Under review as a conference paper at ICLR 2026

FLOW-IB: INFORMATION BOTTLENECK MEETS
FLOW MATCHING FOR 32,768x VIDEO COMPRESSION

Anonymous authors
Paper under double-blind review

ABSTRACT

We present a generative video compression framework that achieves an unprece-
dented 32,768 x compression ratio by transmitting only the first and last frames as
I-frames and reconstructing the remaining content with a flow-matching video dif-
fusion model. Guided by the information bottleneck principle, our method intro-
duces a differentiable loss that minimizes redundant information with the known
I-frames, enabling joint optimization of compression and generation within a uni-
fied framework. This design allows the generative model to faithfully reconstruct
intermediate frames at extreme compression rates. Extensive experiments demon-
strate that our approach substantially outperforms both traditional codecs and re-
cent deep learning—based schemes across standard rate—distortion metrics. More-
over, the reconstructed videos deliver comparable performance to state-of-the-art
semantic communication methods across multiple downstream tasks, demonstrat-
ing the strong potential of generative compression as a practical alternative to
conventional coding.

1 INTRODUCTION

The exponential growth of video data, fueled by high-resolution capture devices and ubiquitous
video-based applications, has placed unprecedented demands on storage and transmission infras-
tructures. Current video compression standards, including H.266/VVC (Zhang et al.| [2020) and
AV1 (Chen et al., |2020), have achieved substantial improvements through decades of engineering
refinement, employing hybrid coding strategies that combine motion estimation, transform coding,
and entropy modeling. However, at extremely low bitrates, these approaches inevitably encounter a
fundamental cliff in performance, manifesting as severe blocking artifacts, blurriness, and a catas-
trophic loss of high-frequency details. This precipitates a paradigm shift from purely fidelity-based
reconstruction towards perceptual reconstruction, where the goal is to preserve the semantic integrity
and visual plausibility of content for human perception, even if pixel-level accuracy is sacrificed.

Currently, generative models have demonstrated remarkable capabilities in video synthesis and re-
construction. These models are increasingly being leveraged to achieve faithful content reconstruc-
tion under severe bitrate constraints by capitalizing on their powerful inherent priors in conjunction
with compact spatio-temporal guidance. Existing methods (Zhang et al.l |2025; |Wan et al.l[2024; [Wu
et al., 2023} |Y1 et al., 2025)) often rely on hand-crafted features, such as sketches, canny edges, or
textual prompts, to represent the video content. However, these low-level, static descriptors are in-
sufficient to capture the rich dynamics and high-level semantics of video content, inevitably leading
to information loss. Moreover, the decoupled optimization of the feature extractor and the recon-
struction model leads to a suboptimal system. The extraction process is agnostic to the final re-
construction goal, resulting in a mismatch between the extracted features and the information most
critical for the generative model. Consequently, reconstructed videos often lack fidelity, particularly
in dynamic and complex scenes.

In this work, we propose a trainable video compression and transmission framework, in which the
feature extraction network at the transmitter side and the generative network at the receiver side are
jointly optimized in an end-to-end manner. This design allows the feature extractor to leverage the
strong prior of the generative model, thus explicitly capturing the information most essential for the
faithful video reconstruction. To leverage the strong temporal coherence inherent in video data, we
treat the first and last frames of each video as known information. These frames, often referred to
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as I-frames in conventional video coding, are transmitted to the receiver. They provide essential
conditioning signals to the generative model, facilitating high-fidelity reconstruction of the entire
video sequence.

Our framework is motivated by the information bottleneck principle (Tishby et al.| |2000; [Tishby
& Zaslavskyl 2015), as it provides a theoretically grounded insight for optimizing the trade-off
between compression and reconstruction, and has been widely applied across various representation
learning tasks (Absar Siddiky et al.|[2024; Shao et al.| [2021). Starting from its original formulation,
we derive a tractable variational bound as our optimization objective. Furthermore, we introduce
a reformulated flow-matching objective that unifies the training of the generative model and the
ultimate reconstruction task. Ultimately, our approach yields a minimally sufficient representation
of the video, achieving an extreme compression ratio of 32,768x compared to the original input.

To summarize, our contributions are threefold:

* We introduce the first end-to-end video compression framework that integrates generative models
with information bottleneck principles, enabling joint optimization of compression and recon-
struction quality.

* We reformulate the flow-matching objective into a unified training paradigm that simultaneously
optimizes the generative model and its feature extractor, leading to more coherent and efficient
representations.

* Our method achieves an unprecedented compression ratio of 32,768, while consistently outper-
forming existing approaches across diverse downstream applications.

2 RELATED WORK

Video Compression. Video compression aims to reduce redundant information while preserving
critical visual content, enabling efficient storage and transmission for applications such as streaming
and video conferencing. With the success of deep learning in image compression (Mishra et al.,
2022), neural video compression methods have emerged to optimize rate-distortion performance.
For example, residual coding approaches (Choi & Bajic, |2019) generate predictions from previ-
ously decoded frames and encode the residuals. Subsequent end-to-end learned frameworks like the
DCVC series (Li et al., 2021520235 2024) further improve compression performance and outperform
traditional codecs such as ECM (Karadimitriou, |1996). However, these methods primarily focus on
pixel-level distortion metrics and often overlook perceptual quality, particularly at extremely low
bitrates, where they encounter a severe performance cliff. This limitation has motivated research on
the rate-distortion-perception trade-off (Blau & Michaeli, 2019), spurring research into perceptual
video compression.

Generative Models for Video Compression. Recent advances in generative image compression
have inspired growing interest in their application to video. Pioneering work includes that of |[Wu
et al.| (2023), who transmitted sketches and text descriptions to guide diffusion-based reconstruc-
tion. |Careil et al.| (2023)), who used vector-quantized latents and captions for decoding. [Yi et al.
(2025)) proposed a multi-control framework that compresses segmentation, optical flow, and pose
into a compact representation and jointly drives video generation. To improve efficiency, Relic et al.
(2025) formulated quantization noise removal as a denoising task with adaptive steps. This body
of work highlights the potential of conditional generative modeling for compression, yet existing
methods often rely on hand-crafted cues (e.g., sketches or text) and lack end-to-end optimization.
Our method addresses these gaps by introducing a learned conditional latent prior and a fully differ-
entiable compression pipeline, enabling efficient high-fidelity reconstruction at extreme ratios.

3 METHOD

3.1 PRELIMINARY

The goal of video compression is to minimize the number of bits required to represent a video se-
quence while maximizing the perceptual quality of its reconstruction. Let X € RT*HXW X3 denote
a source video sequence of 7" frames, and C € RT"*H*Wx3 represent the conditioning informa-
tion, which in our case is a subset of frames from X (e.g., the first and last frames). The objective
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Figure 1: An overview of the proposed generative video compression framework. (a) Training:
The source video is encoded into latent representation X’ by a pretrained VAE Wan| (2025), then
processed by a U-Net styled compressor (with down and up modules) that outputs Gaussian param-
eters. These are used to: (1) compute KL loss against a temporally masked prior. (2) combined with
conditioning frames to reconstruct the latent representation via a generative model after reparame-
terization. (b) Inference: On the transmitter side, the video is further compressed into a transmitted
representation h by the compressor’s down module to reduce bandwidth. The first/last frames and h
are then sent via the network channel. On the receiver side, h will be processed with compressor’s
up module and reconstructs the video using the generative model and VAE decoder.

is to learn a minimal but sufficient encoding Z derived from X, such that when combined with C, it
enables a generative model to generate a high-quality reconstruction. The intuition is that Z should
discard all redundant information with C, preserving only the novel, dynamic content necessary for
faithful reconstruction. This goal can be formally expressed by minimizing the following objective
according to the conditional information bottleneck principle (Fischer, 2020):

L= HX|Z,C) +B8I1(Z;X | C), (D

Reconstruction Term Compression Term

where H (X|Z, C) is the conditional entropy, representing the uncertainty in reconstructing X given
Z and C. Minimizing this term encourages high fidelity. I(Z;X|C) is the conditional mutual
information, measuring the information shared between Z and X given C. Minimizing this term
encourages compression. The hyperparameter 8 > 0 controls the trade-off between reconstruction
fidelity and compression.

In the following subsections, we introduce a tractable approximation derived from this objective
(Sec.[3.2), detail the architectural instantiation of each component (Sec. [3.3), and describe the end-
to-end training procedure (Sec. [3.4).

3.2 INFORMATION-THEORETIC FOUNDATION
The optimization objective of Eq. (1) is intractable to optimize directly. We therefore derive an
approximation to enable efficient optimization.
We begin with the definition of the conditional entropy H (X|Z, C):
H(X|Z,C) Ep(x,2,c) [log p(x|z, c)] (definition of conditional entropy) 2
< _]Ep(X,Z,c) [log po(x]|z, c)] (variational approximation) 3)

Here, pp(x | 2, c) is a flexible approximate variational distribution with parameters 6 that we seek
to optimize. Intuitively, it can be thought of as the generative model that reconstructs a high-quality
video from the compressed code z and the conditioning information c.

For the conditional mutual information I(Z; X|C):

I(Z; X|C) = Ep(x,c) [DxL (p(z[x, €) || p(z]c))]  (definition of mutual information) 4)
= Epx,c) [DxL (p(2]%) || p(zlc))] (c is a subset frames of x, negligible)  (5)
< Epx,e) [DkL (94(2%) || p(z]c))] (variational approximation) (6)

Here, ¢4(z|x) can be thought of as a learnable compressor network with parameters ¢ that is de-
signed to map the full input video z to the compressed code z. p(z|c) is a prior distribution, it
characterizes what z is expected to look like when c is given.
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Substituting Eq. (3) and Eq. (6) yields our tractable loss:
L = —E[logpy(x|z, c)] +B E [Dkr (g5(z[x) || p(z[c))] @)

Reconstruction Term Compression Term

3.3 MODEL ARCHITECTURE AND IMPLEMENTATION

In this section, we will describe the architectural instantiation of the prior distribution p(z|c), the
compressor ¢4, and the generative model py, respecting Eq. (7).

Prior distribution p(z|c). A key innovation of our work lies in the design of the prior distribution,
which aims to guide the compressor to discard any information already available in the conditioning
frames c (i.e., the first and last frames). This ensures that the compressed code z captures only the
novel content present in the intermediate frames.

To achieve this, we introduce a simple yet effective temporal masking strategy. Our insight is that
the essential dynamic information is primarily contained in the intermediate portions of the video.
We therefore construct a masked version of the video X, by setting the first and last frames to zero,
preserving only the intermediate content. This masked video explicitly represents the necessary
dynamic information, providing an appropriate prior for guiding the compression process.

To further help compute the KL divergence term, the masked video is then processed by the pre-
trained VAE (Wan), 2025), which parameterizes it into a Gaussian distribution p(z|c) = N (p,, o21)
with p,,, o, = VAE(X).

Compressor g,. For computational efficiency and motivated by the common practice of modern
generative models operating in latent space, the compressor takes as input the latent representation
X produced by the pretrained VAE (Wan, [2025)), rather than the raw video. The compressor outputs
the parameters (p4,0,) for the Gaussian posterior distribution q. A compressed code z can be
sampled from q.

Thus, the KL divergence between g4(z|x) and p(z|c) has a closed-form solution, leading to stable
and efficient training:

o} o2+ — S|
Lx1(gs || P) =log;’; +q(g§gm -5
Generative model py. To realize the mapping from the compressed code to the reconstructed video
frames, we employ a generative model. While the choice of generative architecture is generally
flexible, our approach utilizes the first-and-last-frame conditional model introduced by Wan/(2025),
as it inherently supports conditioning on the start and end frames. This design eliminates the need for
additional conditioning mechanisms and simplifies the overall implementation. As a flow-matching-
based generative model, it is designed to predict the velocity field that transports noise to the data
manifold of x. We reformulate the flow-matching objective to align it with the reconstruction goal.
Instead of learning a path from noise to data, we learn a straight path from the compressed code z to
the target data x. We define the probability path as a linear interpolation:

xe=(1—t)x +tx*z, te€0,1].
The corresponding velocity field that generates this path is given by the time derivative:

dXt

— =z —X.
dt

Then, the generative model v with parameters 6 is trained to regress this vector field using a simple

mean-squared error objective:

ﬁG = IEt,x,z,c HUH(Xtat,C) - (Z - X)H2

Notably, this reformed objective is mathematically equivalent to minimizing the MSE between z
and x, thereby establishing a direct link between flow-based generative modeling and the maximum-
likelihood objective of the reconstruction term. Moreover, the linearity of the probability path from
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z to x allows for high-fidelity reconstruction in very few sampling steps (e.g., fewer than 10), as
validated empirically in Section This offers a substantial advantage in inference efficiency
compared to conventional noise-to-data sampling paradigms.

3.4 END-TO-END TRAINING AND INFERENCE

The complete pipeline of our proposed framework is illustrated in Figure[I] It should be noted that to
achieve the extreme compression ratios required for ultra-low bitrate transmission, the compressor
gy is deliberately designed using a U-Net architecture with a downsample module and an upsam-
ple module. The downsample module is responsible for producing the transmitted representation
h for network transmission. Correspondingly, the upsample module is utilized to reconstruct the
spatial-temporal resolution h, ensuring compatibility with the subsequent processing stages. During
inference, the downsampling module will be deployed on the transmitter side, while the upsampling
part will be deployed on the receiver side. The detailed architecture of the compressor is illustrated
in Figure[5]in Appendix.

The latent representation X produced by the pre-trained VAE has already been reduced by a factor of
4x8x8 in the original video dimensions. We apply an additional 2x8x8 spatio-temporal downsam-
pling via the compressor’s downsampling module, resulting in a total compression factor of 32,768x
for the transmitted representation h (calculated as 4 x 8 x 8 x 2 x 8 x 8). To ensure computation and
transmission efficiency, i has a dimension of 16 and is represented in the bfloat16 format, this leads
to an ultra-low bitrate of 0.0078 bp]ﬂ for transmitting h.

During training, the compressed code z is sampled using the reparameterization trick to allow gra-
dient backpropagation and introduce stochasticity. During inference, we use the mean g, directly
as z, following common practice in prior work (Kingma & Welling, [2022).

L JHat o N(0,1), training
g inference

®)

For the generative model, we do not update all parameters, but instead employ Low-Rank Adaptation
(LoRA) to efficiently fine-tune the pre-trained weights.

4 EXPERIMENTS

To comprehensively evaluate our approach, we first assess the visual quality of reconstructed videos
on standard video compression benchmarks. Specifically, we report performance under low bitrate
settings on established datasets including HEVC Class B, HEVC Class C (Boyce et al.| [2010),
UVG (Mercat et al.|[2020), and MCL-JCV (Wang et al.,[2016).

Furthermore, to evaluate semantic fidelity, that is, the preservation of high-level information crucial
for machine perception, we tested the reconstructed videos on multiple downstream tasks. These in-
clude action recognition on Kinetics (Carreira & Zisserman, |2017)), multiple object tracking (MOT)
on MOT17 (Milan et al., 2016), and video object segmentation (VOS) on DAVIS2017 (Pont-Tuset;
et al.,|2018)). This demonstrates the practical utility of our compressed representations beyond pixel-
level metrics.

To demonstrate the strong generalization capability of our approach, all experimental results were
obtained using a single, unified model without any dataset- or task-specific fine-tuning. Its
consistent performance across diverse tasks and datasets highlights the robustness of our method
and underscores the promising potential of generative models in reconstruction-based compression.
Specifically, we employ the open-source Koala (Wang et al., 2024)) dataset, from which 50,000 clips
are randomly sampled as our training set. We fine-tune the pre-trained Wan2.1-14B for 3 epochs
with a learning rate of 2 x 107° and a batch size of 8. We set rank (7) and alpha (o) to 16 for LoRA.
We set the hyper-parameter 3 = 10~%. All videos were resized to 480p resolution; we segmented
each input video into shorter clips of 45 frames, which were then compressed and reconstructed
independently by our model.

1 __ 16(dimension) X 2(bytes for bfloat16) X 8 (bits per byte) __,
bpp - 32,768 (spatial-temporal compression) ~ 0.0078
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4.1 EXPERIMENTAL SETTINGS ON VIDEO COMPRESSION BENCHMARK

Evaluation Metrics. For directly assessing the visual quality of the reconstructed videos, we use
two commonly used metrics for evaluation: Fréchet Video Distance (FVD) and Learned Perceptual
Image Patch Similarity (LPIPS), as they better align with human perception compared to traditional
measures.

Baseline Methods. We compare the proposed framework with both traditional video compression
standards, H.264, H.265, H.266, and SOTA video compression methods: (1) traditional video com-
pression methods (H.264 (Wiegand et al., 2003)), H.265 (Sullivan et al., [2012)), H.266 (Bross et al.|
2021)); (2) neural video compression methods (DCVC-DC (Li et al.| 2023)), DCVC-FM (Li et al.,
2024), DCVC-RT (Jia et al.,[2025)); (3) diffusion-based video compression methods (T-GVC (Wang
et al.,[2025)), Multi-C (Y1 et al., 2025)).

4.2 EXPERIMENTAL SETTINGS ON SEMANTIC COMMUNICATION BENCHMARK

Evaluation Metrics. For action recognition, we employ the Top-1 accuracy (P@1) as the evaluation
metric. For multiple object tracking (MOT), we adopt widely-used metrics including MOTA (Mul-
tiple Object Tracking Accuracy) (Kasturi et al.|[2009), MOTP (Multiple Object Tracking Precision),
FN (False Negatives), and IDF1. For video object segmentation (VOS), we evaluate performance
using the Jaccard index 7, contour accuracy F, their average (7 &F), and contour recall (F-Recall).

Downstream Task Models. For action recognition evaluation, we utilize TSM (Lin et al.| [2019)
as the downstream model. For multiple object tracking (MOT), we adopt ByteTrack (Zhang et al.,
2022) for performance measurement. For video object segmentation (VOS), the evaluation is per-
formed using XMem (Cheng & Schwing,|2022) along with its officially released pretrained weights.

Baseline Methods. We compare our method with traditional codecs, namely H.265/HEVC (Sullivan
et al., 2012) and H.266/VVC (Bross et al.,|2021)), learnable codecs, namely FVC (Hu et al., |2021)),
PLVC (Yang et al., 2022) and DCVC-DC (Li et al., [2023), as well as recent semantics-oriented
coding methods ROI (Cai et al., [2021)), JPD-SE (Duan et al., [2022), SMC (Tian et al.l [2023)), and
FreeVSC (Tian et al., [2024]).

4.3 OVERALL PERFORMANCE

To accurately estimate the actual transmission bandwidth for fair comparison, the first and last
frames were compressed using the state-of-the-art LIC (Li et al., [2025) method, resulting in a fi-
nal bitrate of approximately 0.01 bits per pixel (bpp) for the entire compressed video representation.
Note that after compression, the first and last frames occupy only 4 KB, contributing an additional
0.002 bpp (4 x 1024 x 8 + 45 + 480 + 720). Please note that during inference, the steps for Multi-C
are set to 50 while ours are 10.

Visual Fidelity. Table [l|summarizes the performance of our end-to-end framework alongside com-
parative methods across multiple datasets. Under equivalent bpp conditions, our approach consis-

Table 1: The overall performance of different methods on the test sets. Here, we report the FVD
and LPIPS among actual videos and predictions generated by different methods. The best results are
highlighted in bold, and the second best results are underlined. For the method Multi-C, we report
its performance at a bpp of 0.0067, while all other methods are evaluated at a bpp of 0.01.

HEVC Class B HEVC Class C UVG MCL-JCV
FVD(}) LPIPS()) FVD(]) LPIPS(}) FVD() LPIPS(}) FVD() LPIPS(})
H.264 (Wiegand et al.|[2003) 2738 0.8283 3022 0.7724 4252 0.8274 4844 0.7139

Method

H.265 (Sullivan et al.|[2012) 1327 0.4941 1452 0.4833 1688 0.4052 1030 0.3667
H.266 (Bross et al.[[2021) 1022 0.4038 1273 0.4543 1052 0.2834 973 0.3217
DCVC-DC (Li et al.|[2023) 892 0.3821 1135 0.4327 992 0.2742 887 0.3152
DCVC-FM (Li et al.|2024) 837 0.3672 1079 0.4186 968 0.2689 849 0.3103
DCVC-RT (Jia et al.|2025) 783 0.3543 1029 0.4058 947 0.2635 811 0.3068
T-GVC (Wang et al.[|2025) - 0.3512 - 0.3642 - 0.2212 - 0.3145
Multi-C (Y1 et al.[|2025) 597 0.2813 402 0.2625 571 0.2208 515 0.2926
Ours (bpp ~ 0.01) 355 0.1932 311 0.1872 437 0.1645 561 0.1947
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tently outperforms both traditional codecs (H.264, H.265, H.266) and recent neural compression
baselines by a considerable margin. Notably, our method achieves state-of-the-art results on HEVC
Class B, HEVC Class C, and UVG datasets across all reported metrics. On the MCL-JCV dataset,
we attain the best LPIPS score while achieving competitive, second-best performance in FVD.

Although Multi-C incorporates multiple hand-crafted features and delivers com-
petitive results on conventional metrics, qualitative comparisons reveal advantages of our approach.
As shown in Figure 2] our method more accurately reconstructs perceptually challenging elements,
such as newly emerging objects, complex lighting effects, intricate textures, and subtle tonal vari-
ations. Such elements are inherently difficult to model using hand-crafted features. These results
demonstrate the superiority of our data-driven, end-to-end learning framework.

Semantic Fidelity. Table ]2
summarizes the performance Multi-C
on downstream tasks, including
action recognition, multi-object
tracking, and video object
segmentation, using videos
reconstructed by  different
compression methods. For the
action recognition task, our
method consistently outper-
forms all competing approaches
on the large-scale Kinetics
dataset when using the TSM
model, despite operating at a
significantly lower bitrate (0.01
bpp vs. 0.06 bpp). Notably,
the recognition accuracy of
videos reconstructed by our
method approaches the em-
pirical upper bound set by
the original uncompressed se-
quences, demonstrating that our
compression method preserves
high-level semantic content
with minimal loss.

Figure 2: Qualitative comparison of reconstructed video frames
under extreme compression on MCL-JCV dataset. Our method
(right column) preserves fine details and dynamic elements more
Beyond basic action recogni- faithfully than the hand-crafted feature-based approach by Multi-

tion, we evaluate the codecs C (Yietall2025) (middle column), demonstrating the advantage
on the significantly more chal- of our data-driven, end-to-end learned representation.

lenging multi-object tracking

(MOT) benchmark, where iden-

tity preservation of human appearance is critical, as well as on the video object segmentation (VOS)
task, which requires even more fine-grained semantic features. As shown in Table 2] our approach
attains highly competitive performance on all MOT metrics while operating at the lowest bitrate.
Although our method falls short of task-specific methods fine-tuned for VOS task, it delivers com-
petitive and functionally viable results. This performance gap can be attributed to a fundamental
difference in optimization focus: while task-specific methods often employ specialized architec-
tures and losses that explicitly prioritize regions of interest (ROISs) critical for particular tasks, our
approach optimizes for holistic visual quality and general semantic fidelity across the entire frame.
Figure [3] presents several cases where the reconstructed videos lead to performance degradation in
MOT and VOS tasks. While the results exhibit certain blurring and inconsistencies in detailed re-
gions, human observers consistently derive correct semantic information from the content. This
suggests that such artifacts, while impactful for automated metrics, remain acceptable in terms of
human perceptual tolerance.

In our appendix and supplementary materials, we provide extensive video visualization of recon-
structions from the experimental datasets and in-the-wild data. We highly recommend viewing these
visual results for a more intuitive and comprehensive understanding of the performance achieved by
our method.
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GT_prediction Ours_prediction

Figure 3: Failure cases on video object segmentation (VOS, first two rows) and multiple object
tracking (MOT, last two rows). In the MOT visualization, the blue bounding box denote false nega-
tives, while red bounding box indicate false positives.

4.4 ABLATION

To validate the effectiveness of key components in our framework, we conduct extensive ablation
studies under consistent experimental settings.

Effectiveness of the Conditional Prior. To evaluate the importance of the content-aware condi-
tional prior, we conduct an ablation study in which our proposed prior p(z|c) is replaced with a
fixed standard Gaussian distribution A(0, I'). Experimental results confirm that this change leads to
a marked degradation in performance across all key metrics. The KL divergence term, which orig-
inally measures only the novel dynamic information absent in the conditioner c, loses its semantic
interpretability and fails to effectively constrain the learning of z. As a result, the compressor pro-
duces less efficient codes, and the reconstructed video exhibits noticeable artifacts, particularly in
regions with complex motion or dynamic textures. These findings empirically validate that our
conditional prior plays an essential role in achieving high compression efficiency and maintaining

Table 2: Downstream performances of different coding methods. | denotes the lower is better.
‘Upper-bound’ is obtained by evaluating the task models with the original videos. The best results
are highlighted in bold, and the second best results are underlined. For the action recognition task,
we report the performance of other methods at a bpp of 0.06; for multiple object tracking (MOT)
and video object segmentation (VOS) tasks, we record their performance at a bpp of 0.01. "T-S”
denotes “task-specific”.

Method s Action Rec: TSM on Kinetics MOT: ByteTrack on MOT17 VOS: XMEM on DAVIS2017
P@1 MOTA (%)} MOTP (%), IDF1 (%)} FN| J&F (%) J (%) F (%) F-Recall (%)
HEVC X 35.28 61.30 19.88 64.32 17377 57.68 56.84  58.51 67.44
FvC X 37.23 44.24 21.97 52.53 27508 62.39 61.22  63.55 75.67
PLVC X 48.65 67.87 18.44 68.95 13299 61.45 60.02  62.87 74.07
DCVC-DC X 55.81 65.22 18.22 70.51 12328 72.86 69.26  76.46 88.17
vvC X 49.11 64.86 19.49 68.99 15621 67.47 65.59  69.36 80.92
ROI 4 49.82 65.29 19.31 67.78 15270 69.22 67.16  71.28 83.80
JPD-SE v 51.02 60.05 20.62 63.52 17847 61.48 59.86  63.09 73.31
SMC v 59.26 70.84 17.79 71.89 11710 7420 7021  78.19 91.10
FreeVSC v 61.83 72.80 16.61 73.21 10445 76.85 7270  80.99 92.77
Ourspp~00D_ X 7093 745 1699 6976 8594 6131 _ 6561 6901 7985

Upper-bound N/A 71.20 78.60 15.80 79.00 7000 87.70 84.06 9133 97.02
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Table 3: Comparison of reconstruction quality between the proposed content-adaptive prior and a
standard Gaussian prior. Evaluations are conducted on multiple video quality benchmarks. Our
method shows substantial gains across perceptual metrics (e.g., LPIPS, FVD).

Method HEVC Class B HEVC Class C UvVG MCL-JCV
FVD(}) LPIPS(]) FVD() LPIPS(]) FVD() LPIPS(]) FVD() LPIPS(})
Baseline 1092 0.3220 921 0.3025 1573 0.2931 1781 0.3568
Ours 355 0.1932 311 0.1872 437 0.1645 561 0.1947
Table 4: Comparison of the performance between
— paseline the noise-to-data baseline and our proposed method
30 p ours under different sampling steps on the UVG dataset.
25 \\
N
20 \} W /\ Sampling Steps  Method FVD (]) LPIPS ({)
1 fn\/ s Baseline 2852 0.3556
10 \&M Ours 635 0.1938
N AN A -
03 10 Baseline 2434 0.3300
800 1600 2400 3200 iters Ours 437 0.1645
. . . 20 Baseline 2003 0.3142
Figure 4: Training loss curves comparing Fhe Ours 415 0.1619
proposed reformed flow matching objective "y 1
with the standard noise-conditioned baseline. 30 Baseline 1959 0.307

Ours 408 0.1615

reconstruction fidelity. Table 3| summarizes the results across widely-used video quality assessment
datasets. The results demonstrate that our method significantly outperforms the baseline in terms of
visual fidelity, with notable improvements in perceptual metrics such as LPIPS and FVD.

Importance of the Reformed Flow Matching. To validate the efficacy of our reformed flow match-
ing objective, we compare it against a strong baseline that follows the standard noise-to-data gen-
eration paradigm (¢ — x), where the compressed representation z is incorporated via channel-wise
concatenation with the latent noise, forming the input of the diffusion transformer. The empirical
results demonstrate clear advantages of our approach in both the training and inference phases. As
shown in Figure ] our method achieves a faster and more stable convergence, indicating a better
optimization behavior. Furthermore, as summarized in Table[d] when evaluating under reduced sam-
pling steps on the UVG dataset, the baseline suffers significant performance decay across metrics. In
contrast, our approach maintains consistent high-fidelity reconstruction even in fewer than 10 steps,
underscoring its superior efficiency and robustness for low-latency generation.

5 CONCLUSION

In conclusion, we have presented a novel generative video compression framework grounded in
the Conditional Information Bottleneck principle, which achieves extreme compression ratios (up to
32,768x) while maintaining high reconstruction fidelity and semantic preservation. Our method con-
sistently outperforms both traditional codecs and recent neural alternatives across multiple bench-
marks and downstream tasks, demonstrating the effectiveness of integrating generative modeling
with information-theoretic learning.

Despite these promising results, several directions remain open for future work. These include fur-
ther acceleration of the generative decoder via knowledge distillation, model miniaturization for
resource-constrained environments, and precise bitrate control for practical adaptive streaming sce-
narios. We believe this work serves as a strong baseline for semantic-aware video compression and
opens up new possibilities for efficient and intelligent visual communication.
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A APPENDIX

This appendix provides more details of our compressor, experimental results, and visualization ex-
amples, which are organized as follows:

* Architecture of Compressor (cf. §[A);
* Experiment Results (cf. §[A.2));
* Visualization Example (cf. §[A.3).

A.1 ARCHITECTURE OF COMPRESSOR

Figure [5] details the network architecture of the Compressor’s encoder and decoder. The encoder
(left) consists of multiple stages of Attention Layers followed by 3D Convolution Downsampling
(Down) modules with specific stride configurations. The downsampling modules employ progres-
sive striding strategies: the first module uses a 1x2x2 stride (maintaining temporal resolution while
halving spatial dimensions), followed by two modules with 2x2x2 strides (halving resolution in all
temporal and spatial dimensions). The decoder (right) mirrors this structure with 3D Transposed
Convolution Upsampling (Up) modules using corresponding stride patterns (2x2x2 and 1x2x2) to
progressively restore resolution, interspersed with Attention Layers. The middle section contains
Self-Attention and Feed-Forward Network (FFN) modules for feature integration and transforma-
tion across the compressed latent space.

SelfAttention

FFN

— input ‘

Attention Layer

Down 1x2x2

|

Attention Layer
Down 2x2x2

l

Attention Layer
Down 2x2x2

|

|

Attention Layer
Up 1x2x2

|

Attention Layer
Up 2x2x2

T

Attention Layer
Up 2x2x2

Figure 5: Detailed architecture of the compressor network, featuring a U-Net style design with self-
attention layers and spatio-temporal down/up-sampling blocks.

A.2 EXPERIMENT RESULTS

Effectiveness of the Conditional Prior. In the main body, we demonstrate the importance of
content-aware conditional prior by benchmarking on multiple standard video compression datasets.
To further validate its effectiveness, we also evaluate the reconstructed videos on downstream tasks,
including Multi-Object Tracking (MOT) and Video Object Segmentation (VOS). As shown in Ta-
ble[5} our method consistently outperforms the baseline that uses a standard Gaussian prior, achiev-
ing significant improvements across all metrics in both MOT and VOS. These results confirm that
the content-adaptive prior not only enhances compression performance but also preserves high-level
semantic content more effectively.

Importance of the Reformed Flow Matching. Recall that we compare the standard noise-to-data
paradigm (which treats the compressed representation as condition and concatenates it along the
channel dimension) and our reformed flow-matching objective on the UVG dataset, we now ablate
on downstream tasks (e.g., MOT and VOS) to further assess its impact. Table[§] As summarized in
Table [6] our method achieves substantial and consistent improvements over the baseline across all
evaluation metrics under the same sampling steps, demonstrating that the reformed flow-matching
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Table 5: Comparison of downstream task performances between the proposed content-adaptive prior
and a standard Gaussian prior. Our method shows consistent gains across multiple tasks.

Method MOT VOS
MOTA (%)t MOTP (%)} IDF1 (%)t FN| J&F (%) J (%) F (%) F-Recall (%)

Baseline 39.00 30.55 59.14 21826 4631 4533 4728 66.57

Ours 71.45 16.99 69.76 8594 6731 6561 69.01 79.85

objective enables significant performance gains with few sampling steps (i.e., <10), substantially
reducing inference overhead.

Table 6: Comparison of downstream task performances between the reformed flow-matching objec-
tive and the standard noise-to-data paradigm. Evaluations are conducted on multiple downstream
tasks. Our method shows consistent and substantial gains across all the metrics.

. MOT (N
Sampling Steps ~ Method
MOTA (%)t MOTP (%), 1IDF1 (%)t FN| J&F (%) J (%) F (%) F-Recall (%)
10 Baseline 27.61 32.80 52.14 26796 43.10 4132 44.87 60.39
Ours 71.45 16.99 69.76 8594 67.31 65.61  69.01 79.85

A.3 VISUALIZATION EXAMPLE

In this section, we provide additional visual results to further illustrate the model’s performance
across three aspects: the number of sampling steps, the effect of the conditional prior, and handling
of in-the-wild data.

A.3.1 VISUAL COMPARISON ON DIFFERENT SAMPLE STEPS

To better understand the effectiveness of our method, we provide qualitative visualizations under
different settings. As shown in Figure [6] the ground truth, the noise-to-data baseline, and our ap-
proach are compared across multiple sampling steps (5, 10, and 20). The baseline tends to produce
results with incomplete or blurred structures, especially when the number of steps is small. In con-
trast, our method consistently generates more coherent and visually faithful patterns, even at fewer
steps. With more iterations, the difference becomes increasingly pronounced, where our approach
preserves fine-grained details and avoids the artifacts observed in the baseline. These results high-
light that our model not only accelerates inference but also improves stability and fidelity in the
generated outputs.

A.3.2 VISUAL COMPARISON ON CONDITIONAL PRIOR

We also compare the visual outcomes of our approach against the baseline where our proposed
content-aware conditional prior is replaced with a standard Gaussian distribution. As illustrated
in Figure [7] while the baseline produces results that deviate noticeably from the ground truth, our
method yields outputs that are structurally more consistent and visually faithful. The baseline often
introduces distortions and fails to preserve critical local details, leading to degraded quality. In
contrast, our model successfully captures both global structures and fine-grained patterns, resulting
in outputs that are closer to the ground truth. These qualitative results provide clear evidence that
our approach achieves superior fidelity and robustness compared with the baseline.

A.3.3 VISUALIZATIONS ON IN-THE-WILD DATA

To further demonstrate the practicality of our approach, we present qualitative results on in-the-wild
data, as shown in Figure [8| (see the figure on Page 16). With our novel designs, our method is
able to generate outputs that are highly consistent with the ground truth, faithfully preserving both
structural integrity and fine details. These results provide strong evidence of the effectiveness of our
model beyond the curated datasets. Moreover, the robustness observed across diverse and uncon-
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Noise-to-data

Figure 6: Qualitative comparison across different sampling steps. The baseline (Noise-to-data)
suffers from incomplete or blurred structures, particularly at fewer steps, while our method produces
more coherent and faithful results with preserved fine details.

Baseline

Figure 7: Comparison between the baseline and our approach. The baseline introduces distortions
and loses critical local details, whereas our method preserves both global structures and fine-grained
patterns, yielding outputs closer to the ground truth.

strained scenarios highlights the generalization capability of our approach, indicating its potential
applicability to real-world settings.

For more visualizations, please kindly refer to our supplementary materials, which contains demo
videos.
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Figure 8: Visualizations on in-the-wild data (best viewed zoomed in), our method faithfully pre-
serves both structural integrity and fine details.

16



	Introduction
	Related Work
	Method
	Preliminary
	Information-Theoretic Foundation
	Model Architecture and Implementation
	End-to-End Training and Inference

	Experiments
	Experimental Settings on Video Compression Benchmark
	Experimental Settings on Semantic Communication Benchmark
	Overall Performance
	Ablation

	Conclusion
	Appendix
	Architecture of Compressor
	Experiment Results
	Visualization Example
	Visual comparison on different sample steps
	Visual comparison on conditional prior
	Visualizations on in-the-wild data



