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Abstract

Temporal question answering (QA) is a spe-
cial category of complex question answering
task that requires reasoning over facts assert-
ing time intervals of events. Previous works
have predominately relied on Knowledge Base
Question Answering (KBQA) for temporal QA.
One of the major challenges faced by these
systems is their inability to retrieve all rele-
vant facts due to factors such as incomplete
KB and entity/relation linking errors (Patidar
et al., 2022). A failure to fetch even a single
fact will block KBQA from computing the an-
swer. Such cases of KB incompleteness are
even more profound in the temporal context.
To address this issue, we explore an interest-
ing direction where a targeted temporal fact
extraction technique is used to assist KBQA
whenever it fails to retrieve temporal facts from
the KB. We model the extraction problem as an
open-domain question answering task using off-
the-shelf language models. This way, we target
to extract from textual resources those facts that
failed to get retrieved from the KB. Experimen-
tal results on two temporal QA benchmarks
show promising ~30% & ~10% relative im-
provements in answer accuracies without any
additional training cost.

1 Introduction

Complex Question Answering involves the integra-
tion of multiple facts identified and extracted from
disjoint pieces of information (Vakulenko et al.,
2019; Saxena et al., 2020; Fu et al., 2020; Neelam
et al., 2022a). Two critical components in systems
trying to achieve this are: 1) Knowledge Source - to
retrieve relevant facts, and 2) Reasoning - to reason
over relevant facts to derive the final answer. Both
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Figure 1: Example question, its AMR and λ-expressions

NLP and Semantic Web communities have shown
immense interest in this problem lately. Work in
the NLP community has primarily focused on using
textual data as a knowledge source, and typically
uses deep-neural models to represent knowledge
and for reasoning. While those approaches achieve
impressive accuracies (Zhang et al., 2021, 2020),
they are typically limited in their reasoning capa-
bilities. Although reasoning is starting to receive
attention in NLP community (Wei et al., 2023), rea-
soning over large amounts of unstructured knowl-
edge in text is still a challenge. Work in the Se-
mantic Web community has primarily focused on
Knowledge Base Question Answering (KBQA),
where a KB is used to retrieve facts. While better-
equipped for complex reasoning (Bhutani et al.,
2020; Wu et al., 2021), they typically suffer from
incomplete knowledge (Patidar et al., 2022).

In this paper, we present a novel combination
of successful elements from past approaches, i.e.,
KB-based and text-corpus based, for complex QA,
in a way to overcome their individual limitations.



Our combination strategy is to use a targeted extrac-
tion technique that would assist KBQA whenever
it fails. KBQA failure is when it fails to retrieve
relevant facts needed to answer the question from
the KB because of reasons such as incomplete KB
and inaccurate entity/relation linking. Identifica-
tion of these specific points of KBQA failure is a
critical step in our approach, which is enabled by
decomposition of the question’s logical represen-
tation obtained by semantic parsing. The targeted
extraction technique compensates for those KB fail-
ures by extracting facts from textual resources in
an open-domain QA fashion. Concretely, we make
effective utilization of the KB (reliable but not ex-
haustive) and the textual resources (vast but noisy),
essentially combining the best of both worlds.

In this work, we focus on temporal questions.
They additionally involve reasoning over temporal
facts, i.e., assertions on points and intervals in time
of events1. For example, to answer Who was the
President of the United States during World War
2?, we need to know the temporal facts of both
World War 2 and the list of all US presidents.

The main contributions of our work are: 1) A
novel combination of KBQA and textual-extraction
for temporal question answering. 2) λ-calculus
based semantic representation to identify KBQA
gaps. 3) An open-domain QA style approach for
targeted extraction of temporal facts from textual
resources using off-the-shelf models. We show that
it is possible to achieve significant improvements
on two temporal QA benchmarks even without any
task-specific training and believe the promising
initial results will foster research in this direction.
Related Work: GRAFT-Net (Sun et al., 2018) and
PullNet (Sun et al., 2019; Xiong et al., 2019) uti-
lize both KB and textual resources but do not ad-
dress temporal reasoning. Unlike approaches using
end-to-end neural models, we adopt a modular ap-
proach as in (Neelam et al., 2022a) because of the
flexibility it offers to combine textual extraction
with the KBQA, with additional benefits such as
interpretability and easy domain-adaptation. An-
other main difference in our textual extraction ap-
proach is the usage of LMs off-the-shelves, hence
bypassing the need for domain-specific training
and datasets that are hard to obtain. A detailed
literature review is presented in A.6.

1In this paper, we consider entities and facts (represented
as triples in KBs) with associated time intervals as events. For
example, {World War 2, (start time:1939, end time:1945)}.

2 Our Approach

Figure 2 shows a block diagram of our proposed
approach, with two groups of modules: 1) Upper
line of KBQA pipeline modules, and 2) Lower line
of Extraction pipeline modules for targeted fact
extraction. Our strategy is to bank on the KBQA
pipeline, owing to its reliability, and trigger Extrac-
tion pipeline only to aid KBQA when it fails.

2.1 KBQA Pipeline

For KBQA pipeline, we adopt a modular design as
in (Neelam et al., 2022a; Kapanipathi et al., 2021),
with two high-level modules: (1) Question Under-
standing to derive logical semantic representation
of the NL question and to further decompose it. (2)
KB Linking and Answering to ground the Entity
and Relation mentions in the logical representation
onto the KB. Both these modules in our approach
are similar to (Neelam et al., 2022a) except for the
event specific decomposition described next.

We use λ-expression constructed from Abstract
Meaning Representation (AMR)(Banarescu et al.,
2013) for logical semantic representation of the
questions (Neelam et al., 2022a). Figure 1 gives
an illustration of NL question, its AMR and λ-
expression. As shown, the λ-expression compactly
represents the mentions of events in the question
as its sub-components, facts about those events
needed from the knowledge source, and the reason-
ing steps needed to derive the final answer. We de-
compose λ-expression into two components to help
localize the points of KB failures: 1) Main-λ: Part
of the λ-expression related to the unknown vari-
able, i.e., main event being questioned. In Figure 1,
a is the unknown variable, whose value if found is
the answer. 2) Aux-λ: part of the λ-expression not
related to the unknown variable, but related to the
other events in the question as shown in Figure 1 .
This part adds temporal constraints on the answer
candidates. We use a simple rule-based approach to
perform this decomposition, where unknown vari-
able is used as anchor to segregate the respective
components. We provide additional details in A.1.

2.2 Targeted Temporal Fact Extraction

We know a KBQA failure has occurred when the
complete lambda expression fails to return an an-
swer from the KB. The first critical step in our
approach is to localize points of KBQA failure
within the lambda expression. For this, we exam-
ine answers derived independently for the aux-λ



Figure 2: An illustration of the proposed approach. Upper line of modules correspond to the KBQA pipeline, while
lower line of modules are related to targeted fact extraction from textual resources.

and main-λ using the KBQA pipeline in order to
classify the failure into one of the below cases2:
• Aux Failure: Temporal fact corresponding to the

temporal constraint (aux-λ) is missing in the KB.
For example, in Figure 1, when time interval of
World War 2 is missing in the KB.

• Main Failure. Temporal fact(s) corresponding
to the unknown variable is missing in the KB.
For example, in Figure 1, when time interval of
Franklin D. Roosevelt (the US president during
WW2) as president in office is missing.

The goal now is to extract the identified missing
facts from textual resources using the extraction
pipeline (described next). In this way, we assist
KBQA using targeted fact extraction, which has
several advantages: 1) A focused extraction from
text (guided by KB) makes textual fact extraction,
which is usually noisy, reliable. 2) The comple-
menting strengths of textual resources and KBs are
leveraged to overcome their individual limitations.
Aux Failure. Answer for aux-λ is a time interval,
i.e., composed of time intervals of all the events
part of aux-λ, that imposes temporal constraints on
the answer candidates. We extract the KB missing
fact through the extraction pipeline and construct a
reformed λ-expression, which is simply replacing
the auxiliary part of the original λ-expression with
the extracted time interval. This will enable answer
derivation without fetching facts related to aux-λ
from KB. We show an example of this in A.3.1.
Main Failure: Here we attempt to extract missing
facts corresponding to the main-λ. However, we
do not fully rely on textual resources for main-λ,
because it represents event with unknown variable.

2Note that there could also be a combination of failures.
We use the flow sequence in Algorithm 1 to handle all cases.

We take that part of the main λ-expression that
would fetch the answer candidates from the KB
(leaving out the temporal fact specific components),
and pass that onto the KBQA pipeline. For each
answer candidate obtained, we extract the temporal
information via the extraction pipeline as in A.3.2.
Temporal Reasoning. Upon successful gather-
ing of all the temporal facts (i.e., time intervals),
either from the KB or from text, we use Tempo-
ral Reasoning module to select the final answer
from among the answer candidates of the main-λ.
For example in Figure 1, λ-expression component
overlap(hi, ti) corresponds to the temporal reason-
ing step, which essentially represents the overlap
between the time intervals ti (of Ww2) and hi (of
answer candidates of the main-λ). Candidates that
comply with the reasoning condition are chosen as
the final answer. Other temporal reasoning cate-
gories handled include before, after, now etc,. Al-
gorithm 1 describes our overall flow sequence.

2.3 Extraction pipeline

There are 3 scenarios where we may look to extract
facts from textual resources: 1) KBQA fails for
aux-λ because of Linking failure, 2) KBQA fails
for aux-λ because of missing temporal fact, and 3)
KBQA fails for main-λ because of missing tem-
poral fact. We pose extraction as an open-domain
QA problem where: 1) for each missing fact, the
corresponding NL query is generated, 2) top-k pas-
sages relevant to the NL query are retrieved from
textual resources, and 3) a Reading Comprehension
QA (RCQA) style answer derivation is performed
by treating NL query as the question and top-k re-
trieved passages as the context. We show that even
a naive pipeline with pre-trained LMs as the back-



bone demonstrates significant improvements and
argue that an improved (domain-trained) pipeline
will only further boost performance.
λ to NL. For example, for the aux-λ in Figure 1, the
equivalent NL query is When was WW2?. We use
simple rules to convert λ of the missing facts into
its corresponding NL query. Since we deal with
temporal facts, all the queries start with When, and
we add was or did depending on whether the event
being considered is entity-based or triple-based.
Document retrieval. For each NL query, we per-
form document retrieval in 2 steps: first, get a list
of relevant documents and then choose a top-k
scored list of passages from them. (1) Entities
of the question are extracted using BLINK (Wu
et al., 2019) and Wikipedia pages of all the enti-
ties are collected allowing minimal lexical varia-
tions3. We also use NL text query generated from
λ-expression to search on MediaWiki API4. (2)
We use Siamese-BERT networks (Reimers and
Gurevych, 2019) to rank passages within the re-
trieved documents. The Bi-Encoder picks out top-
50 relevant passages based on passage-query simi-
larity and the Cross-Encoder re-ranks them. We use
public checkpoints5 trained on the MS-MARCO
dataset (Bajaj et al., 2018).
QA based fact extraction. We use top-3 ranked
passages as context to derive answer for the NL
query in Reading Comprehension QA (RCQA)
style. We use BERT6 trained on the SQUAD (Ra-
jpurkar et al., 2016)) dataset as the QA model.
Note that RCQA style extraction gives one answer,
which is sufficient for point-in-time extraction. For
time intervals (start and end times) we further take
the sentence identified by the RCQA model and use
its AMR tree to obtain time interval by examining
sibling nodes to that containing the RCQA answer.

3 Experimental Setup

We used Wikidata as KB and Wikipedia as textual
resource, and evaluate on two aspects: 1) Tempo-
ral QA performance of the overall system and 2)
Targeted temporal fact extraction performance. We
experiment with 2 datasets: 1) TempQA-WD (Nee-
lam et al., 2022b) with 839 questions and 2) Time-
Questions (Jia et al., 2021) (Train-9708, Test-3237).
Baselines: 1) Only-KB - answers only from KBQA,

3https://pypi.org/project/fuzzywuzzy/
4https://www.mediawiki.org/wiki/Download
5https://www.sbert.net/
6https://huggingface.co/

2) KB+TemporalText - extracting temporal facts
only from text and the remaining facts from KB,
and 3) Open-Domain-QA - A state-of-the-art open-
domain-QA system called RAG (Lewis et al., 2020)
that answers purely from text. RAG consists of a
retriever based on Dense Passage retrieval (DPR)
and a generator based on BART jointly trained.
We refer the readers to the original paper for more
details on this baseline.

3.1 Implementation Details

Our system pipeline is implemented using Flow
Compiler7 (Chakravarti et al., 2019) that stitches
together the gRPC services of the individual mod-
ules. λ-expressions are defined using ANTLR
grammer. SPARQL queries are run on public Wiki-
data end point8. We reuse the KBQA pipeline im-
plementation of (Neelam et al., 2022b).

4 Results and Discussion

Table 1 shows performance comparison of our
approach (KB+Text) against the baselines on
TempQA-WD dataset. KB+Text achieves an im-
provement of 0.095 in F1 score (∼30% relative
improvement) over Only-KB, demonstrating the ef-
fectiveness of our approach in making a targeted
utilization of the textual resources to assist KBQA.
Comparison to KB+TemporalText illustrates the
reliability of facts obtained from KB, whenever
available. Performance of Open-Domain QA is
inferior to Only-KB, illustrating the superior rea-
soning capability of KBQA systems.

System Precision Recall F1
Only-KB 0.320 0.329 0.321
KB+TemporalText 0.224 0.227 0.212
Open-Domain QA (RAG) 0.291 0.240 0.252
KB+Text (proposed) 0.423 0.434 0.416

Table 1: Performance comparison on TempQA-WD.

Since extraction pipeline is a critical component
in our system, we also evaluate its independent
accuracy using a small set of 3709 NL queries
(added in supplementary material) generated from
our system for facts existing in KB. The extraction
pipeline performs better than a state-of-the-art open
domain QA system as shown in Table 3.

Due to discrepancies discussed in A.4, we could
not use our KBQA pipeline to evaluate on Time-
Questions dataset. Alternatively, we used the end-

7https://github.com/IBM/flow-compiler
8https://query.wikidata.org/



Figure 3: Illustration of a working example showing the KBQA failure occurring due to missing auxiliary fact that is
substituted by temporal fact extraction and finally reforming the lambda expression by hard-coding the missing fact.

Error → Incorrect extraction KBQA error Parsing error Miscellaneous
Count → 21 9 8 12

Table 2: Error analysis on 50 randomly selected test instances incorrectly answered by our system.

System Precision Recall F1
Open-Domain QA (RAG) 0.051 0.048 0.049
KB+Text Extraction 0.171 0.163 0.165

Table 3: Evaluation of Extraction pipeline.

to-end trained EXAQT (Jia et al., 2021) system
as the baseline KBQA system that was purpose-
built for the specific dataset. With this, we then
built an equivalent of our proposed approach called
EXAQT+Text, by running our Extraction pipeline
wherever EXAQT fails to answer. The performance
of EXAQT+Text is better for all threshold values
with improvement reaching upto 10% as shown in
Table 4 . This demonstrates that our approach of
targeted extraction backing up KBQA is resilient to
changes in underlying KBQA. In order to benefit
future work, we conduct an error analysis by man-
ually examining 50 randomly selected test samples
from TempQA-WD that were incorrectly answered
by out proposed system. We classify the error into
following types: 1) Incorrect extraction: the text
pipeline extracted incorrect facts, 2) KBQA error:
KBQA produced erroneous answers after missing
fact was correctly extracted from text, 3) Parsing
error: incorrect parsing of the question, 4) Mis-
cellaneous: consists of miscellaneous issues like
lexical and date representation variations. Table
2 shows the results of the experiment and further
highlights the scope of improvement in the extrac-
tion pipeline. Figure 3 is an illustration of how a
KB Aux-Failure is handled in our pipeline. The

missing temporal fact ’1924’ is extracted from text
and the λ-expression is reformed.

Code and experimental setup used for our ex-
periments is at https://github.com/IBM/tempqa-
wd/tree/main/targeted-extraction

System → EXAQT EXAQT+Text
Threshold↓ P R F1 P R F1

0.1 0.396 0.574 0.435 0.406 0.586 0.446
0.3 0.446 0.551 0.465 0.464 0.570 0.483
0.5 0.466 0.520 0.469 0.496 0.553 0.499
0.7 0.468 0.490 0.460 0.505 0.531 0.497
0.9 0.458 0.451 0.440 0.506 0.502 0.486

Table 4: Performance on TimeQuestions test set.

5 Conclusion

In this paper, we propose an approach to combine
the knowledge resources of KB (structured) and
text (unstructured) for temporal QA by using tex-
tual resources to aid wherever KBQA fails. In our
approach, a semantic representation of the question
as λ-expression is used to represent the set of facts
and reasoning required to answer a question. Those
facts that failed to get fetched from KBQA are ex-
tracted from the textual resources using RCQA
style fact extraction. This way, we perform tar-
geted extraction of temporal facts to compensate
for KBQA failures. The results of experimental
evaluation on two temporal QA benchmark show
the effectiveness of our approach even without any
additional training cost. We additionally conduct
error analysis to highlight the scope of improve-
ment in order to guide future work.

https://github.com/IBM/tempqa-wd/tree/main/targeted-extraction
https://github.com/IBM/tempqa-wd/tree/main/targeted-extraction


6 Limitations

The proposed approach focuses only on tempo-
ral reasoning and work is required to generalize
it across other reasoning types. In this work we
addressed temporal QA as we identified missing
KB facts as a major pain point in the temporal
context (adding temporal facts to KBs has started
gaining momentum only in recent times). The pro-
posed approach will have to be modified to handle
more complex questions that can feature multiple
aux-λ (temporal constraints). Our λ decomposi-
tion algorithm that is hand-crafted works well for
temporal questions, but may have to be tested for
other reasoning tasks with appropriate modifica-
tions. It would be interesting to come up with
learning-based methods for the same. The Extrac-
tion pipeline is triggered only when KBQA fails
to return answer. However KBQA approaches can
also produce wrong answers and we can poten-
tially develop methods to predict such errors. To
aid future research, we provide a detailed error
analysis in Appendix highlighting areas that re-
quire improvement. Our Extraction pipeline has
a large scope of improvement. The document re-
trieval approach is purely based on lexical overlap
and considering query semantics would improve
it. Our QA and ranker LMs can be finetuned for
the domain in-focus. Alternatively, training end-
to-end neural extraction modules remains to be
investigated. Performance metrics used to evalu-
ate KBQA systems do not account for mismatches
arising because of lexical variations or date rep-
resentation variations. Using a better metric can
provide a better picture of the overall performance.
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A Appendix

A.1 Details of KBQA pipeline (Neelam et al.,
2021)

Here we describe the modules in the KBQA
pipeline that is adopted from (Neelam et al., 2021).

A.1.1 Question Understanding

The goal of Question Understanding is to 1)
transform NL questions into corresponding λ-
expressions that logically represent the set of event-
specific facts needed from the KB and the reason-
ing needed to be performed to derive the answer
and 2) further perform event-specific decomposi-
tion. We use method as in (Neelam et al., 2022a)
to construct λ-expressions of the questions from
their AMR (Abstract Meaning Representation) (Ba-
narescu et al., 2013). AMR encodes meaning of
the sentence into a rooted directed acyclic graph
where nodes and edges represent concepts and re-
lations respectively. Such a representation is useful
because event-specific decomposition of the ques-
tion is represented to some extent as sub-paths and
sub-graphs in the AMR graph. Figure 1 shows
an illustration of AMR and λ-expression for ex-
ample question. This example illustrates how λ-
expression compactly represents, the mentions of
events in the question (as its sub-components), facts
about those events (that need to be fetched from the
knowledge source), and the reasoning steps (that
need to be performed to derive the final answer).
λ-expression constructed for the question is fur-

ther processed to decompose into components:

1. Main-λ: Part of the λ-expression related to
the unknown variable, i.e., main event being ques-
tioned. For example in Figure 1, a is the unknown
variable, whose value if found is answer to the
question.
2. Aux-λ: part of the λ-expression not related to
the unknown variable, but related to the rest of the
events mentioned in the question. This part serves
the purpose of adding temporal constraint to the
candidate answer values for the unknown variable.

We use a rule based approach to perform de-
composition, that simply uses unknown variable
as anchor to segregate the respective components.
Note that the decomposed λ-expressions play a crit-
ical role in our approach to identify the points of
failures of the KBQA pipeline and to further decide
on the use of Extraction pipeline.

A.1.2 KB Linking and Answering
This is essentially a step to ground the Entity and
Relation mentions of λ-expression to the KB, i.e.,
map the elements of λ-expression onto the corre-
sponding KB elements. Relation mentions are the
predicates (for example, have-org-role in Figure 1)
and entity mentions are the arguments (for exam-
ple, United States, president, and Ww2 in Figure 1).
The goal of linking is to map, for example Ww2 to
a node in KB corresponding to World War 2 (Wiki-
data id wd:Q362). After linking, we generate corre-
sponding SPARQL queries that when executed on
the KB endpoint would fetch the intended KB facts.
Our approach to linking and SPARQL generation
is similar to that of (Neelam et al., 2022a).

A.2 Targeted Extraction Algorithm

Algorithm 1 Algorithm for the overall approach
illustrated in Figure 2 and its flow sequence.

lambda = GetLambda(question)
ans_list = GetKBAnswer(lambda)
if ans_list is empty then ▷ KBQA Failure

main, aux = Decompose_Lambda(lambda)
ans_list = GetKBAnswer(aux)
if ans_list is empty then ▷ Aux Failure

fact = Extract_From_Text(aux)
aux_fact = fact ▷ for later use
reformed_lambda =

ReformLambda(fact, lambda)
ans_list =

GetKBAnswer(reformed_lambda)
if ans_list is not empty then

return ▷ Ans Found
end if

end if
ans_list = GetKBAnswer(main)
candidate_facts = []
for candidate in ans_list do

fact = Extract_From_Text(candidate)
candidate_facts.append(fact, candidate)

end for
ans =
TemporalReasoner(candidate_facts, auxfact)

return ▷ Ans Found
else

return ▷ Ans Found, No missing fact in KB
end if

A.3 Details of Targeted Extraction from Text

Our goal is to use textual resources to assist KBQA
failures, which can happen for two reasons:
1. Linking failure - when KB linking step fails to
successfully map mentions in the λ-expression to
the corresponding KB entities and relations. For
example, in Figure 1 when mention Ww2 fails to
get linked to the World War 2 node in the KB.



2. Missing facts - KBs are known to be incomplete,
and hence may fail to fetch a specific fact, simply
because it is not present in the KB. For example,
if temporal information corresponding to World
War 2 is not present in the KB, attempt to fetch
time interval corresponding to λ-expression part
interval(ti, “Ww2") would fail.
λ-expression specifies all facts that need to be

fetched from the KB. A failure to fetch even a
single fact would block KBQA from computing
the final answer. To handle failures we need to
know the specific facts that failed to get fetched
from the KB, so that we can look for them in the
textual resources. For this purpose, we categorize
KBQA failure as below, based on the decomposed
λ-expressions where failure happens into Aux Fail-
ure and Main Failure. We present the flow se-
quence in Algorithm 1.

A.3.1 Aux Failure
This issue arises due to missing temporal fact cor-
responding to the aux-λ in Upon successful ex-
traction of time interval for aux-λ, from textual
resources, we construct a reformed λ-expression
from the original λ-expression by simply replacing
auxiliary part with the time interval of aux-λ. For
example, λ-expression in Figure 1 will be reformed
as:
λ a. have-org-role-91(h, a, "United States",

"president") ∧ interval(hi, h) ∧ overlap(hi,
(interval_start:1939-09-01, interval_end:1945-
09-02)).

Note that this reformed λ-expression does not
contain aux-λ. Its NL equivalent is Who was
the President of the United States during period
from 1st September 1939 to 2nd September 1945?
Thus if reformed λ-expression is passed onto the
KBQA pipeline (instead of original λ-expression),
it should result in the same answer, but without the
need to fetch facts related to aux-λ from the KB.

A.3.2 Main Failure
For example, in Figure 1 main-λ corresponds to the
list of all the US presidents and their time intervals
in office as the president. We make an assumption
that we can always get the list of all answer can-
didates from the KB itself, but may need to look
into textual resources only for temporal fact about
them. For example, in Figure 1 we take that part of
the main λ-expression that would fetch the answer
candidates from the KB (leaving out the temporal
fact specific components), i.e.,

λ a. have-org-role-91(h, a, "United States", "pres-
ident")

and pass that onto the KBQA pipeline. Then for
each answer candidate obtained we try to extract
time interval from the textual resource. For exam-
ple, if Franklin D. Roosenvelt is one of the answer
candidates, we try to extract the time interval of
Franklin D. Roosenvelt being the US president from
the textual resources.

Note that we resort to extraction from textual
resources only for those facts that failed to get
fetched from the KB. We believe this approach
of targeted extraction from the text is likely to be
more accurate than unrestricted extraction, because
we are looking to extract facts with a set of known
variables and only one unknown variable.

A.4 Discrepancies in Evaluating on
TimeQuestions

We could not directly evaluate our approach on
TimeQuestions because a few discrepancies ob-
severd in that datasets such as, invalid answers
(with change in time) and incorrect porting of the
answers from old datasets without verifying valid-
ity on Wikidata. It is because TimeQuestions (Jia
et al., 2021) is built from older datasets on different
KBs, by mapping only the final answer entities onto
the corresponding Wikidata entities and it seems
while mapping the validity of the answer is not
verified carefully. Hence, we resort to using EX-
AQT (Jia et al., 2021) built on TimeQuestions as
the base KBQA pipeline and build an equivalent
of our proposed approach called EXAQT+Text for
comparison.

A.5 Implementation Details

Our system pipeline is implemented using Flow
Compiler9 (Chakravarti et al., 2019) that stitches
together the gRPC services of the individual mod-
ules. λ-expressions are defined using ANTLR
grammer. SPARQL queries are run on public Wiki-
data end point10. We reuse the KBQA pipeline
implementation of (Neelam et al., 2022b).

A.6 Related Work

Although Complex KBQA has been an active re-
search topic (Vakulenko et al., 2019; Saxena et al.,
2020; Wu et al., 2021; Shi et al., 2020), there has
been very limited research focused on Temporal

9https://github.com/IBM/flow-compiler
10https://query.wikidata.org/



KBQA. Temporal Questions require identification
of time intervals of events and temporal reasoning.

A.6.1 Temporal KBQA Datasets:
TempQuestions (Jia et al., 2018a) is one of the
first publicly available temporal KBQA dataset con-
sisting of 1271 questions. However, this dataset
was annotated over FreeBase, which is no longer
maintained and was officially discontinued in 2014.
SYGMA (Neelam et al., 2022a) introduced a sub-
set of TempQuestions that can be answered over
wikidata called TempQA-WD. TimeQuestions(Jia
et al., 2021) is another temporal QA dataset that
is curated from existing QA datasets and map-
ping the answers to Wikidata. We use TempQA-
WD, and TimeQuestions data sets to evaluate
our approach. CRONQUESTION (Saxena et al.,
2021) is another temporal KBQA dataset that uses
its own KB drawn from Wikidata. Event-QA
dataset (Costa et al., 2020) is based on Event-KG,
curated from DBpedia, Wikidata and YAGO. Since
these datasets are generated in a template based
manner using existing facts from the KBs, they do
not represent the real world challenge of incom-
plete KBs. One of the main goals of our approach
is to handle the issue of incomplete KBs.

A.6.2 Temporal KBQA Systems:
TEQUILA (Jia et al., 2018b) is one of the first at-
tempts to address temporal question answering over
KBs. It used an existing KBQA engine (Abujabal
et al., 2017) to answer individual sub-questions and
perform a temporal reasoning over the answers to
derive the final answer. SYGMA (Neelam et al.,
2022a) is another system that works on a Wikidata
and uses λ-expressions to represent the facts and
their temporal reasoning operators. EXAQT (Jia
et al., 2021) is another temporal KBQA system
that uses entity and temporal embeddings to gen-
erate final answers. TempoQR (Mavromatis et al.,
2021) is another system that tries to improve on
top of CRONQA (Saxena et al., 2021) and intro-
duces temporal KB-completion aspect into tem-
poral Questions answering. We did not consider
these two systems as they work on curated sub-
set of wikidata which has all the temporal facts to
answer the given dataset. TEQUILA uses a pre-
specified set of temporal signals (10 signal words)
to decompose questions into sub-questions at sen-
tence level in a rule-based manner. Instead, we
follow the approach similar to SYGMA that use
a sophisticated semantic parsing approach involv-

ing AMR (Abstract Meaning Representation) (Ba-
narescu et al., 2013) and λ-calculus (Zettlemoyer
and Collins, 2012) to get logical representations of
the questions. This enables decomposition of the
questions at semantic level and is likely robust to
linguistic variations as well.

A.7 KB + Text for QA

There have been past work exploring effective-
ness of using KB and text resources for complex
QA (Sun et al., 2018; Xiong et al., 2019). How-
ever, none of them address the temporal context
addressed in this work. Prior work using a com-
bination of KB and text have largely been based
on end-to-end neural models. GRAFT-Net (Sun
et al., 2018) constructs a sub-graph from KB and
text corpora using an early fusion technique. The
task of QA is then reduced to binary classification
over the nodes of this sub-graph. PullNet (Sun
et al., 2019) proposes to build sub-graph through
an iterative process(Xiong et al., 2019), utilise a
graph-attention based KB reader and knowledge-
aware text reader.

All these methods are based on end-to-end neu-
ral models that require large amount of training
data and offer little interpretability, which is essen-
tial to evaluate intermediate stages of complex QA
systems. Additionally, labeling large amounts of
data for KBQA is hard (Trivedi et al., 2017). In this
work, we extend modular approach described in
(Neelam et al., 2022a), additionally incorporating
it with a targeted extraction pipeline. We made this
choice as this particular approach integrates multi-
ple, reusable modules that are pre-trained for their
specific individual tasks (semantic parsers, entity
and relational linkers, rankers and re-rankers and
reading comprehension model) thus offering inter-
pretability and flexibility for optimal combination
of textual extraction with KBQA. Additionally, this
does not require a large amount of domain-specific
training data.

A.7.1 Question Decomposition
Our work uses a form of logical query decompo-
sition, based on λ-expression of the NL question,
to help effectively combine the KB with the text
resources. Some of the past work in the literature
on QA have also explored question decomposition.
BREAK IT down (Wolfson et al., 2020) is a popu-
lar benchmark data that captures complex question
as an ordered list of tasks, that when executed in
sequence will derive the final answer. It introduced



question decomposition meaning representation
(QDMR) to represent decomposed questions in an
intermediate form resembling SQL. TEQUILA (Jia
et al., 2018b) used temporal signal (words) based
question decomposition to turn natural language
questions into sub questions. STAG (Yih et al.,
2015) defines core inferential chain and constraints
which are analogous to the main and aux defined
in our work. However, it’s important to note that
STAGG doesn’t execute explicit decomposition of
the lambda in the manner we do.



Figure 4: Illustration of a working example showing the KBQA failure occurring due to missing auxiliary fact that is
substituted by temporal fact extraction and finally reforming the lambda expression by hard-coding the missing fact.

Example
Missing auxiliary fact
Question: What was Franklin Roosevelt’s position during World War II before pearl harbor?
Ground Truth Answer: President of the United States
Answered from KB?: False
Lambda : lambda a. position-01(p2, "Franklin Roosevelt", a) ∧ interval(p2i, p2) ∧ war(w, "World
War II") ∧ interval(wi, w) ∧ interval(bi, "Pearl Harbor") ∧ before(wi, bi) ∧ interval(wi, w) ∧
overlap(p2i, wi)
Aux lambda : lambda wi. war(w, "World War II") ∧ interval(wi, w) ∧ interval(bi, "Pearl Harbor") ∧
before(wi, bi) ∧ interval(wi, w)
Main lambda : lambda a. interval(p2i, p2) ∧ position-01(p2, "Franklin Roosevelt", a)
Is Auxiliary answered from KB?: False
Auxiliary relevant passages (text extraction):
1) "Japan’s attack on Pearl Harbor took place on December 7, 1941. The U.S. military suffered 18
ships damaged or sunk, and 2,400 people were killed. Its most significant consequence was the
entrance of the United States into World War II. The US had previously been officially neutral but
subsequently entered the Pacific War, the Battle of the Atlantic and the European theatre of war.
Following the attack, the US interned 120,000 Japanese Americans, 11,000 German Americans, and
3,000 Italian Americans.",
2) "On the morning of December 7, 1941, the Japanese struck the U.S. naval base at Pearl Harbor
with a surprise attack, knocking out the main American battleship fleet and killing 2,403 American
servicemen and civilians. Scholars have all rejected the conspiracy thesis that Roosevelt, or any other
high government officials, knew in advance about the Japanese attack on Pearl Harbor. The Japanese
had kept their secrets closely guarded, and while senior American officials were aware that war was
imminent, they did not expect an attack on Pearl Harbor."
Auxiliary answer fact: "Japan’s attack on Pearl Harbor took place on December 7, 1941."
Auxiliary interval: 1941
Reformed lambda: lambda a. interval(p2i, p2) ∧ position-01(p2, F̈ranklin Roosevelt,̈ a) ∧ inter-
val(wi, date(7̈-12-1941)̈) ∧ overlap(p2i, wi)
System Answer: President of the United States

Table 5: Examples of System Answers



Figure 5: Illustration of a working example showing the KBQA failure occurring due to missing main fact. Temporal
information for each of the extracted main (answer) candidates are extracted from textual resources followed by
temporal reasoning to retrieve valid main answer.

Example
Missing main fact
Question: Who was the first man on the moon in 1969?
Ground Truth Answer: Neil Armstrong
Answered from KB?: False
Lambda : argmin(lambda m. man(mu, m, "moon"), lambda m. lambda mi. interval(di, date("dd-
mm-1969")) ∧ overlap(mi, di) ∧ interval(mi, mu), 0, 1)
Aux lambda : -
Main lambda : lambda m. interval(mi, mu) ∧ man(mu, m, "moon")"
Is Auxiliary answered from KB?: False
Main relevant passages (text extraction) :
1) "On July 20, 1969, Armstrong and Apollo 11 Lunar Module LM pilot Buzz Aldrin became the
first people to land on the Moon, and the next day they spent two and a half hours outside the Lunar
Module Eagle spacecraft while Michael Collins remained in lunar orbit in the Apollo Command
Module Columbia. When Armstrong first stepped onto the lunar surface, he famously said: T̈hat’s
one small step for [a] man, one giant leap for mankind.Ït was broadcast live to an estimated 530
million viewers worldwide. Apollo 11 effectively proved US victory in the Space Race, by fulfilling
a national goal proposed in 1961 by President John F. Kennedy öf landing a man on the Moon
and returning him safely to the Earthb̈efore the end of the decade. Along with Collins and Aldrin,
Armstrong was awarded the Presidential Medal of Freedom by President Richard Nixon. President
Jimmy Carter presented him with the Congressional Space Medal of Honor in 1978, and Armstrong
and his former crewmates received a Congressional Gold Medal in 2009."
2) "Apollo 11 July 162̆01324, 1969 was the spaceflight that first landed humans on the Moon.
Commander Neil Armstrong and lunar module pilot Buzz Aldrin formed the American crew that
landed the Apollo Lunar Module Eagle on July 20, 1969, at 20:17 UTC. Armstrong became the
first person to step onto the lunar surface six hours and 39 minutes later on July 21 at 02:56 UTC;
Aldrin joined him 19 minutes later. They spent about two and a quarter hours together outside the
spacecraft, and collected 47.5 pounds 21.5 kg of lunar material to bring back to Earth. Command
module pilot Michael Collins flew the Command Module Columbia alone in lunar orbit while they
were on the Moon’s surface. Armstrong and Aldrin spent 21 hours, 36 minutes on the lunar surface,
at a site they had named Tranquility Base upon landing, before lifting off to rejoin Columbia in lunar
orbit."
Main answer fact: "On July 20, 1969, Armstrong and Apollo 11 Lunar Module LM pilot Buzz
Aldrin became the first people to land on the Moon”
System Answer: Neil Armstrong, Buzz Aldrin

Table 6: Examples of System Answers



Question System
Path

Ground
Answer

System
Answer

Comments

Who won best
actor when Al-
fred Junge won
best art direc-
tion?

Aux Failure
(text extrac-
tion)

Ronald
Colman

Yul Bryn-
ner

Top Retrieved Fact: In addition to the
same producer, director and star, the first
two films in the trilogy had the same
cinematographer F. A. Freddie Young,
composer Mikl Rufzsa, art director Al-
fred Junge and costume designer Roger
Furse. The costumes for this film were
executed by Elizabeth Haffenden. In
1955, she would take over from Furse
as costume designer for the final film
in the trilogy, Quentin Durward. Alfred
Junge remained as art director. Issue:
The issue here is incorrect Auxiliary fact
extraction by the ectraction pipeline. As
can be seen, an irrelevant passage has
been detected as the fact containing Aux-
iliary interval. Hence the extracted Aux-
iliary fact was 1957 as opposed to the
correct date 1947. As a result the re-
formed lambda consisted of erroneous
temporal constraint due to to which the
KBQA pipeline returned an incorrect an-
swer as expected.

Which team did
Wayne Rooney
play for before
joining Manch-
ester United?

Aux Failure
(text extrac-
tion)

Everton
F.C.

England Top Retrieved Fact: Wayne Mark
Rooney born 24 October 1985 is an En-
glish professional football manager and
former player. He is the manager of
EFL Championship club Derby County,
for whom he previously served as in-
terim player-manager. He spent much
of his playing career as a forward while
also being used in various midfield roles.
Widely considered to be one of the
best players of his generation, Rooney
is the record goalscorer for both the
England national team and Manchester
United.Rooney joined the Everton youth
team at the age of nine and made his
professional debut for the club in 2002
at the age of 16. He spent two seasons
at the Merseyside club, before moving
to Manchester United for 325.6 million
in the 2004 summer transfer window
where he won 16 trophies and became
the only English player, alongside team-
mate Michael Carrick, to win the Pre-
mier League, FA Cup, UEFA Champi-
ons League, League Cup, UEFA Europa
League, and FIFA Club World Cup.



Issue: The Auxiliary fact in this case
is correctly detected: 2004. However
when the reformed lambda with the aux-
iliary fact hard-coded was evaluated on
the KB, an adjacent entity also comply-
ing with the constraints was picked as
the final answer. In this case Wayne
Rooney was also a player of England be-
fore (as well as after) he joined Manch-
ester United. However the answer ex-
pected was his previous club: Everton
F.C. This is due to an inherent issue with
the KBQA pipeline.

When did the in-
dustrial revolu-
tion in Europe
began?

Main Fail-
ure (text
extraction)

1791 late 18th
century

Top Retrieved Fact: Industrial growth
Capitalism has been dominant in the
Western world since the end of feudal-
ism. From Britain, it gradually spread
throughout Europe. The Industrial Revo-
lution started in Europe, specifically the
United Kingdom, in the late 18th cen-
tury, and the 19th century saw Western
Europe industrialise. Economies were
disrupted by World War I but by the be-
ginning of World War II they had recov-
ered and were having to compete with
the growing economic strength of the
United States. World War II, again, dam-
aged much of Europe’s industries. Issue:
The textual resource does not contain the
exact date mention of the missing tem-
poral fact. So the targeted extraction
pipeline retrieves the most appropriate
sequence of tokens "late 18th century"
from the text as the temporal fact.

Who is the Gov-
ernor of Ari-
zona in 2009?

Main Fail-
ure (text
extraction)

Jan
Brewer
& Janet
Napoli-
tano

Jan
Brewer

Top Retrieved Fact: Governor Jan
Brewer assumed office in 2009 after
Janet Napolitano had her nomination by
Barack Obama for Secretary of Home-
land Security confirmed by the United
States Senate. Arizona has had four fe-
male governors, more than any other
state. Issue: The top retrieved relevant
fact had explicit mention of Jan Brewer
assuming office in 2009. However, it
lacks explicit mention of Jane Napoli-
tano’s end date. The end date being 2009
had to be implicitly reasoned out which
is not trivial for the text based fact ex-
tractor. Hence the overlapping dates in
office (2009) of the two Governors was
missed out.

Table 7: Detailed error analysis of a few incorrectly answered questions


