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Abstract

Few-shot intent detection (FSID) targets the
classification of user queries into in-scope in-
tent categories or detecting them as out-of-
scope, with only a few or even zero labeled
examples per class. Existing PLM-based meth-
ods struggle in low-resource situations; while
LLM-based methods face high inference cost
and label interference. To harness their com-
plementary strengths, we propose the FCSLM,
a framework that collaborates a small predic-
tion model with a large language model for
the FSID task. During training, we leverage
LLM:s for data augmentation in self-supervised
pretraining and supervised fine-tuning a task-
specific prediction model. During inference,
a multi-round reasoning process first applies
the small prediction model to output candidate
intents with uncertainty estimations, then in-
vokes an LLM with enriched intent descrip-
tions for refined prediction and OOS detec-
tion. Extensive experiments on three bench-
mark datasets demonstrate that our FCSLM
outperforms strong competitors, achieving the
new state-of-the-art performance in both intent
classification and OOS detection.

1 Introduction

Intent detection is a core task in dialogue systems,
aiming to interpret a user query and classify it into
one of the predefined intent categories, or out-of-
scope (OOS). In real-world scenarios, as manual
annotation is costly, training data is scarce and few-
shot intent detection (FSID) has recently become a
central focus. The FSID task aims to classify a user
query z into a predefined intent category y € ),
or detect it as out-of-scope (OOS), given only a
limited number of labeled training examples per
in-scope intent.

For the FSID task, fine-tuning pre-trained lan-
guage models (PLMs) have long been a dominant
approach (Zhang et al., 2021a, 2023, 2025). Their
semantic modeling capabilities have been further

enhanced by recent advances in self-supervised
pretraining and contrastive learning (Zhang et al.,
2021a; Yehudai et al., 2023; Singhal et al., 2023).
However, the performance of PLM-based models
is not satisfactory due to the data scarcity when
training a model. This issue becomes particularly
pronounced in OOS detection (Zhang et al., 2021b),
where a PLM-based model needs to first accurately
classify in-scope queries, and then reject out-of-
scope inputs.

With the rapid development of large language
models (LLMs), recent studies have explored
instruction-tuned LLMs for direct intent classifi-
cation, typically adopting a full-label enumeration
strategy in which all intent labels and examples
are included into an input prompt (Zhang et al.,
2023; Lin et al., 2023). While LLMs demonstrate
strong detection capabilities under low-resource
conditions, they also encounter several practical
challenges. First, real-world applications often in-
volve a large number of intent categories, lead-
ing to long prompt sequences and high inference
costs. Second, when semantic boundaries between
intent categories are ambiguous, LLMs are prone
to confusing similar intents, resulting in degraded
discriminative capabilities even worse than PLM-
based models. This issue is especially evident in
OOS detection, where LLMs tend to misclassify
OOS queries as in-scope (IS) when their semantics
are close to a known intent category. Moreover, the
full-label enumeration strategy inherently increases
label-space interference, further raising the likeli-
hood of an OOS query being incorrectly assigned
to an IS intent category.

The existing studies indicate that PLMs and
LLMs exhibit complementary strengths yet also
respective limitations in the FSID task. Those su-
pervised PLM-based models retain high inference
efficiency and stable performance even under large
label spaces. In contrast, those LLM-based ap-
proaches excel in scenarios with fewer candidate



intents, where their semantic reasoning capabilities
can be well leveraged with lower inference cost and
reduced label interference. This suggests that using
a single technique, i.e., PLM or LLM, is often insuf-
ficient to balance the detection efficiency of a small
model and the semantic inference of a large model.
Furthermore, achieving reliable OOS detection re-
mains a significant challenge for either PLM-based
or LLM-based approaches. These considerations
motivate us to reexamine the capabilities and roles
of a small PLM-based model and a large language
model for the FSID task, calling for an effective
collaboration between a small and a large model in
both offline training and online reasoning phase.

Motivated from the aforementioned considera-
tions, we propose a framework for collaborating a
small prediction model with a large language model
for the FSID task, called FCSLM. The basic idea is
to exploit the complementary capabilities of PLMs
and LLMs in different task phases. The execution
logic is to first train and use a task-specific predic-
tion model (PM) to output a set of candidate intents
for a query, and then employ an LLM to further
discriminate those unconfident candidate intents
for a final decision.

The workflow of our FCSLM is divided into the
offline training and online reasoning phase. We
propose an offline augmentative training process to
train a task-specific PM with the help of an LLM
for data augmentation. The training process in-
cludes three steps: self-supervised pre-training, su-
pervised fine-tuning, and multi-predictor sampling.
We propose an online collaborative reasoning pro-
cess to output the predicted intent for an input
query with the collaboration of the task-specific
PM and an LLM. The reasoning process includes
three rounds: The first round applies the PM to
output a set of candidate intents. If they fail the
confidence test in the first round, the second round
employs an LLM to distinguish the most suitable
candidate intent. If the prediction of the LLM dif-
fers from that of the PM, the third round adopts
the LLM to perform a second-thought comparative
reasoning for the final decision. Figure 1 presents
the FCSLM workflow.

We conduct experiments on three benchmark in-
tent detection datasets under 0/5/10-shot settings.
Results show that our FCSLM achieves the new
state-of-the-art performance in both intent classifi-
cation and OOS detection for the FSID task.

A comprehensive discussion of related work is
deferred to Appendix A.

2 Offline Training Phase

We propose an offline augmentative training pro-
cess (OATP) to train a task-specific prediction
model (PM) via LLM-assisted data augmentation.
We note that although the FSID task is only with
a few labeled samples, it is still possible to train a
task-specific PM through data augmentation. Such
a task-specific PM can itself execute intent detec-
tion and its detection outputs can also complement
the reasoning process of an LLM for more confi-
dent results. Let 15,,, denote an off-the-shelf PLM,
such as the RoBERTa (Liu et al., 2019). First,
we propose to use self-supervised pretraining to
train B,y into By, and then to use supervised
fine-tuning to train By into By. Based on By, we
design a multi-predictor sampling strategy to obtain
a set of prediction heads {P.}.

2.1 Self-supervised Pretraining

We design a self-supervised pretraining (SSP) mod-
ule to train B,y into By based on a public dataset
Dpup, such as SNIPS (Coucke et al., 2018). A
sample x; € Dpyp is a sentence, such as "add trans-
mission to my found them first."

To improve the lexical and syntactic diversity of
the public dataset, for each input sample x; € Dpup,
we use LLM-based paraphrasing (LP) to ask an
LLM to generate its paraphrase z;, maintaining its
semantic consistency but differing in the expres-
sion. The paraphrase prompt is presented in Ap-
pendix F.1. The pairs (z;, 2}) are then used to con-
struct the pretraining dataset Dy = {(z;, 2})}Y ;.
We first adopt the contrastive training for pretrain-
ing and design a contrastive loss as follows:
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where x; is the encoded representation of x; and
sim(-) the cosine similarity function. This design
encourages to train a language model to align the
original sample with its paraphrase in the represen-
tation space while effectively distinguishing other
non-synonymous samples, thus improving its se-
mantic consistency at the expression level.

In addition, to enhance the language understand-
ing capability for a language model, we introduce
a masked language modeling loss (Zhang et al.,
2021a; Yehudai et al., 2023). Specifically, we con-
catenate x; and its paraphrased x, using a separator
[SEP] to form an input sequence (z;; [SEP]; x7),
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Figure 1: FCSLM Workflow: (a) Offline Training Phase: It leverages an LLM for data augmentation in training a
task-specific prediction model; (b) Online Reasoning Phase: It applies a multi-round reasoning process to collaborate
the small prediction model and a large language model to output target intent.

and perform random token masking on the con-
catenated sentence pair. This design leverages the
semantic consistency between paraphrases by us-
ing cross-sentence contextual information for the
language model to predict the masked vocabulary,
thereby strengthening token-level understanding
while preserving semantic meaning. The MLM
loss is defined by

M
1 . -
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where z,, denotes the m-th masked token in the in-
put sequence and &, the corresponding true token.
The loss function of the SSP module is given by

»Cpre = Ecl + )\»lema

where A € [0, 1] is a weighting coefficient balanc-
ing the contrastive loss and the MLM loss.

2.2 Supervised Fine-tuning

We design a supervised fine-tuning (SFT) module
to train Bpre into By based on the FSID task training
dataset Dy,in. We randomly select k& samples with
the same intent label from Dy, to form a k-shot
dataset DL, = {(g,y)}}, with ¢ the query and y
the label. We note that D, , could be an empty set
for some intent label, i.e., zero-shot. We propose
using an LLM to augment queries and labels for
each few-shot Dy, and present the augmentation
approaches for zero-shot dataset in Appendix B.
We first design an LLM-based query augmen-
tation with trimming (QAT) to augment queries
for each D?éw to obtain an augmented dataset

Die = {(¢',y)}. For each intent y, we con-
struct a prompt by combining it with the corre-
sponding k-shot queries and input this prompt into
the LLM to generate additional intent-consistent
queries ¢'. The detailed settings and query augmen-
tation prompt is presented in Appendix F.2.

We propose a trimming mechanism to control the
semantic boundary of Dj,, by filtering-out some
¢’ with semantic drift as follows. (1) Encode each
q; and q; into a representation q; and q;., respec-
tively, by a sentence encoder. (2) For each q;,
first calculate a centroid vector excluding itself by
ci =25 i Ak and next compute its distance
to the centroid by s; = cos(qy, ¢;). (3) Compute
6, = min,(s;) as the filtering-out threshold, and
compute the category centroid by ¢, = % > i
(4) For each q;-, compute its distance to the cat-
egory centroid by s’ = cos(qj, ¢y). If s < 6y,
then the generated query q} is regarded as seman-
tically misaligned with the intent category, and is
filtered-out from Df;,.

We next design an LLM-based Label Augmenta-
tion (LA) to obtain a set of augmented intent labels
Yaug based on the original label set V. An intent
label is often with a concise expression by one or
a few words, which may not be enough to express
contextual semantics of the intent. To enhance
the expressiveness of intent labels, we leverage an
LLM to conduct label augmentation. For each in-
tent y, we construct a prompt by combining it with
the corresponding k-shot queries and input this
prompt into the LLM to generate a more descrip-
tive version of the label. Note that the augmented
labels are used to enrich the fine-tuning data, but



do not replace the original intent labels. The label
augmentation prompt is presented in Appendix F.4.

We use the standard cross-entropy loss to fine-
tune By into By based on the fine-tuning dataset
Dy, with an additional linear classification layer
on top of Bpr. For few-shot cases, the queries of
Dy are from Y, Vaug, Drew, Daug, and the back-
translated and paraphrased versions for queries
in Dy.,,; while in zero-shot cases, they are from
Y and D,y,. Details of Dy are presented in Ap-
pendix D.1.

2.3 Multi-Predictor Sampling

We propose a multi-predictor sampling (MPS) mod-
ule to alleviate the prediction uncertainty of a sin-
gle language model. This module leverages the
By as a feature extractor and constructs a Bayesian
linear classifier with parameters (W, b), modeled
as random variables, from which we draw C' sam-
ples { (W, b.)}<_; using the Hamiltonian Monte
Carlo (HMC) method (Neal et al., 2011), condi-
tioned on Dg. Each sampled pair defines a distinct
prediction head P.. Here, C is set equal to the
number of intent classes as a design choice.

3 Online Reasoning Phase

We propose an online collaborative reasoning pro-
cess (OCRP), which utilizes both the task-specific
PM and a LLM to output the target intent y* for an
input query ¢q. In the OCRR, we first use the trained
PM to make the first round prediction based on a
multi-head voting mechanism (MVM). If the voting
is not confident, we next employ an LLM to make
the second round prediction via an uncertainty res-
olution mechanism (URM). If the uncertainty still
exists, we design a comparative prediction mech-
anism (CPM) to make the third round and final
prediction. Furthermore, we also design a plug-in
null intent detection (NID) module to deal with
out-of-scope scenarios.

3.1 First Round Prediction

The first round prediction is based on the task-
specific PM, namely, By and {P.}. For the input
query g, the {P.} outputs a set of intent predic-
tions {y. }, each corresponding to a prediction head.
Note that different prediction heads may output the
same intent category. That is, it is possible y. = ¥
for ¢ # (. If an intent is predicted by more predic-
tion heads, we regard it as of high confidence.

We sort the predicted intents {y.} according to
the logit scores provided by By in a decreasing or-

der. Let Lx = {(yx, fx)}}* denote the sorted list
of top-K candidate intents, where f, is the nor-
malized occurrence frequency of the intent y;. We
set K < C, i.e., the number of candidate intents is
smaller than the number of intent labels. Note that
y1 and yo are the predicted intents, respectively,
with the highest and second-highest logits provided
by By. The idea for multi-head voting is to check
whether the top-1 predicted intent y; is far more
confident than other predictions. To this end, we set
two confidence thresholds, a;; and aws. If f1 > ag
and fy < a9, then the top-1 intent y; is confirmed
as the final prediction output y*, and in this case,
we do not perform the second and third round pre-
diction. Otherwise, we proceed to the second round
prediction with the top-K candidate intents.

3.2 Second Round Prediction

The second round utilizes an LLM to help resolving
the uncertainty of the first round predictions. The
basic idea is to check whether the output of an LLM
is equivalent to the PM top-1 intent y;. Let yjmy
denote the intent predicted by the LLM. If yy, =
Y1, then the top-1 intent y; is confirmed as the final
prediction output y*, and in this case, we do not
perform the third round prediction. Otherwise, we
proceed to the third round prediction.

The key for an LLM to output an intent lies in the
design of an appropriate input prompt. Note that
in this round, the available information include the
test query g, the top-K predicted intents Ly and
D{., (y € L). The prompt instruction is to let
the LLM select one intent from the L candidate
indents. To further facilitate the LLM reasoning,
we propose to first generate a kind of discrimina-
tive intent descriptions for all intents, and each
candidate intent is attached its corresponding de-
scription to enrich the input prompt. The design
objective of description generation is to establish
clear semantic boundaries between one intent and
others. Appendix C details the discriminative in-
tent description generation (DIDG) module, and
Appendix F.6 details the template for the input
prompt in the second round.

3.3 Third Round Prediction

The third round is to further select which one of
the vy, and y; as the final prediction y*. Note that
although the y;;,,, is different from y; in the second
round, we cannot consider y; a worse choice, as
it holds the highest logit score among the candi-
date intents. We again utilize an LLM to make a



kind of comparative prediction by evaluating some
semantic evidences to prefer y;;,,, or y1. Example
semantic evidences include the prediction of the
top-1 intent y; made by By and the few-shot query
examples corresponding to y;;,,, and y;. The details
of the input prompt for comparative prediction are
provided in Appendix F.7.

3.4 Dealing with OOS scenarios

Our OCREF can be directly applied to out-of-scope
scenarios, that is, an input query can be detected as
with a null intent (none of the existing intents). Pre-
vious OOS detection approaches directly include
a null label into the existing intent label set. As
reported in (Wang et al., 2024; Arora et al., 2024),
with the increase of existing intent labels, such ap-
proaches would degrade the OOS detection perfor-
mance. In contrast, we propose to include the null
intent together only with the top-K detected intents
in the second round prediction, thereby avoiding
the use of the full set of existing intent labels.

The proposed NID for OOS scenarios is a plug-
in module to be used only in the second round
prediction. Based on the PM output L in the first
round, the first step is to append the null intent after
the K candidate intents into the input prompt. If the
LLM selects the null intent as its output, then the
final prediction is made and the whole procedure
ends. Otherwise, we introduce a candidate intent
re-ranking mechanism (CIR), that is, the second
step is to first reorder the K candidate intents in
the increase order of their logits scores provided by
the By and then repeat the first step to obtain the
LLM decision, so as to mitigate the LLM sensitivity
to the intent order in the prompt and prevent it
from misclassifying null intent queries as in-scope
queries. If the LLM does not output the null intent,
then this query is not regarded as OOS and the
prediction proceeds to the third round as usual.

4 Experiment Settings

Datasets: We conduct experiments on three widely
used datasets: BANKING77 (Casanueva et al.,
2020), CLINC150 (Larson et al., 2019), and
HWUG64 (Liu et al., 2021). They cover typical dia-
logue system scenarios, such as banking services,
and voice assistants. Based on these datasets, we
construct k-shot (k € {0,5,10}) experiment set-
tings as follows: k training samples are randomly
selected from each intent class, and the original full
test set is retained for evaluation.

Competitors: The first group of competitors
contains pure PLMs (RoBERTa (Liu et al., 2019)
and RoBERTa(SSP) (Liu et al., 2019)) and pure
LLM Qwen2.5-72B (Yang et al., 2024)). The
second group contains several the state-of-the-art
methods, including QAID (Yehudai et al., 2023),
CPFT (Zhang et al., 2021a), PLE (Li et al., 2022),
DFT++ (Zhang et al., 2023), INTENDD (Singhal
et al., 2023), ICDA (Lin et al., 2023), ZeroGen (Ye
et al., 2022), CoDa (Evuru et al., 2024), Prompt-
Mix (Sahu et al., 2023), and CUC (Zhang et al.,
2025).

Metrics: Following (Zhang et al., 2025; Singhal
et al., 2023; Zhang et al., 2021b), we adopt the
following performance metrics: Accuracy, OOS
Precision, Recall and F1.

Appendix D provides all the details on all exper-
iment settings.

S Experiment Results

5.1 Main Results

We adopt the RoBERTa (Liu et al., 2019) for the
PM component and Qwen2.5-72B (Yang et al.,
2024) for the LLM component. In the first round
prediction, we set uncertainty thresholds a;; = 0.5
and as = 0.025. For the 0-shot case, we use top-
70% candidate intents, and top-10% for the 5-shot
and 10-shot cases. Section 5.4 experiments the
choices of the top-K candidate intents.

Table 1 presents the intent detection results on
three benchmark datasets. Our FCSLM signifi-
cantly outperforms those existing PLM-based and
LLM-based competitors in all cases, achieving the
new state-of-the-art results.

In the O-shot scenario, the LLM baseline
(Qwen2.5-72b) performs relatively well, mainly
due to its powerful semantic comprehension capa-
bility acquired through large-scale pretraining. In
contrast, those PLM-based models, lacking task-
specific training examples, struggle to effectively
distinguish semantic differences in between intents,
resulting in significantly lower performance.

In the 5-shot and 10-shot scenarios, the perfor-
mance of LL.Ms slightly declines as the number
of training examples increases. This is attributed
to the full-label enumeration strategy, which sub-
stantially lengthens the input prompt with all in-
tent labels, resulting in more semantic redundancy
and contextual noise in its inferences. This phe-
nomenon highlights the importance of our pro-
posed top-K candidate intent selection strategy:



BANKING77 CLINC150 HWU64
Method
0 5 10 0 5 10 0 5 10

RoBERTa (Liu et al., 2019) 1.14 64.58 81.59 229 81.89 90.51 1.86 69.24 79.83
ROBERTa(SSP) (Liu et al., 2019) 9.55 72.82 82.99 14.73 87.40 91.67 10.32 75.19 83.18
Qwen2.5-72b (Yang et al., 2024) 74.48 81.27 80.65 90.04 94.84 93.84 83.64 86.52 86.43
PLE (Li et al., 2022) - 74.90 79.09 - 88.70 91.20 - 76.46 80.36
DFT++ (Zhang et al., 2023) - 78.90 86.14 - - - - 79.93 86.21
QAID (Yehudai et al., 2023) - 85.25 88.83 - 93.41 94.64 - 85.52 87.98
INTENDD (Singhal et al., 2023) - 85.34 89.62 - 93.52 94.71 - 84.11 88.37
ICDA-XL (Lin et al., 2023) - 83.90 89.79 - 92.62 94.84 - 82.45 87.41
CPFT (Zhang et al., 2021a) 48.63 80.86 87.20 53.11 92.34 94.18 5541 82.03 87.13
ZeroGen (Ye et al., 2022) 48.41 7452 84.81 53.26 88.46 91.56 47.84 77.69 84.76
CoDa (Evuru et al., 2024) 58.12 79.72 8598 66.08 90.41 92.08 59.34 78.69 85.02
PromptMix (Sahu et al., 2023) 75.37 81.43 86.13 7427 91.68 92.10 74.55 8191 85.20
CUC (Zhang et al., 2025) 7526 84.41 89.67 75.63 93.20 94.75 75.05 82.54 87.51

Our FCSLM 76.98 87.66 90.23 90.18 97.00 97.09 83.83 87.73 89.03
(RoBERTa+Qwen?2.5-72b) (+1.61)  (+#2.32) (+0.44) (+0.14) (+2.16) (+225) (+0.19) (+1.21) (+0.66)

Table 1: Few-Shot Intent Detection Accuracy (%) under 0/5/10-shot settings for three benchmark datasets, The best
results are highlighted in bold, and the second-best results are underlined. For FCSLM, the relative improvements
over the second-best results are respectively reported in parentheses.

The small PM model significantly narrows the la-
bel space for the LLM, which effectively reduces
token overhead and inference complexity for its
inference. In contrast, those PLM-based models ex-
hibit performance improvements with the increase
of labeled training samples, showing their capa-
bilities of capturing semantic boundaries with the
increase of labeled examples.

In short, our FCSLM effectively leverages the
complementary strengths of PLMs and LLMs, de-
livering stable performance gains under different
data conditions. Specifically, our FCSLM uti-
lizes the small task-specific PM to handle high-
confidence predictions, while delegating only un-
certain cases to the LLM for further jurisdiction.
This collaborative design not only adapts to varying
levels of data resources, but also achieves a favor-
able trade-off between performance and efficiency.

5.2 Ablation Study

Table 2 presents the ablation study results on the
three datasets in the 5-shot scenario. Our FCSLM
collaborates a small and a large model in both the
training and reasoning phase. In the training phase,
the SSP and QAT modules leverage an LLM to
generate augmented data for training the PM com-
ponent, by which the quality of candidate intents
supplied by a PM can be improved, in turn helping
the LLM for decision in the reasoning phase.

In the reasoning phase, the use of CMP module
enables the LLM to perform another round of more
cautious reasoning when its initial prediction is in-

Method BANKING77 CLINC150 HWUG64
FCSLM 87.66 97.00 87.73
w/o SSP 86.69 96.42 86.90
w/o QAT 86.36 96.58 86.43
w/o CPM 86.46 96.87 86.71
w/o LLM 83.25 93.76 82.53
w/o SSP&LLM 81.10 92.71 83.09
w/o QAT&LLM 78.99 92.31 80.76

Table 2: Ablation study of our FCSLM on intent detec-
tion accuracy (%) in the 5-shot scenario.

consistent with that of the PM; while the CSLMP
w/o CPM will take the LLLM prediction as the out-
put without proceeding to the third round, losing a
second-thought chance.

We note that if no LLM is used in the reasoning
phase (i.e., w/o LLM), and no LLM is used for
data augmentation in the offline phase (i.e., w/o
SSP&LLM and w/o QAT&LLM), the performance
is significantly degraded. This again indicates the
importance of collaborating a large model (LLM)
with a small model (PM) in both the reasoning and
training phase for the FSID task.

5.3 Online Reasoning Analysis

Table 3 presents the result-per-round statistics for
the online reasoning procedure in the 5-shot sce-
nario. We have some interesting observations. We
take the BANKING77 datatset for the following
discussions, and similar observations and discus-
sions can be applied to the other two datasets.

The online reasoning of our FCSLM includes
three consecutive rounds. It can reject the predic-



Dataset Status Count Correct Acc (%)

Round | _Passed 1380 1327 96.16
(3080) Left 1700 1237 7276
Stop 3080 2564

Stage

BANKING77 Round 2 _Passed 1233 1095 88.81
(3080) ((1"7’30) Left 467 241 5161
Stop 3080 2663  [JIS6EGIN

Round 3 Passed 467 278 59.53

(467)  Finish 3080 2700 87.66

Round | _Passed 3338 3315 99.31

ds00)  Left 1162 904 77.80

Stop 4500 4219 PO

CLINC150 Round 2 _Passed 905 362 95.25
(4500) ((1"1’22) Left 257 182 7082
Stop 4500 4359 [POGSTH

Round 3  Passed 257 188 73.15

(257)  Finish 4500 4365 97.00

Round | _Passed 496 491 98.99

(1076)  Left 580 397 68.45

Stop 1076 sss  S253

HWU64 Round 5 _Passed 410 358 87.32
(1076) E)SU??O) Left 170 4 29.41
Stop 1076 933 [ScTil

Round 3  Passed 170 95 55.88

(170)  Finish 1076 944 87.73

Table 3: Prediction accuracy (%) at each inference round
in the 5-shot setting using Qwen2.5-72B.

tion for some testing queries but forward them to
the 2nd round. In the BANKING77 datatset, there
are in total 3080 testing queries, among which 1380
queries are made the final decision in the 1st round,
and the rest 1700 queries are rejected for prediction.
In contrast, we can also stop the whole online rea-
soning just by the first round via setting the top-1
candidate intent as the final decision. Similarly, the
online reasoning can also stop just after the first
two rounds, that is, take ynm by the LLM as the
final decision.

Those queries that have been rejected in the first
two rounds are kind of hard ones. Observing the
accuracy of the ’passed’ row in the table, the ac-
curacies of predicted queries are 96.16%, 88.81%
and 59.53%, respectively, in the 1st, 2nd and 3rd
round. Insisting on predicting those hard queries
in the current round results in lower accuracy. Ob-
serving the accuracy of the ’left’ row, the accuracy
for those hard queries is 72.76%, lower than that
of easy ones, i.e., 96.16% in the 1st round.

The multi-round collaborative reasoning of our
FCSLM can effectively improve the overall pre-
diction performance. We compare the accuracy
87.66% in the ’finish’ row with those in the two
’stop’ rows. The accuracy of 83.25% of the ’stop
row in the 1st round represents only using the task-
specific PM for prediction, and the 86.47% repre-
sents using the LLM to collaborate with the PM
for further predicting those hard queries in the 1st
round. The accuracy comparison of 87.66% over

’

86.46% and 86.46% over 83.25% clearly support
our design objective of collaborating small and
large model for improving prediction performance.

5.4 Candidate Intent Analysis

Figure 2 plots the prediction accuracy and token
cost against the choice of candidate intent percent-
age, i.e., top-K. Recall that the parameter K con-
trols the number of intents to be integrated into the
input prompt for the LLM in the 2rd round reason-
ing phase. From the results, it can be first observed
that using all intents as candidates is not a wise
choice. The prediction accuracy is not the best,
yet the token cost is the highest. Recall that the
prompt includes the descriptions of all candidate
intents. So the more candidate intents, the more
input tokens. We next can observe that a higher
accuracy is often achieved for K in the range of
10% — 50%, with moderate token costs. This is
a good news. It indicates that using a subset of
high-quality candidate intents can help reducing
the inference difficulty for an LLM, as generally
the more the choices, the more difficult of a selec-
tion.

5.5 Out-of-Scope detection

Table 4 compares the OOS detection performance
of our FCSLM with the existing competitors deal-
ing with the OOS cases. The OOS datasets are
detailed in Appendix D.6.

The pure LLM baseline (Qwen?2.5) demonstrates
relatively high OOS precision (Pys) but signifi-
cantly lower OOS recall (Roos), primarily due to
its use of a full-label enumeration strategy. Since
the LLM is required to choose from all in-scope
intent labels plus a null label, many OOS queries
that are semantically close to existing intents tend
to be misclassified as in-scope, thus weakening
the model’s rejection capability. Conversely, when
a query is semantically distant from the in-scope
space, the LLM is more likely to assign it to the
null label, resulting in higher precision. In con-
trast, traditional fine-tuned PLM methods (Zhang
et al., 2021b) often achieve higher OOS recall at
the expense of relative lower precision, resulting in
overall lower F1 performance.

Our FCSLM achieves the best Fl,,s perfor-
mance by the collaborative reasoning mechanism.
Notably, OOS queries are more likely to trigger
uncertain predictions of a task-specific PM. The
PM will forward the uncertain predictions to an
LLM, yet in most cases, with reduced candidate
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Figure 2: Impact of Top-k ratio (x-axis) on Accuracy (left y-axis, %) and Token Cost (right y-axis) across three

datasets under 0-shot, 5-shot, and 10-shot settings.

Model BANKING77-00S Banking Credit Cards
RDOS POOS FIOOS ROOS POOS FlOOS RODS POOS FlOOS
Qwen2.5 62.57 97.33 76.06 4257 9933 59.70 46.02 85.10 59.68
CL(ALBERT) (Zhang et al., 2021b) 86.3 579 69.87 759 558 6454 89.5 39.8 55.00
CL(BERT) (Zhang et al., 2021b) 81.8 70.8 76.00 76.5 68.1 7212 909 413 56.58
CL(ELECTRA) (Zhang et al., 2021b) 89.4 65.1 75.26 758 67.1 71.29 87.5 430 57.61
CL(RoBERTa) (Zhang et al., 2021b) 784  78.6  78.50 86.8 63.3 72.75 83.1 463 59.52
CL(ToD-BERT) (Zhang et al., 2021b) 75.8 69.4 7245 723  61.1 6645 82.7 438 57.34
20% 86.00 9290 89.33 84.00 96.39 8941 5944 86.87 70.58
FCSLM (+10.83) (+16.66) (+10.90)
(Top-K) 50% 79.71 93.00 85.88 70.57 97.24 8136 5843 86.44 69.48
100% 72.86 94.10 81.74 60.57 97.25 7439 58.06 82.72 67.95

Table 4: Comparison of OOS detection results. We report OOS recall (Rys), precision (Pyos), and F1 score (Flyos).
The best F1,0s results are highlighted in bold, and the best competitors’ results are underlined. For FCSLM @20%,
the relative improvement over the best competitors’ results are respectively reported in parentheses.

intents and labels for the LLM making decisions.
This helps ensuring high detection precision while
exhibiting strong recall performance. In addition,
it can be observed that the F1,. of our FCSLM
suffers from the increased number of top-K can-
didate intents. Notice that 100% candidate intents
means to use all available intents, which often
leads to much expanded label space for LLM infer-
ence in the second round. This observation further
confirms the effectiveness of the top-K candidate
mechanism in narrowing the label space for reduc-
ing LLM inference difficulty.

6 Conclusion

This paper has proposed a collaborative framework,
called FCSLM, for the FSID task, which effectively
enhances intent classification and out-of-scope de-
tection by collaborating the strengths of a small
prediction model and a large language model. In
the training phase, the FCSLM leverages LLMs to
generate for high-quality augmented data for self-

supervised pretraining and supervised fine-tuning
a task-specific prediction. In the inference phase, a
multi-round collaborative reasoning mechanism is
introduced to utilize the complementary inference
capabilities of the small prediction model and a
large language model. Extensive experiments on
three benchmark datasets have shown that our FC-
SLM outperforms the state-of-the-art competitors
in both intent classification and OOS detection per-
formance. Further evaluations (see Appendix E.1)
reveal that our FCSLM maintains strong compati-
bility with LLMs of varying parameter sizes, high-
lighting both the effectiveness of its collaborative
design and its potential for practical deployment.

Future work will focus on further improving
OOQOS detection by deeply mining the capabilities
of both small and large models, while preserving
in-scope intent classification performance.



Limitations

In zero-shot scenarios, the absence of real few-
shot queries makes it difficult to clearly convey the
semantic meaning of intents. As a result, the LLM
lacks sufficient semantic grounding labels when
generating more training data, which hinders the
PLM’s ability to learn the semantic distinctions
between intents.

Ethics Statement

This paper has no particular ethic consideration.
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A Related Work

A.1 Few-Shot Intent Detection

In real-world applications, the frequent emergence
of new intents and the scarcity of annotated data
make few-shot intent detection a critical research
focus. Recent studies in this field have evolved
along three primary directions. The first line of
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work explores how to fine-tune PLMs under low-
resource settings, enhancing their semantic model-
ing capabilities through techniques such as unsuper-
vised pretraining and contrastive learning (Zhang
et al., 2021a; Yehudai et al., 2023; Singhal et al.,
2023). The second direction leverages large lan-
guage models (LLMs) as data generators, utilizing
their strong generalization ability to augment train-
ing samples, followed by downstream training on
PLMs (Zhang et al., 2023; Lin et al., 2023; Zhang
et al., 2025). The third and most recent approach
introduces LLMs directly into the inference stage,
exploiting their natural language reasoning capabil-
ities for few-shot or zero-shot intent classification.
These methods have demonstrated strong gener-
alization (Zhang et al., 2024a; Arora et al., 2024).
Although each of these approaches addresses differ-
ent aspects of the task, they generally fail to fully in-
tegrate the complementary strengths of PLMs and
LLMs. In particular, methods that employ LLMs
for inference often rely on a full-label enumeration
strategy, where the model is required to choose
from the entire set of intent labels. This strategy
incurs high computational costs and is suscepti-
ble to interference from the label space, thereby
undermining inference stability and accuracy.

A.2 OOS Detection

Early OOS detection methods are typically trained
based on traditional classifiers and use the max-
imum softmax probability or entropy as a rejec-
tion score (Larson et al., 2019). Subsequently, re-
searchers proposed distance-based methods, con-
structing the semantic distribution of samples
in embedding space and computing the distance
between the input and known class centers or
prototypes to determine whether the input is
OOS (Ni’'mah et al., 2021). These methods provide
some geometric interpretability but remain insuf-
ficient in scenarios with fuzzy class boundaries
and high semantic overlap. Further works (Zhou
et al., 2021; Zhang et al., 2024b) introduced regu-
larization designs to compress the distribution of In-
Scope representations, making In-Scope samples
form more compact clusters in the semantic space,
thereby enhancing the ability to distinguish OOS
inputs and improving inter-class discriminability.
However, most of the above methods assume
access to abundant training samples, which lim-
its their transferability to the low-resource setting
commonly found in real-world applications—i.e.,
where only a few known intent samples are avail-



able and no OOS data is provided. Under this
condition, achieving high-quality OOS detection in
an unsupervised manner becomes a key challenge.

Moreover, Zhang et al. (Zhang et al., 2021b) di-
vide open-domain intent detection into two types:
In-Domain OOS (ID-OOS) and Out-of-Domain
OO0S (0O0D-00S), and conduct few-shot experi-
ments under the ID-OOS setting using a discrimi-
native nearest-neighbor classification method com-
bined with deep self-attention mechanisms (Zhang
et al., 2020). Although this method improves OOS
rejection capability, it comes at the cost of signif-
icantly reduced In-Scope intent recognition accu-
racy. The authors point out that even under the
In-Domain OOS setting, few-shot OOS detection
still faces considerable challenges.

B Boundary-Aware Data Augmentation

To further improve the model’s discrimination
ability under zero-shot conditions, we design a
boundary-aware data augmentation (BADA) strat-
egy. Traditional LLM-based augmentation typi-
cally generates synonyms based on original sam-
ples. However, in settings with insufficient guid-
ance and fine-grained intent distinctions, the LLM
may inadvertently cross semantic boundaries dur-
ing generation, extending a sample from one cate-
gory into a region semantically close to another,
leading to confusion and degrading the perfor-
mance of the pre-trained language model. To ad-
dress this issue, we construct a confusion intent set
for each category y in the vector space, based on
semantic similarity across categories. Specifically,
we compute vector representations for all intent la-
bels and calculate cosine similarity between them.
From each category’s perspective, we select a set
of non-matching labels whose similarity is below
a threshold (cosine similarity < 0.6), forming the
potential confusion set {y$, ¥5, ..., y5, }. This con-
fusion set is then incorporated into the prompt to
guide the LLM in focusing on semantic boundaries
during generation, thus producing more discrimi-
native samples. In addition to the original augmen-
tation strategy, we design two types of augmented
samples: one type aims to enhance inter-category
distinctiveness by prompting the LLM to gener-
ate expressions that clearly distinguish confusing
categories; the other type simulates samples that
are semantically close to confusing categories but
still clearly belong to the current category, help-
ing the model remain accurate in boundary-blurred
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situations.

All sentence representations in augmentation ap-
proaches are generated using the pre-trained sen-
tence encoder all-MiniLM-L6-v2. We instruct the
LLM to generate 20 examples for each intent class
under each type of augmented sample. The aug-
mentation prompt is presented in Appendix F.3.

C Discriminative Intent Description
Generation

DIDG identifies confusion patterns between differ-
ent intents and constructs differentiated expressions
based on this, thereby generating more discrimi-
native semantic descriptions to assist downstream
LLMs in making more accurate judgments during
the intent detection phase.

The core process of DIDG consists of two stages.
First, we use the LLM to generate a general intent
description for each intent by leveraging its ex-
ample samples, which serves as a basic semantic
understanding of the intent category. Then, we
use the LLM to automatically predict intents for
all samples in D{, , by leveraging both the intent’s
example samples and its general description, and
record the consistency between the model’s outputs
and the true labels. By analyzing all misclassified
samples, we construct the corresponding confusion
intent set {y{, yS, ..., y5, } for each target intent v,
i.e., the categories that are most easily confused
during actual reasoning.

Next, we input the target intent and its confusion
set into the LLM to construct a prompt contain-
ing contrastive context, asking the model to gener-
ate a highly differentiable intent description. The
generated discriminative intent description directly
serves as a complementary explanation to the gen-
eral description. The final intent descriptions are
cached and used as auxiliary semantic prompts in
the LLM-based judgment stage. The DIDG prompt
is presented in Appendix E.5.

D Detailed Experiment Settings
D.1 Datasets Used in the SFT Phase

Table 5 shows example queries for the
atm_support intent in Dy. We use the Mar-
ianMT models (Junczys-Dowmunt et al., 2018) for
back-translation.

D.2 Datasets Used in the SSP Phase

Table 6 shows the statistics of the five datasets used
in the SSP phase. To ensure fairness in the few-shot



Original Intent Label
atm_support

Label-Augmented Intent Label
atm location and acceptance inquiry

Few-shot Examples
where can i withdraw money from?
which atms accept this bill of fare ?
tell me what atms take this card.
tell me what atms use this card.
can i use my card to withdraw from my account?

Back-translated Examples
Where can I get the money?
Who accepted this fare?
Tell me what atms has on this card.
Tell me what atms is with this card.
Can I use my card to get it out of my account?

LLM-Paraphrase (LP) Examples
What’s the closest place I can get cash from?
Which ATMs will take this type of currency?
Which ATMs are compatible with this card?
Where are the nearest ATMs that work with this card?
Can I withdraw funds from my account using this card?

Query Augmentation with Trimming (QAT) Examples
I need to find an ATM that works with my bank.
Which ATMs will let me withdraw cash using my card?
How do I find ATMs that accept my card?
Is it possible to use my card at all ATMs?
Can you help me find an ATM that accepts this card?

Table 5: Examples in Dy, for atm_support.

Dataset Utterance Intent Domain
CLINC150 (Larson et al., 2019) 18200 150 10
BANKING77 (Casanueva et al., 2020) 10162 77 1
HWUG64 (Liu et al., 2021) 10030 64 21
SNIPS (Coucke et al., 2018) 13084 5

ATIS (Tur et al., 2010) 4478 21

Table 6: Statistics of datasets used in SSP.

experiments, we remove the target dataset from the
pre-training corpus in each evaluation task. For ex-
ample, when evaluating on BANKING?77, no train-
ing samples from BANKING?77 are included in the
pre-training stage. This setup ensures that CARS’s
generalization to target few-shot tasks stems en-
tirely from the modeling capabilities of the frame-
work itself, rather than from any leakage of extra
training resources. In contrast, (Mehri et al., 2020;
Zhang et al., 2021a; Yehudai et al., 2023; Singhal
et al., 2023) do not avoid such data overlaps when
using the same corpus for both pre-training and
evaluation.

D.3 Competitors Details

RoBERTa: This model builds on
roberta-base (Liu et al., 2019), with an
added linear classification layer.  Supervised

classification fine-tuning is performed on the label
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set Y and dataset Dry,, Without any pre-training
or data augmentation. During inference, the class
with the highest logit is selected as the prediction.
RoBERTa (SSP): This model extends (1) by
incorporating SSP module prior to supervised
classification fine-tuning.
Qwen2.5-72B-Instruct: This model performs
intent classification using a prompt-based few-shot
inference approach with language model Qwen2.5-
72B-Instruct (Yang et al., 2024), and does not
depend on a separate PM encoder.

QAID (Yehudai et al., 2023) reformulates the
intent detection task as a question-answer matching
problem and introduces contrastive learning and
domain alignment objectives during training to
improve the model’s generalization ability on new
tasks.

CPFT (Zhang et al.,, 2021a) combines self-
supervised contrastive pre-training with supervised
contrastive learning and intent classification
fine-tuning to enhance few-shot intent detection
performance.

PLE (Li et al., 2022) introduces a lightweight
encoder, task transfer, pseudo-sample replay,
and dynamic weighting mechanisms to build
an end-to-end continual learning framework,
enhancing cross-task transfer and anti-forgetting
abilities in few-shot intent detection.

DFT++ (Zhang et al., 2023) is a few-shot intent
detection method that does not rely on external
corpora. It combines context augmentation
based on generative models with a sequential
self-distillation strategy to significantly improve
the model’s generalization and robustness under
extremely low-resource conditions.

INTENDD (Singhal et al., 2023) leverages shared
encoders and unsupervised contrastive learning for
sentence representation, combined with two-stage
post-processing on a graph structure (residual
propagation and label smoothing) to improve
multi-class intent detection performance.

ICDA (Lin et al., 2023) Fine-tunes a PLM to
generate intent data, then filters irrelevant samples
using PVI to improve intent classification.
ZeroGen (Ye et al., 2022) A zero-shot learning
method that first generates training data from
scratch using large pre-trained language models
in an unsupervised manner, and then trains a task
model on the synthesized data.

CoDa (Evuru et al., 2024) A training-free data
augmentation method that prompts large language
models with simple, verbalized constraints to



generate high-quality pseudo samples.
PromptMix (Sahu et al., 2023) Generates bound-
ary examples and re-labels them to improve data
quality for small model training.

CUC (Zhang et al., 2025) An iterative differential
generation framework for fine-grained intent
detection, incorporating contrastive feedback
to guide large language models in generating
high-quality pseudo samples. It distinguishes
similar classes through differential prompts and
refines samples using rubric-based evaluation.

D.4 Performance Metrics

Accuracy: This metric measures whether the pre-
dicted intent of each query matches the ground
truth. It is used to evaluate model performance
on known intent classes and serves as the standard
metric for multi-class classification.

OOS Recall Measures the proportion of correctly
identified OOS samples among all true OOS exam-
ples.

OOS Precision Measures the proportion of true
OOS samples among all predicted OOS instances,
indicating precision in detecting unknown intents.
OOS F1 The harmonic mean of OOS Precision
and OOS Recall, providing a balanced view of the
model’s ability to reject out-of-scope queries.

D.5 Experiment Details

k-shot Dataset # Intent # Test Domain
CLINC150 150 4500 Multi-domain
BANKING77 77 3080 Banking
HWU64 64 1076  Voice Assistant

Table 7: Statistics of datasets used in SFT.

Table 7 presents the k-shot datasets’ statistics.
All PM encoders in FCSLM are trained on an RTX
3090 GPU. The SSP phase follows the setup from
(Zhang et al., 2021a), using 20 training epochs, a
batch size of 64, a learning rate of 1e~>, tempera-
ture parameter 7 set to 0.07, and contrastive loss
balancing factor A set to 0.1. The SFT phase uses
10 training epochs, a batch size of 16, and a learn-
ing rate of 1e~®. The LLM inference module is
accessed via the API interface provided by Alibaba
Cloud Bailian platform, with all prompt templates
fixed during inference.

Our results were obtained using a reproducible
experimental setup. Some baseline results are taken
from (Zhang et al., 2025). Except for ICDA (Lin
et al., 2023), which uses RoBERTa-Large (Liu
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et al., 2019) as the PLM, all encoder-based base-
lines adopt ROBERTa-base (Liu et al., 2019).

D.6 OOS datasets

Dataset IS ID Test (IS) Test (OOS)
Banking 10 5 500 350
Credit Cards 10 5 500 350
BANKING77-00S 50 27 2000 1080

Table 8: Dataset statistics used in OOS detection. “IS™:
in-scope intents, “O0S”: out-of-scope intents.

We use the ""Banking'' and "'Credit Cards do-
mains (Zhang et al., 2021b) from the CLINC150
dataset. Each domain contains 15 intent classes,
from which five are held out as in-domain out-of-
scope (ID-OOS) examples, while the remaining ten
are used as in-scope (IS) classes. In addition, we
adopt the BANKING77-00S dataset (Zhang et al.,
2021b), constructed by selecting 27 intents from
the original BANKING?77 dataset as ID-OOS and
using the remaining 50 as IS classes. Detailed
dataset statistics are shown in Table 8. We in-
clude the results of ALBERT, BERT, ELECTRA,
RoBERTa, and ToD-BERT trained with the CL
method proposed in (Zhang et al., 2021b), which
serve as baselines for few-shot OOS detection. Our
models are trained and evaluated under the same
5-shot IS-only setting, where no OOS examples are
used during either training or inference.

E Supplementary Experiments

E.1 Effect of LLM Size on Performance

Model BANKING77 CLINC150 HWU64
Qwen-14B 80.10 88.71 84.29
Qwen-32B 81.93 88.89 84.01
Qwen-72B 81.27 94.84 86.52
FCSLM (Qwen-14B) 85.81 96.49 87.73
FCSLM (Qwen-32B) 86.10 96.91 87.55
FCSLM (Qwen-72B) 87.66 97.00 87.73

Table 9: 5-shot accuracy (%) across different LLM sizes
on three datasets.

To assess how LLM size affects reasoning per-
formance, we used three versions of the Qwen2.5
model with different parameter scales (Qwen-
14B (Yang et al., 2024), Qwen-32B (Yang et al.,
2024), and Qwen-72B (Yang et al., 2024)) as the
reasoning module within the FCSLM framework.
As shown in Table 9, FCSLM consistently demon-
strates strong performance across all model sizes



and datasets. These results indicate that FCSLM ex-
hibits good adaptability to LLMs of different sizes:
even when using the smaller Qwen-14B model, the
achieved performance significantly surpasses the
corresponding standalone LLM baseline, and out-
performs the currently published state-of-the-art
methods on all three datasets (see Table 1). In ad-
dition, we observed that as the size of the LLM
increases, the performance gains tend to plateau.
This suggests that FCSLM effectively mitigates
the reliance on extremely large models, enabling
small and medium-sized models to perform seman-
tic discrimination efficiently. In summary, FCSLM
achieves a favorable balance between performance
and resource cost, and demonstrates strong poten-
tial for practical deployment.

E.2 Additional Experiments on CIR

Method B-O0OS Banking Credit Cards
20% 89.33 89.41 70.58

FCSLM 50% 85.88 81.36 69.48
100% 81.74 74.39 67.95
20% 87.06 85.19 66.68

E%S&I\};[ 50% 84.79 78.15 65.53
100% 80.61 72.67 62.40

Table 10: Ablation results (F1 score only) across dif-
ferent top-K values on three domains. CARS w/o
CIR denotes the variant without the candidate intent re-
ranking mechanism. Bold indicates the best, underline
the second-best.

Table 10 presents the ablation study on the can-
didate intent re-ranking mechanism (CIR). We ob-
serve that removing CIR leads to a decrease in
Flpps, indicating that CIR effectively enhances
the model’s ability to identify OOS samples and
improves the overall detection performance.

F Prompt Design

F.1 LLM-based Paraphrasing Prompt Design
Prompt: LL.M-based Paraphrasing (LP)

~

sentence:

Task:

Please generate one alternative sentence
that expresses the same meaning.

Please answer the new sentence directly and
do not answer any other content.
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F.2 Query Augmentation with Trimming
Prompt Design

We instruct the LLM to generate 20 examples for
each intent class.

a '

Prompt: Query Augmentation with Trim-
ming (QAT)

Intent Name:
Few-Shot Queries:

Task:

You are tasked with augmenting training
data for intent classification.

Based on the few-shot examples above,
generate 20 new user queries that express
the same intent.

Output:

Return exactly 20 new sentences, each on a
new line, with no bullet points, numbering,
or extra text.

.

F.3 BADA Prompt Design For Zero-shot

a N\

Prompt: Augmentation for zero-shot

Intent Name:

Task:

You are tasked with augmenting training
data for intent classification.

Generate 20 new user queries that ex-
press the same intent.

Output:

Return exactly 20 new sentences, each on a
new line, with no bullet points, numbering,
or extra text.




Prompt: Discriminative Augmentation
for zero-shot

Intent List: {

}.
Task:
There are the above-mentioned intents that
are not easy to distinguish in dialogue sys-
tem.
You are tasked with augmenting training
data for intent
Generate 20 new user queries that express
the same intent.
The generated queries should be close to
confusing intentions so that the model
can obtain samples that can distinguish
confusing relationships.
Output:
Return exactly 20 new sentences, each on a
new line, with no bullet points, numbering,
or extra text.

F.4 Label Augmentation Prompt Design

( Prompt: Label Augmentation (LA)

Intent Name:
Few-Shot Queries:

Task:

Rephrase the label based on the provided
intent label and its example list to accu-
rately reflect the user’s intent.

You must retain all original label words and
incorporate more specific description to en-
sure the label is clear, accurate, unambigu-
ous, and specific, with words separated by
spaces.

Do not directly add the words in the exam-
ple to the newly generated intent.

.

F.5 DIDG Prompt Design

f Prompt: Discriminative Intent Descrip-

tion Generation

N\

Prompt: Boundary Augmentation for
zero-shot

Intent List: {

}.
Task:
There are the above-mentioned intents that
are not easy to distinguish in my dialogue
system.
You are tasked with augmenting training
data for intent
Generate 20 new user queries that express
the same intent.
Please reconsider the differences between

and other intent.

Output:
Return exactly 20 new sentences, each on a
new line, with no bullet points, numbering,
or extra text.
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Intent Name: { }
few-Shot Queries: ...
Intent Name: {

}

few-Shot Queries: ...

The above are several easily confused in-
tents and their few-shot query examples.
You must create a unique description for
each intent.

Make the description that encompasses the
provided few-shot queries.

Also, don’t use the given use cases exam-
ples of intent for the description.

Make the descriptions no longer than 15
words.

Return your output as a JSON object with
this format:

{ "intent_name_1": "description",
"intent_name_2": "description”, ... }

DO NOT include any extra explanations or
text outside the JSON format.




F.6 Second Round Prediction Prompt Design

r

Prompt: Second Round Prediction

N\

\

Query:

Here are the intents with their descriptions
and examples:

Intent:

Description:

Example:

Intent:
Description:

Example:

Please select the most suitable intent from
the intent list based on the intent describe
and intent query example.

Please answer the intent name directly

F.7 Third Round Prediction Prompt Design

7

Prompt: Third Round Prediction

N\

Query:

A model has predicted that the query is
likely related to intent ,
but it could also belong to intent

Please do not decide based solely on the
model’s prediction.

Carefully analyze the semantics of the
query.

Here are some example queries for each
intent:

Intent:

Example:

Intent:

Example:

Step by step, compare the query with both
intents and decide which one aligns better
semantically.

Finally, answer this question: Is
’ > more suitable as the intent
of the query than’ s
Just reply with ’yes’ or 'no’, without any
other text.
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