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Abstract

Named Entity Recognition (NER) is a task001
to recognize mentions of entities such as per-002
son, location, drug, time, biological protein,003
etc. NER serves as a key component for a004
number of Natural Language Processing appli-005
cations including machine translation, entity006
linking, information retrieval, question answer-007
ing, etc. Traditional NER is limited to iden-008
tifying and categorizing entities in text-based009
data. In recent decades, as Document Image010
Understanding emerges as a new research area,011
recognizing entities from image-based docu-012
ments becomes a new goal in Artificial In-013
telligence. This paper investigates both text-014
based and image-based NER through review-015
ing a series of significant and relevant tasks,016
datasets, methods, and evaluations, with the017
goal to present a clear overview of the field.018
Further, the survey provides a reflection on the019
field by discussing the challenges and future020
directions in NER.021

1 Introduction022

In the 1980s, enabling computers to understand023

documents has become an imperative goal in Artifi-024

cial Intelligence. In order to distinguish the elemen-025

tary building blocks of the information contained026

within these documents, the large and complex task027

has soon been decomposed into smaller tasks with028

the objective to first identify and categorize these in-029

formation units, the named entities (NEs). The con-030

cept therefore first emerged, named entities are lin-031

guistic objects following the need expressed above032

(Nouvel et al., 2016). The term “Named Entity”033

(NE) was first proposed at the sixth Message Un-034

derstanding Conference (MUC-6) (Grishman and035

Sundheim, 1996), with the aim to identify names036

of organizations, people, and geographic locations037

in the text, as well as currency, time and percentage038

expressions. The task of Named Entity Recognition039

(NER) is to recognize these mentions of entities040

from text belonging to a predefined typology. In041

addition to standing alone as an independent tool 042

for Information Extraction, NER systems play key 043

roles in the pipeline of other NLP tasks such as en- 044

tity linking (Prabhakar Kannan Ravi et al., 2021), 045

information retrieval (Guo et al., 2009), machine 046

translation (Babych and Hartley, 2003), question 047

answering (Mollá et al., 2006), and text summariza- 048

tion (Aone, 1999), etc. 049

Conventional NER tasks solely based on text in- 050

put can be broadly divided into two sub-categories: 051

generic NER in the general context (non-specialist 052

language) to recognize person, location, organi- 053

zation, number, date, and time, etc and domain- 054

specific NER to identify entities in specialized 055

fields such as medicine and law, e.g. drug names, 056

enzymes, jurisdictions, and legal institutions, etc. 057

Over decades of development of traditional NER 058

on pure text input for document understanding, 059

a more ambitious goal of extracting entities di- 060

rectly from image-based documents has recently 061

emerged as a new research problem. In contrast to 062

text-based NER, visual entity recognition, alterna- 063

tively referred to as image-based entity recognition 064

is a downstream task of Document AI. It defines 065

a new form of NER to extract entities in a two- 066

dimensional structured information space i.e. a doc- 067

ument image instead of linear text sequences. With 068

the increasing need in the business environment to 069

process large amounts of digital-born, image-based 070

business documents such as invoices and receipts, 071

one major application domain of visual NER is to 072

extract business objects such as invoice numbers, 073

IBANs for bank accounts, which often appear as 074

key-value pairs and convey critical and confidential 075

information for businesses. Due to the complex- 076

ity of the 2-D layout of these documents (e.g. the 077

value can appear to the right or bottom of the key 078

in these documents), a challenge is posed to NER 079

in this problem setup. 080

While many surveys on NER in the general 081

context had been conducted over the past few 082
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years, this paper conducts its investigation from083

text-based to image-based NER, with the focus on084

generic NER for text-based entity recognition.085

The remainder of this paper is organized as fol-086

lows. The following two sections review a series of087

NER datasets and models that are significant and088

relevant to illustrate the broad view of the field.089

Section 4 briefly discusses some of the evalua-090

tion paradigms proposed through the major forums.091

Section 5 presents a reflection on the field of NER092

research in general by discussing the challenges093

and opportunities. Finally, section 6 concludes094

with final remarks. Each section starts its discus-095

sion from conventional NER on linear textual input096

in the general domain and extends to image-based097

NER.098

2 NER Datasets099

Over the past few decades, the development of100

NER has gone through stages, evolving from sim-101

ple rule-based heuristics to statistical methods. In102

more recent practices, data-driven methods have103

proved more successful in the task and have been104

widely studied and applied. While the next sec-105

tion discusses these methods for NER in detail, this106

section first describes the annotated NER datasets107

developed over the recent years, which are critical108

for the training and evaluation of these statistical109

models for Named Entity Recognition. This sec-110

tion first reviews various text-based generic NER111

datasets historically and lists some of the major112

image-based datasets for visual entity recognition.113

2.1 Text-based NER Datasets114

Throughout the history of the development of NER,115

many of the NER datasets were created and dis-116

tributed through NER shared tasks. After the first117

NER shared-task (Grishman and Sundheim, 1996),118

CoNLL-2002 (Tjong Kim Sang, 2002) and CoNLL-119

2003 (Tjong Kim Sang and De Meulder, 2003) dis-120

tributed datasets created from newswire articles121

in four different languages (Spanish and Dutch122

in CoNLL-2002, English and German in CoNLL-123

2003) and focused on four types of entities: PER124

(person), LOC (location), ORG (organization) and125

MISC (miscellaneous entities that do not belong126

to the previous three groups). Later, various NER127

tasks have been organised for other languages such128

as Indian languages (Gali et al., 2008), Arabic129

(Shaalan, 2014), German (Benikova et al., 2014),130

and Slavic languages (Piskorski et al., 2017). Out-131

side of shared tasks, various generic NER datasets 132

in different languages have been created over the 133

years. Peng and Dredze (2015), for instance, pro- 134

posed a dataset containing messages from Chinese 135

Social Media (Weibo).1 The dataset is annotated 136

with four types of entities: person, organization, 137

location, and geo-political entity. Additionally, 138

the OntoNotes (Hovy et al., 2006) project was ini- 139

tially launched to annotate a large corpus sourced 140

from a variety of genres: broadcast, news, weblogs, 141

USENET newsgroups, talk shows, and conversa- 142

tional telephone speech with structural information 143

(syntax and predicate argument structure) and shal- 144

low semantics (word sense linked to an ontology 145

and coreference). The project released 5 versions, 146

with texts annotated with 18 entity types. 147

Most of the generic datasets share a typology 148

similar to that in CoNLL-2003 (i.e. person, loca- 149

tion, organization, other), with several exceptions 150

such as Gali et al. (2008), which differentiates more 151

entity types: person, designation, temporal expres- 152

sions, abbreviations, object number, brand, etc. 153

The source of texts varies vastly across datasets, 154

with the majority collected from news articles, so- 155

cial media platforms, and Wikipedia. 156

Amongst these generic NER datasets developed 157

over the years, CoNLL-2003 and OntoNotes have 158

been most commonly used as benchmarks to report 159

the performance of a new NER system. 160

Besides generic NER datasets, a variety of 161

domain-specific NER datasets in specialized fields 162

such as biomedicine and material science have been 163

developed over the years. As mentioned in the 164

beginning section, this survey does not focus on 165

domain-specific NER, thus here list only a few 166

such datasets. For instance, i2b2-2010 (Uzuner 167

et al., 2011) is a clinical dataset that focuses on the 168

identification of problem, treatment, and test from 169

patient reports. MaSciP (Mysore et al., 2019) is 170

material science dataset that contains synthesis pro- 171

cedures annotated with synthesis operations and 172

their typed arguments (e.g., Material, Synthesis- 173

Apparatus, etc.). Due to the requirement of a large 174

amount of annotated training data for deep learning 175

models and the unavailability of such datasets, ef- 176

forts on data augmentation for NER datasets have 177

been made. Dai and Adel (2020), for instance, 178

compared a number of augmentation techniques 179

for NER2 and proved the effectiveness through ex- 180

1http://www.weibo.com/
2Label-wise token replacement (LwTR), synonym replace-
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periments.181

Although a large number of generic and domain-182

specific NER datasets have been proposed over the183

years, there is still the need to create NER datasets184

on occasions. Here briefly illustrates the possibil-185

ity to create a NER dataset for special purposes186

from the ground up. With various APIs such as187

Twitter developer portal3 and Google BigQuery,4188

it is possible to collect raw text data in generic or189

specified domain by setting restrictions in the data190

collection process. Afterward, raw text data can be191

annotated using annotation tools such as Label Stu-192

dio,5 which provides a simple and intuitive GUI for193

users to annotate named entities and export labeled194

data in a parsable format.6195

2.2 Image-based Entity Extraction Datasets196

In contrast to text-based NER datasets, image-197

based NER datasets compromise document images198

and their corresponding OCR annotations, which199

provide not only text information, but also visual200

and layout information. Table 1 lists some of the201

major benchmark datasets for visual entity recog-202

nition. Amongst the benchmarks listed, FUNSD203

(Jaume et al., 2019), SROIE (Huang et al., 2019),204

CORD (Park et al., 2019) and Kleister (Stanisławek205

et al., 2021) have been most commonly used to eval-206

uate the performance of new developed systems.207

The FUNSD dataset was originally developed208

for the form understanding task. The dataset con-209

tains 199 noisy scanned documents with 9707210

semantic entities labeled “question”, “answer”,211

“header” or “other”. SROIE is a dataset of re-212

ceipts with entities annotated with company, date,213

address, or total. Each receipt is organized as a214

list of text lines with bounding boxes. Similarly,215

CORD is also a receipt key information extrac-216

tion dataset with 30 semantic labels defined under217

4 categories. The dataset provides both bound-218

ing boxes and OCR annotations. Kleister consists219

of two datasets: Kleister NDA and Kleister Char-220

ity, with Kleister NDA more commonly used as a221

benchmark to evaluate new systems. The Kleister222

NDA dataset contains legal NDA (Non-disclosure223

Agreement) documents with party (ORG/PER), ju-224

ment (SR), mention replacement (MR), shuffle within seg-
ments (SiS).

3https://developer.twitter.com
4https://cloud.google.com/bigquery
5https://labelstud.io/
6Code repository for an example workflow is not anony-

mous, shall be relaesed upon acception or rejection of the
paper.

Dataset Language
FUNSD (Jaume et al., 2019) En
SROIE (Huang et al., 2019) En
CORD (Park et al., 2019) En
EATEN (Guo et al., 2019) Zh
EPHOIE (Wang et al., 2021) Zh
Deepform (Stray and Svetlichnaya, 2020) En
Kleister (Stanisławek et al., 2021) En

XFUND (Xu et al., 2021) Zh/Ja/Es/
Fr/It/De/Pt

Table 1: Benchmark datasets for visual entity
recognition.

risdiction (LOCATION), effective_date (DATE), 225

and term (DURATION) entities labeled. 226

In addition to the datasets listed above, datasets 227

such as IIT-CDIP Test Collection (Lewis et al., 228

2006), although not specifically for the visual en- 229

tity recognition downstream task, are relevant to the 230

problem at hand. As such datasets are often used 231

to pretrain general-purpose Document AI models, 232

which are to be fine-tuned for various downstream 233

tasks including image-based entity extraction. The 234

next section will describe these pretraining meth- 235

ods for visual entity recognition in more detail. 236

3 Approaches to NER 237

This section discusses the approaches developed 238

over the years to both text-based and image-based 239

NER. 240

3.1 Approaches to Text-based NER 241

With years of development of text-based NER, a 242

large number of approaches had been proposed, 243

evolving from rule-based solutions to data-driven 244

solutions including both supervised and unsuper- 245

vised methods. 246

3.1.1 Rule-based Techniques 247

In the early stage of the development of NER, ap- 248

proaches were mainly dependent on rules writ- 249

ten by humans. These rules are often based 250

on syntactic-lexical patterns and domain-specific 251

knowledge. Early works such as LaSIE-II 252

(Humphreys et al., 1998), NetOwl (Krupka and 253

IsoQuest, 2005), Facile (Black et al., 1998), SRA 254

(Aone et al., 1998), FASTUS (Appelt et al., 1995), 255

and LTG (Mikheev et al., 1999) were developed 256

according to hand-crafted lexical, semantic and syn- 257

tactic rules to identify and classify entities. Rule- 258

based systems also perform well when it comes to 259

NER in a specialised area based on the features de- 260
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veloped according to domain-specific gazetteers.7261

Quimbaya et al. (2016), for instance, proposed a262

dictionary-based approach for NER in electronic263

health records.264

As much as rule-based NER systems show good265

performance when the lexicon is exhaustive, these266

systems have the problem of being highly domain-267

specific and non-portable. Additionally, designing268

rules for the system often require human exper-269

tise in linguistics as well as knowledge in specific270

domains, which makes the systems expensive to271

develop and maintain. In general, rule-based NER272

systems show high precision and low recall (more273

False Negatives than False Positives), due to the274

closed-set lexicon and domain-specific rules.275

3.1.2 Data-Driven Methods276

Data-driven systems have several advantages over277

rule-based ones. This section reviews various278

learning-based methods for the NER task. The fol-279

lowing discusses both unsupervised and supervised280

methods, with feature-based and neural supervised281

learning approaches in separate discussions.282

Unsupervised Methods283

Unsupervised learning methods require data nei-284

ther classified nor labeled. The goal is to gener-285

ate a model that grasps the structural and distri-286

butional features of the unlabelled training data287

and to make predictions on future unseen data.288

Unsupervised learning approaches are applied in289

NER, typically through clustering with associated290

resources/knowledge bases (e.g., WordNet (Miller,291

1995)) (Nadeau and Sekine, 2007).292

While a number of unsupervised methods for293

NER have been developed over the years, here lists294

only a few. Collins and Singer (1999) used unla-295

belled data and 7 “seed" rules such as orthography296

(e.g., capitalization), context (of the entity), words297

composed of named entities, etc. to infer men-298

tions of named entities. Alfonseca and Manandhar299

(2002) takes named entity types from the WordNet300

and labels each input word with an NE type. The301

method is to assign a topic signature to each Word-302

Net synset according to frequent co-occurrence in303

a large corpus. Then each word is labeled with304

the most similar type signature to its context in305

the document it belongs to. Etzioni et al. (2005)306

uses Pointwise Mutual Information and Informa-307

tion Retrieval (PMI-IR) to measure the association308

between an entity and an entity type based on the309

7A gazetteer consists of a set of lists containing names of
entities such as cities, organisations, days of the week, etc.

theory that expressions with high PMI-IR are more 310

likely to co-occur. Shinyama and Sekine (2004) 311

proposed a method to identify named entities based 312

on an observation that a named entity is strongly 313

correlated with appearing punctually and simulta- 314

neously in multiple news articles. The approach is 315

especially effective to detect named entities with 316

high rarity. 317

Feature-based Supervised Learning Methods 318

Compared to unsupervised learning methods for 319

NER, supervised methods are less dependent on 320

“rules/theory/observations/knowledge". Before the 321

popularity of various neural models for NLP tasks, 322

early works on data-driven NER combine text fea- 323

tures and classic machine learning models to enable 324

recognizing similar patterns in unseen data. 325

In feature-based learning, feature engineering 326

is critical for NER systems based on classic mod- 327

els. These feature representations include word- 328

level features (e.g. POS tag, case, and morpho- 329

logical features) (Zhou and Su, 2002), list lookup 330

features (e.g. DBpedia and Wikipedia gazetteer) 331

(Mikheev, 1999) and document-level features (e.g. 332

local syntax and multiple occurrences) (Ravin and 333

Wacholder, 1997).8 334

The feature vector representations will then be 335

fed into models for training and inference. In 336

feature-based supervised learning, the NER task 337

is formalized either as a sequential labeling prob- 338

lem or a multi-class classification problem. Thus 339

the typical models include sequence-to-sequence 340

models: contextual models such as Hidden Markov 341

Models (HMMs) (Eddy, 1996), multiple feature 342

models such as Maximum Entropy Models (Ka- 343

pur, 1989), Conditional Random Fields (CRFs) 344

(Lafferty et al., 2001), and classifiers such as De- 345

cision Trees (Quinlan, 1986) and Support Vector 346

Machines (SVMs) (Cortes and Vapnik, 1995). 347

Bikel et al. (1998), for instance, first employed 348

HMMs for the NER task. While systems proposed 349

in Bender et al. (2003), Chieu and Ng (2002), Cur- 350

ran and Clark (2003) used MaxEnt Models to iden- 351

tify and categorize entities. In order to take better 352

account of context information, McCallum and Li 353

(2003) used CRFs to perform the task. It is worth 354

noting that CRFs are widely used in named entity 355

recognition and show advanced performance for 356

this task according to metrics reported in several 357

experiments from different works (Nouvel et al., 358

8Nadeau and Sekine (2007) discusses feature engineering
for NER in more details.
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2016). As for classifier-based systems, Szarvas359

et al. (2006) trained multiple decision tree models360

using different sets of features to perform the task361

through a majority voting system. McNamee and362

Mayfield (2002) used orthography and punctuation363

features to train SVM classifiers. Each classifier364

makes a binary decision whether the current token365

belongs to one of the eight classes, i.e., B (Begin-366

ning) and I (Inside) for each of the four NE tags.367

Neural Network Methods368

In contrast to classic models, neural network369

models are less dependent on feature engineering370

and more reliant on large amount of training data371

and computing power. Since Collobert and Weston372

(2008) proposed one of the first neural network373

methods for NER, many more works followed.374

Neural architectures for NER have been classified375

into four categories by previous surveys according376

to word representation: Word level, Character level,377

Word+Character level, and Word+Character+Affix378

level models. In word level architectures, each379

word is represented by its embedding, and the in-380

put to the Recurrent Neural Networks (RNNs) is381

a sentence represented by a sequence of words.382

Huang et al. (2015) presented a word level neural383

architecture with LSTM layers and a CRF layer on384

top. The model showed promising performance on385

the benchmark dataset CoNLL-2003. While Kuru386

et al. (2016) proposed CharNER, which is a char-387

acter level RNN model for multilingual NER on388

7 languages. In this model, the sentence is repre-389

sented as a sequence of characters to be fed into the390

RNN model. The tags predicted for each character391

were converted to word tags using Viterbi decoder392

(Forney, 1973). CharNER also presented good per-393

formance on the CoNLL datasets (2002 & 2003).394

Character+Word level architectures combine both395

character and word embeddings in two different396

ways: 1) words are represented as a combination of397

a word embedding and a convolution over the word398

characters, followed by a Bi-LSTM layer over the399

word representations of a sentence, and finally, a400

softmax or CRF layer over the Bi-LSTM to gener-401

ate labels (implemented in Ma and Hovy (2016),402

Chiu and Nichols (2016), etc.) 2) word embeddings403

are concatenated with (Bi-directional) LSTMs over404

word characters, passed to sentence-level Bi-LSTM405

and predicting the final tags using a final softmax or406

CRF layer (Lample et al., 2016). Character+Word407

level models in general show very strong perfor-408

mance on benchmark datasets. Later, Yadav et al.409

(2018) introduced affixes to the Word+Character 410

models in Lample et al. (2016). Affix is one of the 411

most successful features from feature engineering. 412

The models were extended to learn affix embed- 413

dings alongside the word embeddings and char- 414

acter RNNs. The Word+Character+Affix model 415

achieved even better performance on the CoNLL 416

datasets in four languages. 417

In addition to the traditional neural network 418

models, transformer-based models proposed more 419

recently have presented advanced performance 420

on various NLP tasks including NER. Trans- 421

former (Vaswani et al., 2017) utilizes stacked self- 422

attention and point-wise, fully connected layers to 423

build basic blocks for encoder and decoder, disre- 424

garding recurrence and convolutions completely. 425

Transformer-based methods such as BERT (De- 426

vlin et al., 2018), GPT (Radford et al., 2018) and 427

ELMo (Peters et al., 2018) show even stronger per- 428

formance on NER compared to non-transformer 429

neural models. More recent works such as Span- 430

BERT (Joshi et al., 2020) and LUKE (Yamada 431

et al., 2020) extended BERT in order to see bet- 432

ter performance on entity-related tasks including 433

NER. Both LUKE and SpanBERT outperformed 434

general-purposed BERT baselines on several NER 435

benchmarks. 436

In addition to the typical neural methods re- 437

viewed above, it is worth noting that in more recent 438

years, applied deep learning techniques such as 439

deep active learning (Shen et al., 2017), reinforce- 440

ment learning (Narasimhan et al., 2016), adver- 441

sarial learning (Cao et al., 2019) have also been 442

introduced to the NER task. A more thorough re- 443

view on various more deep learning techniques can 444

be found in Li et al. (2020). 445

3.2 Approaches to Image-based Entity 446

Extraction 447

Various approaches proposed to image-based NER 448

treat the task as different problems since document 449

images convey both textual and visual information. 450

A number of recent research works consider 451

visual entity recognition as a Computer Vision 452

problem, and perform the task through seman- 453

tic segmentation or text box detection (Cui et al., 454

2021). Given the significance of the text infor- 455

mation contained in the document images, typical 456

frameworks represent these document images as 457

a pixel grid with text features added to the visual 458

feature map. The approaches to represent text infor- 459
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mation evolved from character-level to word-level,460

and then to context-level. Chargrid (Katti et al.,461

2018) uses a convolution-based encoder-decoder462

network to fuse text information into images us-463

ing one-hot encoded characters. VisualWordGrid464

(Kerroumi et al., 2021) replaced character-level465

text information with word-level representation466

in Chargrid, and improved model performance.467

In order to take better account of contextual in-468

formation, BERTgrid (Denk and Reisswig, 2019)469

uses BERT to obtain context representation and470

increased recognition accuracy. ViBERTgrid (Lin471

et al., 2021) further built on BERTgrid using image472

features from the CNN model and presented better473

model performance.474

While some other research consider the task as a475

special natural language understanding task. Ma-476

jumder et al. (2020), for instance, generates ex-477

traction candidates based on the knowledge of the478

types of the target fields and uses a neural net-479

work architecture to learn a dense representation of480

each candidate based on its context. The approach481

proved useful in solving the extraction task.482

On top of the two ways discussed above to for-483

malise the task, unstructured visually-rich docu-484

ments can be naturally well represented by Graph485

Neural Network (GNN) since they are often com-486

posed of multiple adjacent text fragments: the text487

fragments can be abstracted as nodes, with the re-488

lationship between the text fragments modeled as489

edges. This enabled a number of research works490

for visual entity recognition based on GNNs. In491

Hwang et al. (2020), the document is modeled as a492

directed graph, which enables information extrac-493

tion through dependency analysis. Many works494

proposed to use GNN-based methods for visual495

extraction tasks, these include Cheng et al. (2020),496

Riba et al. (2019), Wei et al. (2020).497

In addition to the methods discussed above,498

general-purpose multi-modal pretraining ap-499

proaches for Document Understanding can also500

be applied to the downstream image-based entity501

extraction task. This type of approach involves502

two stages of learning: 1) pretraining model on503

a large-scale Document AI dataset for general504

purpose 2) fine-tuning the pretrained model on505

a task-specific dataset for each downstream task506

such as visual entity extraction, document image507

classification, etc. LayoutLM (Xu et al., 2020b),508

which is a pioneer work using this approach, uses509

text, image, and layout information to jointly510

pretrain an extended BERT model in order to make 511

better use of all relevant information conveyed in 512

document images for various Document AI tasks. 513

While LayoutLM achieved good performance 514

on the downstream tasks already, subsequent 515

works such as LayoutLMv2 (Xu et al., 2020a), 516

LayoutLMv3 (Huang et al., 2022), LayoutXLM 517

(Xu et al., 2021) and DocFormer (Appalaraju 518

et al., 2021) followed and further improved from 519

LayoutLM by showing stronger performance and 520

enabling multilinguality on various downstream 521

tasks including visual NER. These subsequent 522

works mostly built themselves on the basis of 523

LayoutLM through redesigning the architecture 524

and pre-training objectives. LayoutLM has 525

gradually become the basic unit for building more 526

complex algorithms. 527

4 NER Evaluations 528

Both text-based and image-based NER are often 529

formalised as a sequential labeling problem. The 530

metrics used to evaluate a NER system are typi- 531

cally: precision, recall, and F-score. 532

It is worth noting that in text-based NER, there 533

have been two typical evaluations. CoNLL first in- 534

troduced Exact-Match Evaluation, in which case 535

a named entity is considered correctly recognized 536

only if its both boundaries and type match ground 537

truth. While for Relaxed-Match Evaluation de- 538

fined in MUC-6, a correct type is credited if an 539

entity is assigned its correct type regardless of 540

its boundaries as long as there is an overlap with 541

ground truth boundaries; a correct boundary is cred- 542

ited regardless of an entity’s type assignment. Most 543

works employ the exact-match evaluation to mea- 544

sure their model performance since relaxed-match 545

evaluation is complex and causes difficulty to error 546

analysis. 547

5 Reflection: Challenges and 548

Opportunities in NER 549

In addition to the issues briefly mentioned in the 550

previous sections, this survey noticed several chal- 551

lenges and opportunities in the field of NER. 552

Dataset Quality 553

As noted in a number of previous examinations 554

on the data quality of NER benchmarks, the issue 555

of annotation inconsistency has been spotted in 556

datasets such as CoNLL-2003 (Tjong Kim Sang 557

and De Meulder, 2003), MUC-7 (Chinchor and 558

Robinson, 1997), and ACE (Doddington et al., 559
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2004). For instance, “Empire State Building” is560

labeled as Location in the ACE dataset, while the561

boundary is set at "Empire State" in CoNLL-2003.562

Another example of inconsistency would be that563

“Baltimore” in the sentence “Baltimore defeated564

the Yankees”, is labeled as Location in MUC-7565

while in CoNLL-2003 as Organization. In addition566

to inconsistent annotation, the “generalizability" of567

NER benchmark results also brings concerns. Most568

of the newly proposed systems are trained and eval-569

uated on these benchmark datasets, which may not570

be the best ways to reflect the general system per-571

formance in cases different from benchmarks. To572

illustrate this, CoNLL-2003, for instance, contains573

texts sourced from news article. A system that574

performs well on this dataset may not have compa-575

rable performance on another dataset with different576

data properties, for example, data from social me-577

dia posts. With various issues existing with the578

NER benchmark datasets and the models devel-579

oped based on them, future work can can consider580

taking a further step by examining the validity and581

reliability of these benchmark datasets. Dataset582

validity and reliability is discussed in Riezler and583

Hagmann (2021). In order to inspect the valid-584

ity of a dataset, there are several model-based and585

descriptive tests such as dataset bias test, which586

can be used to examine whether a model learns587

superficial patterns in the data to perform well on588

training data, but does not generalize well and per-589

forms poorly on out-of-domain test data (Clark590

et al., 2019). While reliability tests examine how591

consistent is a performance evaluation if replicated592

under variations of meta-parameters (or varying593

data properties). With efforts in NER mostly put on594

creating new datasets and developing new systems595

with SOTA results on benchmarks, an examination596

on the reliability and validity of the existing bench-597

mark or non-benchmark datasets, as well as the598

models evaluated on them would be a reasonable599

and meaningful next step.600

Domain-specific & Low-resource Language601

Another issue with NER datasets is that data for602

specialised domains and low-resource languages603

is far away from sufficient. Most NER datasets604

have been developed for English. Especially for605

image-based NER, as a relatively new area, there606

has been few work on datasets for other languages.607

Future work should consider devoting more efforts608

on building datasets on low-resource languages. In609

addition to creating new datasets, developing fur-610

ther data augmentation techniques can also help to 611

resolve the issue. Furthermore, enabling better un- 612

supervised, semi-/self-supervised, and multilingual 613

systems is always an important future direction for 614

NER as a solution to the problems discussed above. 615

Visual-specific Issues 616

Some of the most frequently discussed chal- 617

lenges and future directions in visual NER include 618

few-shot and zero-shot learning, multi-page/cross- 619

page problems, and uneven quality of training 620

data. In addition to these, multi-modal pretraining, 621

which is considered currrently the most effective 622

approach, relies on large scale of pretraining data. 623

These data are often generated using OCR tools to 624

obtain text data from image-based documents for 625

joint training. Thus, the accuracy of the employed 626

OCR tools is a potential concern that requires atten- 627

tion. Additionally, the current pretrained models 628

can benefit from more data for pretraining, which 629

would also be based on OCR. Therefore, future 630

research should pay more attention to the accuracy 631

and reliability of the OCR tools for pretraining 632

data generation, meanwhile producing more data 633

to scale up training in order to drive SOTA results 634

further for image-based NER. 635

6 Conclusions 636

This survey aims to investigate Named Entity 637

Recognition, covering both text-based and image- 638

based NER. In order to provide a good overview 639

of the field, this paper reviews a wide range of 640

datasets and approaches including both rule-based 641

and learning-based methods. For soundness, this 642

paper also briefly discusses NER evaluations. Fi- 643

nally, the investigation ends with a reflection on 644

the research field by discussing the challenges and 645

opportunities in NER. The review on NER works 646

in this survey is not exhaustive, the intend is to 647

illustrate a set of selected works considered most 648

significant and relevant to describe the “lay of the 649

land". While longer survey papers may list a num- 650

ber more datasets, methods and evaluation systems, 651

and provide more details by further explaining the 652

algorithms, and comparing the evaluation metrics 653

of the methods discussed. This paper provides a 654

brief overview in few pages through a preliminary 655

survey. 656
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Tool Link
Text-based NER
StanfordCoreNLP stanfordnlp.github.io/CoreNLP
NeuroNER neuroner.com
spaCy spacy.io/api/entityrecognizer
NLTK nltk.org
OpenNLP opennlp.apache.org/
Image-based NER
LayoutLM huggingface.co/microsoft/layoutlm-base-uncased
LayoutLMv2 huggingface.co/microsoft/layoutlmv2-base-uncased
LayoutLMv3 huggingface.co/microsoft/layoutlmv3-base
LayoutXLM huggingface.co/microsoft/layoutxlm-base

Table 2: Off-the-shelf NER Tools for practical usage.
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