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Abstract001

Few-shot intent detection (FSID) targets the002
classification of user queries into in-scope in-003
tent categories or detecting them as out-of-004
scope, with only a few or even zero labeled005
examples per class. Existing PLM-based meth-006
ods struggle in low-resource situations; while007
LLM-based methods face high inference cost008
and label interference. To harness their com-009
plementary strengths, we propose the FCSLM,010
a framework that collaborates a small predic-011
tion model with a large language model for012
the FSID task. During training, we leverage013
LLMs for data augmentation in self-supervised014
pretraining and supervised fine-tuning a task-015
specific prediction model. During inference,016
a multi-round reasoning process first applies017
the small prediction model to output candidate018
intents with uncertainty estimations, then in-019
vokes an LLM with enriched intent descrip-020
tions for refined prediction and OOS detec-021
tion. Extensive experiments on three bench-022
mark datasets demonstrate that our FCSLM023
outperforms strong competitors, achieving the024
new state-of-the-art performance in both intent025
classification and OOS detection.026

1 Introduction027

Intent detection is a core task in dialogue systems,028

aiming to interpret a user query and classify it into029

one of the predefined intent categories, or out-of-030

scope (OOS). In real-world scenarios, as manual031

annotation is costly, training data is scarce and few-032

shot intent detection (FSID) has recently become a033

central focus. The FSID task aims to classify a user034

query x into a predefined intent category y ∈ Y ,035

or detect it as out-of-scope (OOS), given only a036

limited number of labeled training examples per037

in-scope intent.038

For the FSID task, fine-tuning pre-trained lan-039

guage models (PLMs) have long been a dominant040

approach (Zhang et al., 2021a, 2023, 2025). Their041

semantic modeling capabilities have been further042

enhanced by recent advances in self-supervised 043

pretraining and contrastive learning (Zhang et al., 044

2021a; Yehudai et al., 2023; Singhal et al., 2023). 045

However, the performance of PLM-based models 046

is not satisfactory due to the data scarcity when 047

training a model. This issue becomes particularly 048

pronounced in OOS detection (Zhang et al., 2021b), 049

where a PLM-based model needs to first accurately 050

classify in-scope queries, and then reject out-of- 051

scope inputs. 052

With the rapid development of large language 053

models (LLMs), recent studies have explored 054

instruction-tuned LLMs for direct intent classifi- 055

cation, typically adopting a full-label enumeration 056

strategy in which all intent labels and examples 057

are included into an input prompt (Zhang et al., 058

2023; Lin et al., 2023). While LLMs demonstrate 059

strong detection capabilities under low-resource 060

conditions, they also encounter several practical 061

challenges. First, real-world applications often in- 062

volve a large number of intent categories, lead- 063

ing to long prompt sequences and high inference 064

costs. Second, when semantic boundaries between 065

intent categories are ambiguous, LLMs are prone 066

to confusing similar intents, resulting in degraded 067

discriminative capabilities even worse than PLM- 068

based models. This issue is especially evident in 069

OOS detection, where LLMs tend to misclassify 070

OOS queries as in-scope (IS) when their semantics 071

are close to a known intent category. Moreover, the 072

full-label enumeration strategy inherently increases 073

label-space interference, further raising the likeli- 074

hood of an OOS query being incorrectly assigned 075

to an IS intent category. 076

The existing studies indicate that PLMs and 077

LLMs exhibit complementary strengths yet also 078

respective limitations in the FSID task. Those su- 079

pervised PLM-based models retain high inference 080

efficiency and stable performance even under large 081

label spaces. In contrast, those LLM-based ap- 082

proaches excel in scenarios with fewer candidate 083
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intents, where their semantic reasoning capabilities084

can be well leveraged with lower inference cost and085

reduced label interference. This suggests that using086

a single technique, i.e., PLM or LLM, is often insuf-087

ficient to balance the detection efficiency of a small088

model and the semantic inference of a large model.089

Furthermore, achieving reliable OOS detection re-090

mains a significant challenge for either PLM-based091

or LLM-based approaches. These considerations092

motivate us to reexamine the capabilities and roles093

of a small PLM-based model and a large language094

model for the FSID task, calling for an effective095

collaboration between a small and a large model in096

both offline training and online reasoning phase.097

Motivated from the aforementioned considera-098

tions, we propose a framework for collaborating a099

small prediction model with a large language model100

for the FSID task, called FCSLM. The basic idea is101

to exploit the complementary capabilities of PLMs102

and LLMs in different task phases. The execution103

logic is to first train and use a task-specific predic-104

tion model (PM) to output a set of candidate intents105

for a query, and then employ an LLM to further106

discriminate those unconfident candidate intents107

for a final decision.108

The workflow of our FCSLM is divided into the109

offline training and online reasoning phase. We110

propose an offline augmentative training process to111

train a task-specific PM with the help of an LLM112

for data augmentation. The training process in-113

cludes three steps: self-supervised pre-training, su-114

pervised fine-tuning, and multi-predictor sampling.115

We propose an online collaborative reasoning pro-116

cess to output the predicted intent for an input117

query with the collaboration of the task-specific118

PM and an LLM. The reasoning process includes119

three rounds: The first round applies the PM to120

output a set of candidate intents. If they fail the121

confidence test in the first round, the second round122

employs an LLM to distinguish the most suitable123

candidate intent. If the prediction of the LLM dif-124

fers from that of the PM, the third round adopts125

the LLM to perform a second-thought comparative126

reasoning for the final decision. Figure 1 presents127

the FCSLM workflow.128

We conduct experiments on three benchmark in-129

tent detection datasets under 0/5/10-shot settings.130

Results show that our FCSLM achieves the new131

state-of-the-art performance in both intent classifi-132

cation and OOS detection for the FSID task.133

A comprehensive discussion of related work is134

deferred to Appendix A.135

2 Offline Training Phase 136

We propose an offline augmentative training pro- 137

cess (OATP) to train a task-specific prediction 138

model (PM) via LLM-assisted data augmentation. 139

We note that although the FSID task is only with 140

a few labeled samples, it is still possible to train a 141

task-specific PM through data augmentation. Such 142

a task-specific PM can itself execute intent detec- 143

tion and its detection outputs can also complement 144

the reasoning process of an LLM for more confi- 145

dent results. Let Braw denote an off-the-shelf PLM, 146

such as the RoBERTa (Liu et al., 2019). First, 147

we propose to use self-supervised pretraining to 148

train Braw into Bpre, and then to use supervised 149

fine-tuning to train Bpre into Bft. Based on Bft, we 150

design a multi-predictor sampling strategy to obtain 151

a set of prediction heads {Pc}. 152

2.1 Self-supervised Pretraining 153

We design a self-supervised pretraining (SSP) mod- 154

ule to train Braw into Bpre based on a public dataset 155

Dpub, such as SNIPS (Coucke et al., 2018). A 156

sample xi ∈ Dpub is a sentence, such as "add trans- 157

mission to my found them first." 158

To improve the lexical and syntactic diversity of 159

the public dataset, for each input sample xi ∈ Dpub, 160

we use LLM-based paraphrasing (LP) to ask an 161

LLM to generate its paraphrase x′i, maintaining its 162

semantic consistency but differing in the expres- 163

sion. The paraphrase prompt is presented in Ap- 164

pendix F.1. The pairs (xi, x′i) are then used to con- 165

struct the pretraining dataset Dpt = {(xi, x′i)}Ni=1. 166

We first adopt the contrastive training for pretrain- 167

ing and design a contrastive loss as follows: 168

Lcl = − 1

2N

2N∑
i=1

log
exp (sim(xi,x

′
i))∑

xj ̸=xi,x′
i

exp (sim(xi,xj))
, 169

where xi is the encoded representation of xi and 170

sim(·) the cosine similarity function. This design 171

encourages to train a language model to align the 172

original sample with its paraphrase in the represen- 173

tation space while effectively distinguishing other 174

non-synonymous samples, thus improving its se- 175

mantic consistency at the expression level. 176

In addition, to enhance the language understand- 177

ing capability for a language model, we introduce 178

a masked language modeling loss (Zhang et al., 179

2021a; Yehudai et al., 2023). Specifically, we con- 180

catenate xi and its paraphrased x′i using a separator 181

[SEP] to form an input sequence (xi; [SEP];x
′
i), 182
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Figure 1: FCSLM Workflow: (a) Offline Training Phase: It leverages an LLM for data augmentation in training a
task-specific prediction model; (b) Online Reasoning Phase: It applies a multi-round reasoning process to collaborate
the small prediction model and a large language model to output target intent.

and perform random token masking on the con-183

catenated sentence pair. This design leverages the184

semantic consistency between paraphrases by us-185

ing cross-sentence contextual information for the186

language model to predict the masked vocabulary,187

thereby strengthening token-level understanding188

while preserving semantic meaning. The MLM189

loss is defined by190

Lmlm = − 1

M

M∑
m=1

logP (x̂m | x̃m),191

where x̃m denotes the m-th masked token in the in-192

put sequence and x̂m the corresponding true token.193

The loss function of the SSP module is given by194

Lpre = Lcl + λLmlm,195

where λ ∈ [0, 1] is a weighting coefficient balanc-196

ing the contrastive loss and the MLM loss.197

2.2 Supervised Fine-tuning198

We design a supervised fine-tuning (SFT) module199

to train Bpre into Bft based on the FSID task training200

dataset Dtrain. We randomly select k samples with201

the same intent label from Dtrain to form a k-shot202

dataset Dy
few = {(q, y)}k1 , with q the query and y203

the label. We note that Dy
few could be an empty set204

for some intent label, i.e., zero-shot. We propose205

using an LLM to augment queries and labels for206

each few-shot Dy
few and present the augmentation207

approaches for zero-shot dataset in Appendix B.208

We first design an LLM-based query augmen-209

tation with trimming (QAT) to augment queries210

for each Dy
few to obtain an augmented dataset211

Dy
aug = {(q′, y)}. For each intent y, we con- 212

struct a prompt by combining it with the corre- 213

sponding k-shot queries and input this prompt into 214

the LLM to generate additional intent-consistent 215

queries q′. The detailed settings and query augmen- 216

tation prompt is presented in Appendix F.2. 217

We propose a trimming mechanism to control the 218

semantic boundary of Dy
aug by filtering-out some 219

q′ with semantic drift as follows. (1) Encode each 220

qi and q′j into a representation qi and q′
j , respec- 221

tively, by a sentence encoder. (2) For each qi, 222

first calculate a centroid vector excluding itself by 223

ci =
1

k−1

∑
k ̸=i qk, and next compute its distance 224

to the centroid by si = cos(qi, ci). (3) Compute 225

θy = mini(si) as the filtering-out threshold, and 226

compute the category centroid by cy = 1
k

∑
i qi. 227

(4) For each q′
j , compute its distance to the cat- 228

egory centroid by s′j = cos(q′
j , cy). If s′j < θy, 229

then the generated query q′j is regarded as seman- 230

tically misaligned with the intent category, and is 231

filtered-out from Dy
aug. 232

We next design an LLM-based Label Augmenta- 233

tion (LA) to obtain a set of augmented intent labels 234

Yaug based on the original label set Y . An intent 235

label is often with a concise expression by one or 236

a few words, which may not be enough to express 237

contextual semantics of the intent. To enhance 238

the expressiveness of intent labels, we leverage an 239

LLM to conduct label augmentation. For each in- 240

tent y, we construct a prompt by combining it with 241

the corresponding k-shot queries and input this 242

prompt into the LLM to generate a more descrip- 243

tive version of the label. Note that the augmented 244

labels are used to enrich the fine-tuning data, but 245
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do not replace the original intent labels. The label246

augmentation prompt is presented in Appendix F.4.247

We use the standard cross-entropy loss to fine-248

tune Bpre into Bft based on the fine-tuning dataset249

Dft, with an additional linear classification layer250

on top of Bpre. For few-shot cases, the queries of251

Dft are from Y , Yaug, Dfew, Daug, and the back-252

translated and paraphrased versions for queries253

in Dfew; while in zero-shot cases, they are from254

Y and Daug. Details of Dft are presented in Ap-255

pendix D.1.256

2.3 Multi-Predictor Sampling257

We propose a multi-predictor sampling (MPS) mod-258

ule to alleviate the prediction uncertainty of a sin-259

gle language model. This module leverages the260

Bft as a feature extractor and constructs a Bayesian261

linear classifier with parameters (W,b), modeled262

as random variables, from which we draw C sam-263

ples {(Wc,bc)}Cc=1 using the Hamiltonian Monte264

Carlo (HMC) method (Neal et al., 2011), condi-265

tioned on Dft. Each sampled pair defines a distinct266

prediction head Pc. Here, C is set equal to the267

number of intent classes as a design choice.268

3 Online Reasoning Phase269

We propose an online collaborative reasoning pro-270

cess (OCRP), which utilizes both the task-specific271

PM and a LLM to output the target intent y∗ for an272

input query q. In the OCRR, we first use the trained273

PM to make the first round prediction based on a274

multi-head voting mechanism (MVM). If the voting275

is not confident, we next employ an LLM to make276

the second round prediction via an uncertainty res-277

olution mechanism (URM). If the uncertainty still278

exists, we design a comparative prediction mech-279

anism (CPM) to make the third round and final280

prediction. Furthermore, we also design a plug-in281

null intent detection (NID) module to deal with282

out-of-scope scenarios.283

3.1 First Round Prediction284

The first round prediction is based on the task-285

specific PM, namely, Bft and {Pc}. For the input286

query q, the {Pc} outputs a set of intent predic-287

tions {yc}, each corresponding to a prediction head.288

Note that different prediction heads may output the289

same intent category. That is, it is possible yc = yc′290

for c ̸= c′. If an intent is predicted by more predic-291

tion heads, we regard it as of high confidence.292

We sort the predicted intents {yc} according to293

the logit scores provided by Bft in a decreasing or-294

der. Let LK = {(yk, fk)}K1 denote the sorted list 295

of top-K candidate intents, where fk is the nor- 296

malized occurrence frequency of the intent yk. We 297

set K < C, i.e., the number of candidate intents is 298

smaller than the number of intent labels. Note that 299

y1 and y2 are the predicted intents, respectively, 300

with the highest and second-highest logits provided 301

by Bft. The idea for multi-head voting is to check 302

whether the top-1 predicted intent y1 is far more 303

confident than other predictions. To this end, we set 304

two confidence thresholds, α1 and α2. If f1 > α1 305

and f2 < α2, then the top-1 intent y1 is confirmed 306

as the final prediction output y∗, and in this case, 307

we do not perform the second and third round pre- 308

diction. Otherwise, we proceed to the second round 309

prediction with the top-K candidate intents. 310

3.2 Second Round Prediction 311

The second round utilizes an LLM to help resolving 312

the uncertainty of the first round predictions. The 313

basic idea is to check whether the output of an LLM 314

is equivalent to the PM top-1 intent y1. Let yllm 315

denote the intent predicted by the LLM. If yllm = 316

y1, then the top-1 intent y1 is confirmed as the final 317

prediction output y∗, and in this case, we do not 318

perform the third round prediction. Otherwise, we 319

proceed to the third round prediction. 320

The key for an LLM to output an intent lies in the 321

design of an appropriate input prompt. Note that 322

in this round, the available information include the 323

test query q, the top-K predicted intents LK and 324

Dy
few (y ∈ LK). The prompt instruction is to let 325

the LLM select one intent from the LK candidate 326

indents. To further facilitate the LLM reasoning, 327

we propose to first generate a kind of discrimina- 328

tive intent descriptions for all intents, and each 329

candidate intent is attached its corresponding de- 330

scription to enrich the input prompt. The design 331

objective of description generation is to establish 332

clear semantic boundaries between one intent and 333

others. Appendix C details the discriminative in- 334

tent description generation (DIDG) module, and 335

Appendix F.6 details the template for the input 336

prompt in the second round. 337

3.3 Third Round Prediction 338

The third round is to further select which one of 339

the yllm and y1 as the final prediction y∗. Note that 340

although the yllm is different from y1 in the second 341

round, we cannot consider y1 a worse choice, as 342

it holds the highest logit score among the candi- 343

date intents. We again utilize an LLM to make a 344
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kind of comparative prediction by evaluating some345

semantic evidences to prefer yllm or y1. Example346

semantic evidences include the prediction of the347

top-1 intent y1 made by Bft and the few-shot query348

examples corresponding to yllm and y1. The details349

of the input prompt for comparative prediction are350

provided in Appendix F.7.351

3.4 Dealing with OOS scenarios352

Our OCRF can be directly applied to out-of-scope353

scenarios, that is, an input query can be detected as354

with a null intent (none of the existing intents). Pre-355

vious OOS detection approaches directly include356

a null label into the existing intent label set. As357

reported in (Wang et al., 2024; Arora et al., 2024),358

with the increase of existing intent labels, such ap-359

proaches would degrade the OOS detection perfor-360

mance. In contrast, we propose to include the null361

intent together only with the top-K detected intents362

in the second round prediction, thereby avoiding363

the use of the full set of existing intent labels.364

The proposed NID for OOS scenarios is a plug-365

in module to be used only in the second round366

prediction. Based on the PM output LK in the first367

round, the first step is to append the null intent after368

the K candidate intents into the input prompt. If the369

LLM selects the null intent as its output, then the370

final prediction is made and the whole procedure371

ends. Otherwise, we introduce a candidate intent372

re-ranking mechanism (CIR), that is, the second373

step is to first reorder the K candidate intents in374

the increase order of their logits scores provided by375

the Bft and then repeat the first step to obtain the376

LLM decision, so as to mitigate the LLM sensitivity377

to the intent order in the prompt and prevent it378

from misclassifying null intent queries as in-scope379

queries. If the LLM does not output the null intent,380

then this query is not regarded as OOS and the381

prediction proceeds to the third round as usual.382

4 Experiment Settings383

Datasets: We conduct experiments on three widely384

used datasets: BANKING77 (Casanueva et al.,385

2020), CLINC150 (Larson et al., 2019), and386

HWU64 (Liu et al., 2021). They cover typical dia-387

logue system scenarios, such as banking services,388

and voice assistants. Based on these datasets, we389

construct k-shot (k ∈ {0, 5, 10}) experiment set-390

tings as follows: k training samples are randomly391

selected from each intent class, and the original full392

test set is retained for evaluation.393

Competitors: The first group of competitors 394

contains pure PLMs (RoBERTa (Liu et al., 2019) 395

and RoBERTa(SSP) (Liu et al., 2019)) and pure 396

LLM Qwen2.5-72B (Yang et al., 2024)). The 397

second group contains several the state-of-the-art 398

methods, including QAID (Yehudai et al., 2023), 399

CPFT (Zhang et al., 2021a), PLE (Li et al., 2022), 400

DFT++ (Zhang et al., 2023), INTENDD (Singhal 401

et al., 2023), ICDA (Lin et al., 2023), ZeroGen (Ye 402

et al., 2022), CoDa (Evuru et al., 2024), Prompt- 403

Mix (Sahu et al., 2023), and CUC (Zhang et al., 404

2025). 405

Metrics: Following (Zhang et al., 2025; Singhal 406

et al., 2023; Zhang et al., 2021b), we adopt the 407

following performance metrics: Accuracy, OOS 408

Precision, Recall and F1. 409

Appendix D provides all the details on all exper- 410

iment settings. 411

5 Experiment Results 412

5.1 Main Results 413

We adopt the RoBERTa (Liu et al., 2019) for the 414

PM component and Qwen2.5-72B (Yang et al., 415

2024) for the LLM component. In the first round 416

prediction, we set uncertainty thresholds α1 = 0.5 417

and α2 = 0.025. For the 0-shot case, we use top- 418

70% candidate intents, and top-10% for the 5-shot 419

and 10-shot cases. Section 5.4 experiments the 420

choices of the top-K candidate intents. 421

Table 1 presents the intent detection results on 422

three benchmark datasets. Our FCSLM signifi- 423

cantly outperforms those existing PLM-based and 424

LLM-based competitors in all cases, achieving the 425

new state-of-the-art results. 426

In the 0-shot scenario, the LLM baseline 427

(Qwen2.5-72b) performs relatively well, mainly 428

due to its powerful semantic comprehension capa- 429

bility acquired through large-scale pretraining. In 430

contrast, those PLM-based models, lacking task- 431

specific training examples, struggle to effectively 432

distinguish semantic differences in between intents, 433

resulting in significantly lower performance. 434

In the 5-shot and 10-shot scenarios, the perfor- 435

mance of LLMs slightly declines as the number 436

of training examples increases. This is attributed 437

to the full-label enumeration strategy, which sub- 438

stantially lengthens the input prompt with all in- 439

tent labels, resulting in more semantic redundancy 440

and contextual noise in its inferences. This phe- 441

nomenon highlights the importance of our pro- 442

posed top-K candidate intent selection strategy: 443
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Method BANKING77 CLINC150 HWU64

0 5 10 0 5 10 0 5 10

RoBERTa (Liu et al., 2019) 1.14 64.58 81.59 2.29 81.89 90.51 1.86 69.24 79.83
RoBERTa(SSP) (Liu et al., 2019) 9.55 72.82 82.99 14.73 87.40 91.67 10.32 75.19 83.18
Qwen2.5-72b (Yang et al., 2024) 74.48 81.27 80.65 90.04 94.84 93.84 83.64 86.52 86.43

PLE (Li et al., 2022) - 74.90 79.09 - 88.70 91.20 - 76.46 80.36
DFT++ (Zhang et al., 2023) - 78.90 86.14 - - - - 79.93 86.21
QAID (Yehudai et al., 2023) - 85.25 88.83 - 93.41 94.64 - 85.52 87.98
INTENDD (Singhal et al., 2023) - 85.34 89.62 - 93.52 94.71 - 84.11 88.37
ICDA-XL (Lin et al., 2023) - 83.90 89.79 - 92.62 94.84 - 82.45 87.41
CPFT (Zhang et al., 2021a) 48.63 80.86 87.20 53.11 92.34 94.18 55.41 82.03 87.13
ZeroGen (Ye et al., 2022) 48.41 74.52 84.81 53.26 88.46 91.56 47.84 77.69 84.76
CoDa (Evuru et al., 2024) 58.12 79.72 85.98 66.08 90.41 92.08 59.34 78.69 85.02
PromptMix (Sahu et al., 2023) 75.37 81.43 86.13 74.27 91.68 92.10 74.55 81.91 85.20
CUC (Zhang et al., 2025) 75.26 84.41 89.67 75.63 93.20 94.75 75.05 82.54 87.51

Our FCSLM
(RoBERTa+Qwen2.5-72b)

76.98 87.66 90.23 90.18 97.00 97.09 83.83 87.73 89.03
(+1.61) (+2.32) (+0.44) (+0.14) (+2.16) (+2.25) (+0.19) (+1.21) (+0.66)

Table 1: Few-Shot Intent Detection Accuracy (%) under 0/5/10-shot settings for three benchmark datasets, The best
results are highlighted in bold, and the second-best results are underlined. For FCSLM, the relative improvements
over the second-best results are respectively reported in parentheses.

The small PM model significantly narrows the la-444

bel space for the LLM, which effectively reduces445

token overhead and inference complexity for its446

inference. In contrast, those PLM-based models ex-447

hibit performance improvements with the increase448

of labeled training samples, showing their capa-449

bilities of capturing semantic boundaries with the450

increase of labeled examples.451

In short, our FCSLM effectively leverages the452

complementary strengths of PLMs and LLMs, de-453

livering stable performance gains under different454

data conditions. Specifically, our FCSLM uti-455

lizes the small task-specific PM to handle high-456

confidence predictions, while delegating only un-457

certain cases to the LLM for further jurisdiction.458

This collaborative design not only adapts to varying459

levels of data resources, but also achieves a favor-460

able trade-off between performance and efficiency.461

5.2 Ablation Study462

Table 2 presents the ablation study results on the463

three datasets in the 5-shot scenario. Our FCSLM464

collaborates a small and a large model in both the465

training and reasoning phase. In the training phase,466

the SSP and QAT modules leverage an LLM to467

generate augmented data for training the PM com-468

ponent, by which the quality of candidate intents469

supplied by a PM can be improved, in turn helping470

the LLM for decision in the reasoning phase.471

In the reasoning phase, the use of CMP module472

enables the LLM to perform another round of more473

cautious reasoning when its initial prediction is in-474

Method BANKING77 CLINC150 HWU64

FCSLM 87.66 97.00 87.73
w/o SSP 86.69 96.42 86.90
w/o QAT 86.36 96.58 86.43
w/o CPM 86.46 96.87 86.71
w/o LLM 83.25 93.76 82.53
w/o SSP&LLM 81.10 92.71 83.09
w/o QAT&LLM 78.99 92.31 80.76

Table 2: Ablation study of our FCSLM on intent detec-
tion accuracy (%) in the 5-shot scenario.

consistent with that of the PM; while the CSLMP 475

w/o CPM will take the LLM prediction as the out- 476

put without proceeding to the third round, losing a 477

second-thought chance. 478

We note that if no LLM is used in the reasoning 479

phase (i.e., w/o LLM), and no LLM is used for 480

data augmentation in the offline phase (i.e., w/o 481

SSP&LLM and w/o QAT&LLM), the performance 482

is significantly degraded. This again indicates the 483

importance of collaborating a large model (LLM) 484

with a small model (PM) in both the reasoning and 485

training phase for the FSID task. 486

5.3 Online Reasoning Analysis 487

Table 3 presents the result-per-round statistics for 488

the online reasoning procedure in the 5-shot sce- 489

nario. We have some interesting observations. We 490

take the BANKING77 datatset for the following 491

discussions, and similar observations and discus- 492

sions can be applied to the other two datasets. 493

The online reasoning of our FCSLM includes 494

three consecutive rounds. It can reject the predic- 495
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Dataset Stage Status Count Correct Acc (%)

BANKING77
(3080)

Round 1
(3080)

Passed 1380 1327 96.16
Left 1700 1237 72.76
Stop 3080 2564 83.25

Round 2
(1700)

Passed 1233 1095 88.81
Left 467 241 51.61
Stop 3080 2663 86.46

Round 3
(467)

Passed 467 278 59.53
Finish 3080 2700 87.66

CLINC150
(4500)

Round 1
(4500)

Passed 3338 3315 99.31
Left 1162 904 77.80
Stop 4500 4219 93.76

Round 2
(1162)

Passed 905 862 95.25
Left 257 182 70.82
Stop 4500 4359 96.87

Round 3
(257)

Passed 257 188 73.15
Finish 4500 4365 97.00

HWU64
(1076)

Round 1
(1076)

Passed 496 491 98.99
Left 580 397 68.45
Stop 1076 888 82.53

Round 2
(580)

Passed 410 358 87.32
Left 170 84 49.41
Stop 1076 933 86.71

Round 3
(170)

Passed 170 95 55.88
Finish 1076 944 87.73

Table 3: Prediction accuracy (%) at each inference round
in the 5-shot setting using Qwen2.5-72B.

tion for some testing queries but forward them to496

the 2nd round. In the BANKING77 datatset, there497

are in total 3080 testing queries, among which 1380498

queries are made the final decision in the 1st round,499

and the rest 1700 queries are rejected for prediction.500

In contrast, we can also stop the whole online rea-501

soning just by the first round via setting the top-1502

candidate intent as the final decision. Similarly, the503

online reasoning can also stop just after the first504

two rounds, that is, take yllm by the LLM as the505

final decision.506

Those queries that have been rejected in the first507

two rounds are kind of hard ones. Observing the508

accuracy of the ’passed’ row in the table, the ac-509

curacies of predicted queries are 96.16%, 88.81%510

and 59.53%, respectively, in the 1st, 2nd and 3rd511

round. Insisting on predicting those hard queries512

in the current round results in lower accuracy. Ob-513

serving the accuracy of the ’left’ row, the accuracy514

for those hard queries is 72.76%, lower than that515

of easy ones, i.e., 96.16% in the 1st round.516

The multi-round collaborative reasoning of our517

FCSLM can effectively improve the overall pre-518

diction performance. We compare the accuracy519

87.66% in the ’finish’ row with those in the two520

’stop’ rows. The accuracy of 83.25% of the ’stop’521

row in the 1st round represents only using the task-522

specific PM for prediction, and the 86.47% repre-523

sents using the LLM to collaborate with the PM524

for further predicting those hard queries in the 1st525

round. The accuracy comparison of 87.66% over526

86.46% and 86.46% over 83.25% clearly support 527

our design objective of collaborating small and 528

large model for improving prediction performance. 529

5.4 Candidate Intent Analysis 530

Figure 2 plots the prediction accuracy and token 531

cost against the choice of candidate intent percent- 532

age, i.e., top-K. Recall that the parameter K con- 533

trols the number of intents to be integrated into the 534

input prompt for the LLM in the 2rd round reason- 535

ing phase. From the results, it can be first observed 536

that using all intents as candidates is not a wise 537

choice. The prediction accuracy is not the best, 538

yet the token cost is the highest. Recall that the 539

prompt includes the descriptions of all candidate 540

intents. So the more candidate intents, the more 541

input tokens. We next can observe that a higher 542

accuracy is often achieved for K in the range of 543

10% − 50%, with moderate token costs. This is 544

a good news. It indicates that using a subset of 545

high-quality candidate intents can help reducing 546

the inference difficulty for an LLM, as generally 547

the more the choices, the more difficult of a selec- 548

tion. 549

5.5 Out-of-Scope detection 550

Table 4 compares the OOS detection performance 551

of our FCSLM with the existing competitors deal- 552

ing with the OOS cases. The OOS datasets are 553

detailed in Appendix D.6. 554

The pure LLM baseline (Qwen2.5) demonstrates 555

relatively high OOS precision (Poos) but signifi- 556

cantly lower OOS recall (Roos), primarily due to 557

its use of a full-label enumeration strategy. Since 558

the LLM is required to choose from all in-scope 559

intent labels plus a null label, many OOS queries 560

that are semantically close to existing intents tend 561

to be misclassified as in-scope, thus weakening 562

the model’s rejection capability. Conversely, when 563

a query is semantically distant from the in-scope 564

space, the LLM is more likely to assign it to the 565

null label, resulting in higher precision. In con- 566

trast, traditional fine-tuned PLM methods (Zhang 567

et al., 2021b) often achieve higher OOS recall at 568

the expense of relative lower precision, resulting in 569

overall lower F1 performance. 570

Our FCSLM achieves the best F1oos perfor- 571

mance by the collaborative reasoning mechanism. 572

Notably, OOS queries are more likely to trigger 573

uncertain predictions of a task-specific PM. The 574

PM will forward the uncertain predictions to an 575

LLM, yet in most cases, with reduced candidate 576
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Figure 2: Impact of Top-k ratio (x-axis) on Accuracy (left y-axis, %) and Token Cost (right y-axis) across three
datasets under 0-shot, 5-shot, and 10-shot settings.

Model BANKING77-OOS Banking Credit Cards

Roos Poos F1oos Roos Poos F1oos Roos Poos F1oos

Qwen2.5 62.57 97.33 76.06 42.57 99.33 59.70 46.02 85.10 59.68

CL(ALBERT) (Zhang et al., 2021b) 86.3 57.9 69.87 75.9 55.8 64.54 89.5 39.8 55.00
CL(BERT) (Zhang et al., 2021b) 81.8 70.8 76.00 76.5 68.1 72.12 90.9 41.3 56.58
CL(ELECTRA) (Zhang et al., 2021b) 89.4 65.1 75.26 75.8 67.1 71.29 87.5 43.0 57.61
CL(RoBERTa) (Zhang et al., 2021b) 78.4 78.6 78.50 86.8 63.3 72.75 83.1 46.3 59.52
CL(ToD-BERT) (Zhang et al., 2021b) 75.8 69.4 72.45 72.3 61.1 66.45 82.7 43.8 57.34

FCSLM
(Top-K)

20% 86.00 92.90 89.33 84.00 96.39 89.41 59.44 86.87 70.58
(+10.83) (+16.66) (+10.90)

50% 79.71 93.00 85.88 70.57 97.24 81.36 58.43 86.44 69.48
100% 72.86 94.10 81.74 60.57 97.25 74.39 58.06 82.72 67.95

Table 4: Comparison of OOS detection results. We report OOS recall (Roos), precision (Poos), and F1 score (F1oos).
The best F1oos results are highlighted in bold, and the best competitors’ results are underlined. For FCSLM@20%,
the relative improvement over the best competitors’ results are respectively reported in parentheses.

intents and labels for the LLM making decisions.577

This helps ensuring high detection precision while578

exhibiting strong recall performance. In addition,579

it can be observed that the F1oos of our FCSLM580

suffers from the increased number of top-K can-581

didate intents. Notice that 100% candidate intents582

means to use all available intents, which often583

leads to much expanded label space for LLM infer-584

ence in the second round. This observation further585

confirms the effectiveness of the top-K candidate586

mechanism in narrowing the label space for reduc-587

ing LLM inference difficulty.588

6 Conclusion589

This paper has proposed a collaborative framework,590

called FCSLM, for the FSID task, which effectively591

enhances intent classification and out-of-scope de-592

tection by collaborating the strengths of a small593

prediction model and a large language model. In594

the training phase, the FCSLM leverages LLMs to595

generate for high-quality augmented data for self-596

supervised pretraining and supervised fine-tuning 597

a task-specific prediction. In the inference phase, a 598

multi-round collaborative reasoning mechanism is 599

introduced to utilize the complementary inference 600

capabilities of the small prediction model and a 601

large language model. Extensive experiments on 602

three benchmark datasets have shown that our FC- 603

SLM outperforms the state-of-the-art competitors 604

in both intent classification and OOS detection per- 605

formance. Further evaluations (see Appendix E.1) 606

reveal that our FCSLM maintains strong compati- 607

bility with LLMs of varying parameter sizes, high- 608

lighting both the effectiveness of its collaborative 609

design and its potential for practical deployment. 610

Future work will focus on further improving 611

OOS detection by deeply mining the capabilities 612

of both small and large models, while preserving 613

in-scope intent classification performance. 614
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Limitations615

In zero-shot scenarios, the absence of real few-616

shot queries makes it difficult to clearly convey the617

semantic meaning of intents. As a result, the LLM618

lacks sufficient semantic grounding labels when619

generating more training data, which hinders the620

PLM’s ability to learn the semantic distinctions621

between intents.622

Ethics Statement623

This paper has no particular ethic consideration.624
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A Related Work764

A.1 Few-Shot Intent Detection765

In real-world applications, the frequent emergence766

of new intents and the scarcity of annotated data767

make few-shot intent detection a critical research768

focus. Recent studies in this field have evolved769

along three primary directions. The first line of770

work explores how to fine-tune PLMs under low- 771

resource settings, enhancing their semantic model- 772

ing capabilities through techniques such as unsuper- 773

vised pretraining and contrastive learning (Zhang 774

et al., 2021a; Yehudai et al., 2023; Singhal et al., 775

2023). The second direction leverages large lan- 776

guage models (LLMs) as data generators, utilizing 777

their strong generalization ability to augment train- 778

ing samples, followed by downstream training on 779

PLMs (Zhang et al., 2023; Lin et al., 2023; Zhang 780

et al., 2025). The third and most recent approach 781

introduces LLMs directly into the inference stage, 782

exploiting their natural language reasoning capabil- 783

ities for few-shot or zero-shot intent classification. 784

These methods have demonstrated strong gener- 785

alization (Zhang et al., 2024a; Arora et al., 2024). 786

Although each of these approaches addresses differ- 787

ent aspects of the task, they generally fail to fully in- 788

tegrate the complementary strengths of PLMs and 789

LLMs. In particular, methods that employ LLMs 790

for inference often rely on a full-label enumeration 791

strategy, where the model is required to choose 792

from the entire set of intent labels. This strategy 793

incurs high computational costs and is suscepti- 794

ble to interference from the label space, thereby 795

undermining inference stability and accuracy. 796

A.2 OOS Detection 797

Early OOS detection methods are typically trained 798

based on traditional classifiers and use the max- 799

imum softmax probability or entropy as a rejec- 800

tion score (Larson et al., 2019). Subsequently, re- 801

searchers proposed distance-based methods, con- 802

structing the semantic distribution of samples 803

in embedding space and computing the distance 804

between the input and known class centers or 805

prototypes to determine whether the input is 806

OOS (Ni’mah et al., 2021). These methods provide 807

some geometric interpretability but remain insuf- 808

ficient in scenarios with fuzzy class boundaries 809

and high semantic overlap. Further works (Zhou 810

et al., 2021; Zhang et al., 2024b) introduced regu- 811

larization designs to compress the distribution of In- 812

Scope representations, making In-Scope samples 813

form more compact clusters in the semantic space, 814

thereby enhancing the ability to distinguish OOS 815

inputs and improving inter-class discriminability. 816

However, most of the above methods assume 817

access to abundant training samples, which lim- 818

its their transferability to the low-resource setting 819

commonly found in real-world applications—i.e., 820

where only a few known intent samples are avail- 821
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able and no OOS data is provided. Under this822

condition, achieving high-quality OOS detection in823

an unsupervised manner becomes a key challenge.824

Moreover, Zhang et al. (Zhang et al., 2021b) di-825

vide open-domain intent detection into two types:826

In-Domain OOS (ID-OOS) and Out-of-Domain827

OOS (OOD-OOS), and conduct few-shot experi-828

ments under the ID-OOS setting using a discrimi-829

native nearest-neighbor classification method com-830

bined with deep self-attention mechanisms (Zhang831

et al., 2020). Although this method improves OOS832

rejection capability, it comes at the cost of signif-833

icantly reduced In-Scope intent recognition accu-834

racy. The authors point out that even under the835

In-Domain OOS setting, few-shot OOS detection836

still faces considerable challenges.837

B Boundary-Aware Data Augmentation838

To further improve the model’s discrimination839

ability under zero-shot conditions, we design a840

boundary-aware data augmentation (BADA) strat-841

egy. Traditional LLM-based augmentation typi-842

cally generates synonyms based on original sam-843

ples. However, in settings with insufficient guid-844

ance and fine-grained intent distinctions, the LLM845

may inadvertently cross semantic boundaries dur-846

ing generation, extending a sample from one cate-847

gory into a region semantically close to another,848

leading to confusion and degrading the perfor-849

mance of the pre-trained language model. To ad-850

dress this issue, we construct a confusion intent set851

for each category y in the vector space, based on852

semantic similarity across categories. Specifically,853

we compute vector representations for all intent la-854

bels and calculate cosine similarity between them.855

From each category’s perspective, we select a set856

of non-matching labels whose similarity is below857

a threshold (cosine similarity < 0.6), forming the858

potential confusion set {yc1, yc2, ..., ycm}. This con-859

fusion set is then incorporated into the prompt to860

guide the LLM in focusing on semantic boundaries861

during generation, thus producing more discrimi-862

native samples. In addition to the original augmen-863

tation strategy, we design two types of augmented864

samples: one type aims to enhance inter-category865

distinctiveness by prompting the LLM to gener-866

ate expressions that clearly distinguish confusing867

categories; the other type simulates samples that868

are semantically close to confusing categories but869

still clearly belong to the current category, help-870

ing the model remain accurate in boundary-blurred871

situations. 872

All sentence representations in augmentation ap- 873

proaches are generated using the pre-trained sen- 874

tence encoder all-MiniLM-L6-v2. We instruct the 875

LLM to generate 20 examples for each intent class 876

under each type of augmented sample. The aug- 877

mentation prompt is presented in Appendix F.3. 878

C Discriminative Intent Description 879

Generation 880

DIDG identifies confusion patterns between differ- 881

ent intents and constructs differentiated expressions 882

based on this, thereby generating more discrimi- 883

native semantic descriptions to assist downstream 884

LLMs in making more accurate judgments during 885

the intent detection phase. 886

The core process of DIDG consists of two stages. 887

First, we use the LLM to generate a general intent 888

description for each intent by leveraging its ex- 889

ample samples, which serves as a basic semantic 890

understanding of the intent category. Then, we 891

use the LLM to automatically predict intents for 892

all samples in Dy
few by leveraging both the intent’s 893

example samples and its general description, and 894

record the consistency between the model’s outputs 895

and the true labels. By analyzing all misclassified 896

samples, we construct the corresponding confusion 897

intent set {yc1, yc2, ..., ycm} for each target intent y, 898

i.e., the categories that are most easily confused 899

during actual reasoning. 900

Next, we input the target intent and its confusion 901

set into the LLM to construct a prompt contain- 902

ing contrastive context, asking the model to gener- 903

ate a highly differentiable intent description. The 904

generated discriminative intent description directly 905

serves as a complementary explanation to the gen- 906

eral description. The final intent descriptions are 907

cached and used as auxiliary semantic prompts in 908

the LLM-based judgment stage. The DIDG prompt 909

is presented in Appendix F.5. 910

D Detailed Experiment Settings 911

D.1 Datasets Used in the SFT Phase 912

Table 5 shows example queries for the 913

atm_support intent in Dft. We use the Mar- 914

ianMT models (Junczys-Dowmunt et al., 2018) for 915

back-translation. 916

D.2 Datasets Used in the SSP Phase 917

Table 6 shows the statistics of the five datasets used 918

in the SSP phase. To ensure fairness in the few-shot 919
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Original Intent Label
atm_support

Label-Augmented Intent Label
atm location and acceptance inquiry

Few-shot Examples
where can i withdraw money from?
which atms accept this bill of fare ?
tell me what atms take this card.
tell me what atms use this card.
can i use my card to withdraw from my account?

Back-translated Examples
Where can I get the money?
Who accepted this fare?
Tell me what atms has on this card.
Tell me what atms is with this card.
Can I use my card to get it out of my account?

LLM-Paraphrase (LP) Examples
What’s the closest place I can get cash from?
Which ATMs will take this type of currency?
Which ATMs are compatible with this card?
Where are the nearest ATMs that work with this card?
Can I withdraw funds from my account using this card?

Query Augmentation with Trimming (QAT) Examples
I need to find an ATM that works with my bank.
Which ATMs will let me withdraw cash using my card?
How do I find ATMs that accept my card?
Is it possible to use my card at all ATMs?
Can you help me find an ATM that accepts this card?
...

Table 5: Examples in Dft for atm_support.

Dataset Utterance Intent Domain
CLINC150 (Larson et al., 2019) 18200 150 10
BANKING77 (Casanueva et al., 2020) 10162 77 1
HWU64 (Liu et al., 2021) 10030 64 21
SNIPS (Coucke et al., 2018) 13084 5 -
ATIS (Tur et al., 2010) 4478 21 -

Table 6: Statistics of datasets used in SSP.

experiments, we remove the target dataset from the920

pre-training corpus in each evaluation task. For ex-921

ample, when evaluating on BANKING77, no train-922

ing samples from BANKING77 are included in the923

pre-training stage. This setup ensures that CARS’s924

generalization to target few-shot tasks stems en-925

tirely from the modeling capabilities of the frame-926

work itself, rather than from any leakage of extra927

training resources. In contrast, (Mehri et al., 2020;928

Zhang et al., 2021a; Yehudai et al., 2023; Singhal929

et al., 2023) do not avoid such data overlaps when930

using the same corpus for both pre-training and931

evaluation.932

D.3 Competitors Details933

RoBERTa: This model builds on934

roberta-base (Liu et al., 2019), with an935

added linear classification layer. Supervised936

classification fine-tuning is performed on the label937

set Y and dataset Dfew, without any pre-training 938

or data augmentation. During inference, the class 939

with the highest logit is selected as the prediction. 940

RoBERTa (SSP): This model extends (1) by 941

incorporating SSP module prior to supervised 942

classification fine-tuning. 943

Qwen2.5-72B-Instruct: This model performs 944

intent classification using a prompt-based few-shot 945

inference approach with language model Qwen2.5- 946

72B-Instruct (Yang et al., 2024), and does not 947

depend on a separate PM encoder. 948

QAID (Yehudai et al., 2023) reformulates the 949

intent detection task as a question-answer matching 950

problem and introduces contrastive learning and 951

domain alignment objectives during training to 952

improve the model’s generalization ability on new 953

tasks. 954

CPFT (Zhang et al., 2021a) combines self- 955

supervised contrastive pre-training with supervised 956

contrastive learning and intent classification 957

fine-tuning to enhance few-shot intent detection 958

performance. 959

PLE (Li et al., 2022) introduces a lightweight 960

encoder, task transfer, pseudo-sample replay, 961

and dynamic weighting mechanisms to build 962

an end-to-end continual learning framework, 963

enhancing cross-task transfer and anti-forgetting 964

abilities in few-shot intent detection. 965

DFT++ (Zhang et al., 2023) is a few-shot intent 966

detection method that does not rely on external 967

corpora. It combines context augmentation 968

based on generative models with a sequential 969

self-distillation strategy to significantly improve 970

the model’s generalization and robustness under 971

extremely low-resource conditions. 972

INTENDD (Singhal et al., 2023) leverages shared 973

encoders and unsupervised contrastive learning for 974

sentence representation, combined with two-stage 975

post-processing on a graph structure (residual 976

propagation and label smoothing) to improve 977

multi-class intent detection performance. 978

ICDA (Lin et al., 2023) Fine-tunes a PLM to 979

generate intent data, then filters irrelevant samples 980

using PVI to improve intent classification. 981

ZeroGen (Ye et al., 2022) A zero-shot learning 982

method that first generates training data from 983

scratch using large pre-trained language models 984

in an unsupervised manner, and then trains a task 985

model on the synthesized data. 986

CoDa (Evuru et al., 2024) A training-free data 987

augmentation method that prompts large language 988

models with simple, verbalized constraints to 989
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generate high-quality pseudo samples.990

PromptMix (Sahu et al., 2023) Generates bound-991

ary examples and re-labels them to improve data992

quality for small model training.993

CUC (Zhang et al., 2025) An iterative differential994

generation framework for fine-grained intent995

detection, incorporating contrastive feedback996

to guide large language models in generating997

high-quality pseudo samples. It distinguishes998

similar classes through differential prompts and999

refines samples using rubric-based evaluation.1000

D.4 Performance Metrics1001

Accuracy: This metric measures whether the pre-1002

dicted intent of each query matches the ground1003

truth. It is used to evaluate model performance1004

on known intent classes and serves as the standard1005

metric for multi-class classification.1006

OOS Recall Measures the proportion of correctly1007

identified OOS samples among all true OOS exam-1008

ples.1009

OOS Precision Measures the proportion of true1010

OOS samples among all predicted OOS instances,1011

indicating precision in detecting unknown intents.1012

OOS F1 The harmonic mean of OOS Precision1013

and OOS Recall, providing a balanced view of the1014

model’s ability to reject out-of-scope queries.1015

D.5 Experiment Details1016

k-shot Dataset # Intent # Test Domain
CLINC150 150 4500 Multi-domain
BANKING77 77 3080 Banking
HWU64 64 1076 Voice Assistant

Table 7: Statistics of datasets used in SFT.

Table 7 presents the k-shot datasets’ statistics.1017

All PM encoders in FCSLM are trained on an RTX1018

3090 GPU. The SSP phase follows the setup from1019

(Zhang et al., 2021a), using 20 training epochs, a1020

batch size of 64, a learning rate of 1e−5, tempera-1021

ture parameter τ set to 0.07, and contrastive loss1022

balancing factor λ set to 0.1. The SFT phase uses1023

10 training epochs, a batch size of 16, and a learn-1024

ing rate of 1e−5. The LLM inference module is1025

accessed via the API interface provided by Alibaba1026

Cloud Bailian platform, with all prompt templates1027

fixed during inference.1028

Our results were obtained using a reproducible1029

experimental setup. Some baseline results are taken1030

from (Zhang et al., 2025). Except for ICDA (Lin1031

et al., 2023), which uses RoBERTa-Large (Liu1032

et al., 2019) as the PLM, all encoder-based base- 1033

lines adopt RoBERTa-base (Liu et al., 2019). 1034

D.6 OOS datasets 1035

Dataset IS ID Test (IS) Test (OOS)
Banking 10 5 500 350
Credit Cards 10 5 500 350
BANKING77-OOS 50 27 2000 1080

Table 8: Dataset statistics used in OOS detection. “IS”:
in-scope intents, “OOS”: out-of-scope intents.

We use the "Banking" and "Credit Cards do- 1036

mains (Zhang et al., 2021b) from the CLINC150 1037

dataset. Each domain contains 15 intent classes, 1038

from which five are held out as in-domain out-of- 1039

scope (ID-OOS) examples, while the remaining ten 1040

are used as in-scope (IS) classes. In addition, we 1041

adopt the BANKING77-OOS dataset (Zhang et al., 1042

2021b), constructed by selecting 27 intents from 1043

the original BANKING77 dataset as ID-OOS and 1044

using the remaining 50 as IS classes. Detailed 1045

dataset statistics are shown in Table 8. We in- 1046

clude the results of ALBERT, BERT, ELECTRA, 1047

RoBERTa, and ToD-BERT trained with the CL 1048

method proposed in (Zhang et al., 2021b), which 1049

serve as baselines for few-shot OOS detection. Our 1050

models are trained and evaluated under the same 1051

5-shot IS-only setting, where no OOS examples are 1052

used during either training or inference. 1053

E Supplementary Experiments 1054

E.1 Effect of LLM Size on Performance 1055

Model BANKING77 CLINC150 HWU64

Qwen-14B 80.10 88.71 84.29
Qwen-32B 81.93 88.89 84.01
Qwen-72B 81.27 94.84 86.52

FCSLM (Qwen-14B) 85.81 96.49 87.73
FCSLM (Qwen-32B) 86.10 96.91 87.55
FCSLM (Qwen-72B) 87.66 97.00 87.73

Table 9: 5-shot accuracy (%) across different LLM sizes
on three datasets.

To assess how LLM size affects reasoning per- 1056

formance, we used three versions of the Qwen2.5 1057

model with different parameter scales (Qwen- 1058

14B (Yang et al., 2024), Qwen-32B (Yang et al., 1059

2024), and Qwen-72B (Yang et al., 2024)) as the 1060

reasoning module within the FCSLM framework. 1061

As shown in Table 9, FCSLM consistently demon- 1062

strates strong performance across all model sizes 1063
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and datasets. These results indicate that FCSLM ex-1064

hibits good adaptability to LLMs of different sizes:1065

even when using the smaller Qwen-14B model, the1066

achieved performance significantly surpasses the1067

corresponding standalone LLM baseline, and out-1068

performs the currently published state-of-the-art1069

methods on all three datasets (see Table 1). In ad-1070

dition, we observed that as the size of the LLM1071

increases, the performance gains tend to plateau.1072

This suggests that FCSLM effectively mitigates1073

the reliance on extremely large models, enabling1074

small and medium-sized models to perform seman-1075

tic discrimination efficiently. In summary, FCSLM1076

achieves a favorable balance between performance1077

and resource cost, and demonstrates strong poten-1078

tial for practical deployment.1079

E.2 Additional Experiments on CIR1080

Method B-OOS Banking Credit Cards

FCSLM
20% 89.33 89.41 70.58
50% 85.88 81.36 69.48
100% 81.74 74.39 67.95

FCSLM
w/o CIR

20% 87.06 85.19 66.68
50% 84.79 78.15 65.53
100% 80.61 72.67 62.40

Table 10: Ablation results (F1 score only) across dif-
ferent top-K values on three domains. CARS w/o
CIR denotes the variant without the candidate intent re-
ranking mechanism. Bold indicates the best, underline
the second-best.

Table 10 presents the ablation study on the can-1081

didate intent re-ranking mechanism (CIR). We ob-1082

serve that removing CIR leads to a decrease in1083

F1OOS, indicating that CIR effectively enhances1084

the model’s ability to identify OOS samples and1085

improves the overall detection performance.1086

F Prompt Design1087

F.1 LLM-based Paraphrasing Prompt Design1088

Prompt: LLM-based Paraphrasing (LP)

sentence: add transmission to my found
them first.
Task:
Please generate one alternative sentence
that expresses the same meaning.
Please answer the new sentence directly and
do not answer any other content.

1089

F.2 Query Augmentation with Trimming 1090

Prompt Design 1091

We instruct the LLM to generate 20 examples for 1092

each intent class. 1093

Prompt: Query Augmentation with Trim-
ming (QAT)

Intent Name: atm_support
Few-Shot Queries: where can i withdraw
money from?...
Task:
You are tasked with augmenting training
data for intent classification.
Based on the few-shot examples above,
generate 20 new user queries that express
the same intent.
Output:
Return exactly 20 new sentences, each on a
new line, with no bullet points, numbering,
or extra text.

1094

F.3 BADA Prompt Design For Zero-shot 1095

Prompt: Augmentation for zero-shot

Intent Name: atm_support
Task:
You are tasked with augmenting training
data for intent classification.
Generate 20 new user queries that ex-
press the same intent.
Output:
Return exactly 20 new sentences, each on a
new line, with no bullet points, numbering,
or extra text.

1096
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Prompt: Discriminative Augmentation
for zero-shot

Intent List: {Intent y and its set of confus-
ing intents}.
Task:
There are the above-mentioned intents that
are not easy to distinguish in dialogue sys-
tem.
You are tasked with augmenting training
data for intent Intent y.
Generate 20 new user queries that express
the same intent.
The generated queries should be close to
confusing intentions so that the model
can obtain samples that can distinguish
confusing relationships.
Output:
Return exactly 20 new sentences, each on a
new line, with no bullet points, numbering,
or extra text.

1097

Prompt: Boundary Augmentation for
zero-shot

Intent List: {Intent y and its set of confusing
intents}.
Task:
There are the above-mentioned intents that
are not easy to distinguish in my dialogue
system.
You are tasked with augmenting training
data for intent Intent y.
Generate 20 new user queries that express
the same intent.
Please reconsider the differences between
Intent y and other intent.
Output:
Return exactly 20 new sentences, each on a
new line, with no bullet points, numbering,
or extra text.

1098

F.4 Label Augmentation Prompt Design 1099

Prompt: Label Augmentation (LA)

Intent Name: atm_support
Few-Shot Queries: where can i withdraw
money from?...
Task:
Rephrase the label based on the provided
intent label and its example list to accu-
rately reflect the user’s intent.
You must retain all original label words and
incorporate more specific description to en-
sure the label is clear, accurate, unambigu-
ous, and specific, with words separated by
spaces.
Do not directly add the words in the exam-
ple to the newly generated intent.

1100

F.5 DIDG Prompt Design 1101

Prompt: Discriminative Intent Descrip-
tion Generation

Intent Name: {Intent y}
few-Shot Queries: ...
Intent Name: {the confusing intent1 of In-
tent y}
few-Shot Queries: ...
...
The above are several easily confused in-
tents and their few-shot query examples.
You must create a unique description for
each intent.
Make the description that encompasses the
provided few-shot queries.
Also, don’t use the given use cases exam-
ples of intent for the description.
Make the descriptions no longer than 15
words.
Return your output as a JSON object with
this format:
{ "intent_name_1": "description",
"intent_name_2": "description", ... }
DO NOT include any extra explanations or
text outside the JSON format.

1102
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F.6 Second Round Prediction Prompt Design1103

Prompt: Second Round Prediction

Query: how do i locate my card?
Here are the intents with their descriptions
and examples:
Intent: card_arrival
Description: Inquiries about the status or
delay of a card’s delivery.
Example: what is the expected delivery date
of my card?...
Intent: lost_or_stolen_card
Description: Seeking assistance or report-
ing a missing or stolen financial card...
Example: can you help me retrieve my
card?...
...
Please select the most suitable intent from
the intent list based on the intent describe
and intent query example.
Please answer the intent name directly

1104

F.7 Third Round Prediction Prompt Design1105

Prompt: Third Round Prediction

Query: how do i locate my card?
A model has predicted that the query is
likely related to intent ’card_arrival’,
but it could also belong to intent
’lost_or_stolen_card’.
Please do not decide based solely on the
model’s prediction.
Carefully analyze the semantics of the
query.
Here are some example queries for each
intent:
Intent: lost_or_stolen_card
Example:how do i set up my card pin?...
Intent: card_arrival
Example:what is the expected delivery date
of my card?...
Step by step, compare the query with both
intents and decide which one aligns better
semantically.
Finally, answer this question: Is
’card_arrival’ more suitable as the intent
of the query than ’lost_or_stolen_card’?
Just reply with ’yes’ or ’no’, without any
other text.

1106
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