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Combining Eq. (12), Eq. (13), and Eq. (14) yields:
1
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where the second inequality follows from Eq. (1). From Cauchy-Schwarz inequality and Young’s
inequality, the second term in the right-hand side of this inequality can be bounded by:
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where the second inequality follow from Eq. (2), and the last inequality follows from the assumption
that n < W By combining Eq. (15) and Eq. (16), we get:
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Therefore, by applying this inequality from ¢,¢ — 1,--- , (k(t) — 1)T, + 1, we get for any ¢ > 1:
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Hﬂ_#,ak(wn B 7Tt+1H2 _ Hﬂ_#,gk(wn B a_k(t+1)H2
1 t—(k(t+1)—1)T, . 5
= <1 n 77/1) it Uk(H'l)H : (19)
By combining Eq. (17), Eq. (18), and Eq. (19), we have for any ¢ > 1:
t—(k(t)—1)T,
Hﬂu,o_k(t) B 7rt+1H2 < < 1 ) (k(t)—1) ﬂ.uﬁk’(t) B Uk(t) 2
~ 1 + nu 9
t—(k(t+1)—1)T,
Hﬂ_mgk(tﬂ) B 7Tt+1H2 < 1 (k(t+1)-1) ﬂ_M,o_k:(H»l) _ Uk(t'H)HQ .
“\1l+nu
O

A.3 PROOF OF LEMMA A.2

Proof of Lemma A.2. First, we have for any Nash equilibrium 7* € II* and ¢ > 1 such that k(t) >
1:

ORI COR . Y N |

o (k(E) + 1)(k(t) +2) (RO — e a0 ghit))

2
_ O+ DEO+2) || oo i
2

o ((8) + 1) () + DoP O 4 01— (k) + 2)o ™ 0

_ _ (k) + 1)2(k( ) +2) oot sk() 2 + (k) + 1) <01 _ O_k(t)+177ru,ok(t) o 5_k(t)>

o (k(t) + 1)(J(t) +2) (oM OFT — i et gk

1
- 0% 1)2(k(t) T2 |zt _ah0|* 4 (k(e) + 1) (o = er™ gtV Gk
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k(1) + 1)? (MO = e et ghin))
k(t ¢ 2 ¢
_ (k@) + >2(() H w0 GO k() +1) (0 = e - G0

+ (k(t) + 1) <ﬂ. _ ﬂ.,u,O'k(t)7ﬂ_H7a'k’(t) _ a,k(t)> + (k(t) + 1)2 <O.k(t)+1 . 7_(_H,Uk(t)?ﬂ_mak(t) B 6.k(t)> .

Here, the first-order optimality condition for T

<V(7TM,O_k<t)) — g (W%Uk(t) _ &k(t)> ’ﬂ_u}o_k(t) _ 7r*> >0

= <7Tu,ak“> — GR® g 7Tu,cr"‘<‘>> > 1 <V(7r“ a’““))’ﬂ _ 7Tu,a’“”> > 1 <V(7r*), * — 7Tu,o“”> >0,
Iz K
where we use Eq. (1) and the fact that 7* is a Nash equilibrium. Combining these inequalities yields

(k(t) + D(k() +2) H o

k(t)
e

2
_ gk®

2 (k1) + 1) (k(t) +2) (64O
t 2 .

> (k(t)+1)2(k(t)+2) Hﬁﬂ,aku g ‘ )+ 1) <U R _6k(t)>

+ (k(t) +1)2 <Uk(t)+1 O gt a_k(t)> _

k(t) k(t) .
— e o _ Uk(t)>

From Young’s inequality, we have for any p1, ps > 0
(B0 + D00 +2) 0 s

G0 k0 42 H

+ (k(2) + 1) (k(t) +2) (65O
i@ _ &k(t)HQ _ p1(k(t) +1) Hal _ 7r*|

e
2 2
. pQ(k(t) + 1) H k(t)+ ﬂ_u,ak(t)

2 (k(H)+1)

2
k(t) N
ku,a _ gk H

2p1
2
) ’_ (’f(fgiH) Hﬁu,ak“) _ 5"0(15)H2
P2
(B ADEBD+D) EO 1 (k) +1)? H o _6k(t)"2
2 2p1 2p2
2
1 (k(t; +1) ||01 g |2 . P2(k(t; +1) Hak(t)-s—l _ o™ 2
By setting p; = (t)+2 , P2 = 4(]?%):21), we obtain:
1 t 2 c(t t
O+ DD 220 ot pt0)]* 4 () + 1)(k(t) 12) (HOF e s g0
. 2
> (k(t) + 1l(k(t) +2) HFW,;C( - &k(t)H 2(:((;)) ||U o |2
TT—
k(t 1)(k(t 2 ¢ 2 K
L GO o o o~y 17 o0 -

(20)

Here, we introduce the following lemma:
Lemma A.3. Foranyt > 1 such that k(t) > 2, we have:
(k(t) +1)(k(t)

: ) +2) H ot sk(t) H + (k(t) + 1) (k(t) +2) <5_k(t)+1
< k() (k(t) +1) Hﬂ_#yo-k(t)fl

_ e ’ TR A 6k(t)>
O H () (k(E) + 1) (64O — et gm0 k01

2
+ (k( ) + 1) <(k(t) + 1)(7ru,ak(t) B Jk(t)+1) + k(t)(o_k(t) o ﬂ_'u}o—k/(t)—l)’é_k;(t) _ ,/T,J’gl«(t)>'
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By combining Eq. (20) and Lemma A.3, we get:

(k(t) + D(k() +2) megw S0’
1
k(t) + 1) (k(t) + 2 : 2 " t
< O+ )2( ©) +2) [ = GEO|" - (h() + 1) k() + 2) (RO = e it gk

k(t) |2

+2 Hal - 7T*H2 +2(k(t) +1)2 Hak(tHl — e

2
1 ~ k(t)
<3 HW“’U — &t

2 1 1
’ +6<&2—7T“"7 , o —61>+2H01—7T*

2 + Q(k(t) + 1)2 Ha_k(t)-l-l — qho

k(t)
FY D (A D = ot el — ) 0 e
=2

2
1 1 1 2
=3 Hﬂ“"’ — 0‘1‘ +2 <202 + ol =3 T — 01> +2 H(J'l - 7"

k(t
0 [|2 _
+ 2(/{/’(t) + 1)2 ‘O_k(t)-‘,-l _ ﬂ_lu,,gk( )H + Z(l + 1) <(l + 1)(7_{_”70-1 . O_l—‘,—l) =+ l(o_l _ ﬂ.“,o-l 1)7a.l _ 71_“70_l>

2
1 1 1 1 1
=3 Hﬂ_u,o _ O_l‘ + 2 <O’1 _ ﬂ_u,o ,ﬂ_p,n _ 0_1> T 4 <0_2 _ ﬂ_/t,rr 77_[_,u,(7 _ 0_1>

+ 2 ||0’1 _ 7T*H2 + 2(]€(t) + 1)2 Ho_k(t)+1 _ ﬂ“*gk(t) 2

k(t)

+ Z(l +1) <(l + 1)(77“"’l — o) 410! — 71""”171), ol — W“’Jl>
1=2

2 3 2
= Hﬂ-#,al _ 01H +4<o—2 _ ﬂu,ol,wu,al - 0'1> +2 ||0’1 _ 7r*||2 F2(k(t) + 1)2 Hak(t)ﬂ B ﬂ_#’o_k(t)

k(t)
+ Z(l + 1) <(l + 1)(7T,LL,O'l _ O_l+1) + Z(O'l . 71'/‘"71_1)’(}1 B 7T”’UZ>
=2

2 .
= Hwﬂ,al B JIH +2|o" — 7r*H2 +2(k(t) + 1) Hgk(t)ﬂ _ ot®
k(t) "
L ! . |
+2_ 1y <7TW —o' et e > + > U +1) <ol e Gl mw’>
1=1 rr

) SO
+2D(h(t) + 12 [|wee’ = ot
=1

k(t)

< 3D% 1 2(k(t) + 1)2 Hok(tHl Y

Therefore, we have for any ¢ > 1 such that k(¢) > 2:

[ — gr0]* < 12D°

k()
0|2 1
< s 8O0 oy gDy et — gt
2
k() + 1) 2

By the definition of G*(*),

2 ot —o!|f
+

k(t)
Hﬂ.u,a — gk

2 k(t)
ot k() _k(t) _ 1>
(k(t) +1)2 +k(t)+1<7r oY ’
2 2 k(t)
12D +8D Y et — ot
=1

< wo e el -

19



Under review as a conference paper at ICLR 2025

Therefore, from Cauchy-Schwarz inequality, we have:

2
k(t)
Hﬂ“"’ —g*®

2 k(t) k 12D2
< w,o _ (t) 1 _ _k(t)
N OES! (m o*0,01 = oM) + (6 1 1)2

k(t)
o KA ey
=1

k(t)
2D k(%) & 12D2 k(t) |2 L
S e e o S|
<l N RO ST [0 2L
20
Furthermore, from Lemma A.1, we have for any £ > 1:
2 To 2
oot = ot < () et - @2)
L+np

Combining Eq. (21) nad Eq. (22), we have for any ¢ > 1 such that k() > 2:

2
PO 2 < 2D H @ k() 12D
H” 7 =k + 1" N R
1 Ts k(t) 2 1 ki
8 T RO L 8D2 k(1) .
L+npu L+mnpu

To
Therefore, since T, > max(1 GIHS(T'H)) = ( 1 ) < OFD° 1 we have for k(t) > 2:

» In(1+np) T+np = (I4nu)Te = 16°
1 ( O ko) 2D\’ 2D? 12D? D? 16D?
5 H?T Y - < + + < )
2 k(t)+1 (k) +1)2 (k@) +1)2  2(k@)+1)2 = (k(t)+1)2
and then:
HWWW k| < 2D N 42D 8D
T k() +1 k() +1 7 k() + 17

On the other hand, for k(t) = 1, we have:

8D
ot _ 1H <D< 22
H” T1="=151
In summary, for any ¢t > 1, we have:
R P
~k(t)+1

A.4 PROOF OF LEMMA A.3

Proof of Lemma A.3. From the first-order optimality condition for ot , we have:

(Ve

k() k()

. o) k(-1
) — (™ = g0y et e > > 0.

(t)—

Similarly, from the first-order optimality condition for et O , we have:

k(t)—1 k(t)—1 . - k(t)—1 k(t)
<V(7r“"’ ) — (e — k@ 1)77#‘"’ — e > > 0.
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Summing up these inequalities, we get for any ¢ > 1 such that k(t) > 2:

k(t) k(t)—1 k(t) k(t)—1 k(t) R k(t) k(t)—1
0< <‘7(7T“’0 ) ‘r(ﬂ_u,a ),T‘_/L,O' o > M <7'r“"7 O‘k(t), g e >
R _ k(t)—1 k(t)—1 k(t)
m <o,k:(t) 1 - ’ﬂ_p,,a - >

k(t) R k(t) k(t)—1 . - k(t)—1 k(t)—1 k(t)
— <ﬂ.#70 _ (.,k(t)7 o e > + 1 <gk(t) L _ o , o _ gho >

IN

_u <7ru,ak'<t> — M) g0 _ gh() e k() k() _ W,L7ak<t>71>
o <&I~c(t)—1 _ W,Ww)—l’ﬁmak(t),l B W’ka>
_y <Uk(t) _ &k(t)’ﬂ—ﬁ«,ok(t) B 7Tu,<rk<t>—1> ny <&k(t)71 B WN,Uk(n—lﬂTu,gk(t)_l B Wu,o’““)>
+u <7-(-P‘,a'k(‘) e O 071 Ulc(t)> Yy <é_k(t)71 . cATk(t)’ﬂ—N’Uk(t)_l B ﬂ_#’a_lc(t)> .
Here, for any vectors a, b, ¢, it holds that:
(@~ bb—c) = el ~ b —cl? ~ 2~ b7,
(@~ be—d)= Sla— b+ Sle—dl? ~ Lja—cra- b2

Thus, we have:

k(t)—1]|2

2
0< —p Hw“"’km _ Uk(t)H _ % HWMU’“(” _ o

_ 2 2
+% ﬂ_u’o_k(t) T o‘k(t) 4 g HW“’OJQW . O’k(t)
1 o okt k(t) 2 1Y m ohk—1 k(t) 2 1% m ok m ok -1 2
+§ wh -0 -5 T -0 -5 il —
2 , 12
+ Blgkm-1 _ gh@]|" 4 B o™ _ et
2 2
2
k(D) RO-1 (=1 |
_ g T Ry Lak-1 4 Jka)H
Bl o™ ® O B k) sk(t)—1]]?
= —= ||z — gk + = |[6" -5
2 2
_ 2
_ B o™ e O sk =1 | sk (D)
2
1 () so=112 B k) k-1
< == (|77 —ah? + = || -6 H
2 2
ty—1|2 _ ()= 2
B | e [ R P O R R &k(t)*ll
2 2
2 2 2
k(t)—1 R _ . k(t)—1 k(t) k(t)—1
_ g Hﬂw _ gk 1H 4 % ‘ PR _ g Hﬂu,a _ ko
R k(t)—1 k(t)—1 R _
+ 1 <gk(t) _ o , o _ 5k® 1> ) (23)

Here, from the definition of 6%®), we have:
5|
2

T2

2 1] . 2
R k(t)—1 k(t) k(t)—1
GF®) _ o -3 Hﬂu,a — o

1 H k(t)o*® 4 ot s 01 2

k(t)+1

1 k(t) k(t)—1
By

21



Under review as a conference paper at ICLR 2025

_ % <k’ ok® + ol " k(-1 n Tf_“’ak(t) _ ﬂ_#ﬁk(t)fl, k(tl):(r:)(t—)’—t ol B Tr‘u’o,lc(t,)—l _ ﬂ-p‘,a_k(t) n W“’Gk(t)1>
SR®—1
1/ )+ D = o) + D KOO
2 k(t)+1 ’
1 : (t
— Wt) k(t) + ) k(t)+1 + 20, 2(k(t) + Q)Wﬂ’ak(f),é'k(t) . ﬂ-l‘«,(fk( )>
+ o (ot (K@) + 7" = 2(k(0) + D OGO i
2
+ zkl(t) <_2k(t>wu’ak(t)l * kft()ti pot et - ”“’UW>
_ k(t)(é» 2 <é_k(t)+1 7 ,ﬂ_p,,ok(") a_k(t) o ,n_p,,ak(t)>
k(t ’
1 k(t) +2 k(t)(k‘(t) + 2) k(t) O k()
_ _ k(t o (t) _ —mo
+2k(t)< ki) +1° FOFSER G CR C
1 t c(t)— :(t
+ gy (20O + D = MO e 2k(a) (MO — et GHO )
— _k(l?(; 2 <5,k(t>+1 AT Ak<t>>
_ k(t) +2 k<t)gk(t) + a! _ ﬂ.u,ak(t) &k(t) _ ﬂ-u,ak(t)
2k(t) k(t)+1 ’
1 t t)— t
7 (RO D = MO k) MO ) GO e
— _k(t) +2 <a_k(t)+1 _ W#,Jk(t) ﬂ,u,ak(t) _ a_k(t)> _ k(t) +2 é,k(t) _ ﬂp,ak“’) 2
k(t) ’ 2k(t)
1 t t)— t
+ g (RO + D MO8 (o0 — ) GH ey

Combining Eq. (23) and Eq. (24) yields for any ¢ > 1 such that k(t) > 2

k() +2 000 Ak(t)HQ E#)+2 / h)+1 o™ ® _uob® ke
2%(t) H” N ) <" -ToT —e >

1 k(t)—1 N2 k(t)—1 B(t)—1
<2 Hﬂu,a _gko-1]]” 4 <0k<t> gk ko _ Uk(t>71>

1 o |
+ Wt) <(k(t) + 1)(77#,gk(t) _ O_k(t)+1) + k(t)(ok(t) B ﬂ_#’ak(f) ), &k(t) B ﬂ-#,dk(’)> |

Multiplying both sides by k(¢)(k(t) + 1), we have:

() 00 £2) |0 g
2
< k(t)(k’(t) + 1) Hﬂ_uﬁk(t)—l B &k(t)_lHQ N k;(t)(k(t) N 1) <a,k(t) B /n.ujo_k(t)—l’ﬂ.u’o_k(t)fl _ 6.k(t)—1>

o (b() + 1) (k(t) +2) (HO+ — i g gh0))

2
T (ki(t) T 1) <(k(t) + 1)(7Tp,ak(t) _ O_k(t)+1) + k(t)(o_k(t) _ 7_(_M,C,k(t)—l)76_k(1&) _ 7_(_#7c,k(t)>.
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B PROOFS FOR THEOREM 4.3

B.1 PROOF OF THEOREM 4.3

Proof of Theorem 4.3. Let us define K := Tl We can decompose the gap function for 77 +! as
follows:

GAP(xT+1)

_ T+1y .. T+l

= max (V(a"th), o — a1

= max < o — ) - <V(7r“’”K),x - W“’UK> +{(V(@Tth),z — 7TT+1>)
zeX

(Ve )

= max (< V(rt o’ , T — w“’”K> — <V(7r“"TK) — V(T z - 7TT+1> + <V(7r“"’K),7T“"’K — 7TT+1>)
(UCae )
( n

< max
reX

zeX

< GAP(r°") + (LD +¢)

+ D HV(W‘“’K) - V(7TT+1)H +C HW’“’K — 7TT+1H)

)

<D- min H—V(W“’”K) + CH + (LD + () HW”’UK .
cENx(ﬂ“=“K)

where the last inequality follows from Lemma 2.3. From the first-order optimality condition for
w“’”K, we have for any x € X:

K K 1
(o) (oo B ) o) 20

and then V(") — 1 (W”’UK - %ﬁal) € Na (" ). Thus, the gap function for 771 can
be bounded by:

GAP(xT+Y) < uD - ||z — Ko™ 4ot (LD +¢) HWM,UK _ wTHH
K+1
—uD O—K B Jl ;L,JK K ,u,,UK T+1
= ul - TH+7T — 0 H+(LD+C)H7T — T H
T L]
- K+1

Taking its expectation yields:

D2
R et IR
D2
<szgrop ([ =] - p g e —ere)
(25)
2
Here, we derive the following upper bound on E [Hw“’ak(t) — gttl H ] :

Lemma B.1. Let k = 5,0 = %. Suppose that Assumption 4.2 holds. If we set n; =

K(t—Tg(k(lt)—l))J,-QG’ we havefor anyt > 1:
20

£ {H”WW _”Mm S = (b = T,) + 20 (D + %;1 (K(t_ (k(zte) —) 1)) ‘

Setting t = T = KT,, we can write k(t) = L%J 4 1 = K. Therefore, from Lemma B.1, we

have:
K 2 20 02 IiT
pot _T+1 < 2 i
E{H” m H]HTU—FZQ (D T (29 +1>> (26)

23




Under review as a conference paper at ICLR 2025

On the other hand, in terms of E {Hw“’(’km — ok

} , we introduce the following lemma:

Lemma B.2. Ifwe set ny = and T, > max(1, T% ), we have for any t > 1:

1
w (=T, (k(t)—1))+20

]§6(\/E+x/§+x/m+\/5) (\/1 <D2+C21 </1T+1>)+1>’

ol o

k(t) K K0 0

By setting t = KT, in this lemma, we get:

e R S (HCEN ]

K K0 26
27

Combining Eq. (25), Eq. (26), and Eq. (27), we have:

E [GAP(c" )]
< ST D) (1 G (5 10)) )
)

T K+1 K

20 C? kT
. - 2
+(LD+¢) \/KTO—-FQ@(D P <29 >

SMDQ%—HLD (IJM[JFFJMF) <\/i< +C—;1 <2§+1>>+1>

T

20 2 T
—I—(LD—&—C)-\/HT <D2+K91n<;9+1>)

7. Finally, since T, = ¢ - max(1, T%), we have

where the second inequality follows from K =
forany T' > T:

E [GAP(c"*1)]

< T t 1 D2y (= 1)) +1
Tz T7 K K0 260

(LD +¢) |20 C KT
¢ (224 S (%H))

_ oD \/E+\/§+1\/W+\/T7+D) (\/1 <D2+Czln<“T+1>>+1>

7

oD (ﬁ p s Gl ) )

9 (uD 1 LD + ) f+r+f+D>(W(Duczln(%l))ﬁ)
P K0 20 '

\I\"

IN

1
T
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Since T' = T, K, we have finally:
E [GAP(x"1)]

9¢ (1D + LD +¢) (Vi + V8 + VDO + VD + D) T
. <\/ 2+ S (+1>)+1>
T7 K0 26

9c(D(/~L+L)+C)(\/ETw;(\/5+ )\F+\f (\/;1{ D2+ln<;§+l>)+1>

IN

18 (DG + 1) +0) (A + VDT D7) Wl 2+ S (“T“))“)

T% K 20

- 260(D(M+L)+C)1:/(D+1)(D+9 <\/i <D2+1 <’;§+1)> +1>.

R

<=

O
B.2 PROOF OF LEMMA B.1
Proof of Lemma B.1. From the first-order optimality condition for w1, we have for ¢ > 1:
<7lt (V(ﬂ_t) — ot — &k(t))) B 7Tu.,g"'(f>> > 0. 28)

Combining Eq. (28), Eq. (12), and Eq. (14), we have:

1 k(t) 2 1 k(t) 2
Hﬂ_yg _ﬂ_t+1H I t

1 t+1 _ _t]|?
L

< <V(7Tt) ot — RO gt ka>

= (V™) = plx = 6HO), 74— ety o (V) = V() = ! — ), mt e

< )~ il = 0w - 7TM)(TIC<t)> + <v(7t) — V(r*th) — p(nt — 7t 2t — 7rmak<t>>

MOY (e R0y el 7Tu,gk(t>> ol
+ ¢ <V(7rt) — Y (mttL), ptt 7ru,(,k(t)> - <7r B ﬂ.,u,ak(f‘)> . <£t’7rt+1 o Uk(t)>

< = ’ o + s <ﬂ_t+1 ot gt Wu7o’““)>

Fe (V) V), w T ae)  (gmt o)

2
oF® 41 H

MOl 2

= —Mp ’ T — 7rt+1‘ + M ||7Tt+1 _ ,n-tH2 + @ HﬂtJrl _ e 2 _ % Hﬂt _ e 2
+ <V(7Tt) _ V(ﬂ't+1)77Tt+1 ot o > +m, <£ att 7TH7<7k(t)>
— _77t2M ‘Wt+1 PRI ‘2 ek H O ekt |+t =t
ty 41y b1, t_t+1 _ _p,ot®
+77t V(?T ) V(ﬂ- )771- ™ +77t g y T ™ ) (29)

where the third inequality follows from Eq. (1). From Cauchy-Schwarz inequality and Young’s
inequality, the fourth term on the right-hand side of this inequality can be bounded by:

<V(ﬂ_t) — V(b pt - Wu7gk<t>>

k(t)
t+1 ,/T/A,O'

< [V = v -
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<L H,/Tt _ 7Tt+1” ) ’ AL e ®

212 2 k(e [|2
]

k(t) 2

2L t ﬂ_t+1H2 H‘ e 2+BH7T1‘,+1_71_tH
4

k(t)
412 mt— gt ‘ = e H
=|—+ £ H H + L . (30)
I 2 2 2 2
By combining Eq. (29) and Eq. (30), we have:

2 2 2
k(t) k(t) t k(t)
H,]Tp,a 7Tt+1H t+1 o H (1 UQM) Hﬁt e

< —ne HW

2
(1 (B2 ) ) It = )

< (1 — M) ‘ bt — ﬂ/iyﬁk(t)H2 _ <1 — (3/’6 + AL* )) Hﬂ-t-‘rl _ 7T'tH2
2 2 I

+ o, <€t’ﬂ,t _ 7r“70km> +om, <§t,ﬂ_t+1 _ 77t>

k(t) |2

= (1 —mk) H7rt — e 2

+ o <§t7ﬂ_t _ 7rmgk<t>> +om, <§t,ﬂ_t+1 _ 7rt> _

— (1 —n0) H7rt+1 — 7rt||

By taking the expectation conditioned on F; for both sides and using Assumption 4.2 (a) and (b),
. 2
[ - 1]
t Ko |2 t+1 t)2
<(1—mK)E Hw e H | F|l - (1—n0)E [y|7r — | | ft}
+ 21, < [5 | ]ﬂ b — o )> +2n,E [<§t,7rt+1 - 7rt> | .7-}]

k(t)

— (L =) E [[[7 = 7|* | F] + 2mE (¢, 7t — 7Y | F]

=(1—mnk) Hﬂ't — e

k(t)
— o

< (1= ) | ~ (L= nd)E || —|* | 7]

+ 1 i7t [HftH |]—‘t} (1—n0)E [Hﬂm L |]:t]
e e 1 7]

xt — et H2 + QTIEE [Hgt”Z | ft}

k(t)

< (1 —mk) Hwt — e 1

< (1 —mk)

112
< (1 —mk) Hwt — ™ )H + 20702,

Therefore, under the setting where 7, = =T k(lt)_l)) T59> We have for any ¢ > 1:

E [H””’UW - ”tHHQ |Ft} = (1 - Tg(k(t)l— 1)+ 29/,%) ‘

Rearranging and taking the expectations, we get:

(t — Ty (k(t) —1) +20/K)E U’kam ot HQ}

2
k(1)
b ko +2n2C2.

™

< (t—1—Ty(k(t) — 1) +20/x)E mwu,o—km B th T Tgéf; = DEETE
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Since k(s) = k(¢) for any s € [(k(t) — 1)T, + 1, T}, telescoping the sum yields:

(t =T, (k(t) — 1) +260/K)E {Hﬂuﬂo“” B 7rt+1H2]

_ﬂ's

< (s—1-T,(k(t) —1) +20/r)E {Hﬂww

i 202
2

2
} T 2 lelm = T, (k() — 1)) + 20)°
Defining s = (k(t) — 1)T, + 1,

(t — T, (k(t) — 1) +20/r)E [ku,ww e m

k(t) 2 202 i 1
<“R H o <k(t)—1)TG+1H
g e - x DS

m=(k(t)=1)To+1 k(m —To(k(t) —1)) +20°

Therefore,

t 2 20 k(1) 2
B H gt ® t+1H < E H ot (k(t)—l)Ta-i-lH
{” i S kT —1)+20  |I" i

002 t—(k(t)—1)T,

1
k(t—Ty(k(t)—1)) + 26 mz::l Km 420 6D

_|_

Here, we have:

t—(k(t)—1)T,

1 t=k®-VT, 1. (k(t—(k(t)—1)T,)
— < —dr = -1 241, (32
— mm—|—26‘_A mc—&-Zde K n< 20 + ) (32)

Combining Eq. (31), Eq. (32), and the fact that 7(*()=DTo+1 — k(1) e have:

2
k(t)
B [ -]

S - (k(t)ze T,) 126 <]E {Hﬁw““ - gka“} N %2 . (Mt — (k(;a) ~)T.) 1))
< i T (P (T ).

B.3 PROOF OF LEMMA B.2

Proof of Lemma B.2. First, from Lemma B.1, we have for any k£ > 1:
: 2 20 C? kT,
E H o k+1H <2 _(pP+Zm(%241)).
[” 7 S0 \” Tae e T

Moreover, by taking the expectation of Eq. (21), we have for any ¢ > 1 such that k(¢) > 2

¢ 2 2D k(t) 12D?
E H ;,L,O'k() _ k(t)H < E H M, _ k(t)H N —
[ i 7 = k() + 1 [ m 7 }+(k(t)+1)2

+8E Mak<t)+1 _ ™

9 k(t) l
] +8D Y B [[ane' — o]
=1
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Combining these inequalities, we get for any ¢ > 1 such that k(t) > 2:

(t 2 2D k(t) 12D?2
E H wet® _ ok ||| < H ot k()
[” ? AOES] B ]+ () + 1)2

1660 C? KT, 20 o KTy
— (D*+ =—In| =2 +1 D D2+ —In|—-+1
+I€Tg( T (29+>)+8 k(t)\/m,( T <2a+>)
Since T, > max(l,Tg) = % < 1, we have:
D \?| _13D*> 160 C? (KT
po k(t)H _ < D+ —In(—>+1
(H’T +1> ROZ T RE(D)? ( T\ 2
8D |20 C? kT
2= 2 (D2 (=41
+k(t)2\/n( +K39 (29+ ))
Since E[X]? < E[X?] for any random variable X, we get:
13D? 1660 C? kT 8D |20 C? KT
- D?>+ —1In —(D2+=MIn(—=—+1
FOERETOE < e <29 + )) + k(t)Q\/n ( T (29 + )>
2
Hﬂ“’”’“” a H -
k(t) +

[H (M

E
2
O Sk H D
IE .
( } k() + 1

Then, we have:

o

E

v

E

Y

}
s+ i o) () <3 (L (e G5 )
= (\k/(:f)tf;f)\/D +71 (2§+1)+6ﬁ)2£+1)<\/i<D2+S;1n<’;§+1))+1>

_ G(ﬁwzﬁmﬂ (2o Gl ) +1),

K0 20

Furthermore, for k(t) = 1, we have:

E[Hﬁu»al_alm §D§6(ﬁ+ﬂ+@+@)) <\/1 <D2+021 (T+1>> >

1 K K0 20

Therefore, we have for any ¢ > 1:

B 6<ﬁ+ﬂ:ﬁ+@>> (2= Gl -)) 1),

sl o

K0 20

O
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C PROOF OF THEOREM 5.1

Proof of Theorem 5.1. By the definition of dynamic regret, we have:

T
DynamicReg;(T) = <ma)5< vi(z, ;) — vi(wt))
t=1

IN

T N
o) + <ma)3gvi(sc,7rt_i) — Ui(ﬁt)> .
=2 i=1

Here, we introduce the following lemma:

Lemma C.1 (Lemma 2 of Cai et al. (2022a)). For any m € X, we have:

N
3 (smmg oo i) <GAPIR) <D - aglVe) )

Therefore, we have:
DynamicReg, (T )+ Z GAP(x

Thus, from Theorem 4.1:

L /T
DynamicReg, (T’ Z ( )

t=2

O ((InT7)%).

D EXPERIMENTAL DETAILS

D.1 INFORMATION ON THE COMPUTER RESOURCES

The experiments were conducted on macOS Sonoma 14.4.1 with Apple M2 Max and 32GB RAM.

D.2 HARD CONCAVE-CONVEX GAME

Following the setup in Ouyang & Xu (2021); Cai & Zheng (2023), we choose

11 1 0
1 0
1 1 1
A== 11 eRY™ p==|...| eR", h==|---| eR",
411 1 411 410
1 1 1

and H = 2AT A.

D.3 HYPERPARAMETERS

For each game, we carefully tuned the hyperparameters for each algorithm to ensure optimal perfor-
mance. The specific parameters for each game and setting are summarized in Table 1.
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Game Algorithm n T, m
oG 0.05 - -
Random Payoff (Full Feedback) AOG 0.05 - -

APGA 0.05 20 1.0
GABP 0.05 10 1.0
oG 0.001 - -

Random Payoff (Noisy Feedback) AOG 0.001 - -
APGA 0.001 2000 1.0
GABP 0.001 1000 1.0
oG 1.0 - -
Hard Concave-Convex (Full Feedback) AOG 1.0 - -
APGA 1.0 20 0.1
GABP 1.0 20 0.1
oG 0.5 - -
Hard Concave-Convex (Noisy Feedback) AOG 0.5 - -
APGA 0.5 50 0.1
GABP 0.1 100 0.1

Table 1: Hyperparameters

E COMPARISON WITH EXISTING LEARNING ALGORITHMS

E.1 RELATIONSHIP WITH ACCELERATED OPTIMISTIC GRADIENT ALGORITHM

Our GABP bears some relation to Accelerated Optimistic Gradient (AOG) (Cai & Zheng, 2023),
which updates the strategy by:

1

1 t
1 _ 1 _ gt 1
7r§+2 = arg max{<nvmvi(7rt_§) + Ti T ,:v> ~3 Hx — WfHQ} ,

reX; t+1
t+1 v ( t+%) + T —m L H tH2
w7 = arg max 0; (T ,x ) — - ||z —m; .
S S A 41 2 P
This can be equivalently written as:
1 ~ 1 trmt L2
7r:+2 = arg max< 7 <va,;(7rt7%),x> — =l — fm ,

= 1 trt + !
it = arg max {n <Vﬂivi(ﬁt+%),x> — = Hx _ T
TEX;

t 1
This means that AOG employs a convex combination mg_tf L of the current strategy 7/ and initial
strategy 7, as the proximal point in gradient ascent. However, our GABP diverges from AOG in
k(t)o*® 4ol k(t) 1
—ROFT of o, ;

that it uses a convex combination and o; as the reference strategy for the

perturbation term.

In terms of proof for a last-iterate convergence result, Cai & Zheng (2023) have employed the
following potential function for the full feedback setting:

P = Lt;— D (772 H—‘A/(wt) + ctH2 +n° HV(wt) —V(x'"3)

2 ~
‘ ) +tn(~=V(x") + ' nt — 771>,

7rt71+nl7(7rt7%)+%(7rl—7rt71)—7r
n

where ¢! = " and V() = (ﬁmvi(-))iem. Compared to our potential
V(xt) — V(xi=2)

feedback setting, the value of this term could remain high even if at = t=3, Therefore, this term
complicates providing a last-iterate convergence result for the noisy feedback setting. In contrast,

2
‘ . In the noisy

function P*(*) their potential function includes the term of 7> ‘
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our potential function P*(!) does not contain the term depending on @vi t):
p p g

pht) k@) (k(t)+ 1) Hwt,ak(ml B &k(t)_le
2

R k() + 1) (5O = ror ™ ea O ph0=1),

This allows us to provide the last-iterate convergence rates both for full and noisy feedback settings.

E.2 COMPARISON OF LAST-ITERATE CONVERGENCE RESULTS

In this section, we provide Table 2 for comparison with last-iterate convergence results of existing
representative learning algorithms in monotone games.

Algorithm Full Feedback Noisy Feedback
Calor ot o) ouNT N
(Golowich et al., 20208%:;5;11125 gic:len 5022; Caietal, 20220y O(/VT) N/A
EX{@@“@?‘;{;& %212(111)6 nt. O1/T) N/A
e sty oum  wa
(Koshal et 2010; Tataronko & Kamgarpour, 2019) NA Asymplotic’
Adaptlvel}zli’ﬁzu;baei(.i’ (z}égil)ent Ascent O1/VT) ) (1 /T%)
Ours O(1)T) O(1/T7)

Table 2: Existing results on last-iterate convergence in monotone games. (*) means the result holds
only under bandit feedback.

F ADDITIONAL EXPERIMENTAL RESULTS

In this section, we experimentally compare the gap function for GABP with APGA, OG, and AOG
in the full/noisy feedback setting. The experimental settings are identical to those in Section 6.
Figure 3 illustrates the logarithm of the gap function for 7. We can observe the same trends as in
Section 6.
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— 0OG AOG —— APGA —— GABP
Random Payoff (Full) Random Payoff (Noisy) Hard Concave-Convex (Full Hard Concave-Convex (Noisy)
= -0.5 _
QK 1\ 3
=~ 3.5
[="
s -1.0
5 .
=2 g
g -15 1 3.0
“T100 10t 102 10 10° 10! 102 10° 10 10° 10 102 103 10* 10 10° 10 102 10° 10* 10
Iterations Iterations Iterations Iterations

Figure 3: The gap function for w¢ for GABP, APGA, OG, and AOG with full and noisy feedback
in the random payoff and hard concave-convex games, respectively. The shaded area represents the

standard errors.

G NOTATIONS

In this section, we summarize the notations we use in Table 3.

Table 3: Notations

Symbol Description
N Number of players
X; Strategy space for player 7
X Joint strategy space: X = Hi\[:l X;
v; Payoff function for player ¢
i Strategy for player ¢
™ Strategy profile: m = (7;);e[n]
¥ Nash equilibrium
I~ Set of Nash equilibria
GAP(n) Gap function of 7: GAP(7) = maxzex Zf;l(vm vi(m), 71 — )
rtan(r) Tangent residual of 7: 7**" () = minge () [|=V (1) + a|
Vo, 0i() Gradient vector of v; with respect to 7;
V.,vi(m) Noisy gradient vector of v; with respect to m;: Vi, v;(m) = Vi, () + &t
! Noise vector for player 7 at iteration ¢
V() Gradient operator of the payoff functions: V'(-) = (V,vi(*))ic|n]
T Total number of iterations
Nt Learning rate at iteration ¢
iz Perturbation strength
T, Update interval for the anchoring strategy
wt Strategy profile at iteration ¢
Ek(t) Number of updates of the anchoring strategy up to iteration ¢
K Total number of the updates of the anchoring strategy
ok® Anchoring strategy profile at iteration ¢
P convex combination of o*®*) and ¢!: 5+t = %
k() Stationary point satisfies:
o . e R . 2
Vi € [N], i = arg max {vi(xﬂr’i’i ) — bl —6*®| }
TEX;
L Smoothness parameter of (v;)ie[n]
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