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Abstract

We study the spatiotemporal evolution of event processes (e.g., gunshots, vehicle
thefts, earthquakes). Classical approaches model the intensity of a spatio-temporal
point process directly. Instead, we propose to infer a latent velocity field that
transports the event intensity via a continuity equation as a more interpretable
and mechanistic alternative description. The inference is performed in a Bayesian
framework, using a Gaussian process to model the vector field. This provides
calibrated uncertainty for both the vector field and the resulting forecasts. We
evaluate the method on synthetic data to demonstrate efficient simulation and
inference.
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Figure 1: Schematic. SQUID takes spatio-temporal event data as input and regresses a velocity field
(here: v(x) = min(x, 1), color indicates magnitude). This example is one-dimensional and the field
does not change in time. Given an initial intensity, the continuity equation transports it over time,
yielding a time-varying intensity. Estimating the field is equivalent to identifying each event with a
particle trajectory. Note that SQUID computes a posterior distribution over vector fields.

Spatio-temporal events are ubiquitous across scientific domains. Applications span seismology, epi-
demiology (case onsets), ecology (species sightings), transportation (traffic collisions, taxi pickups),
environmental hazards (lightning strikes, wildfire ignitions), urban analytics (911 calls, crime), and
conflict studies (IED incidents, protests). Here, an event is any occurrence with a specific location
and timestamp that can be treated as instantaneous.

Spatio-temporal point processes (STPPs) are the de facto standard for modeling event data [1].
Traditionally, statistical models have been used [2]; more recently, neural methods have become a
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Figure 2: Consider again the event data from Figure 1. We reconstruct particle trajectories using
different velocity fields: the ground-truth field (left) and three alternatives with increasing distance
from the ground truth. The ground-truth field produces trajectories that locally concentrate more
densely around observed events, yielding a higher (surrogate) data likelihood.

popular backbone for these models [3]. However, these approaches often struggle with interpretability
and with providing reliable uncertainty estimates.

In this work, we take a slightly different view by focusing on intensity drift, a high-level shift in the
spatial distribution of events over time (cf. Figure 1). Concretely, we aim to identify a velocity field
that captures this drift while remaining consistent with the theory of spatio-temporal point processes
which we estimate within a Bayesian framework.

Such drift appears across domains—ecology (seasonal migration corridors), epidemiology (advancing
incidence fronts), urban analytics (shifting hotspots and displacement), crime (spatial diffusion driven
by socioeconomic factors), and climate science (jet-stream shifts). Related work includes velocity
estimation for spatio-temporal point patterns [4] and continuity-based transport or dynamic optimal
transport [5, 6], as well as action matching [7] and normalizing flows [8].

Contribution. We introduce SQUID (Spatiotemporal QUantification of Intensity Drift), a Bayesian
method to estimate a vector field.We employ a surrogate likelihood formulation for efficient inference
and provide a fast simulation procedure to generate synthetic datasets for evaluation.

2 Background and Problem Setting

STPPs specify a probability law over event sequences, each sequence typically having the form
[(t1, x1, y1), . . . , (tn, xn, yn)] with increasing times and (xi, yi) ∈ S ⊂ R2 spatial coordinates
within a domain S and for a given time horizon T . Inference seeks the data-generating mechanism,
often from a single realization. The traditional parameterization uses an intensity that takes the
history of past events as input and outputs an instantaneous rate for all locations for all future
timepoints. For instance, given the event history Ht up to time t, the future rate at time t′ > t and
location (x, y), denoted λt′(x, y | Ht) ≥ 0, is the instantaneous event rate. This method also yields
an autoregressive generation mechanism. Free parameters are fitted by maximizing the standard
log-likelihood

∑n
i=1 log λti(xi, yi | Hti)−

∫ T

0

∫
S λt(x, y | Ht) d(x, y) dt.

We likewise observe a single sequence but infer a latent velocity field v(x, y) interpreted as a transport
map that advects the intensity via the mass-conserving continuity equation. Given an initial intensity
(that does not depend on the event history) λ0 : S → R≥0, we evolve λ forward in time (e.g., using
semi-Lagrangian integration); thus a static vector field yields a time-varying intensity λt : S → R≥0.

Assumptions. We ignore event history and model only the evolution of the intensity over time (a
Markov-type assumption). We omit event types/marks, though they could be added. We assume
total intensity is conserved over time, a constraint that can be relaxed. We place a spatially smooth
prior on v to avoid pathological, point-concentrated flows. The assumption of a time-invariant vector
field is simplifying but can be extended to time-dependent fields. Jumping ahead, SQUID sidesteps
specifying the initial intensity by learning the vector field nonparametrically from data.
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3 Our Method: SQUID

3.1 Efficient Simulations

STPPs define probability distributions over event sequences from which we can sample given: an
initial intensity field, a velocity field, a time horizon, and a spatial domain. Following the standard
autoregressive interpretation of STPPs, one can proceed as follows:

1. Discretize the spatial and temporal domain into a D ×D ×D grid.
2. Numerically solve the PDE describing the evolution of the intensity over time.
3. For each grid cell with value w, draw u ∼ U(0, 1) and record an event if u < w/V , where

V is the cell volume.

This procedure becomes exact as D → 0, assuming smooth PDE behavior and appropriate boundary
conditions. However, it is computationally inefficient: solving the PDE on fine grids is costly, and
choosing D is nontrivial. Likewise, thinning-based methods do not require discretization but still
require the PDE integration and yield potentially very high rejection rates.

We therefore propose a more efficient simulation scheme:

1. Sample the total number of events n ∼ Poisson
(
T
∫
S λ0(x, y) dx dy

)
.

2. For each event, sample surrogate spatial coordinates (x′
i, y

′
i) independently from a dis-

tribution proportional to λ0(x, y) (e.g., via rejection sampling or a high-resolution 2D
grid).

3. Sample event times independently ti ∼ U(0, T ).
4. Compute the final spatial positions (xi, yi) by integrating (x′

i, y
′
i) forward from 0 to ti using

the velocity field v with an ODE-based integrator.

We call this a particle-based interpretation of STPPs. However, it is important to notice that the
particle trajectories (see also Figure 1 and 2) are a computational trick without physical meaning.

Correctness. We provide a short proof sketch for the equivalence of the two methods. First, note
that all events are independent; thus sampling an event sequence is equivalent to sampling the total
number of events and then sampling all individual events independently. Second, sampling the
number of events is simple: by standard STPP theory, we know that it only depend on the overall
integral of the intensity [9]. By exploiting that the PDE is mass-conserving, we can factor out T and
easily sample the the total event count. Third, the occurrence time ti is uniformly distributed on [0, T ],
because the overall mass is preserved. Lastly, the location of an event i has density proportional to
λti(x, y); interpreting the intensity flow as a normalizing flow, sampling from the initial density and
pushing the sample forward to ti is equivalent to evolving the density to ti and then sampling.

3.2 Vector Field Inference

To represent the vector field computationally, we discretize it into a tensor T ∈ RM×M×2, where
T [x′, y′, :] stores the x and y component of the field at the discretized position (x′, y′). For efficiency,
we upscale the field to a higher resolution before solving the flow, for instance using bilinear
interpolation. The prior distribution over the vector field follows a Gaussian process (conceptually
a vector-valued GP), typically with an RBF kernel (cf. [10]). Hyperparameters, such as the kernel
length scale, could also be treated as Bayesian variables.

A naive Bayesian inference approach would compute the log-likelihood of the data for a given vector
field directly from the likelihood equation above. This, however, would require a Bayesian encoding
of the initial intensity λ0, followed by numerical PDE integration to obtain the likelihood of each
event. While conceptually straightforward, this procedure is computationally demanding. First,
estimating λ0 dramatically increases the Bayesian search space. Second, numerically integrating
the PDE is expensive, specifically if we wish to retain gradients for efficient samplers such as
NUTS. A possible alternative would be to integrate all points backward in time and then estimate
the initial intensity λ0 directly via kernel density estimation (KDE). However, this approach remains
computationally heavy, and the KDE introduces arbitrary design choices.
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Figure 3: For two synthetic velocity fields — rightward horizontal (top) and anticlockwise rotating
(bottom) — we show, from left to right, the ground truth events and velocity fields, the posterior
mean with uncertainty and six posterior samples.

We propose a more practical solution based on the particle-based interpretation. Specifically, we
first integrate all observed points backward to t = 0 and forward to t = T . For each event, we
then estimate its likelihood based on the local density of nearby trajectories, for example using the
inverse of the average distance to its ten nearest neighbors. This results in a surrogate likelihood
that leverages the relationship between probability density (as expressed by the intensity) and the
empirical density of trajectories (cf. Figure 2).

Overall, we can employ a wide range of Bayesian inference methods to sample from the posterior
distribution of the vector field. SQUID further enables efficient mini-batch inference: one can
subsample events or restrict training to short time intervals.

4 Experimental Results

Our experiments 3 show that the method is sensitive to hyperparameters, and although NUTS yields
robust inference, it is slow. Hence, we employ our proposed inference approach, which efficiently
retrieves velocity fields. These results serve as proof of concept for the proposed framework.

5 Related Work

Classical models for STPPs describe event intensities through autoregressive or self-exciting formu-
lations, particularly in applications such as crime modeling [11]. Recent efforts have focused on
estimating latent velocity fields underlying event propagation, for instance using log-Gaussian Cox
processes to infer spatial spread velocities in epidemiological data [12]. Bayesian formulations of
these models provide calibrated uncertainty and efficient inference [13, 14], while GP priors over
vector fields enable nonparametric estimation of dynamical systems [15]. Complementary work
leverages physics-informed regression constrained by partial differential equations [16] and integrates
neural differential equations to recover underlying dynamics from sparse event observations [17].
From a broader transport perspective, approaches such as neural dynamic optimal transport and action
matching formulate density evolution through the continuity equation [18, 7].

6 Conclusions and Future Work

We introduced SQUID, a Bayesian framework for inferring latent velocity fields that drive the evolution
of event intensities through a velocity equation. The method provides an interpretable, uncertainty-
aware view of spatio-temporal dynamics while remaining computationally efficient. Future work will
focus on disentangling large-scale drift from local self-excitation effects. Separately, we will integrate
domain-informed priors for specific applications and apply the approach to real-world datasets such
as urban mobility or epidemiological event records.
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