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Abstract

Unsupervised Graph Domain Adaptation has become a promising paradigm for
transferring knowledge from a fully labeled source graph to an unlabeled target
graph. Existing graph domain adaptation models primarily focus on the closed-set
setting, where the source and target domains share the same label spaces. How-
ever, this assumption might not be practical in the real-world scenarios, as the
target domain might include classes that are not present in the source domain. In
this paper, we investigate the problem of unsupervised open-set graph domain
adaptation, where the goal is to not only correctly classify target nodes into the
known classes, but also recognize previously unseen node types into the unknown
class. Towards this end, we propose a novel framework called GraphRTA, which
conducts reprogramming on both the graph and model sides. Specifically, we re-
program the graph by modifying target graph structure and node features, which
facilitates better separation of known and unknown classes. Meanwhile, we also
perform model reprogramming by pruning domain-specific parameters to reduce
bias towards the source graph while preserving parameters that capture transfer-
able patterns across graphs. Additionally, we extend the classifier with an extra
dimension for the unknown class, thus eliminating the need of manually specified
threshold in open-set recognition. Comprehensive experiments on several public
datasets demonstrate that our proposed model can achieve satisfied performance
compared with recent state-of-the-art baselines. Our source codes and datasets are
publicly available at https://github.com/cszhangzhen/GraphRTA.

1 Introduction

Graph Neural Networks (GNNs) have demonstrated impressive capabilities in a wide range of graph-
based tasks, such as node classification [25, 14, 48], social recommendation [54, 6, 57], molecular
generation [59, 34, 44] and point cloud processing [22, 43, 45], etc. Despite their great success,
these GNN models often suffer from severe performance degradation when confronted with distri-
bution shifts in graphs, such as changes in the underlying structures, node features, and label dis-
tributions [52, 30, 28]. Unsupervised Graph Domain Adaptation has become a promising strategy
for addressing the domain shift problem by transferring knowledge across domains without relying
on labels in the target domain. The majority of existing models are developed under the closed-set
setting [62, 51, 66], which assumes that the source and target domains share the same set of classes.

However, such a strict assumption is unrealistic in real-world applications, since the target domain
might introduce new classes that are absent from the source domain [64, 53], leading to significant
challenges in identifying unseen samples. For instance, fraud detection models trained on previ-
ously known fraudulent behaviors from the source domain might struggle in the emerging target do-
main, as fraud schemes are continually evolving with fraudsters frequently developing new tactics.
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Therefore, treating all novel category instances as known classes will significantly compromise the
model’s ability to generalize across diverse environments. Towards this end, open-set graph domain
adaptation [49, 33] has been proposed to accurately classify known node types into their correspond-
ing classes while simultaneously identifying unseen node types into an unknown class. It promotes
better generalization capabilities, making the model applicable across a variety of applications.

There exist some recent endeavors to explore the unsupervised open-set graph domain adaptation
task [49, 40, 33, 32, 53]. The main procedure involves dividing target instances into the known and
unknown groups based on their prediction entropy, then aligning the known group with the source
domain. To distinguish between these two groups and enable open-set recognition, a predefined
threshold is often employed, assuming that the unknown instances will exhibit higher entropy than
the known ones. While promising, these methods depend heavily on manually set threshold and
one threshold cannot fit all, which makes them difficult to adapt to different distributions. Addition-
ally, they also struggle with learning clear decision boundaries, since they mainly focus on aligning
source domain with the target known group, which may result in inadequate separation of the tar-
get unknown group. Hence, more efforts are necessary to tackle the challenges of open-set graph
domain adaptation, particularly in recognizing and separating the target unknown group.

To address the aforementioned challenges, we propose a novel framework named GraphRTA
(Reprogram To Adapt), which performs dual reprogramming from the graph and the model per-
spectives. Specifically, we reprogram the target graph by refining its structure and node features to
explicitly reduce the distribution shift and encourage a clearer separation between the known and
unknown groups. At the same time, we reprogram the model by pruning domain-specific parame-
ters based on their gradients, thereby mitigating bias towards to the source graph, while retaining
parameters that capture transferable patterns between the source and target graphs. Furthermore,
we augment the classifier by adding an extra dimension for the unknown class, which removes the
necessity for a manually specified threshold in open-set recognition. Extensive experiments across
multiple public datasets indicates that our proposed model achieves superior performance in com-
parison to the latest state-of-the-art baselines.

In summary, our key contributions are as follows:

* We explore the challenge of unsupervised open-set graph domain adaptation, which is more prac-
tical in the real-world scenarios yet remains under-explored in the graph community.

* We are the first to reprogram both the model and the graph to improve the alignment and separa-
tion processes, offering an architecture-agnostic solution that can be applied across various GNN
architectures.

* Experimental results show that GraphRTA outperforms or matches the SOTA baselines, highlight-
ing the effectiveness of our approach in addressing the challenges associated with the open-set
graph domain adaptation task.

2 Related Work

Graph Neural Networks. During the past decade, GNNs have demonstrated remarkable capabil-
ity in tackling a wide range of graph learning tasks. Following the message passing framework,
numerous types of GNNs have been developed, which can be broadly classified into spectral and
spatial approaches [56, 50, 1]. Spectral methods, such as ChebConv [4] and Spec-GN [58], de-
rive graph convolution operator based on spectral graph theory. In contrast, spatial models like
GCN [25], GraphSAGE [14] and GAT [48] perform convolution by directly aggregating informa-
tion from neighboring nodes. For comprehensive insights into these models, readers may refer to
comprehensive surveys on GNNs [55, 23]. Despite their impressive performance, GNNs often de-
pend on high-quality labeled data, which could be challenging to obtain in real-world applications.
Additionally, their performance can significantly deteriorate when encountering distribution discrep-
ancies. To mitigate this limitation, recent work has focused on adapting models trained on label-rich
source domains to unlabeled target domains, thereby enhancing their generalization capabilities.

Closed-Set Graph Domain Adaptation. Although domain adaptation has been extensively investi-
gated in computer vision [11, 60, 40] and natural language processing [39, 5, 61], research on graph
domain adaptation remains in its early stages. Current graph domain adaptation methods primarily
aim to learn domain-invariant representations, typically employing statistical matching techniques



such as maximum mean discrepancy [13] or central moment discrepancy [63], or by adopting ad-
versarial learning mechanism [38] for implicit alignment. More specifically, UDAGCN [52] utilizes
a combination of local and global graph encoders alongside adversarial training to achieve domain-
invariant representations. GRADE [51] introduces a graph subtree discrepancy metric to reduce dis-
tribution shifts between source and target graphs, while SpecReg [62] applies spectral regularization
to support theory-grounded graph domain adaptation. StruRW [30] proposes an edge re-weighting
strategy to mitigate conditional structure shifts. A2GNN [28] highlights the inherent adaptability of
graph neural networks by decoupling its transformation and propagation layers. Nevertheless, all
of these aforementioned models assume that both the source and target graphs share the same label
space [65, 29]. Unfortunately, this is impractical in real-world scenarios, as the target graph may
contain new classes that do not exist in the source graph.

Open-Set Graph Domain Adaptation. Open-set domain adaptation extends closed-set domain
adaptation by recognizing target novel classes that are not present in the source domain, meanwhile
accurately classifying target instances that belong to the source label space [36, 41, 27, 26]. Re-
cent models utilize a threshold to designate low-confidence samples as unknown, while aligning the
source domain with the known portion of the target domain via adversarial training [19, 49, 33, 18].
Among them, DANCE [40] applies self-supervised neighborhood clustering to align each target
sample with either a neighboring instance or a source prototype. PGL [33] utilizes a progressive
approach to gradually reject target samples and align conditional distributions through episodic
training. OpenWGL [53] introduces an uncertainty-based node representation learning framework
that employs a constrained variational graph autoencoder to filter out unknown instances with a
multi-sampling approach. OpenWRF [16] integrates out-of-distribution detection techniques with
neighborhood information from the graph to identify novel classes. G2Pxy [64] generates both
the internal and external unknown proxies via mixup to predict the distribution of novel classes in
open-set learning. SDA [49] groups target representations into several clusters and employs a sep-
arate domain alignment strategy to align each target sample with either a target cluster center or a
source prototype. In contrast, our model is designed from both a model-centric and a data-centric
perspective, which effectively generalizes to the target domain.

3 The Proposed Model

3.1 Notations and Problem Definition

For unsupervised open-set graph domain adaptation, we are given a labeled source graph G, =
(Xs,As,Ys) containing ns nodes and an unlabeled target graph G; = (X;, A¢) with n; nodes,
where the source and target graphs are sampled from different probability distributions, i.e., P(Gs) #
P(G;). The feature matrix X € R™*f represents node attribute information, and the adjacency
matrix A € R"*™ indicates the connectivity information between nodes. The source graph includes
a set of classes Cy forming the node label matrix Y, € R"™s*I%| Meanwhile, the target graph is
associated with an additional set of classes C\,, collectively labeled as ‘unknown’, resulting in a
total of |C;| = |Cs| + 1 classes. We decompose the GNN model ®(-) into two fundamental parts:
the feature extractor f,,(-), which transforms the graph into the node representation space, and the
classifier g, (+), which assigns class labels based on these node representations. Therefore, the GNN
model ®(-) can be represented as ® = f,, o g4. Our problem can then be formulated as follows:

Given a graph neural network ®, a labeled source graph G, with label set Cs and an unlabeled
target graph Gy with label space Cy, where C is a subset of Cy, our goal of unsupervised graph
domain adaptation is to train the model ® using G5 and G, to accurately classify target nodes when
they belong to a label in Cs, while marking nodes as ‘unknown’ if their labels fall outside of Cs.

3.2 Graph Neural Networks Revisiting
Current GNNs operate within the message passing framework [25, 14, 48], which performs convo-

lution by iteratively aggregating representations from its local neighborhood. Taking GCN [25] as
an example, the node representations at layer [ can be calculated as follows:

Z' = (G, W') = o(D"?AD 22" 'W'). (1)
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Figure 1: The pipeline of the proposed GraphRAT model. In the model reprogramming module,
some nodes and connections are faded, indicating that these weights have been pruned during the
reprogramming process. In the graph reprogramming module, node features are updated, and edges
are dynamically modified (deleted or added), as indicated by dashed lines. Additionally, domain
adversarial learning is incorporated to categorize instances into three distinct groups: source, target-
known, and target-unknown, thereby enhancing the model’s generalization capacity.

Target Graph

Here, o(-) denotes the non-linear activation function, i.e., ReLU or LeakyReLU. The matrix A=
A + I represents the adjacent matrix with self-connections, while D is the diagonal degree matrix

of A. W! € R%-1%di indicates a matrix of trainable parameters. As demonstrated in Section 4.3,
our proposed model is architecture agnostic and can be employed across diverse GNN frameworks.

3.3 Domain-Agnostic Model Reprogramming

We present an overview of the proposed GraphRTA framework in Figure 1. Unsupervised open-
set graph domain adaptation involves training a model on a labeled source graph and an unlabeled
target graph, where the target graph contains novel classes not present in the source graph. Since
the model is trained using labeled data from the source graph while having no access to labels in the
target graph, a primary challenge is the risk of bias toward the source domain. This discrepancy can
lead the model to overemphasize source-specific patterns, thereby limiting its ability to generalize
effectively to the target domain.

Motivated by the lottery ticket hypothesis [9, 2, 35, 3], which demonstrates that only a subset of
parameters is crucial for generalization, we propose to reprogram the graph neural network f, (-) by
selectively masking its weights. Specifically, we introduce differentiable masks M! to indicate the
insignificant elements within the weights W' of each layer. Therefore, the node representations Z
at layer [ is computed as follows:

= fu(G, W) = (D 2AD 2Z" /(W' o M), 2)

where © denotes the element-wise product. Hyperparameter p is utilized to control the sparsity of
the masks, determining the proportion of weights to be retained. To quantify the importance of each
weight element, we calculate its gradient VIM' with respect to the loss function. The absolute value
of these gradients is then used as the importance score, reflecting how much each weight contributes
to generalization in the target domain. Weights with smaller gradients typically contribute less to
reducing the loss and may capture domain-specific patterns that do not help in adapting to the target
domain and recognition of unseen classes. By masking such weights, the reprogrammed model can
focus better on transferable features that generalize across domains. Hence, we set the lowest p
percent of gradient values in M' to zero, leaving the remaining elements at 1. These sparse masks
are then applied to prune W', resulting in the reprogrammed sparse model.

To handle open-set recognition, we further reprogram the output layer by augmenting an extra di-
mension for the unknown class as follows:

9s(z) = [¢ 'z, 2], )

where ¢ € R4*IC:| represents the closed-set classifier and @ € R?*! denotes the linear projec-
tion layer for the unknown class. The augmented logits are then passed through a softmax layer to
generate the posterior probabilities, with the final prediction assigned to the class with the highest
probability. This mechanism is designed to effectively distinguish between known and unknown



classes through using a dynamic threshold based on the input node representation z, whereas exist-
ing models typically rely on a manually defined threshold, making them less adaptable to domain
discrepancies. Through these model reprogramming procedures, we develop a domain-agnostic
GNN model capable of identifying open-set classes.

3.4 Distribution-Aware Graph Reprogramming

While our proposed model reprogramming module can help mitigate source bias, it does not address
the fundamental domain shift that arises from the structural and feature differences between the
source and target graph data. Existing approaches often overlook the fact that the domain shift is
inherently caused by the input graph’s unique characteristics. This discrepancy makes it challenging
for the GNN model to generalize well across domains in the open-set scenario, as the target graph
may contain novel structures, features or classes that the source domain does not encompass.

To overcome this limitation, we further propose performing graph reprogramming, where the target
graph itself is refined to improve compatibility between the source and target domains. Through this
approach, we modify the target graph’s structure and node features to better align with the source
domain, while differentiating the known and unknown groups within the target domain [66]. This
strategy not only mitigates domain shift but also strengthens the model’s ability to generalize and
recognize the unseen classes. More specifically, we implement graph reprogramming by applying
transformation functions to adjust both the target graph structure and node features:

X = 1. (Xy), Ay = va(Ay), 4)

where 1, (-) represents the transformation function applied to update node features, and v, (-) de-
notes the function for modifying the graph structure by adding or removing edges. Although nu-
merous approaches, like graph structure learning methods [7, 21, 31], can be employed to adjust the
graph data, we choose two simple, direct transformation strategies described below, with additional
options explored in the ablation study in Appendix B.

For node features, we define the transformation function 1, (X;) = X; + AX,;, where AX; €
R™*/ represents a set of continuous, learnable parameters. This simple formulation allows for
either masking node features (setting them to zero) or modifying their values, enhancing the models
flexibility in refining node representations. For graph structure, the transformation function ), (+)
is modeled as ¥, (A¢) = Ay @ AA,, where AA; € R™*™ is a binary matrix that adjusts the
graph’s structure by adding or removing edges. The operation & denotes element-wise exclusive
OR (XOR), where if both the corresponding values in A; and AA; are 1, the XOR operation results
in 0, effectively deleting the edge. Conversely, if one value is O and the other is 1, an edge is
added. To regulate the changes to the graph structure, we impose a constraint on the total number of
modifications made to the adjacency matrix. Particularly, the sum of the entries in A A; is limited by
a pre-defined budget B, i.e., > AA; < BB, preventing excessive changes that might deviate too much
from the original graph and ensuring computational efficiency. Through these graph reprogramming
processes, we dynamically update the target graph to mitigate distribution shifts and facilitate open-
set recognition.

3.5 Training Procedure

In this section, we detail the process of updating the model reprogramming and graph reprogram-
ming modules using the proposed losses. Following previous works [12, 20, 33, 46], we adopt a
domain adversarial learning framework to match the source and target distributions through feature
alignment. In an open-set scenario, where the target domain contains unknown classes not present in
the source domain, such alignment approach can cause negative transfer due to class set mismatches.
Existing methods focus on aligning source and target features within the known class set, ignoring
any alignment signal from target instances that belong to unknown classes. As a result, the classifier
is unable to establish a clear decision boundary for unknown classes, as target-unknown instances
remain entangled with known ones in the aligned feature space.

To this end, we aim at explicitly pushing target-unknown features apart from both the source and
target-known features, while ensuring alignment between source and target-known features. Specif-
ically, we first calculate the entropy value for each target instance based on the known classes as



follows:
ICs|

ei = H(pi) = — Z pirlog(pir), )
k=1
where p; is the output probability generated by the classifier g4(-). The entropy value, which quan-
tifies the uncertainty, serves as an indicator for open-set recognition, where a high entropy suggests
the instance may belong to the unknown class. After normalizing the entropy values, we model them
as being generated by a mixture of two Beta distributions to capture the overall characteristics of the
target graph [20]:
plei) = pen - pleilth) + e - pleiltu), (©)
where e; represents the entropy value for node v;. p(e;|tk) and p(e;|tu) denote the probability
density functions for the target-known (tk) and target-unknown groups (fu), respectively. Meanwhile,
e and gy, are the mixing coefficients for these two distributions. Then, we perform posterior
inference by fitting a Beta mixture model using the Expectation-Maximization (EM) algorithm:

per - ples|th)
tk €;) = .
p(tkles) pek - p(€i|th) + g - p(eq|tu)

Thus, we estimate the probability that an instance belongs to the target-known group based on its
entropy value without using any thresholds and p(tule;) = 1 — p(tk|e;).

(N

After estimating the probability of each target instance belonging to either the target-known or target-
unknown group, we can classify all the instances into three distinct domains for the domain adver-
sarial learning framework, i.e., source, target-known, and target-unknown. To achieve this goal, we
introduce a domain discriminator dy(-), implemented as a multi-layer perceptron (MLP), which en-
gages in a minimax game with the feature extractor f, (). The feature extractor works to learn node
representations that make it challenging for the discriminator to identify the origin of each node. We
implement adversarial training using a Gradient Reversal Layer (GRL) [12], which promotes the
maximization of feature representations. Meanwhile, the domain discriminator dy(-) is optimized
by minimizing the cross-entropy loss to effectively classify domains as follows:

ns+n: 3
1
['aU:_ 1’10 Ai ) 8
d i ;kZ:IYk g(Yir) ®

where y; = [1,0,0] when the node is from the source graph, and y; = [0, p(tkle;), p(tule;)] when
the node is from the target graph. y; represents the domain prediction for node v;. Thus, the ad-
versarial learning loss simultaneously aligns and segregates the three sets to learn domain-invariant
representations.

Furthermore, we update the model reprogramming module by utilizing the label information in the
source graph as follows:

‘ccls - Z ‘Cce(q)(xi)a yz) + /\‘Cce(q)(xi)\yi7 |Cs| + 1)7 (9)
i=1

where L. represents the cross-entropy loss, while ®(-) denotes the reprogrammed model. A is a
trade-off hyper-parameter. The first term focuses on optimizing the augmented output to match the
ground truth labels, thereby preserving performance on the closed set. For the second term, ®(x;)\y;
removes the probability associated with the ground truth label and aligns it with class |Cs|+ 1, which
can be regarded as a simplified mixup approach. By masking out the ground truth, we ensure that
the model is explicitly trained to classify instances as unknown when they do not align with any
of the known class patterns. For graph reprogramming module, we incorporate entropy minimiza-
tion loss to encourage confident predictions for the unlabeled target instances, while simultaneously
distinguishing target-known features from target-unknown features as follows:

Eent = ZH(Q(XZ)) + Ece(yi7p(tu|€i))7 (10)
=1

where H(-) is the entropy function defined in Eq.( 5), while minimizing L..(¥;,p(tu|e;)) enables
the graph to generate discriminative features specifically for target-unknown instances. Therefore,
the overall loss function is:

L= Eadv + Ecls + Eent- (11)



4 Experiments

4.1 Experimental Settings

Datasets. To thoroughly assess the perfor-

mance of our proposed GraphRTA, we conduct Table 1: Dataset statistics.
experiments using three categories of publicly

available datasets. An overview of these dataset Datasets ~ #Nodes  #Edges  #Feat #Class
characteristics is provided in Table 1, with more DBELPv7 5484 3117

detailed descriptions as follows. Citationv1 8:935 15:098 6,775 5

The first category comprises three cifation ACMVO 9,360 15,556
datasets, i.e., DBLPv7(D), Citationv1(C), and ogbn-arxiv 169,343 1,166,243 128 40

ACMv9(A) [28], where nodes represent indi- Cornell 183 208
vidual papers, while edges indicate citation Texas 183 325 1,703 5
relationships.  Particularly, DBLPv7 encom-  Wisconsin 251 515

passes DBLP papers published between 2004
and 2008, Citationv]l contains articles from Microsoft Academic Graph up to 2008, and ACMv9
consists of papers published by ACM from 2000 to 2010. Each paper is classified into one of the
five distinct research topics: Databases, Artificial Intelligence, Computer Vision, Information Secu-
rity, and Networking.

We further include the ogbn-arxiv dataset [17], which is composed of computer science papers
from arXiv. Each paper is represented by a 128-dimensional feature vector, derived by averaging
the embeddings of the words in its title and abstract. We partition this dataset into three temporal
domains according to the publication years: 1950-2016 (Arxiv I), 2016-2018 (Arxiv II), and 2018-
2020 (Arxiv III). The task involves classifying each paper into one of 40 predefined subject areas
under the temporal shifts.

Lastly, we incorporate the WebKB dataset [37], a webpage dataset from computer science depart-
ments across various universities. Among them, we select three heterophily graphs (i.e., Cornell,
Texas, and Wisconsin), where nodes represent web pages and edges indicate hyperlinks between
them. Each webpage is denoted by bag-of-words features, then we categorize them into the follow-
ing five groups: student, project, course, staff, or faculty.

Baselines. We compare our proposed GraphRTA against a broad set of recent baselines across
three key categories. (1) Graph Neural Networks: This category includes traditional GNN models
like GCN [25], SAGE [14], and GAT [48]. They are trained on the source graph and then evalu-
ated directly on the target graph without adaptations between domains. For open-set recognition, a
threshold is applied to identify instances belonging to unseen categories. (2) Closed-Set Graph Do-
main Adaptation: Approaches in this group focus on graph domain adaptation within the closed-set
settings, where the source and target graphs share the same label space. We compare our model with
several recent methods including UDAGCN [52], GRADE [51], SpecReg [62], StruRW [30], and
A2GNN [28]. Similarly, we employ a predefined threshold to identify open-set instances. (3) Open-
Set Graph Learning or Domain Adaptation: This group of methods is designed for scenarios where
the target graph contains categories that do not exist in the source graph. We consider DANCE [40],
OpenWGL [53], PGL [33], OpenWREF [16], G2Pxy [64], SDA [49] and UAGA [42] for comparisons.
These approaches are strong baselines for assessing our model’s capability to transfer knowledge to
the target domain and generalize effectively to unseen categories.

Implementation Details. In this work, we adopt the experimental setup used in prior researches [64,
49], where a portion of classes is reserved as “unknown” with the remaining classes regarded as
“known”. Specifically, |C| is 3 in Citation and WebKB datasets, and 30 for the ogbn-arxiv dataset.
The domain adaptation models are trained using labeled source nodes from the known classes along
with unlabeled nodes from the target graph. Among them, 70% of the labeled source nodes are
utilized for training, 10% are set aside for validation, and the remaining 20% serve as a sanity check.
The final evaluation is conducted on the target nodes. For a fair comparison, we utilize the baselines’
publicly available source codes and tune their hyperparameters to their optimal values using the
validation set. Our proposed GraphRTA is implemented using PyTorch Geometric [8] and optimized
with the Adam optimizer [24]. Hyperparameters for learning rate, weight decay and A are searched
within the ranges of [0.1,0.01,0.001, 1e=*, 1e~5], and the sparse constraint p is explored within the
interval [0, 1]. The experiments are repeated five times, and performance metrics are reported as the



Table 2: Node classification accuracy and H-score (mean =+ std) for citation datasets. The best
results are shown in bold with the second-best results underlined.

Models ACMv9—Citationv1 ACMv9—DBLPv7 Citationvl —ACMv9 Citationvl -=DBLPv7 DBLPv7—ACMv9 DBLPv7—Citationvl
Acc HS Acc HS Acc HS Acc HS Acc HS Acc HS

GCN 40.64+0.98 41.0242.11 45.84+1.06 50.2041.26 47.10+£0.49 49.054+0.74 51.48+0.42 56.13+0.22 43.90+1.50 44.474+2.80 39.26+0.70 37.96+1.34
SAGE 38.2440.80 36.89+2.10 41.774+1.05 45.20+1.41 43.904+1.56 45.63+2.18 47.1440.82 51.65+0.83 41.6640.47 42.04+1.32 39.624+0.22 40.32+0.40
GAT 32.01£0.73 21.51£2.36 34.8441.25 32.9042.66 36.38+0.66 30.6741.66 34.56+0.64 32.22+1.53 35.854+1.91 25.66+5.30 32.87+1.41 20.9143.92
UDAGCN 44.784+4.12 20.944+6.21 55.07£1.03 50.054+7.90 53.38+1.53 53.564+6.00 62.36+4.19 43.21+4.08 47.284+1.49 39.21+1.16 52.38+1.18 46.92+6.26
GRADE  57.23+£1.06 59.49+1.16 56.12+0.65 58.14+£1.07 57.861+0.29 60.41£0.26 61.94:£0.38 64.211+0.48 54.93+0.40 57.73+0.41 54.60+0.64 57.36+0.55
SpecReg  51.31£5.60 36.70+1.49 58.17+£2.06 60.15+0.41 56.58+1.22 56.36+0.86 63.68+5.82 59.62+0.59 53.30+£4.05 53.12+6.84 55.72+2.43 49.43+7.41
StruRW  46.47+4.63 42.36+4.25 46.91£1.95 46.08+3.60 51.91+0.60 45.38+0.13 56.19+0.10 54.08+1.19 48.86-0.62 43.85+1.74 51.08+0.91 43.25+1.29
A2GNN  42.53+2.07 41.6643.69 60.43+0.52 62.7440.82 57.21+1.03 57.1240.63 63.45+0.31 65.3740.59 57.64+1.82 60.68+2.27 41.09+1.20 43.52+1.24
DANCE  57.7740.64 60.94+0.76 58.01£0.47 61.314+0.62 58.76+0.36 61.33+0.55 62.97+0.65 65.42+1.20 55.97+0.62 58.90+0.60 55.77+0.56 58.9540.70
OpenWGL 49.984+0.62 5.57+1.56 52.43+0.62 7.86+0.69 48.37+0.50 4.07+0.99 55.68+0.35 3.49+0.76 48.0441.08 25.13+£4.89 49.5240.68 22.05+2.29
PGL 54.4241.04 57.86+1.12 48.43+1.12 53.154+1.23 51.8740.69 54.71+0.72 53.831+0.66 59.01+0.75 49.27+0.80 51.741+0.83 52.82+0.87 56.16:0.93
OpenWRF 53.53+2.59 31.05+4.57 48.16£1.63 35.45+3.62 47.01£3.32 33.08+6.46 52.81+£1.43 31.96+1.24 47.27+1.54 19.38+4.03 57.31+1.14 34.06+9.77
G2Pxy 59.7540.49 54.4741.33 56.26+0.73 49.634+2.41 58.49+1.03 58.56+1.36 61.42+0.47 59.1340.54 54.48+0.58 54.82+0.78 56.36+0.69 54.02+1.75
SDA 58.23+4.67 59.9746.74 59.06+4.75 56.3441.23 57.33+6.22 58.8548.58 63.5540.91 65.5342.00 57.66+0.61 60.5441.20 57.27+2.72 59.73+3.87
UAGA 53.3746.72 61.3441.16 52.11+£2.96 67.50+2.95 52.254+4.81 60.59+5.95 52.73+5.13 64.81+4.50 48.14+1.47 55.734+3.98 47.974+9.24 52.16+2.18

GraphRTA 66.2640.93 66.331+1.69 62.3340.68 64.424+1.10 60.93+2.63 62.89+2.46 63.87+1.97 65.99+1.87 56.91+2.50 59.41+2.22 60.11+1.98 62.33+1.53

Table 3: Node classification accuracy and H-score (mean = std) for ogbn-arxiv and WebKB datasets.
OOM means out-of-memory. ‘-’ indicates cases where baseline methods encounter errors because
their predefined strategies are not satisfied.

Models Arxiv I=Arxiv II Arxiv I—Arxiv IIT Arxiv II—Arxiv III Cornell—Wisconsin Texas— Cornell Texas— Wisconsin
Acc HS Acc HS Acc HS Acc HS Acc HS Acc HS
GCN 44.82+0.20 41.0840.74 41.57+0.22 41.0540.66 45.65+0.37 41.0440.89 21.19+0.17 0.20+0.45 38.46+8.43 25.19411.0 21.83+6.29 13.3249.15
SAGE 44.9540.15 37.83+0.71 42.75+0.15 38.631+0.64 49.60£0.12 38.11+0.49 18.561+2.86 10.30£10.7 34.75+£3.31 11.664+4.91 24.22+10.7 14.48+9.01
GAT 44.814+0.13 34.31£1.39 42.05+0.30 34.974+0.76 46.49+0.17 36.354+0.78 20.96+£0.21 0.40+0.54 27.974+3.00 15.89+9.15 9.48+2.31 8.08+2.24
UDAGCN 31.90+2.27 33.68+3.48 27.71+£0.86 28.37+1.63 35.09+1.29 39.53+1.56 19.28+6.57 5.94+5.51 29.18+1.87 7.354+5.28 22.78+5.19 3.93+4.12
GRADE  43.01£0.20 47.18+0.29 39.28-+0.37 44.19+0.41 42.80+0.17 46.09+0.21 17.05£11.5 12.52+1.26 28.96£7.54 21.52+11.5 24.46+7.32 23.844+4.67
SpecReg  37.80+1.90 31.76+1.64 28.14+4.59 29.03+3.87 46.60+0.29 31.70+4.27 20.79+3.24 19.93+3.12 31.69+3.34 13.53+9.15 19.20+4.72 10.28+6.14
StruRW  37.47+1.93 40.67+2.09 36.17-+0.27 40.54+0.45 42.10+0.44 43.62+0.50 16.57+2.26 16.22+3.72 42.02-£7.51 40.98+7.86 16.01£2.47 11.46+6.17
A2GNN  42.07+0.14 45.004+0.24 38.92+0.16 43.14+0.17 42.2640.53 45.18+£0.17 19.124+2.56 17.40+3.32 44.37+0.71 31.59+6.44 14.98+0.77 6.2242.58
DANCE OOM OOM OOM OOM OOM OOM 21.52423.4 3.114+0.49 20.774£0.00 0.00£0.00 4.224+0.21 1.65+1.50
OpenWGL 32.58+0.58 1.45+0.40 32.99+£1.49 1.3140.37 35.46+2.61 0.04+0.08 16.57+2.49 14.09+2.30 33.22+5.77 28.99+5.65 10.51+4.80 8.76+3.56
PGL 41.50+0.25 46.324+0.28 38.38+0.14 43.3140.16 40.28+0.24 45.434+0.27 18.24+7.16 0.00+£0.00 21.20+0.45 0.00£0.00 28.45+5.93 0.00+0.00
OpenWRF 32.58+0.58 1.454+0.40 32.99+1.49 1.3140.37 35.46+2.61 0.04+0.08 26.29+7.11 6.84+5.81 21.64+3.81 4.58+5.03 26.93+11.4 5.99+4.65
G2Pxy 31.134+4.55 28.45+1.13 24.794+1.49 16.28+3.25 34.93+3.03 37.27+6.75 - - - - - -
SDA 39.7740.34 42.60+0.15 36.374+0.21 39.44+0.21 41.534+0.20 46.03+0.18 - - - - - -
UAGA 32.9240.16 23.69+0.16 32.24+0.13 22.984+0.13 39.16+0.39 29.79+0.41 - - - - - -

GraphRTA 47.70+1.39 50.79+2.79 45.524:2.00 46.251+0.40 52.37+1.49 48.421+-1.94 33.46+4.43 34.36+1.76 52.18+0.38 35.64+0.83 29.34+1.21 30.08+2.96

mean along with standard deviations for both accuracy and H-score [10]. The H-score combines the
accuracies of the target known and target unknown classes to provide a balanced assessment of the
model’s performance as follows:
2 X Accy, X Accyy,

Aceyy, + Aceyy,
where Accy, denotes accuracy on the target known classes, and Accy, indicates accuracy on the
target unknown classes. A higher score means balanced performance across known and unknown
target categories, offering a more comprehensive evaluation metric.

HS = (12)

4.2 Results and Analyses

We present the overall results in Table 2 and Table 3. As we can see, our proposed GraphRTA con-
sistently demonstrates superior performance across a variety of scenarios. Within the three baseline
categories, standard GNN models show limited performance, due to their lack of mechanisms to
address distribution shifts between source and target graphs. Closed-set adaptation baselines, which
account for these distribution shifts, yield better results than standard GNNs but struggle to handle
open-set classes effectively. In contrast, open-set baselines generally perform well by incorporating
strategies to recognize and manage previously unseen classes in the target graph, though they are
still outperformed by GraphRTA in most cases.

We observe that the H-score provides a more comprehensive evaluation metric than accuracy. Sev-
eral baselines achieve high accuracy scores but suffer from low H-scores, reflecting their difficulty
in accurately identifying open-set instances. For example, while OpenWGL achieves an accuracy
of 49.98% in the scenario of ACMv9—Citationvl, its H-score is only about 5.57%, illustrating its
limitations in open-set recognition. Additionally, most models struggle with heterophilous datasets
like ogbn-arxiv and WebKB, which pose additional challenges due to their weakly correlated char-
acteristics. Two recent baselines encounter issues in this context, for instance, G2Pxy fails to meet



Table 4: Classification H-score with different known classes.
Classes A—C A—D C—A C—D D—A D—C

Ciwn = 2 53.39£1.87 45.2943.46 41.10£2.63 41.544+2.92 44.48+2.86 54.18+4.41
Ciwn = 3 66.33£1.69 64.424+1.10 62.89+2.46 65.99+£1.87 59.41+2.22 62.33+£1.53
Ciwn = 4 65.74£0.54 63.284+0.69 61.63+0.64 67.20£0.63 57.124+0.35 59.82+0.69

Table 5: Classification H-score with different openset class detection strategies.
Methods A—C A—D C—A C—D D—A D—C

GraphRTA ¢hres 63.07£0.13 61.21£1.07 61.00+1.52 63.89+1.35 58.88+0.72 59.73+1.10
GraphRTA 66.33£1.69 64.42+1.10 62.894+2.46 65.99£1.87 59.41+£2.22 62.33+1.53

the predefined rules for node embedding mixup, while SDA struggles to form meaningful clusters
under these conditions. In contrast, GraphRTA overcomes these limitations by leveraging model and
graph reprogramming, enabling it to deliver robust performance without such constraints.

4.3 Ablation Studies

Impact of Different Known Classes. We have also conducted additional ablation studies to eval-
uate the impact of varying the number of known classes on the model’s performance. Specifically,
we aim to understand how the size of the known class subset influences the model’s ability to dis-
criminate between known and unknown categories. As the number of known classes increases, the
boundary between known and unknown nodes becomes more complex, potentially affecting the
generalization capability of the domain adaptation process. The results, reported in terms of the
H-score on the citation dataset, are presented in Table 4. When the number of known classes is
very small (e.g., only 2 known classes), open-set models have limited supervision to guide effective
feature alignment and decision boundary formation, leading to less stable performance. In contrast,
as more known classes are introduced, the model benefits from richer supervision, enabling more
discriminative representations and improving robustness against the presence of unknown classes.
These observations highlight that our model becomes progressively more reliable and less sensitive
to open-set uncertainty as the number of known classes increases.

Alternative Open-set Detection Strategies. We further implemented an entropy-based threshold-
ing variant, which replaces the 3-class classification scheme with a confidence-based decision rule.
Specifically, samples with prediction entropy exceeding a pre-defined threshold are regarded as be-
longing to unknown classes. We then compared this variant with our proposed approach across all
experimental settings. The results, measured by the H-score in Table 5, show that our method con-
sistently outperforms the entropy-based thresholding strategy, demonstrating its superior ability to
distinguish between known and unknown nodes in the open-set graph domain adaptation scenario.

Impact of Different GNN Architectures.

As discussed in Section 3.2, our proposed  Table 6: H-scores with different GNN architectures.
GraphRTA is designed to be compatible
with a range of GNN architectures, allow-  Architectures D—C D—A A—C

ing flexibility across models. We examine G, hRTA T 62334153 59414222 66.33+1.69
its performance using 3 prominent GNN  GraphRTAg,qp  59.0942.66 55454149 63.11+1.48
frameworks: GCN [25], GraphSAGE [14], GraphRTA o 54.17+£6.60 51.82+9.14 57.514+6.53
and GAT [48], with results presented in Ta-

ble 6. These results indicate that while all architectures benefit from the proposed dual reprogram-
ming approach, their performance varies across different datasets, highlighting the influence of ar-
chitectural design on adaptation capabilities. Among them, GAT achieves the lowest performance,
which adapt poorly from the source to target graphs due to its attention mechanism. The multi-
head attention paradigm also requires substantial parameter tuning, which may hinder adaptation.
Interestingly, GCN, despite its simpler design, consistently performs well, demonstrating resilience
across most tasks.

Visualization. To better understand the quality of the learned node representations, we use t-
SNE [47] to project them into a 2-D space and visualize the results in Figure 2 through scatter
plots. More specifically, the three known classes are represented by red, blue, and green, while the
unknown class is depicted in orange. The vanilla GCN [25], without any adaptation, struggles to



(a) GCN (b) DANCE (c) SDA (d) GraphRTA

Figure 2: Visualization of node representations in the target graph for the citation dataset (A—C)
with the unknown class highlighted in orange.

produce distinct clusters, leading to significant overlap between nodes of the unknown class and
those of the known classes. This overlap occurs because the model lacks mechanisms to address
distribution shifts between the source and target graphs. In contrast, two representative open-set
baselines, DANCE [40] and SDA [49], are able to identify nodes from the target unknown class,
but their boundaries are blurred, with most nodes from unknown classes often blending into known
class clusters. Our proposed GraphRTA achieves relatively clearer separation, generating compact
clusters for known classes while effectively isolating open-set instances.

Hyper-parameter Sensitivity. In
this section, we analyze the effects of
two important hyperparameters: the
sparsity ratio p within the model re-
programming module and the struc-
tural modification ratio B in the graph
reprogramming module. As illus-
trated in Figure 3, the sparsity ratio
significantly influences the model’s
performance; as the masking ratio
increases, the performance declines
sharply. This impairs the model’s Figure 3: H-scores under different ratios in reprogramming.
ability to capture essential patterns due to excessive weight masking. In contrast, the performance
impact of adjusting the graph structure change ratio is relatively robust, suggesting that the model
can adapt to moderate structural alterations in the graph without significant degradation. Additional
analyses of other hyperparameters and representation visualizations are provided in the Appendix B.
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5 Conclusion

This paper studies unsupervised open-set graph domain adaptation, an under-explored area in the
graph community, where the target graph introduces new classes that are not present in the source
graph. To address the source bias and distributional shift problems, we propose a novel frame-
work named GraphRTA that conducts dual reprogramming at the model as well as the graph levels.
Through extensive evaluations on a variety of public datasets, we further show that our proposed
GraphRTA consistently outperforms or matches the performance of recent state-of-the-art models.
In future work, we aim to extend our framework to address additional challenges in graph adapta-
tion, such as source-free open-set graph domain adaptation, semi-supervised open-set graph domain
adaptation, and out-of-distribution detection, thereby broadening its applicability and enhancing its
robustness as well as generalization in real-world scenarios.

6 Border Impacts and Limitations

This paper advances the field of machine learning, particularly in Open-Set Graph Domain Adap-
tation, which enables graph models to adapt to new, unseen classes across domains. It has broad
applications, including fraud detection, biological network analysis, and recommendation systems.
While our work improves model robustness and generalization, potential societal impacts include
both benefits (e.g., better adaptability in real-world graph-based systems) and challenges (e.g., risks
of biased adaptation or misclassification in high-stakes applications). However, we do not identify
any immediate or specific societal concerns.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: Please refer to the abstract and Section 1.
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

e It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Please refer to Section 6.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

» The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: Our paper does not include theoretical results.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theo-
rems.

» The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

e Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: Please refer to Section 4 and our code URL released in the abstract.
Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all sub-

missions to provide some reasonable avenue for reproducibility, which may depend

on the nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear
how to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: The data and code are available at the URL provided in the abstract.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not
be possible, so No is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

¢ The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Please refer to Section 4.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of
detail that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?

Answer: [Yes]
Justification: Please refer to Table 2 and Table 3.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.
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* Itis OK to report 1-sigma error bars, but one should state it. The authors should prefer-
ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Please refer to Appendix A.
Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

» The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We make sure the research conducted in the paper conform, in every respect,
with the NeurIPS Code of Ethics.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: Please refer to Section 6.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

e If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.
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» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: Our paper poses no such risks.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We have cited necessary assets.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the pack-
age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?

Answer: [NA]
Justification: Our paper does not release new assets.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.
14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?

Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

* Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

* Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Figure 4: Accuracy under different layers and dimension.

Table 7: Classification H-score with different components.
Architectures D—C D—A A—C

GraphRTA,, , yr  59.86£0.38 56.31+£0.68 64.93+0.24
GraphRTA,, ,, gr = 60.34£0.62 56.71£1.29  62.95+1.97
GraphRTA 62.33+£1.53  56.9142.50 66.33+1.69

A Running Environment

Our experiments are conducted on a Linux server with 2 AMD EPYC 7543 CPU@2.80GHz, 512G
RAM and one NVIDIA A100-SXM4-80GB GPU. The proposed model is implemented with Pytorch
1.13.1 in Python 3.8 using Pytorch Geometric 2.4.0.

B Additional Ablation Studies and Analyses

In this section, we conduct a series of ablation studies to comprehensively assess the effectiveness
of our proposed GraphRTA framework.

Sensitivity to Two Key Hyper-Parameters. We begin by analyzing the model’s sensitivity to two
critical hyper-parameters: the number of layers L and the node representation dimension d. As
shown in Figure 4, model performance initially improves with an increase in the number of layers
but starts to degrade beyond a certain point (i.e., 2 layers). This decline is attributed to overfitting,
as deeper layers may overly adapt to the training data while failing to generalize effectively. In
contrast, the model exhibits consistent robustness to variations in the node representation dimension,
highlighting its ability to perform well across a range of dimensional configurations.

Effectiveness of Model and Graph Reprogramming. Next, we further investigate the individual
contributions of the model reprogramming (i.e., MR) and graph reprogramming (i.e., GR) compo-
nents. Results presented in Table 7 provide insights into the impact of excluding these components.
Specifically, the configuration labeled as “w/o MR” excludes the model reprogramming module,
while “w/o GR” omits the graph reprogramming module. A configuration without either component
demonstrates the most significant performance degradation, underscoring the necessity of incorpo-
rating both modules. These findings highlight that the dual reprogramming strategy is critical for
mitigating domain shifts and improving model adaptability.

Table 8: H-score with different graph reprogramming strategies.

Architectures D—C D—A

GraphRTA | ¢upiive 31 59.72+1.03 54.28+1.48
GraphRTA ¢ \pg 7] 60.65+0.65 55.47+1.62
GraphRTA 62.334+1.53 56.914+2.50
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Table 9: MMD comparison before and after graph reprogramming.
Methods A—C A—-D C—A C—=D D—A D-=C

Before 0.0381 0.0402 0.0368 0.0399 0.0371 0.0378
After 0.3520 0.3932  0.5081 0.4682 0.3608 0.4477

Table 10: LLM integration for open-set detection.

Methods Arxiv-I—Arxiv-II  Arxiv-I—Arxiv-III  Arxiv-II— Arxiv-III
A2GNN 45.00+0.24 43.144+0.18 45.184+0.17
A2GNN + LLM-explanations 46.40+0.45 43.341+0.18 48.81+0.49
SDA 42.60+0.15 39.4440.21 46.03+0.18
SDA + LLM-explanations 44.10+1.75 40.55+0.10 48.504+0.69
GraphRTA 50.7942.79 46.25+0.40 48.42+1.94
GraphRTA + LLM-explanations 51.56£1.23 47.5940.48 50.18+0.79

Comparison with Alternative Graph Reprogramming Strategies. We also evaluate two alter-
native graph reprogramming approaches, SUBLIME [31] and SLAPS [7], both of which employ
self-supervised learning techniques. The results, summarized in Table 8, reveal that our approach
outperforms these strategies. SUBLIME relies on GNN-based node similarity learning followed
by KNN-based sparsification to generate a sparse adjacency matrix. This dependence on nearest
neighbors limits its flexibility and performance. SLAPS, on the other hand, employs a denoising au-
toencoder loss for graph reconstruction, which introduces constraints that may not generalize well
across different datasets. By avoiding such dependencies, our method achieves superior versatility
and effectiveness, as demonstrated in the experiments.

How Does Graph Reprogramming Affect the Feature Distribution of Unknown Classes? We
measure the distributional divergence between known and unknown class features using the Maxi-
mum Mean Discrepancy (MMD) metric. This analysis provides a quantitative assessment of whether
our approach enhances the separability of known and unknown samples in the latent space. The re-
sults shown in Table 9 indicate that graph reprogramming significantly increases the distributional
distance between the two groups after adaptation, suggesting that it effectively promotes clearer
feature separation and mitigates overlap between known and unknown domains.

C Potential of LLM Integration for Unknown Class Detection

Integrating large language models (LLMs) into open-set graph domain adaptation could offer
promising opportunities, particularly for datasets where nodes are associated with rich textual in-
formation. To explore this direction, we investigate the impact of LLM-generated semantic expla-
nations on unknown class detection. Specifically, we adopt the prompt strategy from TAPE [15]
to generate semantic explanations for each node in the ogbn-arxiv dataset. For each node, we con-
struct textual features by concatenating the title, abstract, and the corresponding LLM-generated
explanation, thereby enriching the semantic content available to the model.

We then evaluate the effectiveness of these enhanced node features using three representative open-
set graph adaptation models. Each experiment is conducted five times with different random seeds,
and we report the average H-score along with the standard deviation to ensure statistical reliability.
The results, summarized in Table 10, show that incorporating LLM-generated explanations consis-
tently improves performance across all evaluated models. This improvement highlights that LLMs
can provide complementary semantic signals that help distinguish between known and unknown
classes, thereby enhancing the robustness of open-set graph domain adaptation. Overall, these find-
ings suggest that leveraging LLM-generated semantic knowledge can substantially benefit open-set
scenarios, especially in text-rich graph datasets. We consider this a promising direction for future
research.
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D Complexity Analysis

Let G denote the source graph consisting of ng nodes and e; edges, G; represent the target graph
with n; nodes and e; edges. Assume that the node representation dimension is d and the graph
neural network has L layers. Then, the time complexity associated with encoding the feature repre-
sentations of both the source and target graphs is given by O(Ld?(ns + n;) + Ld(es + e;)). For the
model reprogramming phase, the complexity of sorting the gradient magnitudes is O(Ldlog(d)). In
the context of graph reprogramming, the complexity for transforming node features is O(n.d), while
the refinement of the graph structure takes a complexity of O(e;). Furthermore, additional computa-
tion arises from the posterior inference process, which is characterized by a complexity of O(n,T),
where T' denotes the number of iterations in the Expectation-Maximization (EM) procedure, as-
sumed to be a constant. Thus, the overall computational complexity of the proposed framework falls
within the same order of magnitude as existing methods.

Finally, to enhance clarity about our training procedure, we present a comprehensive step-by-step
outline in Algorithm I.

Algorithm 1 GraphRTA’s Training Strategy

1: Input: Given a labeled source graph G, and an unlabeled target graph G;, graph neural network
b= f w © 9o
Output: Target graph predictions Y, € R *[Cs[+1
Randomly initialize weights of f,, and g4
while not reached the maximum epochs do
for batch data from source and target graph do
Fix the parameters of graph reprogramming
Conduct model reprogramming with Eq.( 2)
end for
9:  Update model as reprogrammed GNN
10:  for batch data from source and target graph do

A A

11: Fix the parameters of model reprogramming
12: Conduct graph reprogramming with Eq.( 4)
13:  end for

14:  Update target graph as reprogrammed graph
15: end while
16: Compute Y, € R™*IC|*+1 with graph neural network
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